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Abstract. This paper studies the global existence and regularity of classical solutions
to the 2D incompressible magneto-micropolar equations with partial dissipation. The
magneto-micropolar equations model the motion of electrically conducting micropo-
lar fluids in the presence of a magnetic field. When there is only partial dissipation, the
global regularity problem can be quite difficult. We are able to single out three special
partial dissipation cases and establish the global regularity for each case. As special
consequences, the 2D Navier-Stokes equations, the 2D magnetohydrodynamic equa-
tions, and the 2D micropolar equations with several types of partial dissipation always
possess global classical solutions. The proofs of our main results rely on anisotropic
Sobolev type inequalities and suitable combination and cancellation of terms.
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1 Introduction

This paper aims at the global existence and regularity of classical solutions to the 2D
incompressible magneto-micropolar equations with partial dissipation. The standard 3D
incompressible magneto-micropolar equations can be written as

o+ (u-V)u+V(p+31b>) = (pu+x)Au+(b-V)b+2xV x w,
dtb+ (u-V)b=vAb+(b-V)u,

(1.1)
dw+(u-V)w+2xw=xAw+(a+B)VV-w+2xV xu,
V-u=0, V-b=0,
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where, for x € R® and t >0, u =u(x,t),b =b(x,t),w = w(x,t) and p = p(x,t) denote the
velocity field, the magnetic field, the micro-rotation field and the pressure, respectively,
and y denotes the kinematic viscosity, v the magnetic diffusivity, x the vortex viscosity,
and «, and B and « the angular viscosities. The 3D magneto-micropolar equations reduce
to the 2D magneto-micropolar equations when

U= <M1 (x;y/t)/u2<x;y/t)/0); b= <bl (x;y/t)/b2<x/y/t);0)/
w=1(0,0,w(x,y,t)), m=m(xy,t),

where (x,y) € R? and we have written 7 = p+%|b|>. More explicitly, the 2D magneto-
micropolar equations can be written as

O+ (u-V)u+Vr=(u+x)Au+(b-V)b+2xV x w,
9tb+ (u-V)b=vAb+(b-V)u,

orw~+ (u-V)w—+2xw=xAw+2xV xu,

Vu=0, V-b=0,

(1.2)

where u = (u1,u2), b= (b1,b2), Vxw=(—0yw,0,w) and V X u =0 13 — 9y ;.

The magneto-micropolar equations model the motion of electrically conducting mi-
cropolar fluids in the presence of a magnetic field. Micropolar fluids represent a class of
fluids with nonsymmetric stress tensor (called polar fluids) such as fluids consisting of
suspending particles, dumbbell molecules, etc (see, e.g., [6,8-10,17]). A generalization of
the 2D magneto-micropolar equations is given by
(011 + (u . V)I/ll + 0, 7T = Y110xx U1 +y128yyu1 + (b . V)bl —Zxayw,

Osuta+ (- V) +0y 7T = Y1 Oxxtha + p220yytiz + (b- V) ba +2x0 w,
0tb+(11-V )b =110x2b+129,, b+ (b-V)u,

01w+ (- V)w +2xw = K10+ K20y, w +2xV X 1,

V-u=0, V-b=0,

( u(y,0) =uo(x,y),b(x,y,0) = bo(x,y),w(x,y,0) =wo(x,y),

(1.3)

where we have written the velocity equation in its two components. Clearly, if
Hu=pp=pn=pn=ptx, N =1Vm=V, K=K=K

then (1.3) reduces to the standard 2D magneto-micropolar equations in (1.2). This gener-
alization is capable of modeling the motion of anisotropic fluids for which the diffusion
properties in different directions are different. In addition, (1.3) allows us to explore the
smoothing effects of various partial dissipations.

The magneto-micropolar equations above are not only important in engineering and
physics, but also mathematically significant. The mathematical study of the magneto-
micropolar equations started in the seventies and has been continued by many authors
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(see, e.g., [1,18,21,29,30]). Some of the recent efforts are devoted to the well-posedness
problem and various asymptotic behavior. The focus of this paper will be on the global
existence and uniqueness problem on the generalized 2D magneto-micropolar equations
(1.3) with various partial dissipation. We deal with three main partial dissipation cases
and establish the global regularity for each case. For notational convenience, we set x =
1/2 for the rest of the paper.

The first partial dissipation case corresponds to (1.3) with

p11=pn=0, 1n=0, k=0, pp=pn=1, r=x=1,
or, more precisely,
Opuy + (- V)uy +0xm =0y 11+ (b- V)b —0yw,
Ostia+(1-V )z +0y 7T =0xy iz + (b- V) by +0xw,
b+ (1 V)b =dy3b+b- Vi,
dw~+ (- V)w+w=0pnw+V xu,
V-u=0, V-b=0,
u(x,y,0) =uo(x,y),b(x,y,0) =bo(x,y),w(x,y,0) =wo(x,y).

(1.4)

The global existence and regularity result for this case can be stated as follows.

Theorem 1.1. Assume (ug,bo,wo) € H*(R?), and V-ug =V -bg=0. Then (1.4) has a unique
global classical solution (u,b,w) satisfying, for any T >0,

(u,b,w) € L®([0,T]; H(IR?)).
The second partial dissipation case corresponds to (1.3) with

pi1=1, pn=1v2=x2=0, ppp=1, u»n=0, vi=x1=1,
or, more precisely,
atul—l-(u-V)ul+8xn:Au1+(b-V)b1—ayw,
Ostia+ (u-V)uz+0ym=(b-V)b 40w,
Oth+(u-V)b=0yxb+(b-V)u,
diw—+(u-V)w+w=0yw+V X1,
V-u=0, V-b=0,
u(x,y,0) = uo(x,y),b(x,y,0) = bo(x,y), w(x,y,0) = wo(x,y)-

(1.5)

The global well-posedness for (1.5) is given in the following theorem.
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Theorem 1.2. Assume (ug,bo,wo) € H*(R?), and V -ug =V -bg=0. Then (1.5) has a unique
global classical solution (u,b,w) satisfying, for any T >0,

(u,b,w) € L*([0,T]; H*(R?)).

Our third main result establishes the global regularity for the partial dissipation case
(1.3) with
po=pn=1, pu=pn=n=rx=0, n=K=1,

or, more precisely,

Osty + (u-V)u1+0x 7w =0yyus +(b-V)by —9,w,

Ostia+ (u-V ) up 40y =0yytz+(b-V)ba + 0w,
Otb+(u-V)b=0xb+(b-V)u,
diw—+(u-V)w+w=0yw+V X1,

V-u=0, V-b=0,

u(2,,0) =t (x,),b(x,,0) = by (x,), @ (%,,0) =wo (x,1).

(1.6)

Theorem 1.3. Assume (ug,bo,wo) € H*>(R?), and V -ug =V -bg=0. Then (1.6) has a unique
global classical solution (u,b,w) satisfying, for any T >0,

(u,b,w) € L*([0,T];H*(R?)).

It is worth mentioning some of the special consequences of our theorems. In the spe-
cial case when b=0 and w =0, the magneto-micropolar equations become the 2D Navier-
Stokes equations and the theorems above assess the global regularity for the Navier-
Stokes with various partial dissipation. These results for the Navier-Stokes equations
appear to be new.

Corollary 1.1. Consider (1.4), (1.5) or (1.6) with b=0 and w =0. Assume uo € H*>(R?), and
V -ug=0. Then any one of these systems has a unique global solution.

When w =0, the magneto-micropolar equations become the magneto-hydrodynamic
(MHD) equations. The results in the first two theorems are new for the MHD equations
while the third one recovers a result in [3].

Corollary 1.2. Consider (1.4), (1.5) or (1.6) with w=0. Assume (ug,by) € H*(R?), and V -ug=
V -by=0. Then any one of these systems has a unique global solution.

When b=0, the magneto-micropolar equations become the micropolar equations and
the results in the theorems above reduce to those for the micropolar equations.

Corollary 1.3. Consider (1.4), (1.5) or (1.6) with b=0. Assume (ug,wo) € H2(R?) and V -uy=0.
Then any one of these systems has a unique global solution.
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Now we explain the main difficulties involved in proving the theorems and the meth-
ods used here. The general approach to establish the global existence and regularity re-
sults consists of two main steps. The first step assesses the local (in time) well-posedness
while the second extends the local solution into a global one by obtaining global (in time)
a priori bounds. For the systems of equations concerned here, the local well-posedness
follows from a standard approach and shall be skipped here. Our main efforts are de-
voted to proving the necessary global a priori bounds. More precisely, we show that, for
any T>0and t<T,

11,b,0) () 22y <, (17)

where C denotes a bound that depends on T and the initial data. In general, we rely on
the smoothing effects of the dissipative terms in the systems. When there is no dissipation
in (1.3), it is impossible to prove (1.7). Then the issue is how much dissipation we really
need in order to prove (1.7). We are able to single out the aforementioned three partial
dissipation cases and prove (1.7).

The proof of (1.7) involves three steps. The first step proves the global L2-bound. This
step is easy and relies on the divergence-free condition V-u=V-b=0. The second step
proves the global H!-bound for (u,b,w). This step is not trivial and fully exploits the
partial dissipation. This step also makes use of the anisotropic Sobolev type inequalities
(see Lemma 2.1). This last step is to prove the global H*-bound by using the global H'-
bound and various anisotropic inequalities. The whole process involves the estimates of
many terms and is complex. The details are given in the subsequent sections.

We briefly mention some of closely related results. In [29] Yamazaki obtained the
global regularity of the 2D magneto-micropolar equation with zero angular viscosity,
namely (1.2) with x =0 and other coefficients being positive. Another partial dissipation
case for the 2D magneto-micropolar equation was studied in [5]. As aforementioned,
quite a few global regularity results for the 2D MHD and the 2D micropolar equations
with partial dissipation are available (see, e.g., [2-4,7,11-16,19, 20,22-28, 31]).

The rest of this paper is divided into three sections with each of them devoted to the
proof of one of the theorems stated above. To simplify the notation, we will write || |2
for ||f|l;2, [ f for [, fdxdy and write 2 f, d.f or fy as the first partial derivative, and

aa—xzz f or dxxf as the second partial throughout the rest of this paper.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. As explained in the introduction,
it suffices to establish the global a priori bound for the solution in H2. For the sake of
clarity, we divide this process into two subsections. The first subsection proves the global
H'-bound while the second proves the global H2-bound.

In the proof of Theorem 1.1, the following anisotropic type Sobolev inequality will be
frequently used. Its proof can be found in [3].
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Lemma 2.1. If f,g,h,0,8,0h € L%(IR?), then

1 1 1 1
J | fghldxay <Clfll2 gl 13,113 Al [2:h113, @)
where C is a constant.

The following simple fact on the boundedness of Riesz transforms will also be used.

Lemma 2.2. Let f be divergence-free vector field such that V f € L? for p € (1,00). Then there
exists a pure constant C >0 (independent of p) such that

C 2
19l < B 19 % .

The rest of this section is divided into two subsections. The first subsection proves
the global H!-bound while the second proves the global H?-bound.

2.1 H!'-Bound

We first state the global L2-bound.

Lemma 2.3. Assume that (u9,bo,wy) satisfies the condition stated in Theorem 1.1. Let (u,b,w)
be the corresponding solution of (1.4). Then, (u,b,w) obeys the following global L?-bound,

t
(O 1000) [+ (B2 +2 [ 11@ytnn 25002) e
t t
42 [ 0:0(0)|[adr+2 [ [0xeo(r) [Fadt < C (] (w0, bo,wn)3)

forany t>0.

Proof. The proof of the global L2-bound is easy. Taking the L?-inner product of (u,b,w)
with (1.4), respectively, yields

1
EatHu”%"i‘H(ayulraxuz)H%Z/@-V)b-u—i—/(Vlw)-u,
1

3013+ 2:b1B= [ (b V)b,

1

SAullwl+ leosl3+wl= [ (V xu)e.

Adding them up and using the fact

/(b-V)b-u—l—/(b-V)u-b:O, /VLw-u:/(qu)w,



D. Regmi, ]. Wu / ]. Math. Study, 49 (2016), pp. 169-194 175
we have

1

Eaf(llu||§+|\b||§+IIwH%)JrII(Byul,Bxuz)||§+Haxb||§+IwaII§+|\wII§=2/(V><u)w~

To bound the right-hand side, we notice that

2/(V><u)w:Z/(axuz—ayul)w:—2/8yu1wdxdy—2/8xwu2.

Applying Holder’s inequality yields

A ([[ull3+ 1113+l 3) + 11 (yu1,0xu2) 3+ [19:b13 + [|co 13+ w13

| =N =

<

< S (I9ymll3 +[10xl2) + C(llulz + |ewl]3)-

Gronwall’s inequality then implies

t
\\u\\%+\\b!!§+!!w\\%+/o (1@y11,0x102) 5+ 105615+ [|ws |3+ | w][3) dT < C,

for any 0 <t <T, where C depends only on the initial data. O
We next prove the global H'-bound for u,b and w.

Proposition 2.1. Assume that (1, bo,wy ) satisfies the condition stated in Theorem 1.1. Let
(1,b,w) be the corresponding solution of (1.4). Then (u,b,w) satisfies, for any T >0,

u,b,w € C([0,T|;HY). (2.2)

Proof of Proposition 2.1. To estimate the H!-norm of (u,b,w), we consider the equations of
=V xu, Vw and of the current density j=V xb,

Qs +u-VQ =0yt —dyyytt1 +(b-V)j— Aw, (2.3)
tVw+V(u-Vw)+2Vw=Vw+VQ, (2.4)
Ji+u-Vj=0yj+b-VQ+20,b (axuz-i-ayul) —20, 11 (axbz-i-ayb]), (2.5)

V-u=0, V-b=0.
Dotting (2.3) by ), (2.4) by Vw and (2.5) by j, we obtain

1d .
2 (1012 + 12+ | Vewl3) + V3, B

[ Vaxuz |3 +118xjlI7. + [ Vw3 +2] Vw3
—2 / [0by (Dxtiz +dy111) j— Dty (Dxba+0yby )] jdxdy
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—/Vw-Vu-Vw-l—Z/Vw-VQ
= h+L+3+]at]5+]6.

Invoking the divergence-free condition, we note that

[ Voxuy H% = Haxxul“%“‘ ”any‘ZH%/
V1|3 = 1y 1213+ [|9yy 1 |3,

||V8xu2||% = Haxxulﬂg"‘ ||axxu2||%~
We now estimate the terms on the right. Since j=0d,b, —d,b1,

h=2 / 3.b19 1120, by —2 / 9,b1d, 1129, by
= Juu+/12

Applying lemma 2.1, Young’s inequality, and the simple fact that
19xb2ll12 < ljll2, [19xyballie < (19212,

we have

Ji1 < 2‘/axblaxu28xb2

1 1 1 1
< Cl[oxua|[2[|9xbr[|3 [[0xy b1 (13 [|9xb2 3 | 9xxbal |3

1 11
< Cl[Ql2[19xb1 |3 1927113 |0x2][3 (|01 3
< Cl[l2[|9xb]l2|9xj[2

1.
< 519112+ Cllaxbl2lI Q3.

Integrating by parts, we have

F2=2 [ 9xbidtzdybr =2 [ 12d0ab1,b1 2 [ u2dbrd by
= 121+ 122

Ji21 < '_2/u28xxblaybl

1 1 1 1
SCHaxxbluH”ZHZZHay“2H22Haybluéuaxybluzz
1 11 1
<Clloxjll2lluall5 13 17115 10x7ll5
1 . .
SE||9xJH%+CHu2||2HJ||2HQ||2~
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177
Similarly,

J122 < ‘_2/u28xblaxyb1

<

| =

g 10x7112+ Clluz allfll2 1]

=~

J2, J3, and J4 can be bounded by

J2< '/axblayulj

1 1 1 1
< Cl[oxbr 13 [[0xxb1 |3 19y (|3 19yl [I]]]2

1 . .
<1 [l19yyu1]3+ 10x]1I3] +C(10xb1 |15+ 19y 11 [15)11]]13
< ' / 9111 9:b2]

1 1o
< Clluallz 19yuallZ 117112 197117 | 0xxb2 2

1 1 1 1o
+Clluall3 19yur |3 [10xD2 3 19xxb2 (|7 (|92

1. . .
< g 19112+ Cllw 210y [2]5112-

i< ' / Dyt dybi | < / (1119 b1j — 113y b

1 11 1
<Cllua i [yl 17112 19x7ll3 [19xy b1 ll2

1 1 1 1
+Cllurl|3 |9y l|3 |9y (I3 102y br |3 []jx [l

1. .
< 5104113+ Cllwa 310y |53

< / | (410xxb2j+110,b20y]) |

To bound J5, we use V-u =0 and integrate by parts to obtain

]5:—/Vw‘Vu~Vw

——Z/ulwxxwx—Z/ulwywxy—/(axuz—i-ayul)wxwy.

The terms on the right can be bounded as

‘/ulwxxwx

1 1 1 1
< CllwsrllzlfualiZ [[0ywa]l lleoxll3 [ ll2

3 1 1 1
< Cllewxllz [[ul3 19ymll3 [lewx 3
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1
< e+ Cllul3llaym 3] Veol3.

1 1 1 1
< Cllwsyll2llua iz [H10ywa]l7 0xywl]3 l0yewllz

3 1 1 1
< Cllewxyllz [fu ]2 [8ymll3 [[Veollz
1
< gIVerlz+Clulzlaym 3 Vel

1 1 1 1
‘/(axuz+ayul)wxwy < C([[0xt2[l2+ [0yt [2) |3 [|wsy 2 oy 12 [|wsy 2

< C([|xtalla+ [[8ym [l2) [ Vw2 Vx|l
1
< g1 Ve@rlz+C[19:uallz+ 19y ]2) [ Veol 3.

To estimate ¢, we first integrate by part to obtain

Jo=2 [ V0= -2 [ w042 [ 0,0,

The terms on the right can be bounded as follows.

J | < eIl < 51 VesB+ClO1E
/ wyQy= [ (wydxytiz —wydyyitr),

/wyaxyuz

/ Wy 0yyU1
Combining the estimates above, together with Gronwall’s inequalities, we obtain

IQUZ+ 17113+ Vell3

<Cl[Vw|2]|Vorua|2,

<C[[Vwll2[[Vayui .

t
+/0 (IV3yu1 13+ Voxual3+ 1192l 2 + | Veos|3+2[ Vel [3) dT < C

for any t < T, where C depends on T and the initial H!-norm. Especially, (2.2) is proven.
This completes the proof of Proposition 2.1. O
2.2 Global H? bound and the proof of Theorem 1.1

This subsection proves Theorem 1.1 by establishing the global H? bound for the solution.

Proof of Theorem 1.1. As we explained before, it suffices to establish the global H2-bound
in order to prove Theorem 1.1. The rest of this proof establishes the global H2-bound.
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Taking the L? inner product of (2.3) with VQ and (2.5) with Vj, and integrating by
parts, we obtain

LV QUB+ V)13 182,113+ | 30sua 3+ | V2,713
—Ly+Lo+La+Ly+Ls+Ls, 2.6)
where
le—/VQ-Vu-Vdedy, Lzz—/Vj-Vu-dexdy,
L3:2/VQ-Vb-dexdy, L4:2/V[8xb1(8xu2+8yu1)]-dexdy,

Ls=—2 / V[0yu1 (9,02 +9,b1)]- Vidxdy, — Le= / AQAw dxdy.

Applying V to (2.4) and taking the L?-inner product with Aw, and integrating by parts,
we obtain

Ld

S lawl3+2)aw 3+ 18w ]f= [ A0a0- [ Au-Tw)rw

=L¢+Ly. (27)
Adding (2.6) and (2.7) yields

1d .
5 77 IVQUEHIVIIZ+[Awll3) + A0, u 13

+[| A0 2|5+ (VO[3 +2]| Awe |5+ [| Aw] [
=L1+Ly+Ls+Ls+Ls+2Lg+ L.

We now estimate L; through L;. We further split L into 4 terms.
L= —/VQ-Vu-Vdedy

— / (Btt1 (3502)2+ 01120, 00, Q1+ y1110, 00, Q-+ 3y 1 (3,2)?)
= Ly +L1p+Liz+ L.

Due to )=V xu, we have
axe:Aaqu, any:_Aayul, any:Aaxuz.

Therefore,
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Integration by parts yields

/axul(axxMZ)Z:_/axxulaxxMZaqu_/axulaxxquBxMZ
=Li11+Lio,
which can be bounded as
1 1 1 1
Li11 <Cl[0xxtiz | Haxx”1H22 ||axxy”1 ||22 HaquHZZ Haxx”ZHE
3 1 1 1
< CHaxx”Z“zz Haxxuluzz HAax”ZHZZ HaX”ZHZ2

1 2 2 3 3
< 18 | A0 ua |2+ Cl[Oxxtia|[3||0xxti1 |3 [[Ox 2|3 -

1 1 1 1
L112 < Cl|0xxxtia]2[|0x 11 sz Haxyuluzz HaX”ZHE Haxx”2H22
1 1
<C[|Adxuz 2|23 ([ VO 2[|0xu2 |3
1
< 15 189x12 3+ Cll Q2932 2| VO E:

By Lemma 2.1,

1 1 1 1
< Cl|9xu2|2[|0x Q|3 [[0x2 Q|7 18y | [0y I3

1 1
< Cl[0xu2|2[| VO[2[]0x |7 [0y, 213
< [10xx Q[ [18yy Q| +C D102 3 V3

1
< 15 1903+ 19y Q[13) +Clldxua |3 VO3
L13§ ‘/ayulaxﬂayﬂ‘

1 1 1 1
§C||8yu1|\22 ||axy”l||22 HaxQHZ”ayQHzZ ||ayy0||22
< C[[0yy Ql2[|0xy11 [[2]19y Q24 Cll9y 1 |2 VO[5

1
5 19y QUZ+C(l10y11 |13+ 19y u1[13) [ VO[3
Lis< ‘2 / uzayQaWQ‘

1 1 1 1
< Cl[ayy Ql2f|u2|3 l[ox w213 [0y 213 [0y I3
3 1 1 1

<Cllayy Q13 [l 12112 VOl
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< 41—8HanyH?rcHuzH%HQH%HVQH%-
To estimate Ly, we write it out explicitly as
ng—/Vj-Vu-dexdy
__ / (3111 (9] + 3y 11Dj0y j+ Dy 102 (By )2 + 11D 0y )
=Lo1+ Lo+ Loz +Log.

The terms on the right can be bounded as follows.

1 11 L
Loy < Cl|0xfll2ll9xua |13 [[0xyra 13 1027113 |92
i 1 12 .
< CllA3 [[0xywallZ 1Vl 2 [V 0xjlI3
1 ) 2 2 )
< 51V l13+Clloxym |13 [O13 V73

1 1 1 1 )
L22§C||ay”l”22|‘axy”1”22||ax]H22||axy]||22Hay]H2
1 1 3 1
<ClAZ [0xyua I3 IVll5 [[Voxjll5 -
1 1 1 1
L23§CHay]HZHaX”1H22HaxyulezHay]HZZHaxy]sz
3 1 1 1
<ClIVillz [IVoxjliz 113 |0y |3
1 12 2 2 .12
< 751V 0xill2+ 1|3 19yl [1 V7112
1 1 1 1
Loy < Cl|0xual|2][9yj|5 [|0xyjll3 [0l [|9xy/ll 3
<CllA2IV]ll2[[Voxj][2-
We now turn to L3. Again we write it out as
= L31+ L3>+ L33+ Lag.

The terms on the right can be bounded as follows.

L31 < '/aanxblaxj

1 1o et

< Cl[0xQ[2[[0xb1 3 [[9xx1 13 192713 | 0xy 1|3
1o 11 it

< Cl|0xQ[2[19xb1[13 11027112 197113 ll 0yl 2
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< Cl10x]ll2[ Voxjlla+ 1107l b1 [[[19:2]15
1 , , .
< 51 Vadla+Cllaxblz+19:13+ D (IVOIZ+ [ VilI2)-

1 . . .
Loz < 2 lIVixll24+C(1:b2 134 191112 + D (IVOQIZ+ [ V]12).
1 1o 1
Laz < Cl|9ybr | [0y b1 113107113 |92y lI3 [V 2
o1 1
< CljlIZ 19117 V7113 [1Vaxjl3 V2

1 : P ,
< 55 1Vaxillz+Clloxil2lIVillz +ClIfll= VO -

Lsa < Cllaxbl13 9y b1 1121247113 95113 1V 2
<CljIZ 1313 1912 Va2 11V Ol
< 15 V23l BIViE+Clill IVl
We now estimate L.

L= Z/V[axbl(axuz-i-ayul)]-dexdy
—2 / 3y [0x1 (Bytta +3y 1) i+, [:b1 (Dxtia +dyu1 ) ]y dxdy

= Ly + L.

We bound L4 and L4, as follows.

Ly <

2 / 3yb1 (Dytin +0y111) Dy

< C(195b1 113 12D I3 1914213 19y 12113
+C 13D 13 9y b1 13 13y 101113 [3sy101113) B 2
< I IVFIZIQIZ 10, 121170x2
< 2 IVaE+CIONI 12 (17 O3+ IV/1B).
Ly can be more explicitly written as
Lp=2 / (Dayb1dtin + Dby Dy + Dy by By ity + Dby Byytir )y jdxdy
= Lgp1+Laop + L3+ Lyps.

The bounds for the terms on the right are given as follows.

1 1 1 1
Ly < CHaxL‘ZHZHaxybl sz Haxyybl sz Hay]sz Haxy]sz
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<CllOf2/1Vill2lVoxjll2
1 . ,
< gVasilz+Clolz]vil:.

1 1 1 1
L422§CHaxb1H22Haxyblez”axyMZHZHay]szHaxy]sz
1 ! L ok
<Clljll3 0x7ll3 [[0x VI3 [V x| 3

1 . P ,
< 51Vl +Cllojl I Villz +Cliflla [ VOll2.

1 1 1 1 ]
Lyps < CHaxybl sz Haxyybl sz Hayul sz Haxyul sz Hay]HZ

1 .1 1 1o
< Clloxjllz [Voxfll 23 10x 212 [Vl

1 . , .
< 2= IVosjll+ClQ2IVil5 +Cllox 121 V3.

— 48
' 3 3 3 3
L424§C||ay]|‘2”axbl”2 Haxyble Hayyulnz ||axyy”1|‘2
1 1 1 1
< ClIVill2ll7113 10xll3 IV I3 [0y QI3

1 : -
< 5 12w Ol2+Claxjl2 I VOIZ+ Il Vil2-

We now estimate Ls. More explicitly, Ls is written as

Ls= —Z/V[axul(axbz-l—aybl)]-dexdy

— 2 / Oy [xttr (Bxby+3,b1)]0xj+ 0y [(Byit (3yba -+, by )]y j dxdy

= Ls1+Lsp.

Ls1 is bounded as follows.

1 1 1 1 )
Ls; < CHaxul”zz Haxy“1”22 Haxb2H22 Haxbe“f [[9xxfll2
1 1 1 1 ]
+C|\8xu1|\22 ||axy”l||22 ||aybl||22 Haxyblﬂz2 [[0xxjll2
1 11 1 .
< ClQl IV 1713 11Vill3 [[Voxjll2

1 . , .
< & 1Vadlz+Clofallil2(IVOQIE+[Vil3)-

Lsp contains four terms.

Lin= —2 [ (3ry1110,ba-+ 3x11105y b+ sy 1, b1 + sty b1 )3y iy

= Lsp1 +Lspo+ Loz + Lspa.

183
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These terms are estimated as follows.

1
Lz < —

< 5 1Vaila+CloslE+1712) IVl + V).

1 - 2 2 o
Lz < 22 Vaxjll+ClIO3 10z 13 [1V/l2-

1 1 1 1 ,
Ls»3 SCHaxy”le2 Haxyyulnzz ||aybl||22 ||axyblH22 Hay]HZ
1 it i..,3 .
<ClQyyllz l[oxfll5 IV 7115 1Vill2

1 . -
< 519w Ol2+Cllojl2 I VOIE +Clljl | V2.

1 1 1 1

Lsas < Cl0yfll2 91113 |0xyw1ll3 [9yy b1 12 19y b1 13
1 11 .1
< ClIVjll2|3 [19xyuall2 [[V]ll2 [1V0x7]l2

1 . , .
< 51Vl +Cllowm 21 Villz+ 102 V]2

Le can be easily bounded.
Lo= [ 8080 = [ Quaw+ [0,80
with
/Qxwa - —/Qwax <|IVQ2||Aws s ‘/QWAw‘ <1y 2l Aw]2.
We now estimate the last term L.
L; = —/A(u-Vw)Aw = —/A(ulalw-i-uzazw)Aw =Ly1+ L.

We first split Ly; and L7, each into two terms.

Ly =— /axx (4105w +u20yw)Aw = L7171+ L.

Ly =— /ayy(ulaxw 120y W ) Oxxw — /ayy(ulaxw + 1120y )9yyw = Ly21 + L72.
These terms are bounded as follows.

’L711 ’ = '—/ax(ulaxw)wa

S ‘_/axu]awawx

+‘/ulaxwawx
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< C|Awx 2191112 3y 01 121030 3 [[Brcco

+CJ| Ao |0 |13 Do 13 1213 1910213
< Cllawlla | AwlIZ QU VQUZ I Vel 3 +CllAwx 21 Vel a1 10112
< 1518w B+ CIOIIVAQIB + [ Veo B Ao+ Cllas |3 Ve 31 QB

|Ly1a| = ‘—/axuzaywwa—/uzaxywwa

< CllAw 21Dtz [Byitall} 3y 13 [9ryco 13
CllAcwr a2l 13512013 102y0 13 rzyco 3
Loy :/ayy(ulaxw—i—uzayw)axxw:/axx(ulaxw—i—uzayw)ayyw.
Obviously L7»; admits the same bound as that for Ly,
Ly | < %HwaH§+CHQH§HVQH%+ IVewll3 ]| Aw|3+Cllu |31 Vewx[3]1Q1Z.
To estimate L7y, we write it out explicitly and integrate by parts,

Lyzz = [ By (1190-+1020,0) 0
:/ay(ayu18xw+ulaxyw)ayyw—|—/ay(ayuzazw—i—uzayyw)ayyw
:/[ayyulaxw+28yu18xyw+u18xyyw]ayyw

—|—/[Byyuzayw+28yu28yyw—|—u28yyyw]ayyw.

The terms on the right can be bounded as follows.

‘/ayyulaxwayyw‘
1 1 1 1
< CHawaZHayy”lez ||ayyy”1”12 ||ayyw||z2 ||axyyw|‘§
1 1 1 1
< Clloxw||2[|Vayu |5 [|Adyur |5 [| Acw]|3 || Adxw]|3
1
@HwaH%JrcwaHﬁ[HvayulH§+HAW\\%)
1 1
< @HAayulHﬁJrE!!wa\\§+cllwx!!§(HVQH§+HAW\\%)-

1 2
< 451891+
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1 1 1 1

< C”ayywHZHaxyszz ||axyyw|‘22 Hayulnz2 Haxyulﬂzz
1 1 1 1
< CllAw|2]| Vs[5 [|Awx5 [|0yu |3 [[ VO3

1
< 1A+ ClIVar RV +Claymll [ Awl)z

‘/m&xwwayyw

1 1 1 1
< CHaxyywH H”1H22 ||ay“1|‘§ ||ayyw||z2 ||axyyw|‘§

3 1 1 1
< CllAwx|[z [[uallz [19yua 7 Al

1
< gglAwxlz+Cllunl3lloyu (3l Aw]3.

1 1
< CHayy”ZHZHayWHZZ H‘UyyHZHWnysz
< Jlwyll2l|Awe |24 Vayu |5 ]| Aw |3

1
< A B+CIVw|3+C[Vayml3]Aw]3.

Integration by parts yields

/ayuzawwaww: —/axulayywayyw:2/u1ayywaxyyw

and

1
/uzaywwaww:E/uzay[ayyw]z:/u1axww8yyw,

which can be bounded as

1 1 1 1
< Clloxyywll2[|9yyew |13 [[0xyyw I3 [[ua]l7 |9y 2a ]2
3 1 1 1
< l[awxll3 [Awl|z ]|z 19yu 3
< | Awxl3+Cllua |31y |3 Acwl3:
Collecting the estimates above and applying Gronwall’s inequality, we obtain the desired

global H2-bound. This completes the proof for the global H>-bound and thus the proof
of Theorem 1.1. O
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3 Proof of Theorem 1.2

This section proves Theorem 1.2, which assesses the global existence and regularity of
solutions to (1.5). Again the main task is to prove the global H*-bound for the solution.
First of all, we can easily prove the following global L2-bound.

Lemma 3.1. Assume that (u9,bo,wy) satisfies the condition stated in Theorem 1.2. Let (u,b,w)
be the corresponding solution of (1.5). Then, (u,b,w) obeys the following global L*-bound,

t t
IO+ () 2+ 0B322 [ 12s00,8,0 Fdr+2 [ [osb (o) e
0 0
t
42 [ o500 () Fadr < C( ol ol 2, ol

forany t>0.

The rest of this section is divided into two subsections. The first subsection proves the
global H!-bound while the second proves the global H2-bound, which leads to the proof
of Theorem 1.2.

3.1 Global H! bound

This subsection proves that the solution of (1.5) is globally bounded in H!-norm. More
precisely, we prove the following proposition.

Proposition 3.1. Assume that (ug,bo,wy) satisfies the condition stated in Theorem 1.2. Let
(u,b,w) be the corresponding solution of (1.5). Then (u,b,w) satisfies, for any T >0,

u,b,weC([0,T;HY).

Proof. To prove the global H!-bound, we start with the equations for Q=V x u, Vw and
j=V xb,

Qs +u-VQ= =0ty —yyyti1 +(b-V)j—Aw, (3.1)
tVw+V(u-Vw)+2Vw=Vw+VQ, (3.2)

V-u=0, V-b=0.

Taking the inner product of these equations with (Q,Vw,j), integrating by parts and
applying V-u=0and V-b=0, we obtain

1d .
> 2 IO+ 1B+ Vewl3) + | (V2ur, Tayu1) 3

+9xflI72 + [ Vw3 +2] Va3
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—2 / [0by (Dxtia +dy1i1) j— Dytty (Dxba+3yby ) jdxdy
—/Vw-Vu-Vw+2/Vw~VQ.
= h+Lh++]a+]5+]6.

The terms [y, J»,/3,J4 can be estimated in a similar fashion as in the previous section and
their corresponding bounds are

i < 45105713+ CIabBIOIB+Clu 1101

P2 < g 13-+ 1718] +COIa:1 13-+ [y ) 13
s}\\ax]uﬁcuulu oyt 31713,

Jo < 5 105718+ Clln 13y 13113

We focus on the bounds for J5 and Js. Writing out the terms in |5 explicitly and applying
V-u=0, we obtain

—/Vw-Vu-Vw:2/u1wxxwx—Z/ulwywxy—/(axuz—i—ayul)wxwy.

The terms on the right are bounded as follows.

/ulwxxwx
/8 Uiwywy| <

By integration by parts,

/axuzwxwy: —/axyuzwxw—/axuzwxyw.

The two terms on the right admit the following bounds.

18 loxell2+Cllu 219y 2] Veol I3

I\wa||z+CHu1 B0y ]Z] Vel 3.

vatz+CHa w5Vl

1 1 1 1
‘_/axymwxw' < C||axy”2|‘2||wx||22 wayﬂzz ||‘UH22 ||wx||22

1 1
<C[IVyus|2flwx 2 Vewr |3 lewllz
<ClIVau 3+ Vs ]|l 19w 2| Veo |
< ClVaxu|3+ [ Vs |3+ lw|3]w: 12 Vel 3.
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1 1 1 1
< Cllwsyll2l|9xuall3 [[0xyua 3 lwl]3 llewxl2

1 1 1 1
<C|Var[Qll2 [[Voxu |3 llwllz lexll3
<[V [3+CIQ Va2 |wll2 | well2
<IVewy3+[Voxu[3+ClQ3 w3 wl]3.

Finally, we deal with Js. There are two terms in J,

Jo=2 [ Vo vO== [wn0+2 [w,0,
They can be bounded as follows.

[ om0 <llwndallll < 3 IVaxl3+Clal

/wy Oy = [ (wyOxytia —w,dy,u1),

‘/wyayyul

<Cl[Vwl2l[Vayu2,

<C[[Vwll2[[Vayui 2.

189

Collecting the estimates above and applying Gronwall’s inequality allows us to conclude

the global H!-bound. This completes the proof of Proposition 3.1.

3.2 Global H? Bound and the proof of Theorem 1.2

O

This subsection proves Theorem 1.2. As we explained before, it suffices to prove the

global H2-bound. This is given in the following proof.

Proof of Theorem 1.2. Dotting (3.1) with V), applying V to (3.2) and then dotting with

Aw, and dotting (3.3) with Aj, we obtain

1d ,
5 7 IVOIE+IVill2+ | Aw][3) +[|Adyun |

+[|Adyus 1341 Vaxjl5+2]| Awx 13+ | Aw]l3
= L1+ Lo+ L3+ Ls+Ls+2Lg+ Ly,

where

le—/VQ-Vu-Vdedy, Lzz—/Vj-Vu-dexdy,

L3:2/VQ-Vb-dexdy, L4:2/V[8xb1(8xu2+8yu1)]-dexdy,
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Ls=—2 / V[0yu1 (952 +9,b1)]- Vjdxdy, — Le= / AQAwdxdy,
Ly= —/A(u-Vw)Awdxdy.
We write the four terms in L explicitly,
L= —/(VQ-Vu-VQ)dxdy

= — [ (@u11 (0,2 +2:120:00,03,1110,00, 0+ 3,112(3,0)°)
= Ly +Lia+Liz+Laa.

These terms can be bounded as follows.
3 1 1 1
LnSCHaxQH%HaxulezHaxxulHiHanysz
3 1 1 1
<CVQI3 |oxur |5 [[VIxus |3 [[Adxus |3
1 2 2
< @HAaxulHﬁJrCHaxulHi IVo.u]|3 [ V3.
lez/axuzaxﬂayﬂ

1 1 1 1
< Cll9xuz|[2[[0x 2|3 {02y 2|7 1|9y 2l [0, O3
< Cl[0xuz 2] VO|2 |9y |2

< 511891 [B+Cl13,u2 B VB
We note that 0y, Q2 =0y, (dxtt2 —9y111) = (—Oxxx —Oxyy) U1, and thus
192213 < Cl| A1 I3
Therefore,
Lis < 55 10w QI3-+ (11 I3+ [y )| T OI
Ly < % 194y 213 +Cllu2 [ 313 V13-
The rest of the terms are bounded as follows.
Lo < 45 V3B +Clan 31013 1V71+ IR 113:
L3< %Ilvale\%JrC(IUII%Jr 19:712) (IVQUZ+IV]1I3).

1 2, 1 , , .
Ly < 2 l1V3l3+ 5 1Oy 2+ CUIOIZ+ 112+ 10xfI2) (I Vewllz+ [ V]l2)-
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Ls admits a similar bound as L.
HwaHz+ g |A9yl3+C([VOZ +[|Aw]3
HwaHz+ 5|89+ C([Vwl+ [ Ve 2+ 1012 (VO[3 +[[Awl)3).

Combining the bounds above and then applying Gronwall’s inequality lead to the de-
sired global H2-bound. This completes the proof of Theorem 1.2. O

4 Proof of Theorem 1.3

This section proves Theorem 1.3. Due to the similarity to the proofs in the previous
two sections, we shall omit most of the details and provide only the estimates that are
significantly different from the previous ones.

First, the following global L?-bound holds.

Lemma 4.1. Assume that (u0,bo,wo) satisfies the conditions in Theorem 1.3. Let (u,b,w) be the
corresponding solution of (1.6). Then, (u,b,w) obeys the following global L?-bound,

lu(D1IZ+ 16017 + e (D172
+2/tHaxul,ayu2||§dr+2/otHaxb(r)||%2dr+2/0t|\axw(r)||%2dr
<C([luollZ.l1boll2, llewol13)
forany t>0.
The following global H'-bound can also be established.

Proposition 4.1. Assume that (ug,bo,wp) satisfies the conditions in Theorem 1.3. Let
(u,b,w) be the corresponding solution of (1.6). Then (u,b,w) satisfies, for any T >0,

u,b,w € C([0,T|;HY).

We briefly indicate the proof of Proposition 4.1. Again we invoke the equations of
O=Vxu,Vwand j=Vxb

Qi +u-VQ=—-Adyu;+(b-V)j—
Vw+V(u-w)+2Vw=Vwyuy+VQ,

jt—l—u V]:axx]+bVQ+28xb1 (axuz—i—ayul) —2axul<axb2—|—ayb1),
V-u=0, V-b=0.

Dotting the equations above with (3, Vw and j, we obtain

1d

5 77 UIQIL+ 1T + 1 Vel2) + [ (Yo, Vayu) 13

=
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+0x]lI72 + | Vx| 3+2] V|3
= 2/ [axbl (axuz—l-ayul)j—axul (axbz—i-aybl)] ]dxdy

—/Vw-Vu-Vw-l—Z/Vw-VQ
=i+ ++J3+]a+]5+]6.

All these term can be bounded as in the previous cases except the term f axuzwxwy, which
can be handled as follows. We first integrate by parts to obtain

/axuszCUy:_/uzaxxw(Uy_/uzw_xaxyw.

The two terms on the right are bounded by

1 1 1 1
< Cl|xzew|lal[u2l3 [[0yua|7 l|wyll3 [[0xyewllZ

3 1 1 1
<C|Voxw|3 [[uzll3[|9yu2l3 | Vel
<[IVews|3+Cllual3lloyu 3| Veol3

1 1 1 1
‘_/”ZWJcaxyw‘ SCHaxywHZH”Zsz Hay”ZHQ2 HWXHQZ ||axwa22
< ||V 5+ Clluz3]10yu 3] Vewll3.

Collecting the estimates would yield the desired global H!-bound.

As in the previous two cases, we can prove Theorem 1.3 by establishing the global
H2-bound. Since the process of proving the global H2-bound is similar to the previous
two cases, we shall omit the details.
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