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Abstract. We establish the local Langlands conjecture for small rank general spin groups GSpin4 and

GSpin6 as well as their inner forms. We construct appropriate L-packets and prove that these L-packets
satisfy the properties expected of them to the extent that the corresponding local factors are available. We

are also able to determine the exact sizes of the L-packets in many cases.

1. Introduction

In this article, we construct L-packets for the split general spin groups GSpin4, GSpin6, and their inner
forms over a p-adic field F of characteristic 0, and more importantly, establish their internal structures
in terms of characters of component groups, as predicted by the Local Langlands Conjecture (LLC). This
establishes the LLC for the groups in question (cf. Theorems 5.1 and 6.1 and Propositions 5.16 and 6.12).
The construction of the L-packets is essentially an exercise in restriction of representations, thanks to the
structure, as algebraic groups, of the groups we consider; however, proving the properties of the L-packets
requires some deep results of Hiraga-Saito as well as Aubert-Baum-Plymen-Solleveld as we explain below.

Let WF denote the Weil group of F. In a general setting, if G denotes a connected, reductive, linear,
algebraic group over F, then the Local Langlands Conjecture asserts that there is a surjective, finite-to-one
map from the set Irr(G) of isomorphism classes of irreducible smooth complex representations of G(F ) to the

set Φ(G) of Ĝ-conjugacy classes of L-parameters, i.e., admissible homomorphisms ϕ : WF ×SL2(C) −→ LG.

Here Ĝ = LG0 denotes the connected component of the L-group of G, i.e., the complex dual of G [Bor79].
Given ϕ ∈ Φ(G), its fiber Πϕ(G), which is called an L-packet for G, is expected to be controlled by a certain

finite group living in the complex dual group Ĝ. Furthermore, the map is supposed to preserve certain local
factors, such as γ-factors, L-factors, and ε-factors.

The LLC is already known for several cases: GLn [HT01, Hen00, Sch13], SLn [GK82], U2 and U3 [Rog90],
F -inner forms of GLn and SLn [HS12, ABPS14], GSp4 [GT11], Sp4 [GT10], the F -inner form GSp1,1 of
GSp4 [GT14], the F -inner form Sp1,1 of Sp4 [Cho14c], quasi-split orthogonal and symplectic groups [Art13],
unitary groups [Mok15], and non quasi-split inner forms of unitary groups [KMSW14].

We consider the case of G = GSpin4,GSpin6, or one of their non quasi-split F -inner forms. Our approach
is based on the study of the restriction of representations from a connected reductive F -group to a closed
subgroup having an identical derived group as G itself. This approach originates in the earlier work on
the LLC for SLn [GK82]. Gelbart and Knapp studied the restriction of representations of GLn to SLn and
established the LLC for SLn, assuming the LLC for GLn which was later proved [HT01, Hen00, Sch13].
Given an L-parameter ϕ ∈ Φ(SLn), the L-packet Πϕ(SLn) is proved to be in bijection with the component

group Sϕ(ŜLn) of the centralizer of the image of ϕ in ŜLn. The multiplicity one property for the restriction
from GLn to SLn [HS75, Tad92] and the fact that all L-packets of GLn are singletons [HT01, Hen00, Sch13],
are indispensable to establishing the bijection.

Later on, Hiraga and Saito extended the LLC for SLn and the result of Labesse and Langlands [LL79]
for the non-split inner form SL′2 of SL2 to the non-split inner form SL′n of SLn [HS12], except for the
representations of SL′n whose liftings to the split GLn are not generic. Those cases were dealt with afterwards
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by Aubert, Baum, Plymen, and Solleveld [ABPS14]. The restriction approach is also used in the case of SL′n,
after establishing the LLC for the non-split inner form GL′n of GLn by means of the LLC for GLn and the
local Jacquet-Langlands correspondence [JL70, DKV84, Rog83, Bad08]. However, there is some subtlety in
applying the restriction technique from GL′n to SL′n since, unlike in the case of split SLn, the multiplicity one

property fails in this case. Thus, Hiraga and Saito consider a central extension Sϕ,sc(ŜLn) of the connected

component group PGLn(C) by a certain quotient group Ẑϕ,sc(SLn) of the center of SLn(C). They then prove

that the set of irreducible representations of the finite group Sϕ,sc(ŜLn) governs the restriction from GL′n to
SL′n and parameterizes the L-packets for SL′n. The central extension approach turns out to also include the
case of G = SLn and the previous parameterization of L-packets of SLn.

The LLC for the groups we consider in this paper is related to the LLC for SLn [GK82] and its F -inner
form SL′n [HS12, ABPS14]. Write G for GSpin4, GSpin6, or one of their non quasi-split F -inner forms. It
follows from the structure of G as an algebraic group that it is an intermediate group between a product of
SLmi and a product of GLmi or their F -inner forms with suitable integers mi. We give an explicit description
of each group structure in Section 2.2. We are then able to utilize the LLC for GLn [HT01, Hen00, Sch13]
and GL′n [HS12]. At the same time, using a theorem of Labesse [Lab85], we are able to define a surjective,
finite-to-one map

L : Irr(G) −→ Φ(G), (1.1)

and construct L-packets Πϕ(G) for each ϕ ∈ Φ(G).
We next study the internal structure of each L-packet. Based on the work of Hiraga and Saito [HS12], we

investigate the central extension Sϕ,sc for our case and prove that Sϕ,sc is embedded into Sϕ,sc(ŜLn). This
is where the internal structures of the L-packets for SLn and SL′n are needed. We then prove that there is a
one-to-one correspondence

Πϕ(G)
1−1←→ Irr(Sϕ,sc, ζG),

where Irr(Sϕ,sc, ζG) denotes the set of irreducible representations of Sϕ,sc with central character ζG corre-
sponding to the group G via the Kottwitz isomorphism [Kot86] (cf. Theorems 5.1 and 6.1). Moreover,
using Galois cohomology, we prove that the possible sizes for the L-packet Πϕ(G) are 1, 2, and 4 when
p 6= 2 and 1, 2, 4, and 8 when p = 2 (cf. Propositions 5.5 and 6.4). In the case of G = GSpin4 we are
also able to show that only 1, 2, and 4 occur for any p (see Remarks 5.10 and 5.11). We do this using the
classification of the group of characters stabilizing representations. Further, we describe the group structure
of the central extension Sϕ,sc, provide all the sizes of L-packets for GSpin4 and its non quasi-split F -inner
forms, and discuss the multiplicity in restriction. In the case of GSpin6, unlike that of GSpin4, we do not
classify the group of characters for GSpin6 nor do we discuss the group structure of Sϕ,sc. This is due to the
fact that a full classification of irreducible L-parameters in Φ(SL4) is not currently available. Accordingly,
the determination of all the sizes of L-packets for GSpin6 and its non quasi-split F -inner forms as well as
the multiplicity in restriction are not addressed in this paper. These questions will require further study of
the finite group Sϕ,sc for each L-parameter ϕ for GSpin6.

Furthermore, in Sections 5.4 and 6.4 we verify that the Plancherel measure is preserved within L-packets
and between inner twisting. Also, the L-map satisfies that an irreducible representation is essentially square
integrable (respectively, tempered) if and only if its L-parameter does not factor through any proper Levi
subgroup (respectively, the image of its L-parameter is bounded).

When G is the split group GSpin4 or GSpin6, we prove that the local L-, ε-, and γ-factors are preserved
via the L-map in (1.1). Given τ ∈ Irr(GLr), r ≥ 1, and σ ∈ Irr(G) which is assumed to be either ψ-generic or
non-supercuspidal if r > 1, we let ϕτ be the L-parameter of τ via the LLC for GLr and let ϕσ = L(σ). Thanks
to the structure theory detailed in Section 2.2, we are able to use results on the generic Langlands functorial
transfer from general spin groups to the general linear groups which are already available [ACS1, AS06, AS14].
As a result, we prove

L(s, τ × σ) = L(s, ϕτ ⊗ ϕσ),

ε(s, τ × σ, ψ) = ε(s, ϕτ ⊗ ϕσ, ψ), (1.2)

γ(s, τ × σ, ψ) = γ(s, ϕτ ⊗ ϕσ, ψ).
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Here, the local factors on the left hand side are those attached by Shahidi [Sha90b, Theorem 3.5] initially to
generic representations and extended to all non-generic non-supercuspidal representations via the Langlands
classification and the multiplicativity of the local factors [Sha90b, §9], and the factors on the right hand side
are Artin local factors associated with the given representations of the Weil-Deligne group of F (cf. Sections
5.5 and 6.5).

Another expected property of the L-packets is that they should satisfy the local character identities of
the theory of (twisted) endoscopy (see [CG14], for example). It is certainly desirable to study this question
for the groups we consider and the L-packets we construct, a task we leave for a future work.

We finally remark that, due to lack of the LLC for the quasi-split special unitary group SUn, our method
is currently limited to split groups GSpin4, GSpin6, and their non quasi-split F -inner forms. The case of the
quasi-split non-split groups GSpin∗4 and GSpin∗6 will be addressed in a forthcoming work.

The structure of this paper is as follows. In Section 2 we introduce the basic notations and review some
background material. We also describe the algebraic group structure, F -points, and L-groups of the groups
GSpin4, GSpin6, and their non quasi-split F -inner forms, which are the groups under consideration in this
paper. Section 3 states the LLC and the conjectural structure of L-packets in a general setting. In Section 4
we review some well-known results on restriction. We then prove our main results: the LLC for GSpin4 and
its non quasi-split F inner forms in Section 5, and the LLC for GSpin6 and its non quasi-split F -inner forms
in Section 6. Furthermore, we describe the possible sizes of L-packets in each case and prove the equality of
local factors via the L-map.
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feedback and comments on this work. The first author was partially supported by a Collaborations Grant
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2. The Preliminaries

2.1. Notations and Conventions. Let p be a prime number. We denote by F a p-adic field of characteristic
0, i.e., a finite extension of Qp. Let F̄ be an algebraic closure of F. Denote by OF the ring of integers of F,
and by P the maximal ideal in OF . Let q denote the cardinality of the residue field OF /P.

We denote by WF the Weil group of F and by Γ the absolute Galois group Gal(F̄ /F ). Let G be a
connected, reductive, linear, algebraic group over F. Fixing Γ-invariant splitting data, we define the L-group

of G as a semi-direct product LG := Ĝo Γ (see [Bor79, Section 2]).
For an integer i ∈ N and a connected, reductive, algebraic group G over F, we set

Hi(F,G) := Hi(Gal(F̄ /F ), G(F̄ )),

the Galois cohomology of G. For any topological group H, we denote by π0(H) the group H/H◦ of connected
components of H, where H◦ denotes the identity component of H. By Z(H) we will denote the center of
H. We write HD for the group Hom(H,C×) of all continuous characters. Also, Hder denotes the derived
groups of H. We denote by 1 the trivial character. The cardinality of a finite set S is denoted by |S|. For
two integers x and y, x

∣∣y means that y is divisible by x. For any positive integer n, we denote by µn the
algebraic group such that µn(R) = {r ∈ R : rn = 1} for any F -algebra R.

Given connected reductive algebraic groups G and G′ over F, we say that G and G′ are F -inner forms
with respect to an F̄ -isomorphism ϕ : G′ → G if ϕ ◦ τ(ϕ)−1 is an inner automorphism (g 7→ xgx−1) defined
over F̄ for all τ ∈ Gal(F̄ /F ) (see [Bor79, 2.4(3)], [Kot97, p.280]). We often omit the references to F and ϕ
when there is no danger of confusion. We recall that if two F -inner forms G and G′ are quasi-split over F ,
then G and G′ are isomorphic over F, [Bor79, Remarks 2.4(3)].

When G and G′ are inner forms of each other, we have LG ∼= LG′ [Bor79, Section 2.4(3)]. In particular,

if G′ is an inner form of an F -split group G with the action of Γ on Ĝ trivial, we write LG = Ĝ ∼= LG′ = Ĝ′.
For positive integers m, n, and d, we let D be a central division algebra of dimension d2 over F (possibly

D = F, in which case d = 1). Let GLm(D) denote the group of all invertible elements of m ×m matrices
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over D. Let SLm(D) be the subgroup of elements in GLm(D) with reduced norm Nrd equal to 1. Note that
there are algebraic groups over F, whose groups of F -points are respectively GLm(D) and SLm(D). By abuse
of notation, we shall write GLm(D) and SLm(D) for their algebraic groups over F as well. Note that any
F -inner forms of the split general linear group GLn and the split special linear group SLn are respectively
of the form GLm(D) and SLm(D), where n = md (see [PR94, Sections 2.2 & 2.3]).

2.2. Group Structures. In this section we describe the structure of the split groups GSpin4 and GSpin6

over F as well as their non quasi-split F -inner forms. These are the groups we work with in this paper. The
exact knowledge of the structure of these groups allow us, on the one hand, to use techniques from restriction
of representations to construct L-packets and, on the other hand, make use of generic local transfer from the
general spin groups to general linear groups in order to prove preservation of local L-, ε-, and γ-factors for
our L-packets.

2.2.1. Split Groups. We first give a description of the split groups GSpin4 and GSpin6 in terms of abstract
root data. Let

X2n = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen
and let

X∨2n = Ze∗0 ⊕ Ze∗1 ⊕ · · · ⊕ Ze∗2n
be the dual Z-module with the standard Z-pairing between them. We let

∆2n = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en}
and

∆∨2n = {α∨1 = e∗1 − e∗2, . . . α∨n−1 = e∗n−1 − e∗n, α∨n = e∗n−1 + e∗n − e∗0}
denote the simple roots and coroots, respectively, and let R2n and R∨2n be the roots and coroots they generate.
Then

Ψ2n = (X2n, R2n,∆2n, X
∨
2n, R

∨
2n,∆

∨
2n)

is a based root datum determining the split, connected, reductive group GSpin2n over F. See [ACS2, AS14]
for more details. We are mostly interested in Ψ4 and Ψ6 in this paper.

In fact, the derived group of GSpin2n is isomorphic to Spin2n and we have [AS06, Proposition 2.2] the
following isomorphism of algebraic groups over F :

GSpin2n
∼= (GL1 × Spin2n)/{(1, 1), (−1, c)}, (2.1)

where c denotes the non-trivial element in the center of Spin2n given by

c = α∨n−1(−1)α∨n(−1) = e∗0(−1)−1 = e∗0(−1)

in our root data notation.
When n = 2 or 3 we have the accidental isomorphisms

Spin4
∼= SL2 × SL2

Spin6
∼= SL4

as algebraic groups over F. The element c will then be identified with (−I2,−I2) ∈ SL2×SL2 and −I4 ∈ SL4,
respectively. Therefore, we have the following isomorphisms of algebraic groups over F :

GSpin4
∼= (GL1 × SL2 × SL2)/ {(1, I2, I2), (−1,−I2,−I2)} , (2.2)

GSpin6
∼= (GL1 × Spin6)/ {(1, I4), (−1,−I4)} . (2.3)

For our purposes here, the following is a more convenient description of these two groups.

Proposition 2.1. As algebraic groups over F we have the following isomorphisms:

GSpin4
∼= {(g1, g2) ∈ GL2 ×GL2 : det g1 = det g2} (2.4)

GSpin6
∼= {(g1, g2) ∈ GL1 ×GL4 : g2

1 = det g2}. (2.5)
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Proof. We verify these isomorphisms by giving explicit isomorphisms between the respective root data. For
(2.4) consider GL2 × GL2 and let T1 be its usual maximal split torus, with T ⊂ T1 denoting the maximal
split torus of

G4 = {(g1, g2) ∈ GL2 ×GL2 : det g1 = det g2} .
Using the notation fij and f∗ij , 1 ≤ i, j ≤ 2, for the usual Z-basis of characters and cocharacters of GL2×GL2

with the standard Z-pairing between them, the character lattice X∗(T ), a quotient of X∗(T1), and the
cocharacter lattice X∗(T ), a sublattice of X∗(T1), can be given by

X∗(T ) =
Z〈f11, f12〉 ⊕ Z〈f21, f22〉
Z〈f11 + f12 − f21 − f22〉

and

X∗(T ) = 〈f11 + f12 − f21 − f22〉⊥.
Here ⊥ means orthogonal complement with respect to the Z-pairing.

Let R and ∆ denote the roots and simple roots in G4 and let R∨ and ∆∨ be coroots and simple coroots. An
isomorphism of based root data Ψ4 −→ Ψ(G4) = (X∗(T ), R,∆, X∗(T ), R∨,∆∨) amounts to isomorphisms
of Z-modules

ι : X4 −→ X∗(T ) and ι∨ : X∗(T ) −→ X∨4

such that

〈ι(x), y〉 = 〈x, ι∨(y)〉, x ∈ X4, y ∈ X∗(T ),

ι(∆4) = ∆, and ι∨(∆∨) = ∆∨4

such that the following diagram commutes:

R4
∨−−−−→ R∨4

ι

y xι∨
R

∨−−−−→ R∨

Setting

∆ = {β1 = f11 − f12, β2 = −f11 − f12 + 2f21} (mod f11 + f12 − f21 − f22)

and

∆∨ = {β∨1 = f∗11 − f∗12, β
∨
2 = f∗21 − f∗22} ,

let S denote the 3× 3 matrix of ι with respect to the Z-bases (e0, e1, e2) of X4 and (f11, f12, f21)(mod f11 +
f12− f21− f22) of X∗(T ), respectively. Similarly, let S∨ denote the matrix of ι∨ with respect to the Z-bases
(f∗11 + f∗22, f

∗
12 + f∗22,−f∗21 + f∗22) of X∗(T ) and (e∗0, e

∗
1, e
∗
2) of X∨4 , respectively. Assuming that ι(α1) = β1 and

ι(α2) = β2 along with the conditions for root data isomorphisms we detailed above, plus the requirement
detS = 1 gives, after some computations, a unique choice for the Z-isomorphisms ι and ι∨ given by

S =

 0 0 −1
0 −1 0
−1 1 1

 and S∨ = tS.

(Alternatively, we could have assumed that detS = −1 or that ι(α1) = β2, etc., which would have led to
slightly different matrices S and S∨.) This shows that G4 is indeed a realization, as an algebraic group over
F, for GSpin4.

In fact, using S and S∨ above, we can arrive at the following explicit realizations. For

t =

([
a

b

]
,

[
c

d

])
∈ T, (with ab = cd)

we have,

e1(t) = c/b, e2(t) = c/a, e0(t) = 1/c.
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Similarly, for λ ∈ GL1, we have

e∗1(λ) =

([
1

λ−1

]
,

[
1

λ−1

])
e∗2(λ) =

([
1

1

]
,

[
λ−1

λ

])
e∗0(λ) =

([
λ−1

λ−1

]
,

[
λ−1

λ−1

])
.

The proof for the isomorphism between GSpin6 and G6 =
{

(g1, g2) ∈ GL1 ×GL4 : g2
1 = det g2

}
is similar.

With notations f0 and f1, f2, f3, f4 and their duals for the characters and cocharacters of T1, the split torus
in GL1 ×GL4, which contains the split torus T of G4, we can write

X∗(T ) =
Zf0 ⊕ Z〈f1, f2, f3, f4〉

Z〈2f0 − f1 − f2 − f3 − f4〉
and

X∗(T ) = 〈2f0 − f1 − f2 − f3 − f4〉⊥.
Again, we set

∆ = {β1 = f2 − f3, β2 = f1 − f2, β3 = f3 − f4} (mod 2f0 − f1 − f2 − f3 − f4)

and

∆∨ = {β∨1 = f∗2 − f∗3 , β∨2 = f∗1 − f∗2 , β∨3 = f∗3 − f∗4 } .
Now, we let S denote the matrix of ι with respect to (e0, e1, e2, e3) and (f0, f1, f2, f3)(mod 2f0−f1−f2−f3−f4)
and let S∨ denote the matrix of ι∨ with respect to (f∗0 + 2f∗4 , f

∗
1 − f∗4 , f∗2 − f∗4 , f∗3 − f∗4 ) and (e∗0, e

∗
1, e
∗
2, e
∗
3).

Assuming ι(αi) = βi for 1 ≤ i ≤ 3 and the conditions for the root data isomorphim along with the requirement
detS = 1 we get, after similar computations, that

S =


1 −1 −1 −1
−1 1 1 0
−1 1 0 1
−1 0 1 1

 and S∨ = tS = S.

This shows that G6 is indeed a realization, as an algebraic group over F, for GSpin6.
Again, with the above S we have the following explicit realizations. For

t = (z,diag(a, b, c, d)) ∈ T (with z2 = abcd)

we have

e1(t) = abz−1

e2(t) = acz−1

e3(t) = bcz−1

e0(t) = dz−1

Similarly, for λ ∈ GL1, we have

e∗1(λ) =
(
λ−1,diag(1, 1, λ−1, λ−1)

)
e∗2(λ) =

(
λ−1,diag(1, λ−1, 1, λ−1)

)
e∗3(λ) =

(
λ−1,diag(λ−1, 1, 1, λ−1)

)
e∗0(λ) =

(
λ−1,diag(λ−1, λ−1, λ−1, λ−1)

)
.

�
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The proposition implies that we have the following inclusions

SL2 × SL2 ⊂ GSpin4 ⊂ GL2 ×GL2 (2.6)

SL4 ⊂ GSpin6 ⊂ GL1 ×GL4. (2.7)

Since

SL2 × SL2 = (GSpin4)der = (GL2 ×GL2)der

SL4 = (GSpin6)der = (GL1 ×GL4)der

the two groups GSpin4 and GSpin6 fit in the setting (cf. (4.1))

Gder = G̃der ⊆ G ⊆ G̃, (2.8)

with

G = GSpin4, G̃ = GL2 ×GL2

and

G = GSpin6, G̃ = GL1 ×GLv,

respectively.
Moreover, using the surjective map GL2 ×GL2 −→ GL1 defined by by (g1, g2) 7→ (det g1)(det g2)−1, the

isomorphism (2.4) gives an exact sequence of algebraic groups

1 −→ GSpin4 −→ GL2 ×GL2 −→ GL1 −→ 1. (2.9)

Likewise, using the surjective map GL1 ×GL4 −→ GL1 defined by (g1, g2) 7→ g−2
1 (det g2), the isomorphism

(2.5) yields the exact sequence

1 −→ GSpin6 −→ GL1 ×GL4 −→ GL1 −→ 1. (2.10)

2.2.2. Inner Forms. Using the Satake classification [Sat71, p.119] for admissible diagrams of the F -inner

forms, we only have two (up to isomorphism) non quasi-split F -inner forms of GSpin4, denoted by GSpin2,1
4

and GSpin1,1
4 , whose diagrams are respectively

•
and

•

•
The left diagram gives

SL2 × SL1(D) ⊂ GSpin2,1
4 ⊂ GL2 ×GL1(D) (2.11)

and the right one gives

SL1(D)× SL1(D) ⊂ GSpin1,1
4 ⊂ GL1(D)×GL1(D). (2.12)

Here, D denotes the quaternion division algebra over F. (Recall from Section 2.1 that we are writing GLm(D)
and SLm(D) for both algebraic groups over F and their F -points, by abuse of notation.)

Similarly, we only have two (up to isomorphism) non quasi-split F -inner forms of GSpin6, denoted by

GSpin2,0
6 and GSpin1,0

6 , whose diagrams are respectively

•

•
and •

•

•
The left diagram gives

SL2(D) ⊂ GSpin2,0
6 ⊂ GL1 ×GL2(D) (2.13)

and the right one gives

SL1(D4) ⊂ GSpin1,0
6 ⊂ GL1 ×GL1(D4). (2.14)

Here, D4 is a division algebra of dimension 16 over F. We note that the two division algebras D4 and its
opposite Dop

4 of dimension 16 ( with invariants 1/4, −1/4 in Q/Z) have canonically isomorphic multiplicative
groups D×4 and (Dop

4 )×.
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Similar to the split forms GSpin4 and GSpin6, the F -inner forms of GSpin4 and GSpin6 as well as the
F -inner forms of SL2 × SL2, GL2 ×GL2, SL4, and GL4 all satisfy the setting (2.8).

The arguments giving (2.9) and (2.10) apply again, with det replaced by the reduced norm Nrd, to show

that for F -inner forms GSpin2,1
4 , GSpin1,1

4 , GSpin2,0
6 , and GSpin1,0

6 , we have

1 −→ GSpin2,1
4 −→ GL2 ×GL1(D) −→ GL1 −→ 1, (2.15)

1 −→ GSpin1,1
4 −→ GL1(D)×GL1(D) −→ GL1 −→ 1, (2.16)

1 −→ GSpin2,0
6 −→ GL1 ×GL2(D) −→ GL1 −→ 1, (2.17)

1 −→ GSpin1,0
6 −→ GL1 ×GL1(D4) −→ GL1 −→ 1. (2.18)

Using (2.15) – (2.18), we have the following isomorphisms of algebraic groups over F, which are analogues
of Proposition 2.1.

GSpin2,1
4
∼= {(g1, g2) ∈ GL2 ×GL1(D) : det g1 = Nrd g2},

GSpin1,1
4
∼= {(g1, g2) ∈ GL1(D)×GL1(D) : Nrd g1 = Nrd g2},

GSpin2,0
6
∼= {(g1, g2) ∈ GL1 ×GL2(D) : g2

1 = Nrd g2},
GSpin1,0

6
∼= {(g1, g2) ∈ GL1 ×GL1(D4) : g2

1 = Nrd g2}.
Finally, recall [AS06, Proposition 2.3] that we have

π0(Z(GSpin4)) ∼= π0(Z(GSpin6)) ∼= Z/2Z. (2.19)

This also holds for their F -inner forms since F -inner forms have the same center.

2.3. The F -points. We now describe the F -rational points of the split groups GSpin4 and GSpin6 as well
as their non quasi-split inner forms. We start with the following.

Lemma 2.2. Let G be an F -inner form of GSpin2n with n ≥ 1 an integer. Then

H1(F,G) = 1.

Proof. We have [AS06, Propositions 2.2 and 2.10]

̂GSpin2n = GSO2n(C)

and

Z( ̂GSpin2n)Γ = Z(GSO2n(C)) ∼= C×.
Here, ̂ denotes the connected component of the L-group. Applying the Kottwitz isomorphism [Kot86,
Theorem 1.2], we can conclude

H1(F,GSpin2n) ∼= π0(Z( ̂GSpin2n)Γ)D = π0(C×)D = 1.

Since the Kottwitz isomorphism is valid for any connected reductive algebraic group over a p-adic field of
characteristic 0, and since F -inner forms of algebraic groups share the same L-groups (cf. Section 2.1), the
proof is complete. �

Also, recall that H1(F,GLn) = 1 and H1(F,Spinn) = 1 for n ≥ 1 (see [PR94, Lemma 2.8 and Theorem
6.4], for example). It follows from (2.1) that the group GSpin4(F ) can be described via

1 −→ {±1} −→ F× × Spin4(F ) −→ GSpin4(F ) −→ H1(F, {±1}) −→ 1

or

1 −→ (F× × Spin4(F ))/{±1} −→ GSpin4(F ) −→ F×/(F×)2 −→ 1.

Likewise, the group GSpin6(F ) can be described via

1 −→ {±1} −→ F× × Spin6(F ) −→ GSpin6(F ) −→ H1(F, {±1}) −→ 1

or

1 −→ (F× × Spin6(F ))/{±1} −→ GSpin6(F ) −→ F×/(F×)2 −→ 1.
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Using Lemma 2.2, we apply Galois cohomology to (2.9) to obtain

1 −→ GSpin4(F ) −→ GL2(F )×GL2(F ) −→ F× −→ 1. (2.20)

Thus, we have

GSpin4(F ) ∼= {(g1, g2) ∈ GL2(F )×GL2(F ) : det g1 = det g2}. (2.21)

Likewise, using Lemma 2.2 and (2.10) we obtain

1 −→ GSpin6(F ) −→ GL1(F )×GL4(F ) −→ F× −→ 1. (2.22)

Thus, we have

GSpin6(F ) ∼= {(g1, g2) ∈ GL1(F )×GL2(F ) : (g1)−2 = det g2}. (2.23)

Similarly, using (2.15) – (2.18) we get

1 −→ GSpin2,1
4 (F ) −→ GL2(F )×GL1(D) −→ F× −→ 1,

1 −→ GSpin1,1
4 (F ) −→ GL1(D)×GL1(D) −→ F× −→ 1,

1 −→ GSpin2,0
6 (F ) −→ F× ×GL2(D) −→ F× −→ 1,

1 −→ GSpin1,0
6 (F ) −→ F× ×GL1(D4) −→ F× −→ 1.

We thus have

GSpin2,1
4 (F ) ∼= {(g1, g2) ∈ GL2(F )×GL1(D) : det g1 = Nrd g2},

GSpin1,1
4 (F ) ∼= {(g1, g2) ∈ GL1(D)×GL1(D) : Nrd g1 = Nrd g2},

GSpin2,0
6 (F ) ∼= {(g1, g2) ∈ F× ×GL2(D) : g2

1 = Nrd g2},
GSpin1,0

6 (F ) ∼= {(g1, g2) ∈ F× ×GL1(D4) : g2
1 = Nrd g2}.

2.4. L-groups. We recall the following descriptions of the L-groups of (the split groups) GSpin4 and GSpin6

from [AS06, Proposition 2.2] and [GT11, Sections 3 and 4]:

LGSpin4 = ĜSpin4 = GSO4(C) ∼= (GL2(C)×GL2(C))/{(z−1, z) : z ∈ C×}, (2.24)

LGSpin6 = ĜSpin6 = GSO6(C) ∼= (GL1(C)×GL4(C))/{(z−2, z) : z ∈ C×}. (2.25)

This immediately gives

1 −→ C× −→ GL2(C)×GL2(C)
pr4−→ ĜSpin4 −→ 1 (2.26)

and

1 −→ C× −→ GL1(C)×GL4(C)
pr6−→ ĜSpin6 −→ 1. (2.27)

Here, C× is considered as ĜL1 in (2.9) and (2.10). Further, the injection C× ↪→ GL2(C)×GL2(C) is given
by g 7−→ (g−1I2, gI2) and the injection C× ↪→ GL1(C)×GL4(C) is given by g 7−→ (g−2, gI4).

The inclusions in (2.6) and (2.7) provide the following surjective maps:

GL2(C)×GL2(C)
pr4
� ĜSpin4 � PGL2(C)× PGL2(C) = ̂SL2 × SL2

GL1(C)×GL4(C)
pr6
� ĜSpin6 � PGL4(C) = ŜL4.

Since F -inner forms of algebraic groups share the same L-groups (cf. Section 2.1), we have

LGSpin4 = LGSpin2,1
4 = LGSpin1,1

4

LGSpin6 = LGSpin2,0
6 = LGSpin1,0

6 .
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3. Local Langlands Conjecture in a General Setting

In this section we quickly review some generalities about the Local Langlands Conjecture (LLC). Let G
be a connected, reductive, algebraic group over F. Write G(F ) for the group of F -points of G. Let Irr(G)
denote the set of equivalence classes of irreducible, smooth, complex representations of G(F ). By abuse of
notation, we identify an equivalence class with its representatives. We write Πdisc(G) and Πtemp(G) for the
subsets of Irr(G) consisting, respectively, of discrete series and tempered representations. Moreover, we write
Πscusp(G) for the subset in Irr(G) consisting of supercuspidal ones. Furthermore, we write

Πscusp,unit(G) = Πscusp(G) ∩Πdisc(G).

Note that we have

Πscusp,unit(G) ⊂ Πdisc(G) ⊂ Πtemp(G) ⊂ Irr(G). (3.1)

Let Φ(G) denote the set of Ĝ-conjugacy classes of L-parameters, i.e., admissible homomorphisms

ϕ : WF × SL2(C) −→ LG,

(see [Bor79, Section 8.2]). We denote the centralizer of the image of ϕ in Ĝ by Cϕ. The center of LG is the

Γ-invariant group Z(Ĝ)Γ. Note that Cϕ ⊃ Z(Ĝ)Γ. We say that ϕ is elliptic if the quotient group Cϕ/Z(Ĝ)Γ

is finite, and ϕ is tempered if ϕ(WF ) is bounded. We denote by Φell(G) and Φtemp(G) the subset of Φ(G)
which consist, respectively, of elliptic and tempered L-parameters of G. We set

Φdisc(G) = Φell(G) ∩ Φtemp(G).

Moreover, we write Φsim(G) for the subset in Φ(G) consisting of irreducible ones. Furthermore, let

Φsim,disc(G) = Φsim(G) ∩ Φdisc(G).

We then have, in parallel to (3.1),

Φsim,disc(G) ⊂ Φdisc(G) ⊂ Φtemp(G) ⊂ Φ(G). (3.2)

For any connected reductive group G over F, the Local Langlands Conjecture predicts that there is a
surjective finite-to-one map

Irr(G) −→ Φ(G).

This map is supposed to satisfy a number of natural properties. For instance, it preserves certain γ-facotrs,
L-factors, and ε-factors, which one can attach to both sides. Moreover, considering the fibers of the map, one
can partition Irr(G) into a disjoint union of finite subsets, called the L-packets. Each packet is conjectured
to be characterized by component groups in the L-group, which, for groups we are considering in this paper,
are discussed in Sections 5.2 and 6.2. It is also expected that Φdisc(G) and Φtemp(G) parameterize Πdisc(G)
and Πtemp(G), respectively.

Denote by Ĝsc the simply connected cover of the derived group Ĝder of Ĝ, and by Ĝad the quotient group

Ĝ/Z(Ĝ). We consider

Sϕ := Cϕ/Z(Ĝ)Γ ⊂ Ĝad.

Write Sϕ,sc for the full pre-image of Sϕ in Ĝsc. We then have an exact sequence

1 −→ Z(Ĝsc) −→ Sϕ,sc −→ Sϕ −→ 1. (3.3)

We let

Sϕ := π0(Sϕ)

Sϕ,sc := π0(Sϕ,sc)

Ẑϕ,sc := Z(Ĝsc)/(Z(Ĝsc) ∩ S◦ϕ,sc).

We then have (see [Art13, (9.2.2)]) a central extension

1 −→ Ẑϕ,sc −→ Sϕ,sc −→ Sϕ −→ 1. (3.4)
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Next, let G′ be an F -inner form of G. Fix a character ζG′ of Z(Ĝsc) whose restriction to Z(Ĝsc)Γ corre-
sponds to the class of the F -inner form G′ via the Kottwitz isomorphism [Kot86, Theorem 1.2]. We denote

by Irr(Sϕ,sc, ζG′) the set of irreducible representations of Sϕ,sc with central character ζG′ on Z(Ĝsc). It is
expected that, given an L-parameter ϕ for G′, there is a bijection between the L-packet Πϕ(G′) associated
to ϕ and the set Irr(Sϕ,sc, ζG′) [Art06, Section 3]. We note that when G′ = G the character ζG′ is the trivial
character 1 so that

Irr(Sϕ,sc,1) = Irr(Sϕ).

In particular, if ϕ is elliptic, then we have Sϕ = Sϕ and Ẑϕ,sc = Z(Ĝsc) since Cφ/Z(Ĝ)Γ is finite and Z(Ĝ)Γ

contains S◦φ [Kot84, Lemma 10.3.1]. Thus the exact sequence (3.4) turns out to be the same as (3.3).

4. Review of Results on Restriction

In this section, we review several results about restriction. We refer to [GK82, Lab85, Tad92, HS12] for
details.

4.1. Results of Gelbart-Knapp, Tadić, and Hiraga-Saito. For this section, we let G and G̃ be con-
nected, reductive, algebraic groups over F satisfying the property that

Gder = G̃der ⊆ G ⊆ G̃, (4.1)

where the subscript “der” stands for the derived group. Given σ ∈ Irr(G), by [GK82, Lemma 2.3] and

[Tad92, Proposition 2.2], there exists σ̃ ∈ Irr(G̃) such that

σ ↪→ ResG̃G(σ̃). (4.2)

In other words, σ is an irreducible constituent in the restriction ResG̃G(σ̃) of σ̃ from G̃(F ) to G(F ). It turns
out, [Tad92, Proposition 2.4 & Corollary 2.5] and [GK82, Lemma 2.1], that Πσ(G) is finite and independent

of the choice of the lifting σ̃ ∈ Irr(G̃). We write Πσ(G) = Πσ̃(G) for the set of equivalence classes of all

irreducible constituents of ResG̃G(σ̃). It is clear that for any irreducible constituents σ1 and σ2 in ResG̃G(σ̃),
we have Πσ1

(G) = Πσ2
(G).

Remark 4.1. A member (equivalently all members) of Πσ̃(G) is supercuspidal, essentially square-integrable,
or essentially tempered if and only if σ̃ is (see [Tad92, Proposition 2.7]).

We recall that the stabilizer of σ in G̃ is defined as

G̃σ :=
{
g̃ ∈ G̃(F ) : g̃σ ∼= σ

}
.

The quotient of G̃(F )/G̃σ acts by conjugation on the set Πσ̃(G) simply transitively (see [GK82, Lemma

2.1(c)]) and there is a bijection between G̃(F )/G̃σ and Πσ̃(G).
We also recall the following useful result.

Proposition 4.2. ([GK82, Lemma 2.4], [Tad92, Corollary 2.5], and [HS12, Lemma 2.2]) Let σ̃1, σ̃2 ∈ Irr(G̃).
The following statements are equivalent:

(1) There exists a character χ ∈ (G̃(F )/G(F ))D such that σ̃1
∼= σ̃2 ⊗ χ;

(2) Πσ̃1
(G) ∩Πσ̃2

(G) 6= ∅;
(3) Πσ̃1

(G) = Πσ̃2
(G).

Since ResG̃G(σ̃) is completely reducible by [GK82, Lemma 2.1] and [Tad92, Lemma 2.1], we have the
decomposition

ResG̃G(σ̃) = m
⊕

τ∈Πσ̃(G)

τ (4.3)

(see [HS12, Chapter 2]), where the positive integer m denotes the common multiplicity over τ ∈ Πσ(G)

[GK82, Lemma 2.1(b)]. Given σ̃ ∈ Irr(G̃), we define

I(σ̃) :=
{
χ ∈ (G̃(F )/G(F ))D : σ̃ ⊗ χ ∼= σ̃

}
. (4.4)
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Considering the dimension of the C-vector space EndG(ResG̃G(σ̃)), we have (see [Cho14b, Proposition 3.1])
the equality

m2 · |Πσ(G)| = I(σ̃). (4.5)

Following [HS12, Chapter 2], since σ̃ ∼= σ̃⊗χ for χ ∈ I(σ̃), we have a non-zero endomorphism Iχ ∈ AutC(Vσ̃)
such that

Iχ ◦ (σ̃ ⊗ χ) = σ̃ ◦ Iχ.
For each z ∈ C×, we denote by z · idVσ̃ the scalar endomorphism ṽ 7→ z · ṽ for v ∈ Vσ̃. We identify C×
with the subgroup of AutC(Vσ̃) consisting of z · idVσ̃ . Define A(σ̃) as the subgroup of AutC(Vσ̃) generated
by {Iχ : χ ∈ I(σ̃)} and C×. Then the map Iχ 7→ χ induces the exact sequence

1 −→ C× −→ A(σ̃) −→ I(σ̃) −→ 1. (4.6)

We denote by Irr(A(σ̃), id) the set of isomorphism classes of irreducible smooth representations of the group
A(σ̃) such that z · idVσ̃ ∈ C× acts as the scalar z. By [HS12, Corollary 2.10], we then have a decomposition

Vσ̃ ∼=
⊕

ξ∈Irr(A(σ̃),id)

ξ � σξ (4.7)

as representations of the direct product A(σ̃)×G(F ). It follows that there is a one-to-one correspondence

Irr(A(σ̃), id) ∼= Πσ̃(G), (4.8)

sending ξ 7→ σξ. We denote by ξσ the preimage of σ via the correspondence (4.8).

4.2. A Theorem of Labesse. We recall a theorem of Labesse in [Lab85] which verifies the existence of

a lifting of a given L-parameter in the following setting. Let G and G̃ be connected, reductive, algebraic
groups over F with an exact sequence of connected components of L-groups

1 −→ Ŝ −→ ̂̃
G

pr−→ Ĝ −→ 1,

where Ŝ is a central torus in
̂̃
G, and the surjective homomorphism pr is compatible with Γ-actions on

̂̃
G and

Ĝ. Then, Labesse proves in [Lab85, Théorèm 8.1] that for any ϕ ∈ Π(G), there exists ϕ̃ ∈ Π(G̃) such that

ϕ = ϕ̃ ◦ pr.
We note that the analogous result has been proved in [Wei74, Hen80, GT10] for the case G = SLn and

G̃ = GLn.

4.3. L-packets for Inner Forms of SLn. In this section we recall some results about the LLC for SLm(D)
in [HS12, Chapter 12] and [ABPS14, Section 3]. Throughout this section, let G(F ) = SLm(D) and G∗(F ) =
SLn(F ), where D be a central division algebra of dimension d2 over F with n = md (possibly D = F, in
which case d = 1).

Since Γ acts on Ĝ trivially, we shall use Ĝ = LG0 instead of LG = Ĝ× Γ. Note that Ĝ = Ĝ∗ = PGL(C).
Let

ϕ : WF × SL2(C)→ Ĝ

be an L–parameter. Note that

Z(Ĝsc) = µn(C) and Z(Ĝ)Γ = 1.

With notation as in Section 3, we have the exact sequence

1 −→ Ẑϕ,sc −→ Sϕ,sc −→ Sϕ −→ 1. (4.9)

In the case at hand, Ẑϕ,sc = µn(C)/(µn(C) ∩ S◦ϕ,sc). In particular, when ϕ is elliptic, since both Sϕ,sc in
SLn(C) and Sϕ in PGLn(C) are finite, the exact sequence (4.9) becomes

1 −→ µn(C) −→ Sϕ,sc −→ Sϕ −→ 1.

Since G is an F–inner form of G∗, we can fix a character ζG of Z(Ĝsc) which corresponds to the inner
form G of G∗ via the Kottwitz isomorphism [Kot86, Theorem 1.2]. When D = F (i.e., G = G∗) we have
ζG = 1.
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Consider the exact sequence

1 −→ C× −→ GLn(C)
pr−→ PGLn(C) = Ĝ −→ 1.

By the argument in Section 4.2, we have an L-parameter ϕ̃ for G̃

ϕ̃ : WF × SLn(C)→ GLn(C)

such that pr ◦ ϕ̃ = ϕ (also see [Wei74, Hen80]). By the LLC for G̃ [HS12], we have a unique irreducible

representation σ̃ ∈ Irr(G̃) associated to the L-parameter ϕ̃ and the L-packet Πϕ(G) equals the set Πσ̃(G)
defined in Section 4.1. By [HS12, Lemma 12.6] and [ABPS14, Section 3], there is a homomorphism ΛSLn :
Sϕ,sc → A(σ̃) (unique up to one-dimensional characters of Sϕ) making the following diagram commute:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1yζG yΛSLn

y∼=
1 −−−−→ C× −−−−→ A(σ̃) −−−−→ I(σ̃) −−−−→ 1.

(4.10)

Combining (4.7) and (4.10), we have the following decomposition

Vσ̃ ∼=
⊕

σ∈Πϕ(G)

ρσ � σ =
⊕

ρ∈Irr(Sϕ,sc,ζG)

ρ� σρ (4.11)

as representations of Sϕ,sc × G(F ). Here, ρσ ∈ Irr(Sϕ,sc, ζG) is given by ξσ ◦ ΛSLn with ξσ ∈ Irr(A(σ̃), id),
and σρ ∈ Πϕ(G) denotes the image of ρ ∈ Irr(Sϕ,sc, ζG) via the bijection between Πϕ(G) and Irr(Sϕ,sc, ζG).

5. Local Langlands Correspondence for GSpin4 and its inner forms

In this section we establish the LLC for GSpin4 and all its non quasi-split F -inner forms.

5.1. Construction of L-packets of GSpin4 and Its Inner Forms. It follows from the arguments in
Section 4 on restriction and the group structure (2.6) that given σ ∈ Irr(GSpin4), there is a lifting σ̃ ∈
Irr(GL2 ×GL2) such that

σ ↪→ ResGL2×GL2

GSpin4
(σ̃).

By the LLC for GLn [HT01, Hen00, Sch13], we have a unique ϕ̃σ̃ ∈ Φ(GL2 × GL2) corresponding to the
representation σ̃. We now define a map

L4 : Irr(GSpin4) −→ Φ(GSpin4) (5.1)

σ 7−→ pr4 ◦ ϕ̃σ̃.

Note that L4 does not depend on the choice of the lifting σ̃. Indeed, if σ̃′ ∈ Irr(GL2×GL2) is another lifting,
it follows from Proposition 4.2 and (2.20) that σ̃′ ∼= σ̃ ⊗ χ for some quasi-character χ on

(GL2(F )×GL2(F ))/GSpin4(F ) ∼= F×.

Morover,

F× ∼= H1(F,C×),

where C× is as in (2.26). The LLC for GL2 × GL2 maps σ̃′ to ϕ̃σ̃ ⊗ χ (by abuse of notation, employing χ
for both the quasi-character and its parameter via Local Class Field Theory). Since pr4(ϕ̃σ̃ ⊗ χ) = pr4(ϕ̃σ̃)
by (2.26), the map L4 is well-defined.

Moreover, we note that L4 is surjective. Indeed, by Labesse’s Theorem in Section 4.2, ϕ ∈ Φ(GSpin4)
can be lifted to some ϕ̃ ∈ Φ(GL2 ×GL2). We then obtain σ̃ ∈ Irr(GL2 ×GL2) via the LLC for GL2 ×GL2.

Thus, any irreducible constituent in the restriction ResGL2×GL2

GSpin4
(σ̃) has the image ϕ via the map L4.

As expected, for each ϕ ∈ Φ(GSpin4), we define the L-packet Πϕ(GSpin4) as the set of all inequivalent
irreducible constituents of σ̃

Πϕ(GSpin4) := Πσ̃(GSpin4) =
{
σ ↪→ ResGL2×GL2

GSpin4
(σ̃)
}
/ ∼=, (5.2)
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where σ̃ is the unique member in Πϕ̃(GL2 ×GL2) and ϕ̃ ∈ Φ(GL2 ×GL2) is such that pr4 ◦ ϕ̃ = ϕ. By the
LLC for GL2 and Proposition 4.2, the fiber does not depends on the choice of ϕ̃.

We define the L-packets for the non quasi-split inner forms similarly. Using the group structure described
in Section 2.2, given σ2,1

4 ∈ Irr(GSpin2,1
4 ), there is a lifting σ̃2,1

4 ∈ Irr(GL2 ×GL1(D)) such that

σ2,1
4 ↪→ Res

GL2×GL1(D)

GSpin2,1
4

(σ̃2,1
4 ).

Combining the LLC for GL2 and GL1(D) [HS12], we have a unique ϕ̃σ̃2,1
4
∈ Φ(GL2×GL1(D)) corresponding

to the representation σ̃2,1
4 . We thus define the map

L2,1
4 : Irr(GSpin2,1

4 ) −→ Φ(GSpin2,1
4 ) (5.3)

σ2,1
4 7−→ pr4 ◦ ϕ̃σ̃2,1

4
.

Again, it follows from the LLC for GL2 and GL1(D) that this map is well-defined and surjective.

Likewise, for the other F -inner form GSpin1,1
4 of GSpin4, we have a well-defined and surjective map

L1,1
4 : Irr(GSpin1,1

4 ) −→ Φ(GSpin1,1
4 ) (5.4)

σ1,1
4 7−→ pr4 ◦ ϕ̃σ̃1,1

4
.

We similarly define L-packets

Πϕ(GSpin2,1
4 ) = Πσ̃2,1

4
(GSpin2,1

4 ), ϕ ∈ Φ(GSpin2,1
4 ) (5.5)

and

Πϕ(GSpin1,1
4 ) = Πσ̃1,1

4
(GSpin1,1

4 ), ϕ ∈ Φ(GSpin1,1
4 ). (5.6)

Again, these L-packet do not depend on the choice of ϕ̃ for similar reasons.

5.2. Internal Structure of L-packets of GSpin4 and Its Inner Forms. In this section we continue to
employ the notation in Section 3. For simplicity of notation, we shall write GSpin] for the split GSpin4,

and its non quasi-split F -inner forms GSpin2,1
4 and GSpin1,1

4 . Likewise, we shall write SL] and GL] for the
corresponding groups in (2.6), (2.11), and (2.12) so that we have

SL] ⊂ GSpin] ⊂ GL] (5.7)

in all cases. From Section 2.4, we recall that

(ĜSpin])ad = PSO4(C) ∼= PGL2(C)× PGL2(C),

(ĜSpin])sc = Spin4(C) ∼= SL2(C)× SL2(C),

Z((ĜSpin])sc) = Z((ĜSpin])sc)Γ ∼= µ2(C)× µ2(C).

Let ϕ ∈ Φ(GSpin]) be given. We fix a lifting ϕ̃ ∈ Φ(GL]) via the surjective map ĜL] −→ ĜSpin] (cf.
Theorem 4.2). With notation as in Section 3, we have

Sϕ ⊂ PSL2(C)× PSL2(C),

Sϕ,sc ⊂ SL2(C)× SL2(C).

We then have (cf. (3.4)) a central extension

1 −→ Ẑϕ,sc −→ Sϕ,sc −→ Sϕ −→ 1. (5.8)

Let ζ4, ζ
2,1
4 , and ζ1,1

4 be characters on Z((ĜSpin])sc) which respectively correspond to GSpin4, GSpin2,1
4 ,

and GSpin1,1
4 via the Kottwitz isomorphism [Kot86, Theorem 1.2]. Note that

ζ4 = 1, ζ2,1
4 = 1× sgn, and ζ1,1

4 = sgn× sgn,

where sgn is the non-trivial character of µ2(C).
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Theorem 5.1. Given an L-parameter ϕ ∈ Φ(GSpin]), there is a one-to-one bijection

Πϕ(GSpin])
1−1←→ Irr(Sϕ,sc, ζ]),

σ 7→ ρσ,

such that we have the following decomposition

Vσ̃ ∼=
⊕

σ∈Πϕ(GSpin])

ρσ � σ

as representations of the direct product Sϕ,sc × GSpin](F ), where σ̃ ∈ Πϕ̃(GL]) is an extension of σ ∈
Πϕ(GSpin]) to GL](F ) as in Section 4 and ϕ̃ ∈ Φ(GL]) is a lifting of ϕ ∈ Φ(GSpin]). Here, ζ] ∈{
ζ4, ζ

2,1
4 , ζ1,1

4

}
according to which inner form GSpin] is.

Proof. We follow the ideas in Section 4.3 and [CL14, Theorem 5.4.1]. Given ϕ ∈ Φ(GSpin]), we choose a
lifting ϕ̃ ∈ Φ(GL]) and obtain the projection ϕ̄ ∈ Φ(SL]) in the following commutative diagram

ĜL] = GL2(C)×GL2(C)

pr4
����

WF × SL2(C)

ϕ̃

33

ϕ //

ϕ̄ ++

ĜSpin] = GSO4(C)

p̄r
����

ŜL] = PGL2(C)× PGL2(C) .

(5.9)

We then have σ̃ ∈ Πϕ̃(GL]) which is an extension of σ ∈ Πϕ(GSpin]). In addition to (2.26), we also have

1 −→ C× × C× −→ GL2(C)×GL2(C)
p̄r◦pr4−→ PGL2(C)× PGL2(C) −→ 1

Considering the kernels of the projections pr4 and p̄r ◦ pr4, we set

XGSpin](ϕ̃) := {a ∈ H1(WF ,C×) : aϕ̃ ∼= ϕ̃}

XSL](ϕ̃) := {a ∈ H1(WF ,C× × C×) : aϕ̃ ∼= ϕ̃}.
Moreover, by (2.9) and its analogues for the two non quasi-split F -inner forms, we have

GL](F )/GSpin](F ) ∼= F×.

As an easy consequence of Galois cohomology, we also have

GL](F )/SL](F ) ∼= F× × F×.
Set

IGSpin](σ̃) := {χ ∈ (F×)D ∼= (GL](F )/GSpin](F ))D : σ̃χ ∼= σ̃}
ISL](σ̃) := {χ ∈ (F×)D × (F×)D ∼= (GL](F )/SL](F ))D : σ̃χ ∼= σ̃}.

Remark 5.2. Since any character on GLn(F ) (respectively, GLm(D)) is of the form χ ◦ det (respectively,
χ◦Nrd) for some character χ on F× (see [BH06, Section 53.5]), we often make no distinction between χ and
χ ◦ det (respectively, χ ◦Nrd). Moreover, we note that χ ∈ (GL](F ))D can be written as χ̃1 � χ̃2, where χ̃i
with i = 1, 2, is a character of GL2(F ) or D× depending on the type of GL].

It follows from the definitions that

XGSpin](ϕ̃) ⊂ XSL](ϕ̃) and IGSpin](σ̃) ⊂ ISL](σ̃). (5.10)

We have (F×)D ∼= H1(WF ,C×) by the local class field theory. It is also immediate from the LLC for GLn
that

XGSpin](ϕ̃) ∼= IGSpin](σ̃) and XSL](ϕ̃) ∼= ISL](σ̃)
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as groups of characters. Now, with the component group notation S of Section 3, we claim that

IGSpin](σ̃) ∼= Sϕ. (5.11)

Indeed, by [CL14, Lemma 5.3.4] and the above arguments, this claim follows from

Sϕ ∼= XGSpin](ϕ̃),

since Sϕ̃ is always trivial by the LLC for GL]. Notice that ϕ̃ and ϕ here are respectively φ and φ] in [CL14,
Lemma 5.3.4]. Thus, due to (4.10), (5.10), and(5.11) we have

Sϕ ⊂ Sϕ̄. (5.12)

Since the centralizer Cϕ̄ (in ŜL]) is equal to the image of the disjoint union∐
ν∈Hom(WF ,C×)

{
h ∈ GSO4(C) : hϕ(w)h−1ϕ(w)−1 = ν(w)

}
from the exact sequence

1 −→ C× −→ GSO4(C)
p̄r−→ ŜL] = PGL2(C)× PGL2(C) −→ 1,

we have

Sϕ ⊂ Cϕ̄ = Sϕ̄.

So, the pre-images in SL2(C)×SL2(C) via the isogeny SL2(C)×SL2(C) � PGL2(C)×PGL2(C) also satisfy

Sϕ,sc ⊂ Sϕ̄,sc ⊂ SL2(C)× SL2(C).

This provides the inclusion of the identity components

S◦ϕ,sc ⊂ S◦ϕ̄,sc, (5.13)

and by the definition Ẑϕ,sc := Z(Ĝsc)/(Z(Ĝsc) ∩ S◦ϕ,sc) of Section 3 we have the surjection

Ẑϕ,sc � Ẑϕ̄,sc. (5.14)

Combining (5.12), (5.13), and (5.14), we have the following commutative diagram of component groups:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1y�

y∩ y∩
1 −−−−→ Ẑϕ̄,sc −−−−→ Sϕ̄,sc −−−−→ Sϕ̄ −−−−→ 1.

(5.15)

We apply the Hiraga-Saito homomorphism ΛSLn of (4.10) in the case of our SL], which we denote by
ΛSL2×SL2

. The restriction

Λ] := ΛSL2×SL2 |Sϕ,sc
then gives the following commutative diagram:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1yζ] yΛ]

y∩
1 −−−−→ C× −−−−→ A(σ̃) −−−−→ ISL](σ̃) −−−−→ 1.

(5.16)

Note that ζ] is identified with ζG in (4.10) as the character on µ2(C) × µ2(C) since both are determined
according to SL].

Similar to A(σ̃) (cf. Section 4), we write AGSpin](σ̃) for the subgroup of AutC(Vσ̃) generated by C×
and

{
Iχ : χ ∈ IGSpin](σ̃)

}
. Hence, AGSpin](σ̃) ⊂ A(σ̃). By the definition of ΛSL2×SL2 in (4.10) and the
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commutative diagram (5.15), it is immediate that the image of Λ] is AGSpin](σ̃). We thus have the following
commutative diagram:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1yζ] yΛ]

y∼=
1 −−−−→ C× −−−−→ AGSpin](σ̃) −−−−→ IGSpin](σ̃) −−−−→ 1.

(5.17)

The representation ρσ ∈ Irr(Sϕ,sc, ζ]) is defined by ξσ ◦Λ], where ξσ ∈ Irr(AGSpin](σ̃), id) is the character as
in the decomposition (4.7). Therefore, arguments of Section 4, our construction of L-packets Πϕ(GSpin]) in
Section 5.1 and diagram (5.17) above give

Irr(Sϕ,sc, ζ])
1−1←→ Irr(AGSpin](σ̃), id)

1−1←→ Πϕ(GSpin]). (5.18)

We also have the following decomposition

Vσ̃ ∼=
⊕

σ∈Πϕ(GSpin])

ρσ � σ =
⊕

ρ∈Irr(Sϕ,sc,ζ])

ρ� σρ,

where σρ denotes the image of ρ via the bijection between Πϕ(GSpin]) and Irr(Sϕ,sc, ζ]). Hence, the proof
of Theorem 5.1 is complete. �

Remark 5.3. Similar to ΛSL2×SL2
in Section 4, since Λ] is unique up to Hom(IGSpin](σ̃),C×) ∼= Hom(Sϕ,C×),

the same is true for the bijection (5.18).

Remark 5.4. Given ϕ ∈ Φ(GSpin4), by Theorem 5.1, we have a one-to-one bijection

Πϕ(GSpin4) ∪Πϕ(GSpin2,1
4 ) ∪Πϕ(GSpin1,2

4 ) ∪Πϕ(GSpin1,1
4 )

1−1←→ Irr(Sϕ,sc),

where GSpin1,2
4
∼= {(g1, g2) ∈ (GL1(D)×GL2) : Nrd(g1) = det g2}, which is isomorphic to GSpin2,1

4 .

5.3. L-packet Sizes for GSpin4 and Its Inner Forms. In this subsection, we describe the group IGSpin4(σ̃)
for σ̃ ∈ Irr(GL2 × GL2) case by case, discuss the group structure of Sϕ,sc, and provide all the sizes of L-

packets for GSpin4, GSpin2,1
4 , and GSpin1,1

4 using Theorem 5.1. Let us first give the possible cardinalities
for the L-packets of GSpin4 and its inner forms using Galois cohomology.

Proposition 5.5. Let Πϕ(GSpin]) be an L-packet associated to ϕ ∈ Φ(GSpin]). Then we have∣∣Πϕ(GSpin])
∣∣ ∣∣∣ ∣∣F×/(F×)2

∣∣ ,
which yields the possible cardinalities∣∣Πϕ(GSpin])

∣∣ =

{
1, 2, 4, if p 6= 2,
1, 2, 4, 8, if p = 2.

Proof. We follow the idea of a similar result in the case of Sp4 in [CG15]. The exact sequence of algebraic
groups

1 −→ Z(GSpin]) −→ Z(GL])×GSpin] −→ GL] −→ 1,

where the second map is given by multiplication (considering GSpin] ⊂ GL]), gives a long exact sequence

· · · −→ (F× × F×)×GSpin](F ) −→ GL](F ) −→ H1(F,Z(GSpin])) −→ H1(F,Z(GL])×GSpin]) −→ 1.

Since H1(F,Z(GL])×GSpin]) = 1 by Lemma 2.2 and [PR94, Lemmas 2.8], we have

GL](F )/
(
(F× × F×)×GSpin](F )

)
↪→ H1(F,Z(GSpin])).

Also, the exact sequence

1 −→ Z(GSpin])
◦ −→ Z(GSpin]) −→ π0(Z(GSpin])) −→ 1

gives
H1(F,Z(GSpin])) ↪→ H1(F, π0(Z(GSpin]))),
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since, by [AS06, Proposition 2.3], Z(GSpin])
◦ ∼= GL1 and H1(F,Z(GSpin])

◦) = 1. Combining the above
with (2.19), we have

GL](F )/
(
(F× × F×)×GSpin](F )

)
↪→ H1(F, π0(Z(GSpin])))

∼= H1(F,Z/2Z) ∼= F×/(F×)2. (5.19)

On the other hand, we know from Section 4 that

Πϕ(GSpin])
1−1←→ GL](F )/GL](F )σ̃ ↪→ GL](F )/

(
(F× × F×)×GSpin](F )

)
,

where σ̃ ∈ Irr(GL]) corresponds to a lifting ϕ̃ ∈ Φ(GL]), via the LLC for GLn and its inner forms, of
ϕ ∈ Φ(GSpin]). Thus the proof is complete. �

In what follows, we give an explicit description of the group IGSpin4(σ̃) for σ̃ ∈ Irr(GL2 × GL2) case by
case, and show that among the possible cardinalities in Proposition 5.5, only 1, 2, and 4 do indeed occur (see
Remarks 5.9 - 5.11 and (5.21) - (5.22)). To this end, we verify that IGSpin4(σ̃) ∼= 1,Z/2Z, or (Z/2Z)2, which
yields Sϕ ∼= 1, Z/2Z, or (Z/2Z)2 by (5.11). Thus, due to Theorem 5.1, the size of an L-packet for GSpin4 is
either 1, 2, or 4. Moreover, we show that the central extension Sϕ,sc is isomorphic to (Z/2Z)2, (Z/2Z)3, an
abelian subgroup of order 16 in Q8×Q8, or Q8×Z/2Z, for irreducible ϕ ∈ Φ(GSpin4), and is always abelian
for reducible ϕ ∈ Φ(GSpin4). Here Q8 is the quaternion group of order 8. Due to Theorem 5.1, these facts

about Sϕ,sc imply that the size of an L-packet for non-split inner forms GSpin2,1
4 and GSpin1,1

4 is either 1,
2, or 4.

To describe the group IGSpin4(σ̃), given σ̃ ∈ Irr(GL2 ×GL2), we set σ̃ = σ̃1 � σ̃2 with σ̃1, σ̃2 ∈ Irr(GL2).
Due to Remark 5.2, we note that χ ∈ (GL2(F ) × GL2(F ))D is decomposed into χ̃1 � χ̃2, where χ̃i with
i = 1, 2 is a character of GL2(F ), and we identify χ̃i and χ̃i ◦ det, since any character on GLn(F ) is of the
form χ̃ ◦ det for some character χ̃ on F×.

Lemma 5.6. Let χ ∈ IGSpin4(σ̃) be given. Then, χ is of the form

χ̃� χ̃−1,

where χ̃ ∈ (F×)D.

Proof. Since χ = χ̃1 � χ̃2 as above and χ is trivial on GSpin4(F ), by the structure of GSpin4(F ) in (2.21),
we have

χ(g1, g2) = χ̃1(det g1) � χ̃2(det g2) = χ̃1(det g1)χ̃2(det g2) = 1

for all (g1, g2) ∈ GL2(F )×GL2(F ) with det g1 = det g2. Since the determinant map det : GL2(F )→ F× is
surjective, χ̃1χ̃2(x) must be trivial for all x ∈ F×. Thus, χ̃1 and χ̃2 are inverse each other. �

Proposition 5.7. We have

IGSpin4(σ̃) =

{
ISL2(σ̃1), if σ̃2

∼= σ̃1η̃ for some η̃ ∈ (F×)D;
ISL2(σ̃1) ∩ ISL2(σ̃2), if σ̃2 6∼= σ̃1η̃ for any η̃ ∈ (F×)D.

Proof. Since σ̃ = σ̃1 � σ̃2 with σ̃1, σ̃2 ∈ Irr(GL2), and by Lemma 5.6, we have

σ̃χ ∼= σ̃ ⇐⇒ σ̃1χ̃� σ̃2χ̃
−1 ∼= σ̃1 � σ̃2 ⇐⇒ σ̃iχ̃ ∼= σ̃i, i = 1, 2. (5.20)

This shows that IGSpin4(σ̃) = ISL2(σ̃1) ∩ ISL2(σ̃2). In particular, if σ̃2
∼= σ̃1η̃ for some η̃ ∈ (F×)D, then

ISL2(σ̃1) = ISL2(σ̃2). Thus we have, by (5.20), that IGSpin4(σ̃) = ISL2(σ̃1). �

Remark 5.8. By the LLC for SL2 ([GK82]), we have ISL2(σ̃i) ∼= π0(Cϕi) for ϕi ∈ Φ(SL2) corresponding

to σi ⊂ ResGL2

SL2
(σ̃i). Recalling that PGL2(C) ∼= SO3(C), it then follows from [GP92, Corollary 6.6] that

ISL2(σ̃1) and ISL2(σ̃2) consist of quadratic characters. Then, IGSpin4(σ̃) consists of quadratic characters of
F×.

Given ϕ ∈ Φ(GSpin4), fix the lift

ϕ̃ = ϕ̃1 ⊗ ϕ̃2 ∈ Φ(GL2 ×GL2)

with ϕ̃i ∈ Φ(GL2) such that ϕ = pr4 ◦ ϕ̃, as in Section 5.1. Let

σ̃ = σ̃1 � σ̃2 ∈ Πϕ̃(GL2 ×GL2)
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be the unique member such that {σ̃i} = Πϕ̃i(GL2). Recall (see [GT10, Section 5]) that an irreducible L-

parameter φ ∈ Φ(GL2) is called primitive if the restriction φ|WF
is not of the form IndWF

WE
θ for some finite

extension E over F. Moreover, φ is called dihedral with respect to (w.r.t.) a quadratic extension E over F

if φ|WF
∼= IndWF

WE
θ or equivalently if (φ|WF

)⊗ ωE/F ∼= (φ|WF
) (⇔ φ⊗ ωE/F ∼= φ) for a quadratic character

ωE/F corresponding to quadratic E/F via the local class field theory. A primitive representation exists only
when p divides dimφ ([Koc77]). We can now make the following remarks.

Remark 5.9. If σ̃2
∼= σ̃1η̃ for some η̃ ∈ (F×)D, we know that ϕ̃1 is dihedral w.r.t. one quadratic character

(respectively, primitive, dihedral w.r.t. three quadratic characters) if and only if ϕ̃2 is dihedral (respectively,
primitive, dihedral w.r.t. three quadratic characters).

Remark 5.10. Let ϕ ∈ Φ(GSpin4) be irreducible. Then ϕ̃, ϕ̃1, and ϕ̃2 are all irreducible. Combining
Proposition 5.7, Remarks 5.8 and 5.9, and [GT10, Porposition 6.3], we conclude the following. When
σ̃2
∼= σ̃1η̃ for some η̃ ∈ (F×)D, we have

IGSpin4(σ̃) ∼=

 {1}, if ϕ̃1 is primitive or non-trivial on SL2(C) (hence so is ϕ̃2);
Z/2Z, if ϕ̃1 is dihedral w.r.t. one quadratic extension (hence so is ϕ̃2);
(Z/2Z)2, if ϕ̃1 is dihedral w.r.t. three quadratic extensions (hence so is ϕ̃2).

When σ̃2 6∼= σ̃1η̃ for any η̃ ∈ (F×)D, an analogous assertion holds, but it would depend on the individual
parameters and not just whether they are primitive or dihedral. In that case, we have

IGSpin4(σ̃) ∼= {1}, Z/2Z, or (Z/2Z)2.

Remark 5.11. When ϕ̃i is reducible, σ̃i is either the Steinberg representation twisted by a character or
an irreducibly induced representation from the Borel subgroup of GL2. Since the number of irreducible
constituents in ResGL2

SL2
(σ̃i) is ≤ 2, we have ISL2(σ̃i) ∼= {1}, or Z/2Z. This implies, by Proposition 5.7, that

IGSpin4(σ̃) ∼= {1}, or Z/2Z.

We now describe the central extension Sϕ,sc for GSpin4. For irreducible ϕ ∈ Φ(GSpin4), from (5.11) and

Remark 5.10, we have Sϕ ∼= 1, Z/2Z, or (Z/2Z)2. Since ϕ is elliptic and Ẑϕ,sc = Z(Spin4(C)) = µ2(C)×µ2(C),
the exact sequence (5.8) becomes

1 −→ µ2(C)× µ2(C) −→ Sϕ,sc ⊂ Spin4(C) = SL2(C)× SL2(C) −→ Sϕ ⊂ PSL2(C)× PSL2(C) −→ 1.

When Sϕ ∼= 1, it is obvious that Sϕ,sc ∼= (Z/2Z)2. When Sϕ ∼= Z/2Z, since (Z/2Z)2 is embedded in
Z(Sϕ,sc), Sϕ,sc is an abelian group of order 8. Since Sϕ,sc ⊂ Sϕ̄,sc from (5.15), using the fact that the group
Sϕ̄,sc ∼= (Z/2Z)4 (see the proof of [Cho14b, Proposition 6.5]), we have Sϕ,sc ∼= (Z/2Z)3. When Sϕ ∼= (Z/2Z)2,
since Sϕ̄,sc ∼= Q8×Q8 from loc. cit., Sϕ,sc is a subgroup of order 16 in Q8×Q8. If Sϕ,sc is non-abelian, since
Z(Sϕ,sc) ∼= (Z/2Z)2, we have Sϕ,sc ∼= Q8×Z/2Z. It thus follows that Sϕ,sc is an abelian subgroup in Q8×Q8

of order 16, or Q8 × Z/2Z. For reducible ϕ ∈ Φ(GSpin4), (5.11) and Remark 5.11 provide Sϕ ∼= 1 or Z/2Z.
Since (Z/2Z)2 is embedded in Z(Sϕ,sc), Sϕ,sc must be abelian of order 8.

Using Theorem 5.1, we describe the sizes of L-packets for GSpin4, GSpin2,1
4 , and GSpin1,1

4 . Form the
previous paragraph, we note that Sϕ,sc is either abelian or isomorphic to Q8 × Z/2Z. Thus, we have

|Πϕ(GSpin4)| =
∣∣∣Πϕ(GSpin2,1

4 )
∣∣∣ =

∣∣∣Πϕ(GSpin1,1
4 )
∣∣∣ = |Sϕ| = 1, 2, or 4, (5.21)

according to whether Sϕ ∼= {1}, Z/2Z, or (Z/2Z)2, except when Sϕ,sc ∼= Q8 × Z/2Z, in which case we have

|Πϕ(GSpin4)| = 4,
∣∣∣Πϕ(GSpin2,1

4 )
∣∣∣ =

∣∣∣Πϕ(GSpin1,1
4 )
∣∣∣ = 1. (5.22)

Furthermore, using (4.5), the multiplicity in restriction from GL] to GSpin] is 1 except when Sϕ,sc ∼=
Q8 × Z/2Z, in which case the multiplicity is 2.

We should mention that, due to Remarks 5.10 and 5.11, the case of Sϕ,sc ∼= Q8×Z/2Z occurs only if two
conditions hold : σ̃2

∼= σ̃1η̃ for some η̃ ∈ (F×)D, and ϕ̃1 is dihedral w.r.t. three quadratic extensions (hence
so is ϕ̃2).
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5.4. Properties of L-maps for GSpin4 and its inner forms. The L-maps defined in Section 5.1 satisfy

a number of natural and expected properties which we now verify. In what follows, let L] ∈
{
L4,L2,1

4 ,L1,1
4

}
as the case may be.

Proposition 5.12. A representation σ] ∈ Irr(GSpin]) is essentially square integrable if and only if its
L-parameter ϕσ] := L](σ]) does not factor through any proper Levi subgroup of GSO4(C).

Proof. By the definition of L], the representation σ] is an irreducible constituent of the restriction Res
GL]
GSpin]

(σ̃])

for some σ̃] ∈ Irr(GL]). As recalled in Remark 4.1, σ] is essentially square integrable representation if and
only if σ̃] is so. By the LLC for GL] and its inner forms [HT01, Hen00, Sch13, HS12], this is the case if and
only if its parameter ϕ̃σ] := L(σ̃]) does not factor through any proper Levi subgroup of GL](C). Finally,
this is the case if and only if ϕσ] does not because the projection pr4 in (2.26) respects Levi subgroups. �

Remark 5.13. In the same way as in the proof of Proposition 5.12, we have that a given σ] ∈ Irr(GSpin]) is
tempered if and only if the image of its L-parameter ϕσ] := L](σ]) in GSO4(C) is bounded.

Due to the fact that restriction of representations preserves the intertwining operator and the Plancherel
measure (see [Cho14a, Section 2.2]), our construction of the L-packets in Section 5.1 gives the following
result.

Proposition 5.14. Let ϕ ∈ Φdisc(GSpin]) be given. For any σ1, σ2 ∈ Πϕ(GSpin]), we have the equality of
the Plancherel measures

µM (ν, τ � σ1, w) = µM (ν, τ � σ2, w), (5.23)

where M is an F -Levi subgroup of an F -inner form of GSpin2n of the form of the product of GSpin] and
copies of F -inner forms of GLmi , τ � σ1, τ � σ2 ∈ Πdisc(M), ν ∈ a∗M,C, and w ∈ WM with wM = M.
Further, it is a consequence of the equality of the Plancherel measures that the Plancherel measure is also
preserved between F -inner forms in the following sense. Let GSpin′] be an F -inner form of GSpin]. Given

ϕ ∈ Φdisc(GSpin]), for any σ ∈ Πϕ(GSpin]) and σ′ ∈ Πϕ(GSpin′]), we have

µM (ν, τ � σ,w) = µM ′(ν, τ
′ � σ′, w), (5.24)

where M ′ is an F -inner form of M, τ � σ ∈ Πdisc(M), τ ′ � σ′ ∈ Πdisc(M ′), and τ and τ ′ have the same
L-parameter.

Proof. Since σ1, σ2 ∈ Πϕ(GSpin]) are in the same restriction from an irreducible representation from GL](F )
to GSpin](F ), by [Cho14a, Proposition 2.4], we have (5.23). Similarly, we note that σ and σ′ have liftings σ̃

and σ̃′ in GL](F ) and GL′](F ), respectively. Since τ � σ̃ and τ ′ � σ̃′ have the same Plancherel measures by
[AC89, Lemma 2.1], again by [Cho14a, Proposition 2.4], we have (5.24). �

Finally, we make a remark about the generic representations in L-packets.

Remark 5.15. Consider the case when GSpin] is the split GSpin4. Since ζ] = 1 now, Theorem 5.1 implies
that we have

Πϕ(GSpin4)
1−1←→ Irr(Sϕ) ∼= Irr(IGSpin4(σ̃)). (5.25)

Suppose that there is a generic representation in Πϕ(GSpin4) with respect to a given Whittaker data for
GSpin4. Then, by [HS12, Chapter 3], we can normalize the bijection (5.25) so that the trivial character
1 ∈ Irr(Sϕ) maps to the generic representation in Πϕ(GSpin6).

5.5. Preservation of Local Factors via L4. We verify that in the case of the split form GSpin4 the map
L4 preserves the local L-, ε-, and γ-factors when these local factors are defined. On the representation side,
these factors are defined via the Langlands-Shahidi method when the representations are generic (or non-
supercuspidal induced from generic via the Langlands classification). On the parameter side, these factors
are Artin factors associated to the representations of the Weil-Deligne group of F.

Since the Langlands-Shahidi method is available for generic data, we do not yet have a counterpart for
the local factors for the non quasi-split F -inner forms of GSpin4. This is the reason why we are limiting
ourselves to the case of the split form below; however, cf. Remark 5.17 below.
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Proposition 5.16. Let τ be an irreducible admissible representation of GLr(F ), r ≥ 1, and let σ be an irre-
ducible admissible representation of GSpin4(F ), which we assume to be either ψ-generic or non-supercuspidal
if r > 1. Here, generic is defined with respect to a non-trivial additive character ψ of F in the usual way.

Let ϕτ be the L-parameter of τ via the LLC for GLr(F ) and let ϕσ = L4(σ). Then,

γ(s, τ × σ, ψ) = γ(s, ϕτ ⊗ ϕσ, ψ),

L(s, τ × σ) = L(s, ϕτ ⊗ ϕσ),

ε(s, τ × σ, ψ) = ε(s, ϕτ ⊗ ϕσ, ψ).

The local factors on the left hand side are those attached by Shahidi [Sha90b, Theorem 3.5] to the ψ-generic
representations of the standard Levi subgroup GLr(F )×GSpin4(F ) in GSpin2r+4(F ) and the standard repre-
sentation of the dual Levi GLr(C)×GSO(4,C), and extended to all non-generic non-supercuspidal represen-
tations via the Langlands classification and the multiplicativity of the local factors [Sha90b, §9]. The factors
on the right hand side are Artin local factors associated to the given representations of the Weil-Deligne
group of F.

Proof. The proof relies on two key properties of the local factors defined by Shahidi, namely that they are
multiplicative (with respect to parabolic induction) and that they are preserved under taking irreducible
constituents upon restriction.

To be more precise, let (G,M) and (G̃, M̃) be a pair of ambient groups and standard Levi subgroups as in

the Langlands-Shahidi machinery. Assume that G and G̃ satisfy (4.1). Moreover, assume that M = G∩ M̃.

If σ and σ̃ are ψ-generic representations of M(F ) and M̃(F ), respectively, such that

σ ↪→ Res
M̃(F )
M(F )(σ̃),

then

γ(s, σ, r, ψ) = γ(s, σ̃, r̃, ψ),

and similarly for the L- and ε-factors. Here, by r we denote any of the irreducible constituents of the adjoint
action of the complex dual of M on the Lie algebra of the dual of the unipotent radical of the standard
parabolic of G having M as a Levi. Also, r̃ denotes the corresponding irreducible constituent in the complex

dual of G̃. Below we only need the case where r and r̃ are standard representations.
For a precise description of the multiplicativity property in general we refer to [Sha90a] and to [Asg02,

§5] for the specific case of GSpin groups.
Getting back to the proof, if τ�σ is non-generic and non-supercuspidal, then it is a quotient of a standard

module of an induced representation Ind
GL4×GSpin4

P (π), where π is an essentially tempered representation of
the standard Levi subgroup of P. However, such a standard Levi only involves GL factors in our case and
hence π is generic. As a result, we may define the local factors associated with τ � σ via multiplicativity.

By the above arguments we are reduced to the case where τ and σ are generic supercuspidal. The proof
now follows essentially from the LLC for the general linear groups and (5.9) because

γ(s, τ × σ, ψ) = γ(s, τ × σ̃, ψ)

= γ(s, ϕτ ⊗ ϕ̃σ̃, ψ)

= γ(s, ϕτ ⊗ (pr4 ◦ ϕ̃σ̃), ψ)

= γ(s, ϕτ ⊗ ϕσ, ψ),

and similarly for the L- and ε-factors. �

Remark 5.17. While we can not make any statement regarding the case of general (non-generic) represen-
tations of GSpin4(F ) or other inner forms due to the current lack of a general satisfactory theory of local
factors in this generality. Our L-packets would satisfy properties analogous to the above if such a satisfactory
local theory becomes available. By satisfactory we refer to local factors that satisfy the natural properties
expected of them such as the so-called “Ten Commandments” for the γ-factors as in [LR05, Theorem 4].
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6. Local Langlands Correspondence for GSpin6 and its inner forms

In this final section, we establish the LLC for GSpin6 and its non quasi-split F -inner forms. The method
is similar to the case of GSpin4 we presented in Section 5, but with somewhat weaker results on cardinalities
of L-packets.

6.1. Construction of L-packets of GSpin6 and its inner forms. The discussions on restriction in Section
4 along with the description of the structure of GSpin6 in (2.7) imply that given σ ∈ Irr(GSpin6), there is a
lifting σ̃ ∈ Irr(GL1 ×GL4) such that

σ ↪→ ResGL1×GL4

GSpin6
(σ̃).

By the LLC for GLn [HT01, Hen00, Sch13], we have a unique ϕ̃σ̃ ∈ Φ(GL1 × GL4) corresponding to the
representation σ̃.

We now define a map

L6 : Irr(GSpin6) −→ Φ(GSpin6) (6.1)

σ 7−→ pr6 ◦ ϕ̃σ̃.
Note that L4 does not depend on the choice of the lifting σ̃ because if σ̃′ ∈ Irr(GL1×GL4) is another lifting,
we have σ̃′ ∼= σ̃ ⊗ χ for some quasi-character χ on

(GL1(F )×GL4(F ))/GSpin6(F ) ∼= F×.

As before,
F× ∼= H1(F,C×),

where C× is as in (2.27). The LLC for GL1 × GL4 maps σ̃′ to ϕ̃σ̃ ⊗ χ, again employing χ for both the
quasi-character and its parameter via Local Class Field Theory. Since pr6(ϕ̃σ̃ ⊗ χ) = pr6(ϕ̃σ̃) by (2.27), the
map L6 turns out to be well-defined.

As before, L6 is surjective because by Labesse’s Theorem in Section 4.2, ϕ ∈ Φ(GSpin6) can be lifted
to some ϕ̃ ∈ Φ(GL1 × GL4). We then obtain σ̃ ∈ Irr(GL1 × GL4) via the LLC for GL1 × GL4. Thus, any

irreducible constituent in the restriction ResGL1×GL4

GSpin6
(σ̃) has the image ϕ via the map L6.

For each ϕ ∈ Φ(GSpin6), we define the L-packet Πϕ(GSpin6) as the set of all inequivalent irreducible
constituents of σ̃

Πϕ(GSpin6) := Πσ̃(GSpin6) =
{
σ ↪→ ResGL1×GL4

GSpin6
(σ̃)
}
/ ∼=, (6.2)

where σ̃ is the unique member in Πϕ̃(GL1×GL4) and ϕ̃ ∈ Φ(GL1 ×GL4) is such that pr6 ◦ ϕ̃ = ϕ. By the
LLC for GL4 and Proposition 4.2, the fiber does not depends on the choice of ϕ̃.

We define the L-packets for the non quasi-split inner forms similarly. Using the group structure described
in Section 2.2, given σ2,0

6 ∈ Irr(GSpin2,0
6 ), there is a lifting σ̃2,0

6 ∈ Irr(GL1 ×GL2(D)) such that

σ2,0
6 ↪→ Res

GL1×GL2(D)

GSpin2,0
6

(σ̃2,0
6 ).

Again, combining the LLC for GL4 and GL2(D) [HS12], we have a unique ϕ̃σ̃2,0
6
∈ Φ(GL1 × GL2(D))

corresponding to the representation σ̃2,0
6 . We thus define the following map

L2,0
6 : Irr(GSpin2,0

6 ) −→ Φ(GSpin2,0
6 ) (6.3)

σ2,0
6 7−→ pr6 ◦ ϕ̃σ̃2,0

6
.

Again, it follows from the LLC for GL1 and GL2(D) that this map is well-defined and surjective.

Likewise, for the other F -inner form GSpin1,0
6 of GSpin6, we have a well-defined and surjective map

L1,0
6 : Irr(GSpin1,0

6 ) −→ Φ(GSpin1,0
6 ) (6.4)

σ1,0
6 7−→ pr6 ◦ ϕ̃σ̃1,0

6
.

Again, we similarly define L-packets

Πϕ(GSpin2,0
6 ) = Πσ̃2,0

6
(GSpin2,0

6 ), ϕ ∈ Φ(GSpin2,0
6 ) (6.5)
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and

Πϕ(GSpin1,0
6 ) = Πσ̃1,0

6
(GSpin1,0

6 ), ϕ ∈ Φ(GSpin1,0
6 ). (6.6)

These L-packet do not depend on the choice of ϕ̃ for similar reasons.

6.2. Internal structure of L-packets of GSpin6 and its inner forms. We continue to employ the
notation of Section 3 in this section. For simplicity of notation, we shall write GSpin[ for the split GSpin6,

and its non quasi-split F -inner forms GSpin2,0
6 and GSpin1,0

6 . Likewise, we shall write SL[ and GL[ for
corresponding groups in (2.7), (2.13), and (2.14) so that we have

SL[ ⊂ GSpin[ ⊂ GL[ (6.7)

in all cases. Recall from Section 2.4 that

(ĜSpin[)ad = PSO6(C) ∼= PGL4(C),

(ĜSpin[)sc = Spin6(C) ∼= SL4(C),

Z((ĜSpin[)sc) = Z((ĜSpin[)sc)Γ ∼= µ4(C).

Let ϕ ∈ Φ(GSpin[) be given. We fix a lifting ϕ̃ ∈ Φ(GL[) via the surjective map ĜL[ −→ ĜSpin[ (cf.
Theorem 4.2). We have

Sϕ ⊂ PSL4(C),

Sϕ,sc ⊂ SL4(C).

We then have (again by (3.4)) a central extension

1 −→ Ẑϕ,sc −→ Sϕ,sc −→ Sϕ −→ 1. (6.8)

Let ζ6, ζ
2,0
6 , and ζ1,0

6 be characters on Z((ĜSpin[)sc) which respectively correspond to GSpin6, GSpin2,0
6 ,

and GSpin1,0
6 via the Kottwitz isomorphism [Kot86, Theorem 1.2]. Note that

ζ6 = 1, ζ2,0
6 = sgn, and ζ1,0

6 = ζ̂4,

where sgn is the non-trivial character of order 2 on µ4(C) and ζ̂4 is the non-trivial character of order 4 on
µ4(C) whose restriction to µ2 equals sgn .

Theorem 6.1. Given an L-parameter ϕ ∈ Φ(GSpin[), there is a one-one bijection

Πϕ(GSpin[)
1−1←→ Irr(Sϕ,sc, ζ[),

σ 7→ ρσ,

such that we have the following decomposition

Vσ̃ ∼=
⊕

σ∈Πϕ(GSpin[)

ρσ � σ

as representations of the direct product Sϕ,sc × GSpin[(F ), where σ̃ ∈ Πϕ̃(GL[) is an extension of σ ∈
Πϕ(GSpin[) to GL[(F ) as in Section 4 and ϕ̃ ∈ Φ(GL[) is a lifting of ϕ ∈ Φ(GSpin[). Here, ζ[ ∈{
ζ6, ζ

2,0
6 , ζ1,0

6

}
according to which inner form GSpin[ is.
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Proof. The idea of the proof is as in the proof of Theorem 5.1. Given ϕ ∈ Φ(GSpin[), we choose a lifting
ϕ̃ ∈ Φ(GL[) and obtain the projection ϕ̄ ∈ Φ(SL[) in the following commutative diagram

ĜL[ = GL1(C)×GL4(C)

pr6
����

WF × SL2(C)

ϕ̃

44

ϕ //

ϕ̄ **

ĜSpin[ = GSO6(C)

p̄r
����
ŜL[ = PGL4(C) .

(6.9)

We then have σ̃ ∈ Πϕ̃(GL[) which is an extension of σ ∈ Πϕ(GSpin[). In addition to (2.27), we also have

1 −→ C× × C× −→ GL1(C)×GL4(C)
p̄r◦pr6−→ PGL4(C) −→ 1

Considering the kernels of the projections pr6 and p̄r ◦ pr6, we set

XGSpin[(ϕ̃) := {a ∈ H1(WF ,C×) : aϕ̃ ∼= ϕ̃}
XSL[(ϕ̃) := {a ∈ H1(WF ,C× × C×) : aϕ̃ ∼= ϕ̃}.

Moreover, by (2.10) and its analogs for the two non quasi-split F -inner forms, we have

GL[(F )/GSpin[(F ) ∼= F×.

As an easy consequence of Galois cohomology, we also have

GL[(F )/SL[(F ) ∼= F× × F×.
Set

IGSpin[(σ̃) := {χ ∈ (F×)D ∼= (GL[(F )/GSpin[(F ))D : σ̃χ ∼= σ̃}
ISL[(σ̃) := {χ ∈ (F×)D × (F×)D ∼= (GL[(F )/SL[(F ))D : σ̃χ ∼= σ̃}.

As in Remark 5.2, we often make no distinction between χ and χ ◦ det (respectively, χ ◦ Nrd). It follows
from the definitions that

XGSpin[(ϕ̃) ⊂ XSL[(ϕ̃) and IGSpin[(σ̃) ⊂ ISL[(σ̃). (6.10)

Recalling (F×)D ∼= H1(WF ,C×) by the local class field theory, it is immediate from the LLC for GLn that

XGSpin[(ϕ̃) ∼= IGSpin[(σ̃) and XSL[(ϕ̃) ∼= ISL[(σ̃)

as groups of characters. Now, with the component group notation S of Section 3, we claim that

IGSpin[(σ̃) ∼= Sϕ. (6.11)

Again, by [CL14, Lemma 5.3.4] and above arguments, this claim follows from

Sϕ ∼= XGSpin[(ϕ̃),

since Sϕ̃ is always trivial by the LLC for GL[. Again note that ϕ̃ and ϕ here are respectively φ and φ] in
[CL14, Lemma 5.3.4]. Thus, due to (4.10), (6.10), and(6.11) we have

Sϕ ⊂ Sϕ̄. (6.12)

Since the centralizer Cϕ̄(ŜL[) is equal to the image of the disjoint union∐
ν∈Hom(WF ,C×)

{
h ∈ GSO6(C) : hϕ(w)h−1ϕ(w)−1 = ν(w)

}
from the exact sequence

1 −→ C× −→ GSO6(C)
p̄r−→ ŜL[ = PGL4 −→ 1,

we have
Sϕ ⊂ Cϕ̄ = Sϕ̄.
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So, the pre-images in SL4(C) via the isogeny SL4(C) � PGL4(C) also satisfy

Sϕ,sc ⊂ Sϕ̄,sc ⊂ SL4(C).

This provides the inclusion of the identity components

S◦ϕ,sc ⊂ S◦ϕ̄,sc, (6.13)

and by the definition of Ẑϕ,sc(G) of Section 3, we again have the following surjection

Ẑϕ,sc � Ẑϕ,sc(SL[). (6.14)

Combining (6.12), (6.13), and (6.14), we again have the commutative diagram of component groups:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1y�

y∩ y∩
1 −−−−→ Ẑϕ̄,sc −−−−→ Sϕ̄,sc −−−−→ Sϕ̄ −−−−→ 1.

(6.15)

Now apply Hiraga-Saito’s homomorphism ΛSLn of (4.10) in the case of our SL[, which we denote by ΛSL4 .
The restriction

Λ[ := ΛSL4
|Sϕ,sc

then gives the following commutative diagram:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1yζ[ yΛ[

y∩
1 −−−−→ C× −−−−→ A(σ̃) −−−−→ ISL[(σ̃) −−−−→ 1.

(6.16)

Note that ζ[ is identified with ζG in (4.10) as the character on µ4(C), since both are determined according
to SL[.

Again, similar to A(σ̃) (cf. Section 4), we write AGSpin[(σ̃) for the subgroup of AutC(Vσ̃) generated
by C× and

{
Iχ : χ ∈ IGSpin[(σ̃)

}
. Hence, AGSpin[(σ̃) ⊂ A(σ̃). By the definition of ΛSL4

in (4.10) and the

commutative diagram (6.15), it is immediate that the image of Λ[ is AGSpin[(σ̃). We thus have the following
commutative diagram:

1 −−−−→ Ẑϕ,sc −−−−→ Sϕ,sc −−−−→ Sϕ −−−−→ 1yζ[ yΛ[

y∼=
1 −−−−→ C× −−−−→ AGSpin[(σ̃) −−−−→ IGSpin[(σ̃) −−−−→ 1.

(6.17)

The representation ρσ ∈ Irr(Sϕ,sc, ζ[) is defined by ξσ ◦ Λ[, where ξσ ∈ Irr(AGSpin[(σ̃), id) is the character
as in the decomposition (4.7). Now, arguments of Section 4, our construction of L-packets Ππ(GSpin[) in
Section 6.1 and diagram (6.17) above give

Irr(Sϕ,sc, ζ[)
1−1←→ Irr(AGSpin[(σ̃), id)

1−1←→ Πϕ(GSpin[). (6.18)

We also have the following decomposition

Vσ̃ ∼=
⊕

σ∈Πϕ(GSpin[)

ρσ � σ =
⊕

ρ∈Irr(Sϕ,sc,ζ[)

ρ� σρ,

where σρ denotes the image of ρ via the bijection between Πϕ(GSpin[) and Irr(Sϕ,sc, ζ[). Hence, the proof
of Theorem 6.1 is complete. �

Remark 6.2. As before, since Λ[ is unique up to Hom(IGSpin[(σ̃),C×) ∼= Hom(Sϕ,C×), the same is true for
the bijection (6.18).
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Remark 6.3. Given ϕ ∈ φ(GSpin6), by Theorem 6.1, we have a one-to-one bijection between

Πϕ(GSpin6) ∪Πϕ(GSpin2,0
6 ) ∪Πϕ(GSpin1,0

6 ) ∪Πϕ(GSpin0,1
6 )

1−1←→ Irr(Sϕ,sc),

where GSpin0,1
6 is a group isomorphic to GSpin1,0

6 as can be seen by taking the canonical isomorphism
D4
∼= Dop

4 , as discussed in (2.14).

6.3. L-packet Sizes for GSpin6 and Its Inner Forms. Just as in the case of GSpin4, we have the following
possible cardinalities for the L-packets of GSpin6 and its inner forms.

Proposition 6.4. Let Πϕ(GSpin[) be an L-packet associated to ϕ ∈ Φ(GSpin[). Then we have

|Πϕ(GSpin[)|
∣∣∣ ∣∣F×/(F×)2

∣∣ ,
which yields the possible cardinalities

|Πϕ(GSpin[)| =
{

1, 2, 4, if p 6= 2,
1, 2, 4, 8, if p = 2.

Proof. We proceed similarly as in the proof of Proposition 5.5, again making use of Galois Cohomology. The
exact sequence of algebraic groups

1 −→ Z(GSpin[) −→ Z(GL[)×GSpin[ −→ GL[ −→ 1

gives a long exact sequence

· · · −→ (F× × F×)×GSpin[(F ) −→ GL[(F ) −→ H1(F,Z(GSpin[)) −→ H1(F,Z(GL[)×GSpin[) −→ 1.

Since H1(F,Z(GL[)×GSpin[) = 1 by Lemma 2.2 and [PR94, Lemmas 2.8], we have

GL[(F )/
(
(F× × F×)×GSpin[(F )

)
↪→ H1(F,Z(GSpin[)).

Also, the exact sequence

1 −→ Z(GSpin[)
◦ −→ Z(GSpin[) −→ π0(Z(GSpin[)) −→ 1,

we have

H1(F,Z(GSpin[)) ↪→ H1(F, π0(Z(GSpin[))),

since, by [AS06, Proposition 2.3], Z(GSpin[)
◦ ∼= GL1 and H1(F,Z(GSpin[)

◦) = 1. Combining the above
with (2.19), we have

GL[(F )/
(
(F× × F×)×GSpin[(F )

)
↪→ H1(F, π0(Z(GSpin[)))

∼= H1(F,Z/2Z) ∼= F×/(F×)2. (6.19)

On the other hand, we know from Section 4 that

Πϕ(GSpin[)
1−1←→ GL[(F )/GL[(F )σ̃ ↪→ GL[(F )/

(
(F× × F×)×GSpin[(F )

)
,

where σ̃ ∈ Irr(GL[) corresponds to a lifting ϕ̃ ∈ Φ(GL[), via the LLC for GLn and its inner forms, of
ϕ ∈ Φ(GSpin[). This completes the proof. �

Next, we give a description of the group IGSpin6(σ̃) for σ̃ ∈ Irr(GL1×GL4). Unlike the case of GSpin4 we
are unable to give a case by case classification (cf. Remark 6.7).

Given σ̃ ∈ Irr(GL1×GL4), we set σ̃ = η̃� σ̃0 with η̃ ∈ (GL1(F ))D, σ̃0 ∈ Irr(GL4). By Remark 5.2, we note
that χ ∈ (GL[(F ))D is decomposed into χ̃1 � χ̃2, where χ̃1 ∈ (GL1(F ))D and χ̃2 ∈ (GL[(F ))D. Moreover,
we identify χ̃2 ∈ (GL4(F ))D and χ̃2 ◦ det, since any character on GLn(F ) is of the form χ̃ ◦ det for some
character χ̃ on F×.

Lemma 6.5. Any χ ∈ IGSpin6(σ̃) is of the form

χ̃−2 � χ̃,

for some χ̃ ∈ (F×)D.
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Proof. Since χ = χ̃1 � χ̃2 as above and χ is trivial on GSpin6(F ), by the structure of GSpin6(F ) in (2.23),
we have

χ((g1, g2)) = χ̃1(g1) � χ̃2(det g2) = χ̃1(g1)χ̃2(det g2) = 1

for all (g1, g2) ∈ GL1(F ) × GL4(F ) with (g1)2 = det g2. Since the determinant map det : GL4(F ) → F× is
surjective, χ̃1(χ̃2)2(x) must be trivial for all x ∈ F×. Thus, we have χ̃1 = (χ̃2)−2. �

Proposition 6.6. We have

IGSpin6(σ̃) = {χ ∈ ISL4(σ̃0) : χ2 = 1}.

Proof. Since σ̃ = η̃ � σ̃0 with η̃ ∈ (GL1(F ))D and σ̃0 ∈ Irr(GL4), by Lemma 6.5, we have

σ̃χ ∼= σ̃ ⇐⇒ η̃χ̃−2 � σ̃0χ̃ ∼= η̃ � σ̃0 ⇐⇒ σ̃0χ̃ ∼= σ̃0 and χ̃2 = 1.

This completes the proof. �

Remark 6.7. Propositions 6.4 and 6.6 imply that IGSpin6(σ̃) is of the form (Z/2Z)r with r = 0, 1, 2 if p 6= 2
and with r = 0, 1, 2, 3 if p = 2. Unlike the case of SL2 (see [GT10, Porposition 6.3]), a full classification of
irreducible L-parameters in Φ(SL4) is not currently available. Thus, unlike the case of GSpin4 in Section
5.3 (cf. Remarks 5.10 and 5.11), we do not classify the group IGSpin6(σ̃) case by case, nor discuss the group

structure of Sϕ,sc, and accordingly, the description of all the sizes of L-packets for GSpin6, GSpin2,0
6 , and

GSpin1,0
6 is not available here.

6.4. Proerties of L-maps for GSpin6 and its inner forms. The L-maps defined in Section 6.1 again
satisfy some natural properties similar to the case of GSpin4. We now verify those properties. In what

follows, let L[ ∈
{
L6,L2,0

6 ,L1,0
4

}
as the case may be.

Proposition 6.8. A representation σ[ ∈ Irr(GSpin[) is essentially square integrable if and only if its L-
parameter ϕσ[ := L[(σ[) does not factor through any proper Levi subgroup of GSO6(C).

Proof. The proof is similar to that of Proposition 5.12 so we omit the details. �

Remark 6.9. We similarly have that a given σ[ ∈ Irr(GSpin[) is tempered if and only if the image of its
L-parameter ϕσ[ := L[(σ[) in GSO6(C) is bounded.

Again because the restriction of representations preserves the intertwining operator and the Plancherel
measure (see [Cho14a, Section 2.2]), our construction of the L-packets in Section 6.1, gives the following
result.

Proposition 6.10. Let ϕ ∈ Φdisc(GSpin[) be given. For any σ1, σ2 ∈ Πϕ(GSpin[), we have the equality of
the Plancherel measures

µM (ν, τ � σ1, w) = µM (ν, τ � σ2, w),

where M is an F -Levi subgroup of an F -inner form of GSpin2n of the form of the product of GSpin[ and
copies of F -inner forms of GLmi , τ � σ1, τ � σ2 ∈ Πdisc(M), ν ∈ a∗M,C, and w ∈ WM with wM = M.
Further, it is a consequence of the equality of the Plancherel measures that the Plancherel measure is also
preserved between F -inner forms in the following sense. Let GSpin′[ be an F -inner form of GSpin[. Given
ϕ ∈ Φdisc(GSpin[), for any σ ∈ Πϕ(GSpin[) and σ′ ∈ Πϕ(GSpin′[) we have

µM (ν, τ � σ,w) = µM ′(ν, τ
′ � σ′, w),

where M ′ is an F -inner form of M, τ � σ ∈ Πdisc(M), τ ′ � σ′ ∈ Πdisc(M ′), and τ and τ ′ have the same
L-parameter.

Proof. The proof is similar to that of Proposition 5.14 so we omit the details. �

Remark 6.11. Similar to Remark 5.15, in the case where GSpin[ is the split group GSpin6, we have ζ[ = 1

and Theorem 6.1 implies

Πϕ(GSpin6)
1−1←→ Irr(Sϕ(ĜSpin6)) ∼= Irr(IGSpin6(σ̃)). (6.20)
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Suppose that there is a generic representation in Πϕ(GSpin6) with respect to a given Whittaker data for
GSpin6. Then, by [HS12, Chapter 3], we can normalize the bijection (6.20) above, so that the trivial character
1 ∈ Irr(Sϕ) maps to the generic representation in Πϕ(GSpin6).

6.5. Preservation of Local Factors via L6. As in Section 5.5, we can again verify that in the case of the
split form GSpin6 the map L6 preserves the local L-, ε-, and γ-factors when these local factors are defined.
We recall that on the representation side, these factors are defined via the Langlands-Shahidi method when
the representations are generic (or non-supercuspidal induced from generic via the Langlands classification)
and on the parameter side, they are Artin factors associated to the representations of the Weil-Deligne group
of F.

Since the Langlands-Shahidi method is available for generic data, we do not yet have a counterpart for
the local factors for the non quasi-split F -inner forms of GSpin6. This is the reason why we are limiting
ourselves to the case of the split form below; however, a remark similar to Remark 5.17 applies again.

Proposition 6.12. Let τ be an irreducible admissible representation of GLr(F ), r ≥ 1, and let σ be an irre-
ducible admissible representation of GSpin6(F ), which we assume to be either ψ-generic or non-supercuspidal
if r > 1. Here, generic is defined with respect to a non-trivial additive character ψ of F in the usual way.

Let ϕτ be the L-parameter of τ via the LLC for GLr(F ) and let ϕσ = L6(σ). Then,

γ(s, τ × σ, ψ) = γ(s, ϕτ ⊗ ϕσ, ψ),

L(s, τ × σ) = L(s, ϕτ ⊗ ϕσ),

ε(s, τ × σ, ψ) = ε(s, ϕτ ⊗ ϕσ, ψ).

The local factors on the left hand side are those attached by Shahidi [Sha90b, Theorem 3.5] to the ψ-generic
representations of the standard Levi subgroup GLr(F )×GSpin6(F ) in GSpin2r+6(F ) and the standard repre-
sentation of the dual Levi GLr(C)×GSO(6,C), and extended to all non-generic non-supercuspidal represen-
tations via the Langlands classification and the multiplicativity of the local factors [Sha90b, §9]. The factors
on the right hand side are Artin local factors associated to the given representations of the Weil-Deligne
group of F.

Proof. The proof is similar to that of Proposition 5.16 and we will not repeat it. �
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