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Abstract

The 2D quasi-geostrophic equation

�t� + u · ∇� + �(−�)�� = 0, u = R⊥(�)

is a two-dimensional model of the 3D hydrodynamics equations. When�� 1
2, the issue of existence

and uniqueness concerning this equation becomes difficult. It is shown here that this equation with
either� = 0 or�>0 and 0��� 1

2 has a unique local in time solution corresponding to any initial
datum in the spaceCr ∩ Lq for r >1 andq >1.
� 2005 Elsevier Ltd. All rights reserved.

MSC:76U05; 76B03; 76V05; 35Q35

Keywords:2D quasi-geostrophic equation; Hölder space; Local existence

1. Introduction

The paper concerns itself with the 2D quasi-geostrophic (QG) equation{
�t� + u · ∇� + �(−�)�� = 0,

u = (u1, u2) = ∇⊥�, (−�)1/2� = �,
(1.1)

wherex ∈ R2, t�0,��0 is the diffusion coefficient,� ∈ [0,1] is a parameter,� = �(x, t)
is a scalar representing the temperature,u is the velocity field and� is the usual stream
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function. In addition to its applications in geophysics[6,11], the 2D QG equation (1.1)
serves as a two-dimensional model of the 3D hydrodynamics equations. Solutions of (1.1)
behave strikingly analogously to those of the 3D hydrodynamics equations and the study
of (1.1) may provide clues to the millennium prize problems on the 3D Navier–Stokes
equations.
The goal of this work is to establish existence and uniqueness results for (1.1) when the

initial datum

�(x,0) = �0(x) (1.2)

is given in a Hölder space. We distinguish between the inviscid QG equation, namely (1.1)
with � = 0 and the dissipative QG equation with�>0. For the inviscid QG equation, the
fundamental issue of global existence for classical solutions remains open. Several local
existence results represent the current status of art. The pioneering work of Constantin,
Majda and Tabak[6] provided the first local existence result for�0 in the Sobolev space
Hs with s�3. Chae in[2] studied solutions corresponding to�0 in the Triebel–Lizorkin
spaceF s

p,q with s >1+ 2/p and obtained local existence and blow-up criterion. In a very
recent work[9], Córdoba and Córdoba managed to prove a local result for�0 ∈ Hs with
s >2 by making use of the duality of BMOwith the Hardy spaceH. Other progress on the
issue of finite time blowup includes the geometric approach of Córdoba[8] and Córdoba
and Fefferman[10].
For the dissipative QG equation, current research on the existence of solutions indicates

that�= 1
2 is a critical index. In the sub-critical case, namely�> 1

2, solutions at several regu-
larity levels, including solutions in the classical sense, have been shown to be global in time
[7,12,15]. The theory of global existence and regularity for this case is thus in a satisfactory
state. In the critical case� = 1

2, classical solutions are known to be global if their initial
L∞-norm is comparable to� [5]. For initial data of arbitrary size, the global existence of
classical solutionshasnot beenestablished. It is hoped that the resolutionof this problemwill
shed light on themillennium prize problem for the 3DNavier–Stokes equations. The super-
critical case�< 1

2 is even harder to deal with andwork on this case ismore recent. For�� 1
2,

ChaeandLee[3] establishedaglobal existence result under theassumption that�0 is small in
the Besov spaceB2−2�

2,1 . Córdoba and Córdoba[9] obtained a local existence result for�0 ∈
Hs with s+�>2 and a global result for small data inHs with s >2 or inH 3/2 in the case of
�= 1

2. It is worthmentioning that other topics involving the 2DdissipativeQGequation such
as vanishing viscosity limit and large-time behavior have also been investigated[1,13,14].
In this paper, we are interested in solutions in the Hölder classCr , and part of our goal

has been to reduce regularity assumptions on the initial data to the minimum required
for uniqueness. We shall show that the QG equation (1.1) with either� = 0 or �>0 and
� ∈ [0, 12] possesses a unique local in time solution for any initial datum�0 ∈ Cr ∩ Lq

with r >1 andq >1. The functional settingCr ∩ Lq allows us to control the velocity
field u in terms of�. According to the second equation in (1.1),u is related to� through
thetwo-dimensional Riesz transforms,

u = ∇⊥�−1� = R⊥(�), (1.3)
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where� = (−�)1/2 andR⊥ = (−R2,R1) with R1 andR2 being the two-dimensional
Riesz transforms. Riesz transforms do not necessarily mapCr toCr , but they are bounded
onCr ∩ Lq .
The rest of this paper is organized as follows. In Section 2, we review the characterization

of Hölder spaces and gather several important estimates. In particular, the boundedness of
Riesz transforms onCr ∩Lq is demonstrated here. Section 3 presents two key commutator
estimates. Section 4 proves the existence result for the inviscid QG equation and Section 5
is devoted to the dissipative QG equation.

2. Hölder spaces

This is a preparatory section in which we review the characterization of the Hölder class
functions and gather several estimates to be utilized in subsequent sections. A portion of
the materials presented in this section can be found in[4].
We start with a dyadic decomposition ofRd , whered >0 is an integer. It is a classical

result that there exist two radial functions� ∈ C∞
0 (Rd) and� ∈ C∞

0 (Rd\{0}) satisfying
supp� ⊂ {	 : |	|�4/3}, supp� ⊂ {	 : 3/4< |	|<8/3},

�(	) +
∑
j �0

�(2−j	) = 1 for all 	 ∈ Rd .

For the purpose of isolating different Fourier frequencies, define the operators�i for i ∈ Z

as follows:

�iu =


0 if i� − 2;
�(D)u = ∫

h(y)u(x − y)dy if i = −1;
�(2−iD)u = 2id

∫
g(2iy)u(x − y)dy if i�0,

(2.1)

whereh = �∨ andg = �∨ are the inverse Fourier transforms of� and�, respectively.
For i ∈ Z, Si is the sum of�j with j � i − 1, i.e.,

Siu = �−1u + �0u + �1u + · · · + �i−1u =
∫

Rd
h(2iy)u(x − y)dy.

It can be shown for any tempered distributionf thatSif → f in the distributional sense,
asi → ∞.
For any r ∈ R andp, q ∈ [1,∞], the Besov spaceBr

p,q consists of all tempered
distributionsf such that the sequence{2jr‖�j f ‖Lp }j∈Z belongs tolq(Z).When bothpand
q are equal to∞, the Besov spaceBr

p,q reduces to the Hölder spaceC
r , i.e.,Br∞,∞ = Cr .

More explicitly,Cr with r ∈ R contains any functionf satisfying

‖f ‖Cr ≡ sup
j∈Z

2jr‖�j f ‖L∞ <∞. (2.2)

It is easy to check thatCr endowed with the norm defined in (2.2) is a Banach space.
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For r�0,Cr is closely related to the classical Hölder spaceC̃r equipped with the norm

‖f ‖
C̃r ≡

∑
|
|� [r]

‖�
f ‖L∞ + sup
x �=y

|�[r]f (x) − �[r]f (y)|
|x − y|r−[r] . (2.3)

In fact, if r is not an integer, then the norms in (2.2) and (2.3) are equivalent andCr = C̃r .
The proof for this equivalence is classical and can be found in[4]. Whenr is an integer,
say r = k, C̃r is the space of bounded functions with boundedj -th derivatives for any
j �k. In particular,C̃1 contains the usual Lipschitz functions and is sometimes denoted
by Lip. As a consequence of Bernstein’s lemma (stated below),C̃r is a subspace ofCr .
Explicit examples can be constructed to show that such an inclusion is genuine. In addition,
according to Proposition 2.2,̃Cr includesCr+� for any�>0. In summary, for any integer
k�0 and�>0,

Ck+� ⊂ C̃k ⊂ Ck.

Proposition 2.1(Bernstein’s Lemma). Let d >0 be an integer andR2>R1>0 be two
real numbers.

(i) If 1�p�q�∞ and supp̂f ⊂ {	 ∈ Rd : |	|�R12j }, then

max|�|=k
‖��f ‖

Lq(Rd )
�C2

jk+d
(
1
p

− 1
q

)
‖f ‖

Lp(Rd )
,

whereC >0 is a constant depending on k andR1 only.
(ii) If p ∈ [1,∞] and supp̂f ⊂ {	 ∈ Rd : R12j � |	|�R22j }, then

C−12jk‖f ‖
Lp(Rd )

� max|�|=k
‖��f ‖

Lp(Rd )
�C2jk‖f ‖

Lp(Rd )
,

whereC >0 is a constant depending on k, R1 andR2 only.

Proposition 2.2. There exists a constant C such that for any�>0 andf ∈ C�,

‖f ‖L∞ � C

�
‖f ‖C0 log2

(
e + ‖f ‖C�

‖f ‖C0

)
� C

�
‖f ‖C� . (2.4)

In the 2DQG equation (1.1), the velocity fieldu is determined by� through the 2D Riesz
transforms, namely (1.3). Riesz transforms do not necessarily map a Hölder spaceCr to
itself, but their action onCr is indeed bounded inCr ∩Lp for anyp ∈ (1,∞). The precise
statement is presented in Proposition 2.3, followed by a proof.We first recall a general result
concerning the boundedness of Fourier multiplier operators on Hölder spaces.

Proposition 2.3. Let d >0 be an integer and F be a infinitely differentiable function on
Rd . Assume that for someR>0 andm ∈ R,

F(�	) = �mF(	)

holds for any	 ∈ Rd with |	|>R and��1. Then the Fourier multiplier operatorF(D)

maps continuously fromCr to Cr−m for anyr ∈ R.
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Notice that the Fourier transforms of the 2D Riesz transformsR1 andR2 are given by

R̂kf (	) = −i
	k

|	| f̂ (	), 	 ∈ R2, k = 1,2.

Proposition 2.4. Let r ∈ R andp ∈ (1,∞). Then, there exists a constant C depending on
r and p alone such that

‖Rkf ‖Cr �C‖f ‖Cr∩Lp ,

wherek = 1 or 2.

Proof. Using the operator�−1 defined in (2.1), we divideRkf into two parts,

Rkf = �−1Rkf + (1− �−1)Rkf . (2.5)

Sincesupp�(	) ∩ supp�(2−j	) = ∅ for j �1, the operator�j�−1 = 0 whenj �1. Thus,
according to (2.2),

‖�−1Rkf ‖Cr = sup
j∈Z

2jr‖�j�−1Rkf ‖L∞

= max
{
2−r‖�−1�−1Rkf ‖L∞ , ‖�0�−1Rkf ‖L∞

}
� max{1,2−r}‖�−1Rkf ‖L∞ .

Let q be the conjugate ofp, namely 1/p + 1/q = 1. It then follows from the basic fact that
Riesz transforms are bounded onLp for anyp ∈ (1,∞) that

‖�−1Rkf ‖Cr � max{1,2−r}‖h ∗ (Rkf )‖L∞

� max{1,2−r}‖h‖Lq‖Rkf ‖Lp = C‖f ‖Lp ,

whereC is a constant depending onr andp alone. To estimate the second part in (2.5), we
apply Proposition 2.3 withF(	) = (1− �(	))(−i	k)/|	| andm = 0 and conclude that it
mapsCr toCr . This concludes the proof of Proposition 2.4.�

For notational convenience, wewriteYr,p forCr ∩Lp from now on. Forr ∈ R andp�1,
Yr,p is a Banach space if endowed with the norm‖ ‖r,p, where

‖f ‖r,p = ‖f ‖Cr + ‖f ‖Lp .

Finally we introduce the notion of paraproduct[4]. The usual productuv of two functions
uandv can be decomposed into three parts. More precisely, using the notion of paraproduct,
we can write

uv = Tuv + Tvu + R(u, v), (2.6)

where

Tuv =
∑
j

Sj−1u · �j v, R(u, v) =
∑

|i−j |�1

�iu · �j v.

We remark that the decomposition in (2.6) allows one to distinguish different types of terms
in the product ofuv. The Fourier frequencies ofu andv in Tuv andTvu are separated
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from each other while those of the terms inR(u, v) are close to each other. Using the
decomposition in (2.6), one can show that fors >0

‖uv‖Cs �C(‖u‖Cs‖v‖L∞ + ‖u‖L∞‖v‖Cs ). (2.7)

3. Two commutator estimates

Two major commutator estimates are stated and proved in this section. For future refer-
ences, these estimates are presented in the context of the Besov spaceBr

p,∞. Whenp = ∞,
Br

p,∞ becomes the Hölder spaceCr and these bounds become the desired ones.

Lemma 3.1. Let j � − 1 be an integer, r ∈ R andp ∈ [1,∞]. Then,

‖[u · ∇,�j ]�‖Lp �C2−jr (‖∇�‖L∞‖u‖Br
p,∞ + ‖∇u‖L∞‖�‖Br

p,∞), (3.1)

where C is a pure constant and the brackets[ , ] represents the commutator, namely

[u · ∇,�j ]� = u · ∇(�j�) − �j (u · ∇�).

In particular, if p = ∞, (3.1)becomes

‖[u · ∇,�j ]�‖L∞ �C2−jr (‖∇�‖L∞‖u‖Cr + ‖∇u‖L∞‖�‖Cr ). (3.2)

Eq. (3.1) is suitable for situations whenuand� are equally regular. If∇� is not known to
be bounded inL∞, then (3.1) fails. The lemma that follows provides a new estimate which
needs no information about∇�. As a trade-off,u is required to be inBr+1

p,∞. The importance
of these lemmas will be seen in the proofs of Theorem 4.1 and Theorem 5.1.

Lemma 3.2. Let j � − 1, r ∈ R andp ∈ [1,∞]. Then, for some pure constant C,

‖[u · ∇,�j ]�‖Lp �C2−jr (‖∇u‖L∞‖�‖Br
p,∞ + ‖�‖L∞‖u‖

Br+1
p,∞). (3.3)

In the special case ofp = ∞, (3.3)becomes

2jr‖[u · ∇,�j ]�‖L∞ �C(‖∇u‖L∞‖�‖Cr + ‖�‖L∞‖u‖Cr+1). (3.4)

Proof of Lemma 3.1. Utilizing the paraproduct notationsT andR, we decompose[u ·
∇,�j ]� into five parts,

[u · ∇,�j ]� = [ui · �i ,�j ]� = K1 + K2 + K3 + K4 + K5,

where

K1 = [Tui
�i ,�j ]�,

K2 = −�j T�i�ui ,

K3 = T�i�j�ui ,

K4 = −�jR(ui, �i�),
K5 = R(ui, �i�j�). (3.5)
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Returning to the definition ofT, we can write

K1 =
∑
j ′∈Z

[Sj ′−1(ui),�j ]�i�j ′�

=
∑
j ′∈Z

(Sj ′−1(ui)�j (�i�j ′�) − �j Sj ′−1(ui)(�i�j ′�)). (3.6)

Because�j�j ′ = 0 for |j − j ′|�2 and

supp ̂Sj ′−1(ui)(�i�j ′�) ⊂ {	 : 2j ′−3� |	|�2j
′+1},

the sum in (3.6) only involves those terms withj ′ satisfying|j ′ − j |�4. Thus,

K1 =
∑

|j ′−j |�4

2jd
∫

h(2j (x − y))(Sj ′−1(ui)(x) − Sj ′−1(ui)(y))(�i�j ′�)(y)dy

=
∑

|j ′−j |�4

∫
h(y)(Sj ′−1(ui)(x)−Sj ′−1(ui)(x − 2−j y))(�i�j ′�)(x − 2−j y)dy.

For r ∈ R, p ∈ (1,∞] and a pure constantC,
‖K1‖Lp �C2−j‖∇ui‖L∞‖�j�i�‖Lp �C2−jr2j (r−1)‖�j�i�‖Lp‖∇ui‖L∞

�C2−jr2jr‖�j�‖Lp‖∇ui‖L∞ �C2−jr‖�‖Br
p,∞‖∇u‖L∞ , (3.7)

where we have used Proposition 2.1 in the third inequality.
To estimateK2 andK3, we first write them as

K2 = −
∑
j ′

�j (Sj ′−1(�i�)�j ′(ui)), K3 =
∑
j ′

Sj ′−1(�i�j�)�j ′(ui).

Similarly, only terms withj ′ satisfying|j − j ′|�4 survive in the sums above. Thus, we
have forr ∈ R andp ∈ (1,∞]

‖K2‖Lp �C2−jr‖Sj−1(�i�)�j (ui)‖Br
p,∞ �C2−jr‖∇�‖L∞‖u‖Br

p,∞ ,

‖K3‖Lp �C‖Sj−1(�i�)‖L∞‖�j ui‖Lp �C2−jr‖∇�‖L∞‖u‖Br
p,∞ , (3.8)

whereC’s in the above inequalities are pure constants. By the definition ofR,

K4 = −
∑

|j ′−j ′′|�1

�j (�j ′(ui)�j ′′(�i�)), K5 =
∑

|j ′−j ′′|�1

�j ′(ui)�j ′′(�j�i�).

Obviously, only a finite number of terms in the sums above are nonzero. So,

‖K4‖Lp �C2−jr‖�j (ui)�j (�i�)‖Br
p,∞ �C2−jr‖∇�‖L∞‖u‖Br

p,∞ , (3.9)

‖K5‖Lp �C‖�j�i�‖L∞‖�j (ui)‖Lp �C2−jr‖∇�‖L∞‖u‖Br
p,∞ . (3.10)

Gathering the estimates in (3.7)–(3.10), we establish the desired inequality in (3.1). When
p = ∞, the Besov spaceBr

p,∞ reduces to the Hölder spaceCr and (3.1) to (3.2). �
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Proof of Lemma 3.2. As in the proof of Lemma 3.1, we decompose[u · ∇,�j ]� as the
sum ofK1,K2,K3,K4 andK5. The estimate forK1 remains effective, but different bounds
are needed forK2,K3,K4 andK5. Recall that

K2 = −
∑

|j ′−j |�4

�j (Sj ′−1(�i�)�j ′(ui)).

Let j �0 since the casej = −1 can be handled similarly. Applying the definition of�j in
(2.1) and integrating by parts, we obtain

K2 = −
∑

|j ′−j |�4

2jd
∫

g(2j (x − y))�i (Sj ′−1��j ′ui)(y)dy

= −
∑

|j ′−j |�4

2j2jd
∫

(�ig)(2
j (x − y))(Sj ′−1��j ′ui)(y)dy.

Therefore, for a pure constantC,

‖K2‖Lp �2j‖∇g‖L1‖Sj−1��j u‖Lp

�C2j‖�‖L∞‖�j u‖Lp �C2−jr‖�‖L∞‖u‖
Br+1
p,∞ . (3.11)

The estimate forK3 is direct. In fact, by Proposition 2.1,

‖K3‖Lp �C‖�i�j�‖L∞‖�j ui‖Lp

�C2j‖�j�‖L∞‖�j u‖Lp �C2−jr‖�‖L∞‖u‖
Br+1
p,∞ . (3.12)

K4 can be similarly estimated asK2.

‖K4‖Lp �C2j‖∇g‖L1‖�j�‖L∞‖�j u‖Lp �C2−jr‖�‖L∞‖u‖
Br+1
p,∞ . (3.13)

Finally, we have

‖K5‖Lp �C‖�j ui‖Lp‖�j�i�‖L∞ �C2−jr‖�‖L∞‖u‖
Br+1
p,∞ . (3.14)

Combining (3.7)–(3.14) yields (3.3). �

4. The inviscid QG equation

This section is devoted to the inviscid QG equation. We prove that it has a unique local
solution for any initial datum�0 ∈ Cr ∩ Lq with r >1 andq >1. More precisely, we have
the following theorem.

Theorem 4.1. Consider solutions of the2D inviscid QG equation

�t� + u · ∇� = 0, u = R⊥(�) = ∇⊥�−1�, (4.1)
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corresponding to initial data�0 ∈ Yr,q ≡ Cr ∩ Lq . If r >1 andq >1, then(4.1) has a
unique solution� on the time interval[0, T ], whereT >0 depends on‖�0‖r,q only. The
solution� is in the space

L∞([0, T ];Yr,q) ∩ Lip([0, T ];Yr−1,q) ∩ C([0, T ];Ys,q)

with s ∈ [r − 1, r).

The rest of this section is devoted to the proof of Theorem 4.1. For the sake of a clear
presentation, we divide it into two subsections. An a priori bound is proven in the first
subsection. The second subsection proves Theorem 4.1, with the aid of the a priori estimate.

4.1. An a priori estimate

Proposition 4.2. Let r >1 andq >1. LetT >0 and�0 ∈ Yr,q . If � solves the 2D inviscid
QG equation(4.1)with the initial datum�0 on the time interval[0, T ] and�(·, t) ∈ Yr,q

for t ∈ [0, T ], then

‖�(·, t)‖r,q �‖�0‖r,q exp
(
C

∫ t

0
‖�(·, 
)‖r,q d


)
for t ∈ [0, T ], where C is a constant depending on r and q only.

Proof. According to Proposition 2.4,� ∈ Yr,q implies thatu ∈ Yr,q . Thus, fort ∈ [0, T ],
we can define the flow mapX(·, t) satisfying{

�tX(x, t) = u(X(x, t), t),

X(x,0) = x.
(4.2)

Let j � − 1 and apply the operator�j to both sides of the inviscid QG equation to yield

�t�j� + u · ∇�j� = [u · ∇,�j ]�,
where[u · ∇,�j ]� = u · ∇(�j�) − �j (u · ∇�). This equation can be rewritten in the form

�j�(x, t) = �j�0(X−1(x, t)) +
∫ t

0
[u · ∇,�j ](X(X−1(x, t), s), s)ds.

If we take theL∞-norm, then

‖�j�(·, t)‖L∞ �‖�j�0‖L∞ +
∫ t

0
‖[u · ∇,�j ]�(·, s)‖L∞ ds. (4.3)

Applying Lemma 3.1 withp = ∞, we obtain

‖�(·, t)‖Cr �‖�0‖Cr +
∫ t

0
(‖∇�(·, s)‖L∞‖u(·, s)‖Cr+‖∇u(·, s)‖L∞‖�(·, s)‖Cr )ds.

According to (2.4), forr >1 and a constantC depending onr only,

‖∇�‖L∞ �C‖�‖C1 log

(
e + ‖�‖Cr

‖�‖C1

)
�C‖�‖Cr .
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Similarly, ‖∇u‖L∞ �C‖u‖Cr . Therefore, forC depending onr only,

‖�(·, t)‖Cr �‖�0‖Cr + C

∫ t

0
‖u(·, s)‖Cr‖�(·, s)‖Cr ds.

By Gronwall’s inequality and Proposition 2.4,

‖�(·, t)‖Cr �‖�0‖Cr exp

(
C

∫ t

0
‖�(·, s)‖r,q ds

)
. (4.4)

Adding the usual estimate‖�(·, t)‖Lq �‖�0‖Lq to (4.4) completes the proof of Proposition
4.2. �

4.2. Proof of Theorem 4.1

Proof of Theorem 4.1. The proof starts with the construction of a successive approxima-
tion sequence{�(n)} satisfying


�(1) = S2(�0),

�t�
(n+1) + u(n) · ∇�(n+1) = 0,

u(n) = ∇⊥�−1�(n),

�(n+1)(x,0) = Sn+2�0.

(4.5)

The rest of the proof can be divided into two major steps. The first step establishes the exis-
tenceofT1>0such that{�(n)(·, t)} is boundeduniformly inYr,p for anyt ∈ [0, T1].Thesec-
ondstepverifies for someT2 ∈ [0, T1] that{�(n)} is aCauchysequence inC([0, T2];Yr−1,q).

Step1: A similar argument as in the proof of Proposition 4.2 yields the following bound
for {�(n+1)},

‖�(n+1)(·, t)‖r,q �‖Sn+2�0‖r,q exp

(
C0

∫ t

0
‖�(n)(·, s)‖r,q ds

)
,

whereC0 is a constant depending onr andq only. ChooseT1 andM satisfying

M = 2‖�0‖r,q and exp(C0MT 1)�2 or T1 = ln(2)

2C0‖�0‖r,q .

Then‖�(n)(·, t)‖r,q �M for all n andt ∈ [0, T1]. In fact,
‖�(1)‖r,q = ‖S2(�0)‖r,q �‖�0‖r,q <M

and‖�(k)(·, t)‖r,q �M leads to

‖�(n+1)(·, t)‖r,q �‖�0‖r,q exp(C0MT 1)�M.

Furthermore, forr >1,

‖�t�
(n)‖Cr−1 = ‖u(n) · ∇�(n+1)‖Cr−1

�C(‖u(n)‖L∞‖∇�(n+1)‖Cr−1 + ‖u(n)‖Cr−1‖∇�(n+1)‖L∞)

�C‖u(n)‖Cr−1‖�(n+1)‖Cr �CM2,
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whereC is constant depending onr only. Thus,

�t�
(n) ∈ L∞([0, T1];Yr−1,q) or �(n) ∈ Lip([0, T1];Yr−1,q) (4.6)

with uniform bounds.
Step2: To show that{�(n)} is a Cauchy sequence inYr−1,q , we consider the difference

�(n) = �(n) − �(n−1). Rigorously speaking, we should consider the more general difference
�(m,n) = �(m) − �(n), but the analysis for�(m,n) is parallel to what we shall present for�(n)

and we thus consider�(n) for the sake of a concise presentation. It follows from (4.5) that
{�(n)} satisfies



�(1) = S2(�0) − �0,

�t�
(n+1) + u(n) · ∇�(n+1) = w(n) · ∇�(n),

w(n) = R⊥(�(n)) = ∇⊥�−1�(n),

�(n+1)(x,0) = �(n+1)
0 (x) = �n+1�0.

Proceeding as in the proof of Proposition 4.2, we obtain for any integerj � − 1,

‖�j�(n+1)(·, t)‖L∞ �‖�j�
(n+1)
0 ‖L∞ +

∫ t

0
‖[u(n) · ∇,�j ]�(n+1)(·, s)‖L∞ ds

+
∫ t

0
‖�j (w

(n) · ∇�(n))(·, s)‖L∞ ds.

Bounding the last two terms in the above inequality by (3.3) and (2.7), respectively, we have

‖�(n+1)(·, t)‖Cr−1�‖�(n+1)
0 ‖Cr−1

+ C

∫ t

0
(‖∇u(n)(·, s)‖L∞‖�(n+1)(·, s)‖Cr−1+‖�(n+1)(·, s)‖L∞‖u(n)(·, s)‖Cr )ds

+ C

∫ t

0
(‖w(n)(·, s)‖L∞‖∇�(n)(·, s)‖Cr−1+‖w(n)(·, s)‖Cr−1‖∇�(n)(·, s)‖L∞)ds,

whereC’s are constants depending onr only. Sincer >1, Proposition 2.2 implies,

‖∇u(n)‖L∞ �C‖u(n)‖Cr , ‖�(n+1)‖L∞ �C‖�(n+1)‖Cr−1,

‖∇�(n)‖L∞ �C‖�(n)‖Cr , ‖w(n)‖L∞ �C‖w(n)‖Cr−1.

Therefore, for constantsC depending onr only,

‖�(n+1)(·, t)‖Cr−1�‖�(n+1)
0 ‖Cr−1 + C

∫ t

0
‖�(n+1)(·, s)‖Cr−1‖u(n)(·, s)‖Cr ds

+ C

∫ t

0
‖w(n)(·, s)‖Cr−1‖�(n)(·, s)‖Cr ds

It follows from a basic energy estimate that

‖�(n+1)(·, t)‖Lq �‖�(n+1)
0 ‖Lq +

∫ t

0
‖w(n)(·, s)‖Lq‖∇�(n)(·, s)‖L∞ ds.
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Adding the last two inequalities yields

‖�(n+1)(·, t)‖r−1,q �‖�(n+1)
0 ‖r−1,q + C

∫ t

0
‖�(n+1)(·, s)‖Cr−1‖u(n)(·, s)‖Crds

+ C

∫ t

0
‖w(n)(·, s)‖r−1,q‖�(n)(·, s)‖Cr ds.

The components ofw(n) are the Riesz transforms of�(n) and thus, according to Proposition
2.4,

‖w(n)‖r−1,q �C‖�(n)‖r−1,q .

We thus have reached an iterative relationship between‖�(n)‖r−1,q and‖�(n+1)‖r−1,q ,

‖�(n+1)(·, t)‖r−1,q �‖�(n+1)
0 ‖r−1,q + C1

∫ t

0
‖�(n+1)(·, s)‖Cr−1‖u(n)(·, s)‖Cr ds

+ C1

∫ t

0
‖�(n)(·, s)‖r−1,q‖�(n)(·, s)‖Crds, (4.7)

where the constants are labeled asC1 for the purpose of definingT2. It has been shown in
Step 1 that fort�T1,

‖u(n)(·, t)‖r,q �M, ‖�(n)(·, t)‖r,q �M.

Now, chooseT2>0 satisfying

T2�T1, C1MT 2� 1
4

and we shall show that{�(n)(·, t)} is a Cauchy sequence inYr−1,q for t�T2. For any given
�>0, choose a largeN such that for anyn�N ,

‖�(n)
0 ‖r−1,q = ‖�n�0‖r−1,q � �

2
.

If ‖�(n)(·, t)‖r−1,q �� for t�T2, then (4.7) implies

‖�(n+1)(·, t)‖r−1,q � �
2

+ C1�MT 2 + C1M

∫ t

0
‖�(n+1)(·, s)‖r−1,q ds

valid for anyt�T2. It then follows from Gronwall’s inequality that

‖�(n+1)(·, t)‖r−1,q ��

for anyt�T2. This completes Step 2.
We conclude from Steps 1 and 2 above that there exists a� satisfying

� ∈ L∞([0, T1];Yr,q) ∩ Lip([0, T1];Yr−1,q)

such that�(n) converges to� in C([0, T2];Yr−1,q). By an interpolation inequality,�
(n) also

converges to� in C([0, T2];Ys,q) with s ∈ [r − 1, r). Thus, we have

� ∈ C([0, T2];Ys,q).



J. Wu / Nonlinear Analysis 62 (2005) 579–594 591

The proof of uniqueness follows the same procedure as in Step 2, so we omit the details.
This completes the proof of Theorem 4.1.�

5. The dissipative QG equation

Attention of this section will be focused on the 2D dissipative QG equation

�t� + u · ∇� + ��2�� = 0, u = R⊥(�). (5.1)

We show that the (5.1) always has a local in time solution corresponding to any initial datum
in Cr ∩ Lq with r >1 andq >1.

Theorem 5.1. Consider the 2D dissipative QG equation(5.1)with �>0 and0��� 1
2.

Assume that the initial datum�0 is in Yr,q ≡ Cr ∩ Lq , wherer >1 andq >1.Then there
exists aT >0 depending on‖�0‖r,q only such that(5.1)has a unique solution�(x, t) for
t ∈ [0, T ]. Furthermore, � satisfies

� ∈ L∞([0, T ];Yr,q) ∩ C([0, T ];Yr−1,q) ∩ Lip([0, T ];Cr−1).

We first recall the positivity lemma.

Lemma 5.2. Let� ∈ [0,1] andp ∈ [2,∞). If �2�� ∈ Lp, then∫
R2

|�|p−2��2��dx�0.

This lemmawasfirst proved in[12].Very recently,CórdobaandCórdobaskillfully proved
a point-wise inequality involving the operator�2� with � ∈ [0,1] and deduced as a special
consequence this inequality[9].

Proposition 5.3. Let� ∈ [0,1] and� ∈ S, the Schwartz class. Then,

2��2��(x)��2��2(x)

for anyx ∈ R2.

It is easily seen that the positivity lemma allows us to show the maximum principle for
solutions of (5.1) with any� ∈ [0,1],

‖�‖Lp �‖�0‖Lp , (5.2)

wherep ∈ [1,∞]. The point-wise inequality in (5.3) actually leads to aLp-decay estimate,
as stated in the following proposition.

Proposition 5.4. Let p = 2k for an integerk�1. If � solves(5.1) with an initial data
�0 ∈ Lp, then theLp-norm of� decays algebraically in time. More precisely,

‖�(·, t)‖Lp � ‖�0‖Lp

(1+ �Cp�t‖�0‖−�p
L2 ‖�0‖�p

Lp)
1/�p

,

where� = �/(p − 2) andCp is a constant depending on p and� only.
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Part of the proof of Theorem 5.1 is to obtain a uniform bound for a successive approxi-
mation sequence. The a priori estimate in the following proposition and its derivation will
be useful for this purpose.

Proposition 5.5. Let �, �, r and q be as in Theorem5.1.Assume that�(·, t) ∈ Yr,q is a
solution of the2D dissipative QG equation with�0 ∈ Yr,q for t ∈ [0, T ]. Then, for some
constant C depending on r and q only,

‖�(·, t)‖r,q �‖�0‖r,q exp
(
C

∫ t

0
‖�(·, 
)‖r,q d


)

is valid for anyt�T .

Proof. Becauseof (5.2), it suffices tobound theCr -norm.Toproceed,weestimate‖�j�‖L∞
for any integerj � −1 (�j =0 forj � −2 according to (2.1)). Since�2� and�j commutes,

�t�j� + u · ∇(�j�) + ��2��j� = [u · ∇,�j ]�. (5.3)

We first bound theLp-norm of�j� and then letp → ∞. Forp�2,

d

dt

∫
|�j�|p dx + I = II + III,

where I, II and III correspond to the terms in (5.3), namely

I = �p
∫

|�j�|p−2�j��2�(�j�)dx,

II = −p

∫
|�j�|p−2�j� · (u · ∇�j�)dx,

III = p

∫
|�j�|p−2�j�[u · ∇,�j ]�dx.

The second term II is equal to zero after integration by parts,

II = −
∫

u · ∇(|�j�|p)dx = 0.

Lemma 5.2 implies that I�0. Applying Hölder’s inequality to III,

III �p‖�j�‖p−1
Lp ‖[u · ∇,�j ]�‖Lp

and then combining these estimates yields

d

dt
‖�j�‖Lp �‖[u · ∇,�j ]�‖Lp .

Integrating with respect tot and lettingp → ∞, we obtain

‖�j�(·, t)‖L∞ �‖�j�0‖L∞ +
∫ t

0
‖[u · ∇,�j ]�(·, s)‖L∞ ds.
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This is identical to inequality (4.3) in the proof of Proposition 4.2. We thus omit further
details. �

Proof of Theorem 5.1. . The same strategy as in the proof of Theorem4.1 alsoworks here,
soweshall just present themajor lines.Consider a successiveapproximation sequence{�(n)}
satisfying


�(1) = S2(�0),

�t�
(n+1) + u(n) · ∇�(n+1) + ��2��(n+1) = 0,

u(n) = ∇⊥�−1�(n),

�(n+1)(x,0) = �(n+1)
0 (x) = Sn+2�0.

Proposition 5.5 allows us to show that there exists aT1>0 depending on‖�0‖r,q only
such that{�(n)(·, t)} is bounded uniformly inYr,q for any integern>0 andt ∈ [0, T1]. In
addition, for�� 1

2 andr >1,

‖�t�
(n+1)‖Cr−1�‖u(n) · ∇�(n+1)‖Cr−1 + �‖�2��(n+1)‖Cr−1

�C(‖u(n)‖L∞‖∇�(n+1)‖Cr−1 + ‖u(n)‖Cr−1‖∇�(n+1)‖L∞)

+ �‖�(n+1)‖Cr

�(C‖u(n)‖Cr−1 + �)‖�(n+1)‖Cr �CM2,

whereC is a constant depending on�. This uniform bound allows us to conclude that� ∈
Lip([0, T1];Cr−1). The sequence{�(n)} is then shown to be Cauchy inC([0, T2];Yr−1,q)

for someT2 ∈ [0, T1] by considering the difference
�(n+1) = �(n+1) − �(n).

Clearly,�(n+1) satisfies

�t�
(n+1) + u(n) · ∇�(n+1) + ��2��(n+1) = w(n) · ∇�(n), w(n) = ∇⊥�−1�(n).

The rest is then similar to Step 2 in the proof of Theorem 4.1 and we omit the details.�
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