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Abstract
The 2D quasi-geostrophic equation
0,0+ u-V0+r(=MH*0=0, u=R(0)

is a two-dimensional model of the 3D hydrodynamics equations. W@é the issue of existence

and uniqueness concerning this equation becomes difficult. It is shown here that this equation with
eitherk =0ork>0and 0<a< % has a unique local in time solution corresponding to any initial
datum in the spac€” N L4 for r > 1 andg > 1.
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1. Introduction

The paper concerns itself with the 2D quasi-geostrophic (QG) equation
{ 0,0 +u-V0+r(—4)*0=0,
u=(ug,uz) =V, (DY) =0,

wherex € R?,1>0, k>0 is the diffusion coefficient; € [0, 1] is a parametef] = 0(x, 1)
is a scalar representing the temperatures the velocity field and) is the usual stream

(1.1)
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function. In addition to its applications in geophysijés11], the 2D QG equation (1.1)
serves as a two-dimensional model of the 3D hydrodynamics equations. Solutions of (1.1)
behave strikingly analogously to those of the 3D hydrodynamics equations and the study
of (1.1) may provide clues to the millennium prize problems on the 3D Navier—Stokes
equations.

The goal of this work is to establish existence and uniqueness results for (1.1) when the
initial datum

0(x, 0) = Oo(x) (1.2)

is given in a Holder space. We distinguish between the inviscid QG equation, namely (1.1)
with k = 0 and the dissipative QG equation with- 0. For the inviscid QG equation, the
fundamental issue of global existence for classical solutions remains open. Several local
existence results represent the current status of art. The pioneering work of Constantin,
Majda and Tabak6] provided the first local existence result g in the Sobolev space

H* with s >3. Chae in[2] studied solutions corresponding @g in the Triebel-Lizorkin
spacefF, , with s > 1+ 2/p and obtained local existence and blow-up criterion. In a very
recent work{9], Cérdoba and Cérdoba managed to prove a local resuftgfer H* with

s > 2 by making use of the duality of BMO with the Hardy spa¢e Other progress on the
issue of finite time blowup includes the geometric approach of CorfRjband Cérdoba

and Feffermarjl0].

For the dissipative QG equation, current research on the existence of solutions indicates
thato = % is a critical index. In the sub-critical case, namely % solutions at several regu-
larity levels, including solutions in the classical sense, have been shown to be global in time
[7,12,15] The theory of global existence and regularity for this case is thus in a satisfactory
state. In the critical case = % classical solutions are known to be global if their initial
L*°-norm is comparable te [5]. For initial data of arbitrary size, the global existence of
classical solutions has not been established. Itis hoped that the resolution of this problem will
shed light on the millennium prize problem for the 3D Navier—Stokes equations. The super-
critical caser < % is even harder to deal with and work on this case is more recem.sEér
Chae and Lef8] established a global existence result under the assumptidiytsamall in
the Besov spaceg"lz“. Cérdoba and Cordolja] obtained a local existence result fiy €

H* with s +a > 2 and a global result for small dataf® with s > 2 orin H%?2 in the case of
o= % Itis worth mentioning that other topics involving the 2D dissipative QG equation such
as vanishing viscosity limit and large-time behavior have also been investidai&14]

In this paper, we are interested in solutions in the Holder aldssnd part of our goal
has been to reduce regularity assumptions on the initial data to the minimum required
for uniqueness. We shall show that the QG equation (1.1) with eitke0 or x > 0 and
o € [0, %] possesses a unique local in time solution for any initial dafigre C" N L4
with r > 1 andg > 1. The functional setting”” N L? allows us to control the velocity
field u in terms of6. According to the second equation in (1.@)is related tof through
thetwo-dimensional Riesz transforms,

u=v=+ato =20, (1.3)
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whereA = (—A)Y? and #*+ = (—%», #1) with %1 and %, being the two-dimensional
Riesz transforms. Riesz transforms do not necessarily@iap C”, but they are bounded
onC" N LY.

The rest of this paper is organized as follows. In Section 2, we review the characterization
of Holder spaces and gather several important estimates. In particular, the boundedness of
Riesz transforms o@” N L7 is demonstrated here. Section 3 presents two key commutator
estimates. Section 4 proves the existence result for the inviscid QG equation and Section 5
is devoted to the dissipative QG equation.

2. Holder spaces

This is a preparatory section in which we review the characterization of the Hélder class
functions and gather several estimates to be utilized in subsequent sections. A portion of
the materials presented in this section can be fourjdl]in

We start with a dyadic decomposition Bf, whered > 0 is an integer. It is a classical
result that there exist two radial functiops C8°(|Rd) and¢ € Cgo(Rd\{O}) satisfying

suppy C {¢:[<]<4/3},  suppp C {<:3/4 <[] <8/3},

1O+ p@7o=1 forallée R’

j=0

For the purpose of isolating different Fourier frequencies, define the operitiosi € 7
as follows:

0 ifi<—-2;
Aiu =3 x(Dyu= [ h(y)u(x —y)dy if i =-1; (2.1)
H2'Dyu =2 [ g2 y)u(x —y)dy if i=0,

whereh = ¥V andg = ¢" are the inverse Fourier transforms;oéind ¢, respectively.
Fori € Z, S; is the sum of4; with j <i — 1, i.e.,

Siu=A_qu+ Aou +Au~+---+ A;_qu = /d h(2iy)u(x — y)dy.
R

It can be shown for any tempered distributiotihat S; f — f in the distributional sense,
asi — oo.

For anyr € R andp,q € [1, 00], the Besov spac&), , consists of all tempered
distributionsf such that the sequen¢2’” 4; fllLr}jez belongs td? (Z). When botrp and
qare equal tao, the Besov spacs), , reduces to the Holder spacg, i.e., B, ., = C".

More explicitly, C” with r € R contains any functiohsatisfying

I fllcr = sup2/ |4 f e < oco. (2.2)
jez

It is easy to check that” endowed with the norm defined in (2.2) is a Banach space.
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Forr >0, C" is closely related to the classical Hélder spatesquipped with the norm

[0l £ (x) — 0l £ ()|
lx — y|r—l]

Ifller= Y ||a’ff||m+s7gp (2.3)
XF#y

IBI<Ir]

In fact, if r is not an integer, then the norms in (2.2) and (2.3) are equivalentardC” .

The proof for this equivalence is classical and can be fourjd]inwhenr is an integer,

sayr =k, C" is the space of bounded functions with boundeth derivatives for any

j <k. In particular,C* contains the usual Lipschitz functions and is sometimes denoted
by Lip. As a consequence of Bernstein’s lemma (stated bel6W)s a subspace of”.
Explicit examples can be constructed to show that such an inclusion is genuine. In addition,
according to Proposition 2.2, includesC’* for anye¢ > 0. In summary, for any integer
k>0 ande > 0,

ckte c ¢k c ck.

Proposition 2.1 (Bernstein’s Lemmpa Letd > 0 be an integer and®2 > R1 > 0 be two
real numbers.

@) fi1<p<g<cand sup;fc (& e RY: €| < R127}, then

piktd(5

1
o S—
max|io*fll o ey < € ’ q>||f||L,,(Rd),

whereC > 0 is a constant depending on k ard only.
(i) If p e[1, 00l and supy C {¢ € RY: R12/ <|E| < R227}, then

—1njk ik
c 2 ||f||Lp(Rd)< mg—i(”aaf”Lp(Rd)gczj ”f”Lp(Rd),
whereC > 0 is a constant depending on R1 and Rz only.

Proposition 2.2. There exists a constant C such that for anyO and f € C?,

IS llce
1.1l co

In the 2D QG equation (1.1), the velocity fialds determined by through the 2D Riesz
transforms, namely (1.3). Riesz transforms do not necessarily map a Holder(Spaze
itself, but their action ol€” is indeed bounded i@” N L? for anyp € (1, o0). The precise
statement is presented in Proposition 2.3, followed by a proof. We first recall a general result
concerning the boundedness of Fourier multiplier operators on Holder spaces.

C C
1l < — W f lico log, (e+ ) S5 I lles. (2.4)

Proposition 2.3. Letd > 0 be an integer and F be a infinitely differentiable function on
R?. Assume that for some > 0 andm € R,

F(2) = "F(&)

holds for anyé € R? with || > R and 2> 1. Then the Fourier multiplier operatoF (D)
maps continuously fror@” to C"~™ for anyr € R.
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Notice that the Fourier transforms of the 2D Riesz transfa#tpand %, are given by

%7(5)=—i%f(f), S k=12

Proposition 2.4. Letr € Randp € (1, 00). Then there exists a constant C depending on
r and p alone such that

% fllcr <Cll fllcrace,
wherek =1 or 2.

Proof. Using the operatod 1 defined in (2.1), we divideZ;, f into two parts,
Rif=AaR f+ A —A_)%f. (2.5)
Sincesuppy (&) N suppg (277 &) = ¢ for j >1, the operatort ;4_1 = 0 whenj >1. Thus,
according to (2.2),
1A—12k fllcr = SUP2”" |4 A_a B f || 1
jezZ
= max{27" | A_1A_1Z f || >, | dod—1 % f || L=}
<max{l, 27" A-1% fll L.
Let g be the conjugate gi, namely ¥ p + 1/q = 1. It then follows from the basic fact that
Riesz transforms are bounded bfi for any p € (1, oco) that
IA-1% fllcr < max{l, 27"} % (Bi [ L
<max(l, 27"}l L% fliLe = Cll fliLr,
whereC is a constant depending orandp alone. To estimate the second part in (2.5), we

apply Proposition 2.3 withF' (&) = (1 — y(&))(—i&;)/|€] andm = 0 and conclude that it
mapsC’” to C". This concludes the proof of Proposition 2.4.]

For notational convenience, we writg , for C” N L? from now on. For € Randp > 1,
Y, , is a Banach space if endowed with the ndrm, ,, where

Ifllrp=IFer + 1L fllLe-

Finally we introduce the notion of paraprod(4}. The usual productv of two functions
uandv can be decomposed into three parts. More precisely, using the notion of paraproduct,
we can write

uv = Tyv + Tyu + R(u, v), (2.6)
where
TMUZZS]'_1M~AJ'U, R(u,v): Z A,-u~Ajv.
J li—jl<1

We remark that the decomposition in (2.6) allows one to distinguish different types of terms
in the product ofuv. The Fourier frequencies af andv in 7T,,v and T,u are separated



584 J. Wu / Nonlinear Analysis 62 (2005) 579-594

from each other while those of the terms Riu, v) are close to each other. Using the
decomposition in (2.6), one can show thatfor O

luviies SC(lullcsvlize + llull=llvlics)- 2.7)

3. Two commutator estimates

Two major commutator estimates are stated and proved in this section. For future refer-
ences, these estimates are presented in the context of the BesoxB§Bchhen p =00,
" « becomes the Holder spacg and these bounds become the desired ones.

Lemma 3.1. Letj > — 1 be anintegerr € Randp € [1, oo]. Then
-V, 4;101Lr <C2_jr(I|V0||LmIIMIIB;,oo + IVullL= 0I5, ), (3.1)
where C is a pure constant and the bracKetg represents the commutataramely
[u-V,A4;10 =u-V(4;0) — A;(u - V0O).
In particular, if p = oo, (3.1)becomes

Il -V, 4100 L <C27" (IVOll o< lullcr + 1Vul| oo | Ollcr). (3.2

Eq. (3.1) is suitable for situations whammndf are equally regular. 70 is not known to
be bounded ir.*°, then (3.1) fails. The lemma that follows provides a new estimate which
needs no information aboWtd. As a trade-offy is required to be nB;Jrl The importance
of these lemmas will be seen in the proofs of Theorem 4.1 and Theorem 5.1.

Lemma 3.2. Letj> —1,r € Randp € [1, co]. Then for some pure constant,C
Il - V. 4300 Lr SC2777 (I Vull o 10 5, + 1011 o el 2. (3:3)
In the special case gf = oo, (3.3)becomes

2"\l - V, 4100l <CUIVull L= [10llcr + 1012 llull or1).- (3.4)

Proof of Lemma 3.1. Utilizing the paraproduct notationk and R, we decomposéu -
4,10 into five parts,

[u-V,4;10=1[u; -0;, 4;10 = K1 + K2 + K3+ K4 + K5,

where
K2 =—A4;Ts,gui,
K3 =To,4,0ui

K4 = —AjR(M,', 6,-0),
Ks= R(u;, 0,4;0). (3.5)
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Returning to the definition of, we can write
Ki= Y [Sj—a(u;), 4;10,4;0
jezZ

= Z(Sj/,l(u,-)Aj(aiAj/e) — A;S_1(u;)(©;4;0)). (3.6)
jez

Becaused ;4 =0for|j — j'|>2 and

Supij/fl(u/i)(\aiAj/H) C {é . 2j’—3< |5| <2j/+l},
the sum in (3.6) only involves those terms wijthsatisfying|j’ — j| <4. Thus,
Ki= ) 2 / B2 (x = IS —1(u) () — Sy_1) (3)) @, 4;0)(y) dy
lji'=jl<4

= Y [ hOS 2@ () =S 1) (x — 277 3))(@;4;:0)(x — 277 y) dy.

lj'—jl<4
Forr € R, p € (1, oo] and a pure constaf,
IK1llr <C277 | Vuil oo |40, 0ll e < C2777 20TV 40,01 1o | Vs || oo
<C27I 2| 400 Lo | Vui |l Lo <C2797 )0l gy | Vit o, (37)

where we have used Proposition 2.1 in the third inequality.
To estimatek> and K3, we first write them as

Ko =~ Zﬁj(sj'—l(ai())é‘j'(ui)), K3 = Z Sjr—1(0;4;0) A (u;).
7 v

Similarly, only terms with;’ satisfying|j — j’| <4 survive in the sums above. Thus, we
have forr € Randp € (1, oo]

IK2llLr SC2777|S; 10,004, i)l gy, ., <C2777 VOl 1< |lul g, .,
IK3llLr <CISj-1@;0) Ll 4juillLe <C277 VO 1< |lull g ., (3.8)

whereC'’s in the above inequalities are pure constants. By the definitiét) of

Ka=— Z Ai (Al @,0), Ks= Z A (i) A0(4;0,0).

lj'=j"1<1 lj'=j"1<1
Obviously, only a finite number of terms in the sums above are nonzero. So,
IKallLr SC2797 4 (i) 4;@,0)] Bj o S C2777| V0| o< fJull Bl o (3.9)
1KslLr <CIIA;0,00 L 14, @il Lr <C27 | VOl oo ull gy, .. (3.10)

Gathering the estimates in (3.7)—(3.10), we establish the desired inequality in (3.1). When
p = o0, the Besov spac8), ., reduces to the Holder spac€ and (3.1) to (3.2). U
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Proof of Lemma 3.2. As in the proof of Lemma 3.1, we decompdse V, 4,10 as the
sumofK1, Ko, K3, K4 andKs. The estimate foK1 remains effective, but different bounds
are needed foK», K3, K4 andKs. Recall that

Ko—=— Z Aj(Sj—1;0 A4 (u)).

lj'—jl<4

Let j >0 since the casg¢ = —1 can be handled similarly. Applying the definition 4f in
(2.1) and integrating by parts, we obtain

Ky= — Z Zjd/g(zj(x — ¥))0;(Sj—104jru;)(y) dy
lj'=j1<4
=— > 22 f @;8)(2/ (x — y)(Sj—104ui) (y) dy.
l/—jl<4

Therefore, for a pure consta@t
K2l <27 Vgl allSj—104 ull e

<C27 N0l 14 ullp < C27H7 0] o0l g1 (3.12)

The estimate foK3 is direct. In fact, by Proposition 2.1,
IK3llLr <CIIO; 401 Lo |4 juillLr
<C2N\ 40014 ullr SC27 0] ol v (3.12)

K4 can be similarly estimated &S,.

I1KallLr <C27 Vgl 121400 o141l o SC27 0] oo ] g (3.13)
Finally, we have

I1KsllLr < Clldjuill Lo 140,01l Loe <C2Z 0] o e s (3.14)

Combining (3.7)—(3.14) yields (3.3).

4. The inviscid QG equation

This section is devoted to the inviscid QG equation. We prove that it has a unique local
solution for any initial datuntlg € C" N LY with r > 1 andg > 1. More precisely, we have
the following theorem.

Theorem 4.1. Consider solutions of theD inviscid QG equation

0.0 +u-v0=0, u=R0)=vta10, (4.1)
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corresponding to initial datslp € Y., = C" N Le. If r >1andq > 1, then(4.1) has a
unique solutior) on the time intervalO, T'1, whereT > 0 depends on|0g||.., only. The
solution is in the space

Loo([o’ TI; Yr,q) N L'p([O, Tl; Yr—l,q) NC(0,T]; Ys,q)
withs € [r — 1, r).
The rest of this section is devoted to the proof of Theorem 4.1. For the sake of a clear

presentation, we divide it into two subsections. An a priori bound is proven in the first
subsection. The second subsection proves Theorem 4.1, with the aid of the a priori estimate.

4.1. An a priori estimate

Proposition 4.2. Letr > 1andg > 1.LetT >0and0g € Y, ,. If 0 solves the 2D inviscid
QG equation(4.1) with the initial datumfp on the time interval0, 7] and 0(-, 1) € Y, 4
forr € [0, T], then

1

0, t)”r,q < ||60||r,q eXp<C/0 0, T)”r,q df)
for ¢ € [0, T], where C is a constant depending on r and g only.
Proof. According to Proposition 2.4 € Y, , implies that« € Y, ,. Thus, fort € [0, T1,
we can define the flow maj (-, ¢) satisfying

{G,X(x, H=u(X(x,1),1),

X(x,0) =x.

Let j > — 1 and apply the operatat; to both sides of the inviscid QG equation to yield

(4.2)

0,4;0+u-VA;0=[u-V,A4;10,
where[u - V, A;10 =u - V(4,;0) — 4;(u - V0). This equation can be rewritten in the form
A;0(x,1) = 4,;00(X1(x, 1)) + fot[u SV, 41X (X7 Yx, 1), 5), 5) ds.
If we take theL°°-norm, then
14;0, )]l 100 <1400l 100 + /: [[u-V, A4;]10C, s)| L ds. (4.3)
Applying Lemma 3.1 withp = oo, we obtain
10C, Hllcr < llollcr +/Ot(||V9(-, )z lluC, Hlier +1IVul, s)llLell0C, s)llcr) ds.

According to (2.4), for > 1 and a constar@ depending om only,

101l
101l c1

VOl < Cll0]|c1 log (€+ ) <Cl0lcr.



588 J. Wu / Nonlinear Analysis 62 (2005) 579-594

Similarly, |Vul||z~ < Cllullcr. Therefore, foiC depending om only,

t
IIQ(-,I)IIcr<I|0ollcrJrC/0 lu (-, )lier 10C, )ler ds.

By Gronwall’s inequality and Proposition 2.4,

t
10C, Dller <l10ollcr exp<C/0 10C, $)lr.q dS> - (4.4)

Adding the usual estimat@(-, 1)| .« < /00|l s to (4.4) completes the proof of Proposition
4.2. O

4.2. Proof of Theorem 4.1

Proof of Theorem 4.1. The proof starts with the construction of a successive approxima-
tion sequenc¢d™} satisfying
0P = S2(00).
0,0 4y . v th —q,
u® = vt A1gm,
07V (x, 0) = S,4200.
The rest of the proof can be divided into two major steps. The first step establishes the exis-
tence off1 > Osuch tha{H(”)(-, 1)}is bounded uniformly iy, , foranyr € [0, T1]. The sec-
ond step verifies for son® < [0, Ty] that{H(")} is a Cauchy sequencedH([0, T2]; Y, _1,4).

Stepl: A similar argument as in the proof of Proposition 4.2 yields the following bound
for {9+ Dy,

(4.5)

t
107D (g < 1Snt200r.4 eXIO<Co /O 107 (-, $) 1.4 ds) ,

where(Cy is a constant depending orandq only. Choosel’, andM satisfying
M =2||0oll,,, and exgCoMT1)<2 or Ty = 26“::|1|(—92())|M'
Then||0™ (-, 1)|l,., <M for all nandr € [0, T1]. In fact,

10D g = 15200) g <1001l g < M
and(|0® (., 1)|l,., <M leads to

107D ¢ )llrg <1100llq EXNCoMT 1) <M.
Furthermore, for > 1,

1
19,0 || cr-1 = lu™ - VOV || s
1 1
SCUu™ Lo VO™ ) eroa 4+ 1™ | -2 | VO T | 1oc)
<Cllu™ ) er-a 0" ) or <CMZ,
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whereC is constant depending aronly. Thus,
9,0 € L=([0, T1); Y,-14) or 0™ e Lip([0, T1]; Y,—1.4) (4.6)

with uniform bounds.
Step2: To show tha{0™} is a Cauchy sequence i _1 4, we consider the difference

n™ = 0" — 9D Rigorously speaking, we should consider the more general difference
nmm = M _ 9@ pyt the analysis fop™" is parallel to what we shall present fg")

and we thus considef™ for the sake of a concise presentation. It follows from (4.5) that
{n™} satisfies

N = S2(0o) — bo.
3"+ 4y gy = )y,
w® = %L(Q(n)) _ VJ‘A_lY](n),
D (x, 0) = ng () = Ans100.
Proceeding as in the proof of Proposition 4.2, we obtain for any integer 1,
1
140D G0l <1 4ng e + /O 1™ - v, A" P, 5) o0 ds
t
" /0 14, - VO™) (., )] L ds.
Bounding the last two terms in the above inequality by (3.3) and (2.7), respectively, we have
™D Dl e < g Nl
t
+C /0<||w("><-, Dz 1" C ) e+ ¢ o) e u®™ ¢ )l er) ds

t
+cf Nw® C, )l VO™ ¢ s) o1 Ilw™ ¢ )| er-a VO™ (-, 5)ll 1oo) ds,

whereC'’s are constants depending ponly. Sincer > 1, Proposition 2.2 implies,

IV ™l oo <Cllu™licr, I e <CI™ ) ora,
VO™ | 10e <CNO™ Nl cry  Nlw™ oo <Cllw™ || or1.

Therefore, for constants depending om only,
t
1
" Dl <ling P llera+ € /0 1™ ) ler-alu® 5 ler ds
t
[ IO a1 s er ds
0
It follows from a basic energy estimate that

t
1
Dl e <lInS Pl + fo lw™ (., )ll2a VO™ (-, 5| Lo ds.
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Adding the last two inequalities yields
t
1
I ) l—1g <IETPll—14y + C fo 1D )l era ™, 5)erds
t
+C /0 lw™ (-, $)ll;-14 110" (-, 5)llcr ds.

The components ah™ are the Riesz transforms f” and thus, according to Proposition
2.4,
1w 1.4 <ClIN™ 14

We thus have reached an iterative relationship betvi@é®|,_1 , and|[n®*V|,_1 ,,
t
1
1™ 0l -1g <Ung e —1q + C1 / I D ) e u™ ¢, 9)ller ds
0

t
+ 0 /O 1 G )1 107, 5) e ds, 4.7)

where the constants are labelediasfor the purpose of definin@p. It has been shown in
Step 1 that for < Ty,

1™ ) lrg <M, 07 0llrg <M.
Now, choosél, > 0 satisfying
To<Ti, CiMT2<j

and we shall show thdt)™ (-, r)} is a Cauchy sequence -y, fort < To. For any given
&> 0, choose a largH such that for any: > N,

&
196”1l —1q = 1 4nB0llr—1.4 < 5.

If In™ (-, £)ll,—1,4 <& for t < T», then (4.7) implies

e t
™D -1 < 5+ C1eMTs + ClM/O P, $)llr-1,4 ds

valid for anyz < 7». It then follows from Gronwall’'s inequality that
"D Dl -1 <t

for anyt < T». This completes Step 2.
We conclude from Steps 1 and 2 above that there exi@tsadisfying

0 e L*([0, T1]; Yr,q) N Lip([0, T1]; erl,q)

such that™ converges td in C([0, 7»]; Y,_1,4). By an interpolation inequalitﬁ‘”) also
converges td in C([0, T2]; Yy 4) with s € [r — 1, r). Thus, we have

0 € C([0, T2]; Ys,4).
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The proof of uniqueness follows the same procedure as in Step 2, so we omit the details.
This completes the proof of Theorem 4.11]

5. The dissipative QG equation

Attention of this section will be focused on the 2D dissipative QG equation
0,0+ u-V0+xA*0=0, u=R"0). (5.1)

We show that the (5.1) always has a local in time solution corresponding to any initial datum
in C" N LY with r > 1 andg > 1.

Theorem 5.1. Consider the 2D dissipative QG equati¢d 1) with x > 0 and0<a < %
Assume that the initial datup is in Y, , = C" N L9, wherer > 1 andq > 1. Then there
exists a’ > 0 depending orjl0o|| ., only such that5.1) has a unique solutiofi(x, ) for
t € [0, T]. Furthermore 0 satisfies

0 € L™([0, T]; Y,.,) N C([0, T1; ¥, _1,4) N Lip([0, T1; "~ ).

We first recall the positivity lemma.

Lemma 5.2. Letx € [0, 1] and p € [2, 00). If A%*0 € LP, then

/ ; 101P~204%*0 dx >0.
R

This lemmawas first proved [t2]. Very recently, Cérdoba and Cérdoba skillfully proved
a point-wise inequality involving the operatdf* with o € [0, 1] and deduced as a special
consequence this inequali$)].

Proposition 5.3. Leta € [0, 1] andf) € S, the Schwartz class. Then
204%0(x) > A% 0 (x)
for anyx € R2.

It is easily seen that the positivity lemma allows us to show the maximum principle for
solutions of (5.1) with any € [0, 1],

101 r <00l r, (5.2)

wherep € [1, oo]. The point-wise inequality in (5.3) actually leads th&decay estimate,
as stated in the following proposition.

Proposition 5.4. Let p = 2* for an integerk >1. If 0 solves(5.1) with an initial data
0p € L?, then theL?-norm off decays algebraically in time. More precisgly

10ollL»

10, )l < - S
(14 kCpyt)|Ooll 2" 160l Y77

wherey = a/(p — 2) andC,, is a constant depending on p ananly.
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Part of the proof of Theorem 5.1 is to obtain a uniform bound for a successive approxi-
mation sequence. The a priori estimate in the following proposition and its derivation will
be useful for this purpose.
Proposition 5.5. Let x, o, r and g be as in Theorer.1. Assume thafl(-,¢) € ¥, , is a

solution of the2D dissipative QG equation withy € Y;., for ¢ € [0, T]. Then for some
constant C depending on r and g only

t
10C, Dllrq <Nl60llrq €XP (C /0 10C, Dllrq dr)
is valid for anyr <T.

Proof. Because of (5.2), it suffices to bound tfenorm. To proceed, we estimatd ; 0| 7.
forany integerj > — 1 (4; =0 for j < —2 according to (2.1)). Sincé?* and4; commutes,

0,40 +u-V(4;0) +KkA*A;0=1[u -V, 4;10. (5.3)
We first bound the&.”-norm of 4 ;0 and then lepp — oo. Forp>2,

d

a/|Aj0|”dx+l =1l + 1,
where |, Il and Il correspond to the terms in (5.3), namely

|=Kp/ 14;01P724;04%*(4;0) dx,
I =—p/|Aj0|1"2A,»9- (u-VA4;0)dx,

I =p/|Aj0|p_2Aj9[u~V,Aj]9dx.
The second term Il is equal to zero after integration by parts,
Il =— / u-V(4;0/")dx =0.

Lemma 5.2 implies that} 0. Applying Holder’s inequality to I,
< pl4;017, -V, 4,100

and then combining these estimates yields
d
alll‘jOHLP < -V, 4,10 v

Integrating with respect tband lettingp — oo, we obtain

t
[14;0C, D~ <1400l Lo +f0 I[u -V, 4;10C, s)[| Lo ds.
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This is identical to inequality (4.3) in the proof of Proposition 4.2. We thus omit further
details. O

Proof of Theorem 5.1. . The same strategy as in the proof of Theorem 4.1 also works here,
sowe shall just present the major lines. Consider a successive approximation seeailféhce
satisfying

0P = S2(00),

ate(}’l-l—l) + u(n) . V@()’H—l) + K.AZQG(H-HL) — 0’

u® = VLAflg(n)’

0" (x, 0) = 05 (x) = Syy.200.

Proposition 5.5 allows us to show that there existg & 0 depending orj|0ol|., only
such thaf0™ (-, )} is bounded uniformly ir¥, , for any integen > 0 andr € [0, T1]. In
addition, foro <  andr > 1,

19,0 V| cra < Ju™ - VOU Y| ot 4 1 A0V
<Clu™ Lo VOV et 4 1™ -2 [ VOOV o)
+ 110" P ler
<™ [ er1 4+ )0V | or <CMZ,

whereC is a constant depending an This uniform bound allows us to conclude tlila¢
Lip([0, T1]; C"~1). The sequence)™} is then shown to be Cauchy @([0, T2]; Y,—1,,)
for someT> € [0, T1] by considering the difference

§0rHD — gint D _ g

Clearly,n "D satisfies
0D 4y D g 2D ) g ) — gk g1y,

The rest is then similar to Step 2 in the proof of Theorem 4.1 and we omit the details.
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