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Abstract. This paper explicitly describes the procedure of associating an automorphic rep-
resentation of PGS@n, A) with a Siegel modular form of degreefor the full modular
groupl’, = Sp(2n, Z), generalizing the well-known procedure for= 1. This will show

that the so-called “standard” and “spinat-functions associated with such forms are ob-
tained as Langlandg-functions. The theory of Euler products, developed by Langlands,
applied to a Levi subgroup of the exceptional group of tyfae is then used to establish
meromorphic continuation for the spinbrfunction whem = 3.

1. Introduction

Let f be a Siegel modular form of degraefor the full modular groupl’, =
Sp2n, Z). If f is an eigenfunction for the action of the Hecke algebra, then there
are twoL-functions associated with. Letao, a1, . . . , a, be the Satake parameters
of f, and define thetandard L-function

n -1
Lis, H=]] ((1 -p O [[a-ap™a- arlp%) : @

p i=1
and thespinor L-function

-1
La(s, f) = ]‘[(1‘[ I1 (1—aoai1...aikp5)) : @)

k=0 1<ii<...<ix<n

One goal of this note is to “explain” the definition of thelsdunctions within the
general framework of automorphic representations. To do so, we first associate an
automorphic representation with the classical modular frivve then identify the
aboveL-functions with certain Langlands-functions coming from two different
representations of the dual group. Langlands’ theory of Euler products will then
imply the following (cf. Sect. 4.6).
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Theorem. The L-functionsL1(s, f)and L2(s, f) have meromor phic continuation
toall of Cwhenn = 3.

We should remark that Bocherer has proved stronger results for the standard
L-functions (cf. [B8]). Andrianov also gives all the analytic properties of spinor
L-function whem = 2 in [An].

The procedure of associating an automorphic representation to a classical mod-
ular form is well known in the case of elliptic modular forms, see [Ge] Chapter
3 or [Bu, Sect. 3.6]. There, one associates with an eigenforam automorphic
representation r of GL(2, A), whereA denotes the adeles @ If f has no char-
acter, thenr ; will have trivial central character, thus descends to a representation
of PGL(2, A). In the higher dimensional case we will associate with an eigenform
f of degreen an automorphic representation of the group @spA) which is
isomorphic to GI(2, A) if n = 1. Sincef will be assumed to have no character,
this is really a representation of PG3p, A).

To be more precise, utilizing a strong approximation theorem, we firgt kiét
a function® ¢ on G(A), whereG = GSp2n). We will assumef to be cuspidal,
so thatd ; lies in the cuspidal subspam%(G(Q)\G(A)). (Here we have to trans-
late the classical cusp condition into the group theoretic one.) Then et the
subrepresentation of this space generated by Thisz may not be irreducible,
but if f is an eigenform, then all the irreducible components ofill turn out
to be isomorphic. This isomorphism class is the automorphic representgtion
associated witly. In Theorem 2 we shall describe its local components in terms
of Satake parameters (at the finite places) and Harish-Chandra parameters (at the
infinite place).

We have to go through some Hecke algebra computations to identify the clas-
sical Satake parameters of the eigenfofnwith the Satake parameters of the
local components ofr» which are spherical representations of the local groups
GSp(2n, Q). The group theoretic Satake parameters can be taken to be in the
maximal torus in the dual group @f which isG = GSpin2n + 1, C). Since we
have a representation with trivial central character, the Satake parameters will in
fact be elements of its derived group Sgn + 1, C).

This latter group has two distinguished finite-dimensional representations,
namely the projection onto S@: + 1, C) which we denote by;, and the 2-
dimensional spin representatiof, the smallest genuine representation (not factor-
ing throughp1) of this group. We use the weight structure of these finite-dimensional
representations to determine the form of the standard Euler factor associated with
01 andp>. It turns out that these Euler factors are precisely the same as the ones in
(1) and (2). In other words, the classidafunctions identify with standard Lang-
landsL-functions coming from the representatiensando of the dual group (see
Theorem 3).

Having established this identification, one can apply results from representation
theory to classical modular forms. For modular forms of degree 3, the underlying
group GSp6) can be embedded, as a Levi, in a Chevalley group of fypaNe
then make use of Langlands’ method developed in [La] to prove the meromorphic
continuation of the spil.-function forn = 3 (cf. Corollary 1).
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2. Notation

The right group for handling Siegel modular forms (of degrgen the context of
automorphic representations is

G =GSp2n) = {g € GL(2n) : 3 u(g) € GL() gJ g = nu(g)J},

where

J = ( 1 1”), 1, then x n identity matrix
—4n

If ¢ = (é g), then the conditions are equivalent to
A'D—-B'C=u(g)l, A'B=B'A, C'D=D'C.

The functionyu is called the multiplier homomorphism. Its kernel is the group
Sp(2n) and there is an exact sequence

1— Sp2n) — G — GL() — 1.

The centetZ of G consists of the scalar matrices, and the standard maximal torus
is

T = {diag(u1, ... ,upy, V1, ... ,Vy) > UYL = ... = uyv, 7% O}
We often write an elemente T in the form
t =diag(us, ..., uy, uIluo, e u;luo), u; € GL(1); 3)

thenug = wu(t). We fix the following characters of the maximal torfisc G. If
t € T is written in the form (3), then let

ei(ty=u;, i=01...,n.
These characters are a basis for the character lattiGe of
X=Zeog®Ze1D...D Ze,.

We also fix the following cocharacters of

fow) =diagd, ..., L u,...,u),
N e N e’
n n
fiw) =diagu, 1,...,Lu"t1,...,1),
n n

fow) =diagd, ..., Lu,1,...,1,u"Y).

n n
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Then these elements ar&ebasis for the cocharacter lattice Gf
XV=Zf®ZLAHAD...OLf,.
With the natural pairing, ) : X x XY — Z, we have
(ei, fj) = dij.
We now choose the following set of simple roots:
a1(t) = u;}lun, cee L ap_1(t) = uIluz, a,(t) = u%ual; 4)
herer is written in the form (3). In other words,
ol=e, —ey_1, ..., Qu_1=e2—e1, o, =2e1 —ep.

The numbering of the simple roots is such that the Dynkin diagram is

a1 a2 Up—-2 ap—-1 oy

The corresponding coroots are

o] = fu— fa-1, ... o) _1=fr—f1, @ = fi. (5)
IfweletR ={a1,...,a,} C X, RV ={of, ..., @/} C X", then
(X,R, X', RY)

is the root datum o; = GSp(2r). The Cartan matrix is

2 -1
-1 2 -1
-1 2 -1
(ai,ajy)z S
-1 2 -1
-1 2 -1
-2 2

With our choice of simple roots, we get the Borel subgr@ip= TN, where
8 ,Aol) ;:l)li) with A € GL(n) lower
triangular unipotent an@ symmetric. (Note that some authors use a different set
of simple roots that results iA being upper triangular as was pointed out by the
referee.) The torug acts on the Lie-algebraof N by the adjoint representation
Ad. It is easy to compute the modular facty(z) = det(Ad,(?)). If ¢ is given in

the form (3), then

N consists of matrices of the forré

Sp(t) = u(;”(”H)/Zu%ug cu (6)
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3. Local representations

In Theorem 2 we shall describe the local components of an automorphic repre-
sentation associated with a classical Siegel modular form. This is done in terms
of Satake parameters at the finite places, and in terms of the weight (or Harish-
Chandra parameters, if the weight is large enough) at the archimedean place. In
the following sections we shall therefore collect all the required facts about local
representations.

Notation. In Sects. 3.1 through 3.4, is ap-adic field,Q its ring of integersp € O
a generator of the maximal ideal, apd= £O/wO. The symbolss, T, ... denote
F-points of the underlying algebraic groups. Weket= GSp2n, O).

Section 3.5 deals with the archimedean place, i.e., the underlying local field is
R.

3.1. The Satake isomorphism for GSp(2n)

The Satake isomorphism for a reductpradic group is nicely described in [Ca]. Let
H(G, K) be the unramified Hecke algebra®@f consisting of compactly supported
functionsf : G — Cwhich are leftand righk -invariant. The productift/ (G, K)

is given by convolution

(f 900 = [ Fangobay.
G
Let°T := T(O). Thenwe also have the Hecke algelfd’, °T). Special elements
in this Hecke algebra are

Xo := cha(diag(O*, ... , 0%, 0O*, ... , 00O")),
X1 = cha(diagwO*, O%, ... , 0%, 0w 10%, 0%, ..., 0%)),

X, := cha(diagO*, ... , 0*, wO*, O%, ..., O*, 0~ *0")),
where “char” stands for characteristic function. It is easily seen that
X§ = char(diagO*, ..., 0%, 0" O, ..., 0" 0"), keZ,
and similarly for the othek;. It is then clear that
H(T, °T) = C[Xa4, XFh ..., X

Now, for an elemeny € H(G, K), the Satake transform is defined by

(S)(t) = 185(1)|? / fn)ydn = 185(1)|"Y/? f f(nt)dn.
N N
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Sf is an element ol (T, °T), and in factS defines an isomorphism
S: H(G,K) — H(T, °T)V.

Here W denotes the Weyl group af, which acts naturally on the torus and on
H(T, °T), and we take invariant elements.
Assume now thalf = chatK MK) with KM K = [][ M;K. Because of the
Iwasawa decompositiof = BK we may assume that
i 0

A; B; . )
M; = ( 0 oo tAi_l) with A; = .. . )
* win

Herew is a prime element and thg; are integers. Note thato does not depend
oni, since it equals the valuation pf(A).
Lemma 1. With f as above, we have

n
57 =g 3 [ %0,
i j=1
where § isthe valuation of w(M).
Proof. We have to compute

(SH®) = 185172 f Ly k (tn) dn,
iN

where we may assume= diagw*?, ... , ok, @ ktko - o ~ktkoy Consider

fN 1y, x (tn) dn for fixed i. We havern € M;K if and only if n € TIMK. It

is clear that we can find such anonly if 7~1M; has units on the diagonal, i.e.,
if k; = d;; for all j. Assuming this is the case, then with:= t~1M; € N our
integral equals

[1n/K(n)dn = / 1x(n)dn = 1.
N N
We have proved that
/1M,»K(m)dn _ 1 ifk;=d;forall j=0,1,...,n,
N
With the characteristic functions; defined above, this may be written as

0 otherwise

(; — / Ly, K(tn)dn) = xgoxdin. . xdin, (8)

It follows from (6) that
185 (1)|Y/2 = gkon+D/4y —ki—2ko=..mnkn

Multiplying this by the function (8), we may replaéeg by d;;, and the assertion
follows. O
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3.2. Spherical representations

An irreducible admissible representation@fis calledspherical if it contains a
non-zero vector fixed b . All the spherical representations 6f are obtained
as follows. Letyg, ... , x» be unramified characters &f* (i.e., homomorphisms
F* — C* which are trivial onO*). They define an unramified character of the
Borel subgroups = T N which is trivial on N and which, orT’, is given by

t —> xo(uo) x1(u1) - ...« xn(un), 9

with r € T of the form (3). Normalized induction t& yields a representation
which has a unique spherical constituent. We denote this spherical representation

by
jT(XO: Xls LR Xn)

The isomorphism class of this representation depends only on the unramified char-
acters modulo the action of the Weyl group. It is further known that each spherical
representation is obtained in this way. Thus there is a bijection between unramified
characters of” modulo the action of the Weyl group, and isomorphism classes of
spherical representations Gf

Each unramified character &* is determined by its value on a prime ele-
mentw € F. This value may be any non-zero complex number. WithSiteke
parameters b; := x;(w), the character (9) is thus also determined by the vec-
tor (bo, b1, ..., by) € (C*)"*t1. The Weyl group acts on this complex torus, and
we see that unramified representationgsofire parameterized by the orbit space
(C*"*+1/W. In fact, the Satake isomorphism

S: MG, K) — Clxgt, xit, .. xEYW

identifies the Hecke algebra with the coordinate ring@f)"*1/W. Each point
(bo, ... ,by) € (C*)"*1/W determines a character, i.e. an algebra homomorphism
crxgt, ..., XY — C, by mappingX; tob;. Via S this also defines a character
of H(G, K), which is nothing but the action 6{(G, K) on the one-dimensional
space of spherical vectorsin(xo, ... , xu)-

These well-known facts may be summarized in the following commutative
diagram, in which all the maps are bijections:

{spherical representations—— Homag (H(G, K), C)

I !

{unramified characteygW <«—— (C*H"tw

The left arrow is induction and then taking the spherical constituent, the top arrow
is the action ofH (G, K) on the space of spherical vectors, the map on the right
comes from the identificatio®{(G, K) ~ (C[X(jfl, ..., XYW and the bottom
arrow assigns to the Satake parametegs. . . , b,) the unramified character with

Xi(@) = b;.
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Lemma 1 can now be restated in the following way. L&k a spherical vector
inm :=m(x0,..., xn), andletf = 1g g be the element from Lemma 1. Then

n
a(fHv =gV N [@ /b))% v, whereb; = xj(w).  (10)
i j=1

Clearly the representation induced from the character (9) has central character
Xg X1... Xn- This character is trivial if and only if the Satake parameters satisfy

baby-... by =1 (11)

Thus, exactly these parameters give spherical representations of the group
PGSp2n, F).

3.3. Dual groups

In Sect. 2 we described the root datum
(X,R, X', RY)

of G = GSp(2n). By definition, the dual grou = GSpin2z + 1, C) has root
datum

X', R, X", R")=(X",RY, X, R).

Letey, ... , e, be abasis ok’ such that
e, = f;

under the identificatio’ = XV, and letf{, ... , f, be a basis ok’" such that
fi=e

under the identificatiork’Y = X. The complex torugC*)"*1 of the previous
section may be viewed as the maximal tofusc G. Elements ofl'/W are in
one-one correspondence with semisimple conjugacy classesBy the previous
section, we have a correspondence between spherical representatiGnsndf
those semisimple conjugacy classes, s an unramified character @f defining
a spherical representation, and 7 is the associated parameter, theand? are
related by the general relation

x(p(w)) = () forallg e XV =X’ (12)

(see [GS] p. 26). Itis clear that eatle 7 can be written uniquely as
f= l_[f/(l‘,‘), t € C*. (13)
i=0

We have the pairinge;, f]f) = 8;j, and thus; = ¢(7). Therefore putting = ¢/ =
fi in (12) yieldsb; = ;. We proved the following.
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Lemma?2. Let 7 = 7 (x) be a spherical principal series representation of G =
GSp2n, F). Letbg, ba, ... , b, bethe Satake parameters of r, asin 3.2. Then the
associated semisimple conjugacy classin GSpin2n + 1, C) is represented by

P=TTre.
i=0

SetG := PGS[2n, F) = G/C, whereC is the center ot;. The dual group ot;
is

G = Spin2n + 1,C) c GSpin2n + 1, C),

which is also the derived group @. The element € 7 will correspond to a
representation of; with trivial central character, i.e., to a representatiotoff
and only if it lies in

T := 7 N Spin2n + 1, C),
the maximal torus of Spi2n + 1, C).

3.4. Local Euler factors

For a spherical representatiorof G with parameter € T and a finite-dimensional
representation

o: Spin2n+1,C) — GL(m, C),

Langlands defines the local Euler factots, r, 0) = det(1 — Q(f)qfs)*l. In this
section we are going to compute this factor for the “projection representation”

01: Spin2n +1,C) — SO2n + 1, C), (14)

and for the 2-dimensional spin representatipp. Similar computations can also
be found in [As].

The projection representation. One can find the weight structure of the representa-
tion o1 in [FH]. All the weight spaces of thi&2nr + 1)-dimensional representation
are one-dimensional. In the notation of the previous section the weights are

/

/ / /
e, ..., e, 0, —ep, ..., —e,.

n’
The eigenvalues of an operaioff) are therefore 1 and
)£

1 .
e;(t i=1...,n.

With 7 as in Lemma 2, we get (7) = b;. This proves the following.

Lemma3.If = is a spherical representation of G with Satake parameters
bo, b1, ... ,b, asin 3.2, then

L(s,m01) ' =1—qg ) [[A—big™)L—b;"qg™).
i=1
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The spin representation. Again from [FH], the Z-dimensional spin representation
02 of Spin(2n + 1, C) has highest Weigl"%(e’l + ...+ ¢),). Indeed, all the weight
spaces are one-dimensional, and the weights @fre

c1ey + ...+ cuey,
2 9
Let such a weight be given. Define a charactef 7' by
n@=1uw][u ifi=]]Hw.
i=1 i=0

Ci=l

ci € {£1}. (15)

We claim thaty coincides with the character (15) dn, the maximal torus of
Spin(2n + 1, C). An elementi as above lies in this maximal torus if and only if
zgtl -...-t; = 1. Assuming this relation, we have

n n
(c1€] + ...+ cue))(?) = 1_[ (e;()" = 1_[ 1
i=1 i=1
n n
‘l' l A
= zg]"[t; =2 l_[ 2 = 2@,
i=1 i=1
C;:l
and it follows that indeec%(cle’l + ...+ cue,) = non T. We can thus easily
compute the eigenvalues 04(7), and get the following lemma.

Lemmad4. If = is a spherical representation of G with Satake parameters
bo, b1, ... ,b, asin 3.2, then

n
L, e =[] ] @—bobiy...big™).

k=0 1<iy<...<ix<n

3.5. Lowest weight representations for PGSg2n, R)

In this section we shall construct a class of lowest weight representations of
PGSp2n, R), which appear as the infinite component in the automorphic rep-
resentation attached to a holomorphic Siegel modular form.

The Lie algebra of Sg2n, R) is explicitly given by

g={XeM@2n,R): XJ+J'X =0}

— A B . _t _ _ _t
_{(CD>EM(2n,R).B_B,C_C,A_ D}. (16)
The standard maximal compact subgradag of Sp(2n, R) is

Koo={<_ABi) €GL@21,R): A'’A+B'B=1, AfB=B’A}- (17)
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We haveK,, >~ U (n) via (—AB f;) —— A +iB. The Lie algebra oK, is
_ A B . __ _t _t
E—{(_BA>GM(2n,R).A_ A,B_B}.

This is also the 1-eigenspace of the Cartan involutigh = —X. The (-1)-
eigenspace is

_ A B . 1 _t
p_{<B_A>eM(2n,]R). A=A B= B},

so thatg = ¢ @ p. It is easy to see thatc = pE @ pe, with
+ A +iA . o
o (A eworacn] oo
Each ofp? is an abelian subalgebra gf, we haveltc, pZ] C pE, and

ac =p¢ D bc dpg.
In the complexified Lie-algebr&: of K let

{ 0 D
T‘i:_l<—Di 0>7 (19)

whereD; is the diagonal matrix with entry 1 at positiéin i), and zeros elsewhere.
Thenh = RTy + ... + RT, is a compact Cartan subalgebragef. Let ¢; be the
linear form onhc which sendd; to 1, andT; to O for j # i. Then the following
is a system of positive roots f@gc, hc):

2e;, 1<j<n,

ejte, 1<j<k<n, (20)

ej—e, 1<j<k=<n
(the simple roots are; — eo, ..., e,—1 — ey, 2ey). 1IN fact,pz:r is spanned by the
root spaces for the first two types of rootsZif is as above, then

D; iD; .
(iDj —D,-)’ l<j=n,
spans the root space for the roef 2and if £ j; is the matrix with entry 1 at positions
(j, k) and(k, j), and zeros elsewhere, then

Eir iEi .
) ), 1< j<k<n,
<1Ejk —Ejk> =/ ==

spans the root space for the regt+ e;. These roots are then-compact positive
roots. The other positive roots azempact; the root space af; — ¢ is spanned by

the element
Fix —iEj .
<iEjk Fj ) t=j<k=n
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whereF; is the matrix with entry 1 at positio€y, k), entry—1 at position(k, ),
and zeros elsewhere.

Letk be a positive integer (it will be the weight of a Siegel modular form in our
case). We shall construct a lowest weight representatian with lowest weight
k(e1+ ...+ ey). Let B be the character a&f given by

Er(k) = jle, D7,

wherej (g, Z) = det(C Z + D) is the classical automorphic factgr= (é g €

G, andZ isinthe Siegel upper half plan&{s a character becaugeis the stabilizer
of I = diag(, ... , i) under linear fractional transformations). lgt= d&; be
the differential, complexified to a linear fortp — C. Explicitly,

&(Tj) =k, i=1....n,
Ek(Xe;—e) =0  forall j # 1.

Because oftc, pc] C pe, the characteg, can be extended to a character of
tc + pc. Consider

Vie = UG0) @yec1pr) Car-

HereCg, = C with the action oftc + p given byé&. If vo denotes the special
vector 1® 1 € Vi, thenT;vg = kvg, andvg is annihilated by all negative roots.
Thus we have a representationgef of lowest weightk(e1 + ... + ¢,). Itis also
clear that

Vie = U(p¢)vo.

Vi is in fact a(gc, K)-module, and globalizes to a unitary representation of
Sp(2n, R) which in the following we shall denote by; (it depends only on the
positive integek). The center of S@n, R) consists of only two elements, and it is
easy to see that the central characterofs given by(—1)"%. Thus, ifnk is even,

7, descends to a representation of E&pR). Assuming this is the case, we get
a representation of PG&m, R) by inducingsw; from the subgroup P$gn, R)

(of index 2). This new representation shall also be denoteg;bjt has a lowest
weight vector of weighk(e1 + ... + ¢,), and a highest weight vector of weight
—k(e1+ ...+ ey).

By Harish-Chandra, the discrete series representationg @ SR) are param-
eterized by elements in the weight lattice which do not lie on a wall, modulo the
action of the Weyl group oK (see, for instance, [Kna] Theorem 9.20)Alis such
a Harish-Chandra parameter, then the lowéaype of the corresponding discrete
series representation is given by the Blattner parameter

A = A+ dnc — b,

wheresnc (resp.dc) is half of the sum of the non-compact (resp. compact) positive
roots; here “positive” means with respect to the Weyl chamber in whids.
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The choice (20) of positive roots leads to th@omorphic discrete series rep-
resentations. The corresponding Harish-Chandra parameters are of the form

A=aie1+ ... +aye,, a; €7, a1 > ...>a, > 0.

The relation with the Blattner parameter is

n
A=r+)_ jej.
j=1

We shall be particularly interested in the discrete series representation with Harish-
Chandra parameter

k—De1+...(k—n)ey,

wherek > n is an integer; it has the loweg&t-typeke; + . .. + ke,,, and must thus
coincide with the representation constructed above. ¥ = n, then the Harish-
Chandra parameter comes to lie on a wall and this identifiesrguk = n, as a
limit of discrete series. It < n, thensw; is neither a discrete series representation,
nor a limit of them.

4. Siegel modular forms

For basic facts about classical Siegel modular forms we refer to [AZ], [Frl], or
[K1.

4.1. Lifting of Segel modular forms

Siegel modular forms of degreeare certain holomorphic functions on the Siegel
upper half planét,,, which by definition is the complex manifold consisting of
complex symmetria: x n matrices with positive definite imaginary part. Strong
approximation allows one to regard Siegel modular forms of degeeefunctions
on G(A), whereG = GSp2n), and where the ground field (3.

Let f be a Siegel modular form of weightand degree. We shall assume that
f is a modular form with respect to the full modular grobp = Sp(2n, Z), i.e.,
fl,y = fforally e T, where

(flh)(Z) = w(h)"™ /% j(h, 2)™* f(h(Z)) forh e GY,. Z e H,

(herep is the multiplier,j (h, Z) = det{(CZ + D) for h = A B ,andh(Z) =
CD

(AZ + B)(CZ + D)~1). We remark that this operation differs from the classical
one used in [An] by a factor. We do so to make the cente @f) act trivially.
More precisely, the classical operation is

(f lk W)(Z) = deth)* = FV/2j(n, 2)7* f(h(2)).
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The relation between the two operations is
f Ik h =deth)*==D/2 ¢, n forallh e GL.. (21)

To f is associated a functio®; : G(A) — C as follows. One uses strong
approximation for Sg2n) (cf. [Kne]) to show that

GA) =GQG®" [] 6@,

p<0o0

whereG (R) " denotes those elements®fRR) which have positive multiplier. Write
an elemeng € G(A) as

g = gugocko  With gg € G(Q), g € G, ko € Ko, (22)
whereKo = [],_, Kp With K, = G(Z). Then we define
Dr(g) = (flk8c0)(), (23)
wherel = diagi, ... ,i) € H,. Thisis well-defined because of the transformation

properties off.
The mapf — @ injects the space of modular forms of weighihto a space
of functions® on G having the following properties:

) P(og) =P(g) foroe GQ),

i) ®(gkg) = P(g) forkg e Ko,

i) ®(gkoo) = P(8)j (koo, NT* fOr koo € Koo,

iv) ®(gz) =®(g) forze Z(A).

Here Z ~ GL(1) is the center of GS@n), and K, =~ U(n) is the standard
maximal compact subgroup of 8u, R) (and is equal to the stabilizer éfunder
linear fractional transformations; see also the next section).

Lemmab. If f € Si(I',), then the automorphic form @ ; is cuspidal, i.e.,

Or(ng)dn =0 forall g € G(A)
NQ\N(A)
for each unipotent radical N of each proper parabolic subgroup of G.
Proof. Itis enough to verify the cusp condition for the standard maximal parabolics.
If P = MN is one of those, then by the lIwasawa decomposition we may assume
g € M(A). Using strong approximation fa¥ (A), we may further assume that

g € ME := M(R) N GL,. LetV be the intersection of the unipotent radicals of all
standard maximal parabolics. Clearly it is enough to show that

®r(ng)dn =0.
V(Q\V(A)
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Now V consists of all elements of the for . 1])_ withv € V/, whereV’ is the set

of symmetricn x n matrices with non-zero entries only in last row and last column
(thusV ~ v/ ~ G?). This is easy to see from the fact that a root spgigdelongs
toVifandonly ifa = c1a1 + ... + cya, With all ¢; > 0 (ande; as in (4)). With

Z = g(I) one gets

®r(ng)dn = / D r(ng)dn
VQ\V(A) V(Z)\V (R)
= / fng(I)jng, 1) *dn = f f(Z+v)jg D7 *dv.
V(Z)\V (R) V(Z)\V'(R)

At this point we use the Fourier expansion faf
f(Z)=Y crexpritr(RZ)), ZeH,,
R

whereR runs over semi-integral, positive definite matrices (it is here where we use
the classical cusp condition). Thus

®y(ng)dn =) crexpritr(RZ))j(g. )™
VQ\V(4) R

exp(2ritr(Rv)) dv.
VI(Z\V'(R)

Using the fact thaR is non-degenerate, one checks that the map
v exp(2ritr(Rv))
is a non-trivial character of’. Thus our integral is zero.o

The lemma shows that the map — &, gives a one-one correspondence
between the spacé;(I',) of cusp forms of weightk, and a subspace of
L%(Z(A)G(Q)\G(A)), the space of cuspidal functions in

L%(Z(A)G(Q)\G(A)).
Also note that
T, \H, =~ Z(A)G@\G(A)/K. (24)

To see this, map an elemefit= gggock € G(A) t0 goo(I). Also, every point of
the left hand side of the isomorphism can be writtegas/) for somego, € G
which can in turn be mapped to the imageggf in the right hand side.

If we start with a Haar measure @h(A) and take the induced measure on the
right side of (24), then the corresponding measure on the left side is induced from
(a suitable multiple of) the usual invariant volume elemé&f# on H,,. In other
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words, if al',-invariant functionf on H,, and aG(Q)-invariant function® on
Z(AM\G(A)/K are related by

f(goo(l)) = ®(g00) forall goo € G,

then

/ [(2)d"Z = / ®(g)dg = / (g)dg
T \H, Z(AGQ\GA)/K Z(AGQ\G(A)

(integrations taken over fundamental domains). We apply this to the function

D) D plg) = f1(gl) f2lg(I)) m(e)™ (g, DI7*
= f1(Z) f2(Z) det(Y),

wheref1, f2 € Sk(I'y), and wherez(I) = X +iY for g € GZ,. We obtain

/ A(Z) f2(Z) detY)* d*Z = / () Pp(g)dg.  (29)
T \H, ZWGQ\G(A)

On the left, we have the classical Petersson scalar product, and the orfithary
scalar product on the right. This proves the following.

Lemma 6. Upon suitable normalization of measures, the map f — &, from
Sy (T",) into L%(Z(A)G(Q)\G(A)) isan isometry.

4.2. Holomorphy and differential operators

We are going to express the holomorphy of the functioon H,, in terms of the
annihilation of® ¢ by certain differential operators. b is a function onG(A)
which is smooth as a function @ (R), and if X € g, the real Lie-algebra of
Sp(2n, R), then we define as usual

d
(XP)(g) := | P(gexpiX)), g€ G(A).
0

This action ofg on smooth functiong;(A) — C extends to an action afc by
linearity. We have identifieg with a space of matrices in (16).

The stabilizer of € H, (under linear fractional transformations) is the maximal
compact subgrouK ., =~ U(n) of Sp(2n, R), given by (17). As in 3.5 we have
g = t @ p, wheret is the Lie algebra oK, andp is the(—1)-eigenspace under the
Cartan involution. Consider the projection

p: Sp2n, R) — H,,
g — g(l),
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which induces the homeomorphism@p, R)/ K. =~ H,. Its differential at the
identity

dpo: g — TiH,

has kernet, and therefore induces an isomorphism; T,H,. If T;H,, is natu-
rally identified with the space of symmetric compkex n matrices, then a small
calculation shows that

d
dp(X) = 7

expirX)(I) =2(B+1A) forX = (2 _I;) € p.
0

Let J be the complex structure (multiplication withon 7;H,. Carried over to,

it is given by
7 A B\ (B-A
B—-A) \-A-B)

Now we havepc = p Qr C = pE ®pe, wherepé is the (+i)-eigenspace of .
Thus the elements cpg (respp) correspond to linear combinations of differential
operators

d d
— e T/H, g C (resp.T>, (26)
dz; dz;

wherez; = x; +iy; are coordinates oH,, about the poinf. Explicitly, we have
A %iA
pgz{(iiA_A>eM(2n,<C);A:fA}, (27)

thus these Spa0$% coincide with the ones already defined in (18).

Lemma7. Let f be a smooth function on Hj, transforming like a modular form,
and let the function ® » on G (A) be defined by (23). Then f is holomorphicif and
onlyif po.®y =0.

Proof. By the transformation properties d;, it is enough to prove the following.
Let f be a smooth function oH,,, and defineb : Sp(2n, R) — C by

d(g) = f(gINjg. DF, geSp2n,R).

Then f is holomorphic if and only ip.® = 0.
Let f(g) = f(g(I)) andj(g) = j(g, I)~*. We are going to prove that

(X®)(g) = (X)(g)jg. DF forX epg. (28)

By considering the functiofi’(Z) := f(h(Z))j(h, Z)"* instead off, itis enough
to do this forg = 1, i.e., we will show that

(X®)(D) = (X)) for X e pg. (29)
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By the product rule, we have

(XO)(D) = (XHD + fFIDNK)HQD) for X € go

(this is immediate forX € g, and also holds fok € gc by linearity). Using (27),
onegetgX j)(1) = OforX e p.. This proves (29), and therefore also (28). Thus

is annihilated by if and only f is. But by the definition of - we havepcg.f =0
if and only if f is holomorphic (see (26)).0

4.3. Hecke operators

We now fix a prime numbep. LetHf,'aSSbe thep-component of the classical Hecke
algebra ofG = GSp2n). It is spanned by double cosets

TMT  with M € GZ[p~ DT,

whereZ[p~1] is the ring of rational numbers with only-powers in the denomi-
nator.

Lemma 8. Thereis an isomorphism
HEBS 5 (G, K ).

The double coset ' MT corresponds under this isomorphism to the characteristic
function of K,MK .

Proof. Itis easy to see that there are bijections
N\GEZIp™DT/T <« G@\GEZIp™)/G(Z) < K,\Gp/Kp,

induced by the inclusions of the groups. Thus the Hecke algebras are isomorphic
as vector spaces. There are similar bijections with cosets instead of double cosets.
This fact is used to check that the classical multiplication of double cosets coincides

with the convolution product on the-adic Hecke algebra.no

From now on we may identify the two Hecke algebras. We recall how these
algebras act on modular forms. ffis a classical modular form of weightand
degreen, and if T = "' MT € 19SS then

FIT = Z fleM;, wherel'MT = ]_[FMi,
i i

is again a modular form. This defines a right action“ro}i‘ass on the space of
modular forms of weight and degrea. As before, this action differs slightly from
Andrianov’s action, which is defined with instead of;. It follows from (21) that

fllx T =det(M)*"=V72 ¢, 7 for T = T MT. (30)
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There is also a left action 6€(G,, K,) on adelic functions given by

(TP)(g) = / T(h)®(gh)dh, T e H(Gp,Kp), g€ GA).
Gp

If T is the characteristic function &f ,M K, = [[ M;K,, and if ® is right
K ,-invariant, then

(TO)(g) =y D(gM)).

In the proof of the following lemma we use the notatibft = (M)M ™1,
which is an anti-involution of5. Note that

CMT =TM*T,

sinceM may be chosen to be diagona¥ (— M* is not the identity on diagonal
matrices, but operates as conjugation wittwhich is an element df).

Lemma 9. Thelifting f — @ defined by (23) is Hecke-equivariant, i.e.,
TOr =7 foreach T € H(G,, K))

(here we identified the p-adic and the classical Hecke algebra according to Lem-
ma 8).

Proof. Itis enough to check that both sides are equal when evaluated at an element
g € GX,. We may further assume thatis a double coset,

T=TMI =][]TM; with M; e GZIp~ D™

1

By the above considerations, we hakgM K, = [ [ K, M;, and therefore

KyMK, = K,M*K, = | [ M/ K.
i

For a matrixM e G(Q) we write M, for the matrix considered as an element of
G, andM, considered as an element@f,. With these notations, we have

(TOp)() =Y Ore(M),) =) @ (M5 e(M])))

1

=" o, MHe) =D (FIMH L) (D)
=Y (fIMig)() = (fIDI®)I) = @ i7(g).0

It follows from this lemma and (30) that

Td; = detM)" 102 1 for T =T MT. (31)

The following theorem summarizes the results of the previous sections.
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Theorem 1. Themapping f — & ; defined by (23) mapsthe space S (") of clas-
sical Segel cuspforms of degreen and weight k isometrically (see Lemma 6) andin
a Hecke-equivariant way (see Lemma 9) into a subspace of L%(Z A)GOQN\GA))
consisting of continuous functions ® on G (A) with the following properties:

) ®(og) = P(g) foroe G(Q),

i) ®(gko) = ®(g) forkoe Ko=1][],.oc G(Zp),

i) ®(gkoo) = P(g)j (koo, 1) ¥ fOr koo € Koo = U(n),

iv) ®(gz) = ®(g) for z € Z(A), the center of G(A),

v) @ issmoothasafunctionof G(R)™ (fixed finite components), andisannihilated
by p. (seeLemma 7),

vi) @ iscuspidal (see Lemma5).

4.4. The associated representation

We now associate an automorphic representation of PZagpiith a Hecke eigen-
form of degree.

Let f be a cuspidal Hecke eigenform of degreand weightc. Let & » be the
associated function o6 (A), defined by (23). Thed ¢ is an automorphic form
on G(A) which lies inL?(Z(A)G(Q)\G(A)), and in fact in the cuspidal subspace
L3(Z(A)G(Q)\G(A)) by Lemma 5. Denote by the subspace of this2-space
spanned by all right translates @f¢. Letr be any irreducible constituent of this
unitary representation (it is well known thaﬁ(Z (A)G(Q)\G(A)) decomposes
discretely into irreducible components). Thens an automorphic representation
of G(A) which is trivial on Z(A). We may thus considet as an automorphic
representation of PG$pn, A).

Let

T = ®n,, (32)
p

be the decomposition of into irreducible representations, of the local groups
G, = G(Q,) (restricted tensor product). Becaude is right K, = G(Z)-
invariant at every finite placg, the representatiam, is spherical for every such.
Asdiscussedin 3.2, itis ofthe form(xo, . .. , x») for certain unramified characters
x;i of Q*, with Satake parametefs := x; (p).

We also have thelassical Satake parameters of the eigenfofindefined as
follows (see [An]). There is a charactere HomA|g(7-t§,'aSS; ©), such that

fle T =MT)f.

It is known that there are non-zero complex numbgts . . , a, such that

AMIMT) =aby ﬁ(ajp‘f)dff,

ioj=1
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wherel’'MT = [ [, I'M; and

Wil

5[Afl B: .
Ml:(“’ o' Ai’ . with A; = i N (33)
a)lﬂ

Theay, ... , a, are theclassical Satake p-parameters of the eigenformy .

Lemma 10. If ag, ay, ... , a, arethe classical Satake p-parameters of f, then

n(n+1)/4—nk/2

p a07 alv"'aa}’l

are the Satake parameters of the spherical representation r,, the local component
of T at p.

Proof. With T = I"'MT, by (31) we have

Td, = det(M) 1027y & p = pu(M)""+H1=0/2 (1) @

n
= p5'1(11+1—k)/2a8 Z H(ajp—j)dijq)f.
i =1

ThusT®; = A(T)® ; with

n
X(T) — p311(11+1)/4bg Z l_[(bjp_l)dl]’
i j=1

wherebg = p""+D/4=1k/2q5 andb; = a; for j = 1, ... , n. It follows from (10)
thatby, ... , b, are the Satake parametersmf(note that ifdf; is of the form (33),
thenM} is of the form (7)). O

It follows from (11) that for the classical Satake parameters we have

acz)al Cay = pk"_”(”+l)/2,
a relation also found in [AK].

We shall now describe the local componeagt in the tensor product decom-
position (32) ofr = 7. This component will only depend on the weighof the
modular formyf, which is a positive integer. Recall the definition (19) of the torus
elementd; € .

Lemma 11. Therepresentation 7, of G(R) contains a smooth vector v, with the
following properties:

) 7 (koo) Voo = J (koo 1) Fve for all koo € Koo.
i) Tiveo = kv foralli=1,...,n.
iii) prvee = 0.
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Proof. In 7 the vectord ; € V¢ projects to a pure tensor= ® ,<oov, With v, €

m, a spherical vector for finitg, andve, € 7o inheriting the analytic properties
of @ ¢. Thus i) follows from Theorem 1 iii). Then ii) follows by a straightforward
computation. Finally iii) follows from Theorem 1 v).O

By this lemma,7 is an irreducible unitary representation of PG&p R)
with a lowest weight vector of weiglit(e; + ... + e,). There is only one such
representation, namely the representatipronstructed in 3.5. To summarize,

Theorem 2. Let 7 be the automorphic representation of PGSg2n, A) associated
with f e Sx(I',), as described at the beginning of this section. Then the local
components i, of r are given as follows:

i) Atthearchimedean place, 7, iSthelowest weight representation i constructed
in 3.5 (it is a holomorphic discrete series representation exactly for k > n, and
alimit of discrete seriesfor k = n).

i) Atafiniteplace, mr, isthespherical principal seriesrepresentation (see Sect. 3.2)
of PGSf2n, Q) with Satake parameters p""+D/4=nk/2q, gy . ay,
whereasy, ... , a, arethe classical Satake parameters of the modular form f.

4.5. Vector valued modular forms

For completeness we shallindicate in this section how to extend the lifting procedure
described in the previous sections to vector valued Siegel modular forms. A good
source for vector valued modular forms is [Fr2]. The lifting procedure for these
forms is briefly described in [We].

Let(p, W) be afinite-dimensional rational representation of glC). Rational
means that there is an integesuch that the representatidn— det(A) *p(A)
is polynomial (holomorphic). A vector valued modular form of typand degree
n is a holomorphic functiory : H,, — W with the property that

F(0(Z) = p(CZ+ D) f(Z) forally = (é g) €T,, ZcH, (34)

For the one-dimensional representatiqri) = det(A)* we recover the usual scalar
valued modular forms. Cuspidality is defined by properties of Fourier coefficients,
as in the scalar case. The space of all cusp forms of pyged degree shall be
denoted bys, (T',).

Assumingp is irreducible, we now associate a functidron the adele group to
a modular formf, as follows. Lein € R be the number such thats) = s2” idy,
for each scalar matrix = diag(s, ... ,s) € GL(n, C), s > 0 (if p = def, then
m = nk/2). Then we define

d(g) = n(ge)"p(CI + D) L1 (g(1)), (35)
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_ This function is well-defined in view of (34). The factpr(g)™ ensures that
® descends to a function on PG3p, A). We further haved (y gkg) = ®(g) for
all y € G(Q) andkg € Kp, and

D(gkoo) = pkoo) T @(g) forall koo € Koo >~ U(n), (36)
. e . A B . .
where the identificatiolk ., ~ U (n) is given by(_B A) — A —iB.Justasin

Lemma 7 one proves that the holomorphyfois equivalent tqa(g.&) =0.

On the group one would like to have scalar valued functions lying in the usual
L?-space, instead of the vector valuéd Therefore letL be any non-zero linear
form on W, the space op, and define

d(g) = L(D(g)), g€ GA).

We will eventually consider the space generated by all right translatés ahd
therefore the choice df is irrelevant.
The Petersson scalar product$y(T",) is given by

(f1, f2) = / (o2 f1(2), p(YV?) f2(2))d*Z.
l—‘n\]H[il
Here the inner produdt, ) is aU (n)-invariant hermitian form o (unique up to
scalars), and’/2 denotes the unique positive definite square root of the positive

definite matrixY. Note that this is a generalization of the Petersson scalar product
in (25).
Forg = <2 g) € Sp(2n, R) andZ = g(I) we haveY = (C'C+D'D)~1 =
(M 'M)~1, whereM = CI + D. Write M = pu with a symmetric positiver and
a unitaryu. Thenp~! = Y¥/2 and there exists a constant 0 such that

lo(YY2) £ ()12 = Ilp(M) L (2))1? = | ()|

=c/ !L(p(k>—1é<g>>\2dk=c/ |® (k)| dk.
Koo Koo

Now integration yields

/ lo(FY2) F(2)|2d*Z = ¢ / /|<1><gk)|2dkdg
I \H, ZAGQ\GA)/K K
=c / |®(g)|° dk dg.
Z(A)GOQ\G(A)

This shows that, after suitable normalization of measures, the fnap @ is a
norm-preserving map of Hilbert spaces fréfn(T,) to

L%(Z(A)G(Q)\G(A)).
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The image is contained in the space of cuspidal functions, cf. Lemma 5.

Assuming thatf is a Hecke eigenform, one can now associate an automorphic
representatiorr » of PGS[2n, A) with f as in the previous section. The space of
mr will be an irreducible subspace of tii&(A)-space generated by. For each
placep one can characterize the local componentof 7 ¢ as in Theorem 2. We
shall indicate what is different now at the archimedean plaeecc.

Itfollows from (36) that thé/ (n)-moduler generated by (n)-translates ob is
isomorphic to theontragredient Ofp|U (note tha'r,o|U( », remains irreducible by
the unitary trick). Furthermor& has the lowest weight property becauysis holo-
morphic. Consequently, the local componegtis thel owest weight representation
of G(R) withminimal K ,-type t (more precisely, sinc€ (R) is disconnectedr,
combines a lowest and a highest weight representation).

The irreducible representations &f, ~ U (n) are parameterized by elements
in the weight latticeA = Zej + ... + Ze,, modulo the action of the real Weyl
groupW,.. SinceW, >~ §,, acts by permuting the coefficients of thethe irreducible
representations € , are in 1-1 correspondence with the weights

A=rie1+...+me,, ri€Z,r1>...>ry.

We denote the finite-dimensional irreducible representation corresponding to this
A by 7, orz. . . The correspondence is that contains a vectopg that is
annihilated by the compact positive root vectors, and suchZthat = r;vo (See
(19)). Thusug is ahighest weight vector.

The irreducible rational representations of GLC) are also parameterized
by integersr1 > ... > r,. If p,,.. ., denotes the corresponding representation,
parameterized as in [Fr2] appendix to 1.6, then one checksghat ., Uy =
T_,.....—r.» @ssuming the identificatiok ., ~ U (n) fixed above. In other words,
the contragredient of o, . . ) IS Try, ey

It follows that if f is a cusp form of type,, ... ., in the sense of [Fr2], them.,
is the representation @ (R) with minimal K.-typet,, ... ,,. In the scalar valued
case we have; = ... = r, = k. If r, > n, thenn,, is a holomorphic discrete
series representation with Harish-Chandra parantetef )e1 +. .. + (r, —n)ey,
cf. Sect. 3.5.

4.6. L-functions

Let f be a cuspidal Siegel eigenform, andzlgzt be the automorphic representa-
tion of PGS2n, A) associated withy as in the previous section. The dual group
of PGSp2n) is Spin2n + 1). In Sect. 3.4 we considered two finite-dimensional
representations of Spig: + 1, C), the “projection representatiord;, and the
2"-dimensional spin representatigp.

Corresponding to these two representations of the connected component of the
L-group, we have two Langlandsfunctions associated withy. According to our
results in Sect. 3.4, they are given by

" -1
Ls.xp.en =] ] (<1 - [Ja-bp™a- b;lpw) :

)4 i=1
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and
-1
L(s. 7y, 02) = H (]"[ [] a- bob,»l...b,»kpﬂ) :
k=0 1<ii<...<ix<n
wherebo, b1, . .. , b, are the Satake parameters of the local componenpt But

by Lemma 10, these Satake parameters are essentially the same as the classical
Satake parameters of the eigenfofmin view of the definitions (1) and (2) of the
classicalL-functions, we obtain the following result.

Theorem 3. Let 7; be the cuspidal automorphic representation of the group
PGSp2n, A) associated with the cuspidal Segel eigenform f of degree n and
weight k. Then for the standard L-function of f we have the identity

Li(s, f) = L(s, 7y, 01),

where ¢1 isthe projection representation (14) of Spin(2n + 1, C), and for the spin
L-function of f we have

LaGs', f) = L(s. 7w, 02), s =s—nn—1)/4+nk/2,
where g isthe 2" -dimensional spin representation of Spin(2n + 1, C).

We also remark that in the cagse= 2 there is an isomorphism Sgh) C) ~
Sp4, C), and the spin representation becomes the standard representation of
Spi4, C).

This result allows us to carry over general group theoretic results to classical
L-functions. As an example, we prove the meromorphic continuation of the spin
L-functions for cuspforms i, (I'3) using Langlands’s theory of Euler products.

LetM be a maximal standard Levi subgroup in a connected reductive Chevalley
groupG. ConsidelG as a group ove. (However, this theory is available in more
generality, cf. [Sh], for example.) L&t= MN be a standard parabolic@ Denote
by P = MN the parabolic inG, the complex dual o6, corresponding t (cf.

[Bo]). Let r denote the adjoint action off on the Lie algebra ofV and write
r = @ ,r;, with r;’s the irreducible constituents of
Letnr = ®,m, be a cuspform o/ = M(A). Let

fF=Qpfpel(s,m)=Q,l(s, 7)),

with the same notation as in Sect. 2 of [Sh]. Sdie a finite set of places for which
everym, with = ¢ S is unramified. The theory of Euler products developed by
Langlands (cf. [La]) then implies that

Ls(is, 7, ri)

M(s, 1) f =[] AG. ) f,) ® ®pgs f) - Hm

peS

(37)

has a meromorphic continuation to all©f For our purposes we may assufe
{oo}. The intertwining operatoA (s, 7~ ) iS non-vanishing and has meromorphic
continuation to all ofC (cf. Section 17 of [KS]). This is true even ¥ contains
finite places (cf. [Sh]).
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Now assumen = 1. From the above discussion and (37), it follows that

L(s,m,7;)

Fio) = L(s+1m,7)

is meromorphic. Writing this as
L(s,m,ri) = F(s)L(s + 1,7, r)

and noting thaL (s, 7, 7;) is analytic if Res) is sufficiently large, one concludes by
induction thatL (s, 7, ;) has a meromorphic continuation to all©f In particular,
we get the following.

Theorem 4. The L-function L(s, 7 ¢, 01) of Theorem 3 has a meromor phic contin-
uation to all of C.

Proof. ConsidetM = GL(1) x Sp(6) as a standard Levi subgroup@= Sp(8).
The dual ofM is C* x SO(7, C) with m = 1 andr = r1 is seven dimensional
(cf. Case(C,) of Sect. 4 of [Sh]). Now, if we put the representation= 1 ® ¢
onM = M(A), then, since is self-contragredient,.(s, 7, 01) = L(s, 0, 11),
which has meromorphic continuation to all@fby our previous argument.o

To prove a similar result for the othérfunction consider the following. L&b
be a Chevalley group of typ&,. This is a split (as well as adjoint) simply connected
simple algebraic group with Dynkin diagram

Consider the standard parabolic subgréug- MN, whereM is the standard
Levi subgroup corresponding {az, a3, a4}. One can then show thit ~ GSp(6)
(cf. [As]). Note that the complex dual @ is again of typeF; and contains the dual
parabolic? = M N (see [Bo)). In fact,

M = GSpin7, C)

is the dual oM. This is the caséxxii) of Sect. 6 of [La] withm = 2 and we have
r = r1 @ rp with r1 an eight dimensional and a seven dimensional representation
of M. Indeed, ifr is restricted to Spi7, C) C M, thenry is the eight dimensional
spin representation while, is what we called the projection representation in
Sect. 3.4. Note that these representations are self-dual, and therefore we do not
have to care about contragredients in the following.

Put a cuspformr on M = M (A). Now (37) and its subsequent argument again
imply that

Gs) = L(s,m, r1) . L(2s,m, 1)
Lis+1m,r) L@2s+1m,r)
has a meromorphic continuation to all@f Write this as
L(2s +1,m,r2)

L(s,m,r) =G(s) ——— 222 . [, 1,7, r1).
(s, m,r1) (s) L. 712 (s+1m,r)
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Now if we let w be the representation alf = GSp6, A) lifted up from x,
on PGSp6, A), then Theorem 4 and an induction similar to its proof imply the
following.

Theorem 5. The L-function L(s, ¢, 02) of Theorem 3 has a meromor phic contin-
uationto all of Cifn = 3.

Hence, in view of Theorem 3, we get

Corollary 1. Let f € Si(I'3) be a cuspform of degree 3, and let Lx(s, f) bethe
spin L-function attached to f. Then Lx(s, f) has meromor phic continuation to all
of C.

We remark that the same proof works for vector valued modular forms.
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