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Problem of the Unitary Dual

Let G be a reductive Lie group.

Big unsolved problem (Gelfand)

Parameterize the set

Ĝu = {irreducible unitary representations of G}

A (highly abridged) timeline:

Connected compact groups (Weyl, 1920s).

SL2(R) (Bargmann, 1947).

GLn(R), GLn(C), GLn(H) (Vogan, 1986).

Complex classical groups (Barbasch, 1989).

Some other low-rank groups.

Atlas (ongoing).
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Ĝu = {irreducible unitary representations of G}

A (highly abridged) timeline:

Connected compact groups (Weyl, 1920s).

SL2(R) (Bargmann, 1947).

GLn(R), GLn(C), GLn(H) (Vogan, 1986).

Complex classical groups (Barbasch, 1989).

Some other low-rank groups.

Atlas (ongoing).



The Orbit
Method for

Reductive Lie
Groups

Lucas
Mason-Brown

Unitary dual

Classification
of covers

Unipotent rep-
resentations

The Orbit
Method for
complex
groups

Problem of the Unitary Dual

Let G be a reductive Lie group.

Big unsolved problem (Gelfand)

Parameterize the set
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Orbit Method

The Orbit Method (Kirillov, Kostant, Vogan,...) is a set of
conjectures regarding the structure and classification of Ĝu.
Seeks to parameterize Ĝu in terms of co-adjoint covers.

Definition

A real co-adjoint orbit is a G -orbit on the space
HomR(g, iR). Write OrbiR(G ) for the set of real
co-adjoint orbits.

A real co-adjoint cover is a homogeneous G -space Õ
equipped with a finite G -equivariant map Õ → O. Write
CoviR(G ) for the set of isomorphism classes of real
co-adjoint covers.

Write OrbiRn (G ) (resp. CoviRn (G )) for the nilpotent orbits
(resp. covers).
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Orbit Method

Here is a simplified version of the Orbit Method for reductive
Lie groups:

Conjecture (Vogan)

There is a set CoviRint(G ) of integral co-adjoint covers

CoviRn (G ) ⊂ CoviRint(G ) ⊂ CoviR(G )

For each Õ ∈ CoviRint(G ), there is an associated finite set

ΠÕ(G ) ⊂ Ĝu

called a Kirillov packet. The union should exhaust most of Ĝu.
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Complex Groups

We will first define the Orbit Method for complex groups.

So
let

G = complex connected reductive algebraic group.

Then

Ĝ ≃ {irreducible G -equivariant Harish-Chandra

U(g)-bimodules}

We will always work on the algebraic side, i.e. we will define

ΠÕ(G ) ⊂ {irreducible G -equivariant Harish-Chandra

U(g)-bimodules}
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Outline

1 Parameterize CoviR(G ) and define CoviRint(G ).

2 Construct Kirillov packets ΠÕ(G ) for nilpotent covers

(unipotent representations).

3 Construct Kirillov packets ΠÕ(G ) for arbitrary covers.

4 Explain relation with Arthur packets.

5 Sketch generalization for arbitrary G .
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Real to complex

Definition

A complex co-adjoint orbit is a G -orbit on the space
g∗ = HomC(g,C). Write Orb(G ) for the set of complex
co-adjoint orbits.

A complex co-adjoint cover is a homogeneous G -space Õ
equipped with a finite G -equivariant map Õ → O. Write
Cov(G ) for the set of isomorphism classes of complex
co-adjoint covers.

Write Orbn(G ) (resp. Covn(G )) for the nilpotent orbits
(resp. covers).



The Orbit
Method for

Reductive Lie
Groups

Lucas
Mason-Brown

Unitary dual

Classification
of covers

Unipotent rep-
resentations

The Orbit
Method for
complex
groups

Real to complex

Definition

A complex co-adjoint orbit is a G -orbit on the space
g∗ = HomC(g,C). Write Orb(G ) for the set of complex
co-adjoint orbits.

A complex co-adjoint cover is a homogeneous G -space Õ
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Real to complex

Trivial but important lemma

If µ ∈ g∗, define ι(µ) ∈ HomR(g, iR) by

(ι(µ))(X ) = Im(µ(X )).

Then µ 7→ ι(µ) defines a G -equivariant isomorphism of real
vector spaces

ι : g∗
∼−→ HomR(g, iR).

The isomorphism ι induces a bijection (also denoted by ι)

ι : Orb(G )
∼−→ OrbiR(G )

which lifts to a bijection (still denoted by ι)

ι : Cov(G )
∼−→ CoviR(G )
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Birational induction

Definition

A birational induction datum is a triple

(L, ÕL, µ)

consisting of

a Levi subgroup L ⊂ G ,

a complex nilpotent cover ÕL ∈ Covn(L), and

an element µ ∈ z(l)∗.

The group G acts by conjugation on the set of birational
induction data. Write Ω(G ) for the set of G -conjugacy classes.
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Birational induction

Definition

Let (L, ÕL, µ) ∈ Ω(G ).

Choose a parabolic P = LN ⊂ G . Consider the twisted
generalized Springer map

ρ : G ×P (µ+OL + p⊥) → g∗

Image of ρ is closure of co-adjoint orbit
Ind(L,OL, µ) ∈ Orb(G ).

Form X̃L = Spec(C[ÕL]). Consider

ρ̃ : G ×P ({µ} × X̃L × p⊥) → G ×P (µ+OL + p⊥) → g∗

Image of ρ̃ is closure of Ind(L,OL, µ) and preimage is
cover Bind(L, ÕL, µ) ∈ Cov(G ).
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Birational induction

Construction in previous slide defines a map

Bind : Ω(G ) ↠ Cov(G )

called birational induction.

A co-adjoint cover Õ ∈ Cov(G ) is
birationally rigid if

Bind(L, ÕL, µ) = Õ =⇒ L = G .

Write Ωm(G ) for the set of birational induction data (L, ÕL, µ)
such that ÕL is birationally rigid.

Proposition (Losev-MB-Matvieievskyi)

There is a bijection

Bind : Ωm(G )
∼−→ Cov(G )
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Example

Let G = SL(2,C). Then

Ωm(G ) = {(T , {0}, µ) | µ ∈ t∗} ∪ {(G , {0}, 0), (G , Õreg , 0)}

We have

Bind(T , {0}, µ) = Gµ (for µ ̸= 0)

Bind(T , {0}, 0) = Oreg

Bind(G , {0}, 0) = {0}
Bind(G , Õreg , 0) = Õreg
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Integral covers

Applying our trivial lemma to z(l), we get a bijection

ι : z(l)∗
∼−→ HomR(z(l), iR)

Differentiating at the identity, we get an injection

L̂1,u := {unitary characters of L} ↪→ HomR(z(l), iR)

Composing, we get an injection

L̂1,u ↪→ z(l)∗

Image is the set

{µ ∈ z(l)∗ | 1
2
(ι(µ) + ι(µ)) ∈ X ∗(L)}
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Integral covers

Definition

A birational induction datum (L, ÕL, µ) ∈ Ω(G ) is integral
if µ ∈ L̂1,u. Write Ωm,int(G ) for the set of G -conjugacy
classes of integral minimal birational induction data.

A complex co-adjoint cover is integral if it lies in the
image of Ωm,int(G ). Write Covint(G ) for the set of
integral complex co-adjoint covers.

A real co-adjoint cover is integral if it lies in the image of
Covint(G ). Write CoviRint(G ) for the set of integral real
co-adjoint covers.

Goal: attach a finite Kirillov packet ΠÕ(G ) to each real

integral co-adjoint cover Õ ∈ CoviRint(G ).
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Filtered quantizations of nilpotent covers

Let Õ ∈ Covn(G ) and let A = C[Õ].

(i) A is graded (C× ↷ g∗ by z · x = z2x , lifts to Õ).

(ii) A is Poisson of degree −2 (symplectic form on O lifts to
Õ).

(iii) A is finitely-generated.

Let X = Spec(A). By (iii), X is a normal affine irreducible
variety. Also

(iv) X has symplectic singularities in the sense of (Beauville,
1999).
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(i) A is graded (C× ↷ g∗ by z · x = z2x , lifts to Õ).
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Õ).

(iii) A is finitely-generated.

Let X = Spec(A). By (iii), X is a normal affine irreducible
variety. Also

(iv) X has symplectic singularities in the sense of (Beauville,
1999).
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(i) A is graded (C× ↷ g∗ by z · x = z2x , lifts to Õ).
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Filtered quantizations of nilpotent covers

A filtered quantization of A is a pair (A, θ) consisting of a
filtered algebra A =

⋃∞
n=0An such that

[Am,An] ⊆ Am+n−2,

and an isomorphism of graded Poisson algebras

θ : A
∼−→ gr(A).

Thanks to (iv), one can classify (isomorphism classes of)
filtered quantizations of A.

Theorem (Losev, 2016)

There is a vector space hX and a finite reflection group
WX ↷ hX such that

hX/WX
∼−→ {filtered quants of A}, λ 7→ Aλ.
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Example

Let P ⊂ G be a parabolic subgroup and let

Õ = open G -orbit on T ∗(G/P)

Then
hX = (p/[p, p])∗ = chars of p.

Each λ ∈ hX determines a TDO Dλ+ρ(u)
G/P on G/P. Let

Aλ = Γ(G/P,Dλ+ρ(u)
G/P )

Then Aλ is a filtered quantization of C[Õ].
Special case: P = B.
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Canonical quantizations

Definition

The canonical quantization of A is the filtered quantization A0.

There are two bits of structure on A that we haven’t yet
accounted for:

G acts on A by graded Poisson automorphisms.

There is a G -equivariant co-moment map

φ : S(g) → A

Both structures lift (uniquely) to A0, i.e.

G on A by filtered algebra automorphisms.

There is a G -equivariant co-moment map

Φ : U(g) → A0.
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Unipotent ideals

Definition (Losev-MB-Matvieievskyi)

The unipotent ideal attached to Õ is the two-sided ideal

I (Õ) := ker (Φ : U(g) → A0)

Proposition (Losev-MB-Matvieievskyi, MB-Matvieievskyi)

The unipotent ideal I (Õ) has the following properties:

I (Õ) is primitive.

I (Õ) is maximal.

I (Õ) is completely prime.

V (I (Õ)) = O.
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Unipotent ideals

Since I (Õ) is primitive, it has an infinitesimal character
λ(Õ) ∈ h∗/W .

Theorem (Losev-MB-Matvieievskyi, MB-Matvieievskyi)

Can compute λ(Õ) in all cases (‘compute’ means:
combinatorial formulas in classical types and tables in
exceptional types).
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Examples of unipotent ideals

Example: 0-orbit

If Õ = {0}, then

I (Õ) = gU(g) = max ideal of infl char ρ.

Example: principal orbit

If Õ is the principal orbit, then

I (Õ) = AnnU(g)(∆(−ρ)) = max ideal of infl char 0.
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Unipotent ideals for G = Sp(8)

Õ λ(Õ) Õ λ(Õ) Õ λ(Õ)

(8) (0, 0, 0, 0) (422)2 (1, 1, 1
2
, 0) (322)2 ( 3

2
, 1, 1

2
, 1
2
)

(8)2 ( 1
2
, 0, 0, 0) (422)2 ( 3

2
, 1
2
, 1
2
, 1
2
) (3212) (2, 1, 1

2
, 1
2
)

(62) ( 1
2
, 1
2
, 0, 0) (422)2 ( 3

2
, 1
2
, 1
2
, 0) (24) ( 3

2
, 3
2
, 1
2
, 1
2
)

(62)2 ( 1
2
, 1
2
, 1
2
, 0) (422)4 ( 3

2
, 1
2
, 1
2
, 1
2
) (24)2 (2, 1, 1, 0)

(62)2 (1, 0, 0, 0) (4212) (2, 1, 0, 0) (2312) ( 5
2
, 3
2
, 1
2
, 1
2
)

(62)2 (1, 1
2
, 0, 0) (4212)2 (2, 1, 0, 0) (2312)2 ( 5

2
, 3
2
, 1
2
, 1
2
)

(62)4 (1, 1
2
, 0, 0) (4212)2 (2, 1, 0, 0) (2214) (3, 2, 1, 0)

(612) ( 3
2
, 1
2
, 0, 0) (4212)2 (2, 1, 1

2
, 0) (2214)2 (3, 2, 1, 0)

(612)2 ( 3
2
, 1
2
, 0, 0) (4212)4 (2, 1, 1

2
, 0) (216) ( 7

2
, 5
2
, 3
2
, 1
2
)

(42) ( 1
2
, 1
2
, 1
2
, 1
2
) (414) ( 5

2
, 3
2
, 1
2
, 0) (216)2 ( 7

2
, 5
2
, 3
2
, 1
2
)

(42)2 (1, 1
2
, 1
2
, 0) (414)2 ( 5

2
, 3
2
, 1
2
, 0) (18) (4, 3, 2, 1)

(422) (1, 1, 0, 0) (322) (1, 1, 1, 0)
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Classification of unipotent ideals

Sometimes I (Õ1) = I (Õ2) for Õ1 ̸= Õ2. We can describe
exactly when this happens.

Suppose
Õ1 → Õ2

is a morphism of covers. There is an induced finite
G -equivariant morphism of varieties

X̃1 := Spec(C[Õ1]) → Spec(C[Õ2]) =: X̃2

This induced morphism is étale over the open subset

Õ2 ⊂ Spec(C[Õ2]).
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Classification of unipotent ideals

Definition (Losev-MB-Matvieievskyi)

A finite G -equivariant morphism X̃1 → X̃2 is almost étale
if it is étale over the open subset

Õ2 ∪
⋃

codimension 2 orbits ⊂ X̃2

Partial order ≥: Õ1 ≥ Õ2 iff there is a morphism Õ1 → Õ2

such that the induced morphism X̃1 → X̃2 is almost ’etale.

Equivalence relation ∼: symmetric closure of ≥.

Theorem (Losev-MB-Matvieievskyi)

I (Õ1) = I (Õ2) iff Õ1 ∼ Õ2.
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Description of U(g)/I (Õ)

We can also describe the Dixmier algebra U(g)/I (Õ).

Theorem (Losev-MB-Matvieievskyi)

The following are true:

Every equivalence class of covers [Õ] contains a unique
maximal element Õmax. Write Amax

0 for its canonical

quantization and Γ = AutG (Õmax,O).

Γ acts on Amax
0 by filtered algebra automorphisms.

There is an isomorphism

U(g)/I (Õ) ≃ (Amax
0 )Γ.
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Unipotent representations

Definition (Losev-MB-Matvieievskyi)

Let Õ ∈ Covn(G ). Then

UnipÕ(G ) := {irreducible G -equivariant Harish-Chandra

U(g)/I (Õ)-bimodules}

Theorem (Losev-MB-Matvieievskyi)

There is a bijection

{irreducible Γ-reps} ∼−→ UnipÕ(G ), σ 7→ HomΓ(σ,Amax
0 ).
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Example

Let G = SL(2) and let Õ be the 2-fold cover of the principal
nilpotent orbit. There are G -equivariant isomorphisms

Õ = C2 \ {0}, Spec(C[Õ]) = C2.

There is a unique filtered quantization of C2, namely the Weyl
algebra W (C2), and Γ = {±1}. Easy exercise:

W (C2)Γ ≃ U(g)/I , I = max ideal with infl char
1

2

Hint: surjective map U(g) → W (C2)Γ given by

e 7→ 1

2
x2 f 7→ −1

2
∂x2 h 7→ x∂x +

1

2

Kernel is I .
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Example (cont’d)

There are two irreducible U(g)/I -bimodules, namely

Xtriv := HomΓ(triv,W (C2)), Xsgn := HomΓ(sgn,W (C2)).

Xtriv is midpoint of unitary complementary series (i.e.
parabolically induced from non-unitary character)g

Xsgn is unitary principal series (i.e. parabolically induced
from unitary character)

These representations are not special unipotent in the sense of
Arthur-Barbasch-Vogan.
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Example (cont’d)
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Unitarity

Theorem (Losev-MB-Matvieievskyi)

Suppose G is classical and Õ ∈ Covn(G ). Then UnipÕ(G )
consists of unitary representations.

Proof idea:

Produce as many unipotents as possible via unitary
induction and complementary series constructions from
unipotents attached to rigid nilpotent orbits.

Use classification result to prove exhaustion.

Show that inducing representations are unitary using
Barbasch’s classification of unitary representations of
complex classical groups.
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consists of unitary representations.

Proof idea:

Produce as many unipotents as possible via unitary
induction and complementary series constructions from
unipotents attached to rigid nilpotent orbits.

Use classification result to prove exhaustion.

Show that inducing representations are unitary using
Barbasch’s classification of unitary representations of
complex classical groups.



The Orbit
Method for

Reductive Lie
Groups

Lucas
Mason-Brown

Unitary dual

Classification
of covers

Unipotent rep-
resentations

The Orbit
Method for
complex
groups

Unitarity

Theorem (Losev-MB-Matvieievskyi)

Suppose G is classical and Õ ∈ Covn(G ). Then UnipÕ(G )
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Defining the orbit method

Let Õ ∈ CoviRint(G ). We wish to define a set ΠÕ(G ) of
irreducible representations.

Choose Õ′ ∈ Covint(G ) such that

ι(Õ′) = Õ.

Choose (L, ÕL, µ) ∈ Ωm,int(G ) such that

Õ = Bind(L, ÕL, µ).

Define

ΠÕ(G ) := {X ∈ Ĝ |X is a summand in IndGP (µ⊗ XL)

for some XL ∈ UnipÕL
(L)}
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Define
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Properties of the orbit method

Some properties of the Orbit Method:

If Õ ∈ CoviRn (G ), then ΠÕ(G ) = Unip
ι−1(Õ)

(G ).

If X ∈ ΠÕ(G ), then

V (X ) = lim
t→0

tι−1(O)

Unitarity of unipotents =⇒ unitarity of Kirillov packets.
In particular, Kirillov packets are unitary for G a classical
group.

All Arthur packets are Kirillov packets.
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Arthur packets

An Arthur parameter for G is a continuous homomorphism

ψ : C× × SL(2,C) → G∨

such that

ψ|SL(2,C) is algebraic.
ψ(C×) is bounded.

Let Ψ(G∨) denote the set of G∨-conjugacy classes of Arthur
parameters.

Theorem (Adams-Barbasch-Vogan)

For each ψ ∈ Ψ(G∨), there is a finite set

ΠArt
ψ (G ) ⊂ Ĝ

called an Arthur packet. These packets/representations satisfy
various properties (endoscopy, stability,...).
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Duality

Theorem (MB)

There is a natural duality map

D : Ψ(G∨) → CoviRint(G )

such that

(i) ΠArt
ψ (G ) = ΠD(ψ)(G ).

(ii) D is injective.

(iii) D(ψ) is nilpotent if and only if ψ is unipotent.
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Real groups

In complex case, Kirillov packets are obtained (by parabolic
induction) from a small set of building blocks: unipotent
representations attached to birationally rigid covers.

In real case, something similar should work. Let G be a
real group with Cartan involution θ : GC → GC and
Cartan decomposition gC = kC ⊕ pC.

Definition (MB)

Let Õ be a birationally rigid nilpotent cover for GC and let Oθ

be a KC-orbit on O ∩ p∗. A unipotent representation attached
to (Õ,Oθ) is an irreducible (g,KC)-module X such that

(i) Ann(X ) = I (Õ), and

(ii) V (X ) = Oθ.
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to (Õ,Oθ) is an irreducible (g,KC)-module X such that

(i) Ann(X ) = I (Õ), and
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