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Abstract. This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation
given by the fractional operator (−Δ)α and the magnetic diffusion by partial Laplacian. We are able to show that this
system with any α > 0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In
addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time
decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property
for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to
get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest
on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.
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1. Introduction

The magnetohydrodynamic (MHD) equations govern the motion of electrically conducting fluids such as
plasmas, liquid metals, and electrolytes. They consist of a coupled system of the Navier–Stokes equations
of fluid dynamics and Maxwell’s equations of electromagnetism. Since their initial derivation by the Nobel
Laureate H. Alfvén in 1924, the MHD equations have played pivotal roles in the study of many phenomena
in geophysics, astrophysics, cosmology and engineering (see, e.g., [3,12]). The standard incompressible
MHD equations can be written as

ut + u · ∇u = −∇π + μΔu + b · ∇b,

bt + u · ∇b = ηΔb + b · ∇u,

∇ · u = 0, ∇ · b = 0,

(1.1)

where u denotes the velocity field, b the magnetic field, π the pressure, ν ≥ 0 the kinematic viscosity and
η ≥ 0 the magnetic diffusivity. Besides their wide physical applicability, the MHD equations are also of
great interest in mathematics. As a coupled system, the MHD equations contain much richer structures
than the Navier–Stokes equations. They are not merely a combination of two parallel Navier–Stokes type
equations but an interactive and integrated system.

One of the fundamental problems concerning the MHD equations is whether physically relevant regular
solutions remain smooth for all time or they develop finite time singularities. In recent years the MHD
regularity problem has attracted considerable interests and one focus has been on the 2D MHD equations
with partial or fractional dissipation. Important progress has been made (see, e.g, [4–10,13–17,19–23,
25,27,28,30,34–48]). The MHD equations with partial or fractional dissipation is physically relevant
and mathematically important. One special partial dissipation case is the 2D resistive MHD equations,
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namely

ut + u · ∇u = −∇π + b · ∇b,

bt + u · ∇b = η Δb + b · ∇u,

∇ · u = 0, ∇ · b = 0,

(1.2)

where η > 0 denotes the magnetic diffusivity (resistivity). Equation (1.2) is applicable when the fluid
viscosity can be ignored while the role of resistivity is important such as in magnetic reconnection and
magnetic turbulence. Magnetic reconnection refers to the breaking and reconnecting of oppositely directed
magnetic field lines in a plasma and is at the heart of many spectacular events in our solar system such as
solar flares and northern lights. The mathematical study of (1.2) may help understand the Sweet-Parker
model arising in magnetic reconnection theory [29]. Although the global regularity problem on (1.2) is
not completely solved at this moment, recent efforts on this problem have significantly advanced our
understanding.

In certain physical regimes and under suitable scaling, the full Laplacian dissipation is reduced to a
partial dissipation. One notable example is the Prandtl boundary layer equation in which only the vertical
dissipation is included in the horizontal component (see, e.g., [33]). This paper focuses on a system of the
2D MHD equations that is closely related to (1.2),

∂tu + u · ∇u + μ(−Δ)αu + ∇π = b · ∇b,

∂tb1 + u · ∇b1 − κ∂22b1 = b · ∇u1,

∂tb2 + u · ∇b2 − κ∂11b2 = b · ∇u2,

∇ · u = ∇ · b = 0.

(1.3)

The velocity equation in (1.3) involves a fractional Laplacian dissipation. The Navier–Stokes equations
with fractional dissipation can be derived from the Boltzmann equation under suitable scaling [18].
The equation of the magnetic field contains only partial dissipation. We attempt to achieve two main
goals: first, to prove the global existence and regularity of solutions of (1.3) by fully exploiting the special
structure of this system, and second, to develop a systematic approach for systems with partial dissipation
to extract large-time decay rates for solutions of (1.3).

When the partial magnetic diffusion in (1.3) is replaced by full Laplacian dissipation, the global
regularity has been obtained in [14] by using the maximal regularity property of the 2D heat operator.
However, when there is only partial dissipation, some of the classical analysis tools such as the maximal
regularity estimates can no longer be applied. To be more precise, we make a comparison between (1.2)
and (1.3). In terms of the full Laplacian operator in (1.2), we can write the equation of b in (1.2) as

b(t) = eηtΔb0 +
∫ t

0

eη(t−s)Δ(b · ∇u − u · ∇b)(s) ds.

Applying the maximal regularity of the 2D heat operator and combining with the equation of the vorticity
ω ≡ ∇ × u,

∂tω + u · ∇ω + μ(−Δ)αω = b · ∇j

with j = ∇ × b being the current density, we can show that, for any 1 < p, q < ∞ and T > 0,

Δb ∈ Lq(0, T ;Lp(R2)) and ω ∈ L∞(0, T ;Lp(R2)).

More details can be found in [14,21]. In contrast, the equation of b in (1.3) involves only partial dissipation
and the maximal regularity of the 2D heat operator no longer applies. We need a new approach and a
key new observation is the special structure in the equation of b. This observation allows us to obtain
similar global a priori bounds on solutions to (1.3) as those previously obtained for (1.2), namely

‖Δb‖Lq(0,T ;Lp) ≤ C(T, u0, b0) and ‖ω‖L∞(0,T ;Lp) ≤ C(T, u0, b0)
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for any 1 < p, q < ∞ and T > 0. We explain this more explicitly. By using the 1D heat operator, we can
write the equations of b1 and b2 (components of b) as

b1(t) = eκt∂22b0 +
∫ t

0

eκ(t−s)∂22(b · ∇u1 − u · ∇b1)(s) ds,

b2(t) = eκt∂11b0 +
∫ t

0

eκ(t−s)∂11(b · ∇u2 − u · ∇b2)(s) ds.

The maximal regularity of the 1D heat operator only leads to the global bounds

‖∂22b1‖Lq(0,T ;Lp) ≤ C(T, u0, b0) and ‖∂11b2‖Lq(0,T ;Lp) ≤ C(T, u0, b0).

A key observation on the structure of the equation of b allows us to prove global bounds for ‖∂12b1‖Lq(0,T ;Lp)

and ‖∂12b2‖Lq(0,T ;Lp). More precisely, combining the representation

∂12b1(t) = ∂12e
κt∂22b0 +

∫ t

0

eκ(t−s)∂22∂12(b · ∇u1 − u · ∇b1)(s) ds

with the special structure

∂12 (b · ∇u1 − u · ∇b1) = ∂12 (∂1(b1u1) + ∂2(b2u1) − ∂1(u1b1) − ∂2(u2b1))
= ∂22 (∂1(b2u1) − ∂1(u2b1))

leads to the desired global bound for ‖∂12b1‖Lq(0,T ;Lp). The bound for ‖∂12b2‖Lq(0,T ;Lp) is similarly
obtained.

A special consequence of these global bounds is the following global existence and regularity result on
(1.3).

Theorem 1.1. Consider (1.3) with μ > 0, 0 < α ≤ 1 and κ > 0. Assume the initial data (u0, b0) ∈ Hs(R2)
with s ≥ 3 and ∇ · u0 = ∇ · b0 = 0. Then (1.3) has a unique global solution (u, b) satisfying, for any
T > 0,

u ∈ C([0,∞);Hs(R2)) ∩ L2(0, T ;Hs+α(R2)),
b ∈ C([0,∞);Hs(R2)), ∂2b1, ∂1b2 ∈ L2(0, T ;Hs(R2)).

Our second main result details the large-time behavior of the global solutions obtained in Theorem 1.1
and provides explicit decay rates for various norms of the solutions. We have been aiming at developing
effective approaches to understand the large-time behavior of partially dissipated systems. Systematic
procedures such as the Fourier splitting method of Schonbek have been developed to deal with various
fully dissipative partial differential equations and a very rich array of results have been established (see,
e.g, [1,31]). To extend these results to partially dissipated systems, we need to overcome some major
difficulties. For example, the Fourier splitting method does not directly apply to partially dissipated
systems. Here we fully exploit the special structure of the system in (1.3) and are able to prove the
following large-time decay results.

Theorem 1.2. Consider (1.3) with μ > 0, κ > 0 and 0 < α < 1
2 . Assume (u0, b0) ∈ Hs with s ≥ 3 and

∇·u0 = ∇· b0 = 0. Let (u, b) be the corresponding solution of (1.3) as stated in Theorem 1.1. If the initial
data (u0, b0) satisfies

|û0(ξ)| ≤ C
√

|ξ|, ‖b̂01(ξ)‖L2
ξ1

≤ C
√

|ξ2| and ‖b̂02(ξ)‖L2
ξ2

≤ C
√

|ξ1|, (1.4)

then (u, b) obeys, for any t > 0,

‖b(t)‖L2 ≤ C (1 + t)− 1
2 , ‖∇b(t)‖L2 ≤ C (1 + t)−1;

and

‖u(t)‖L2 ≤ C(1 + t)−( 3
2− α

2 ), ‖∇u(t)‖L2 ≤ C(1 + t)−1− α
2 .
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We remark that the assumptions in (1.4) are typical in the study of large-time behavior of solutions
(see, e.g., [31,32]). Functions in suitable Sobolev spaces of negative indices would fulfill these assumptions.
Since our main focus here is to understand the large-time behavior of the nonlinear terms under the
fractional and partial dissipation, these assumptions are made here to coordinate this main goal. The
proof of Theorem 1.2 is divided into several steps. The first step shows that

(1 + t)
(‖∇u(t)‖2

L2 + ‖∇b(t)‖2
L2

) → 0 as t → ∞,

which follows from the uniform global H1 bounds for (u, b) and the time integrability of ‖Λαu‖2
L2 ,

‖(∂2b1, ∂1b2)‖2
L2 and ‖Λαω‖2

L2 . The second step asserts that, for any ε > 0,

‖(u(t), b(t))‖L2 ≤ C(1 + t)− 1
2+ε for any t > 0.

To prove this decay rate, we represent u, b1 and b2 in integral forms and make use of the special structures
of the equations of b1 and b2. By differentiating the integral representations of b1 and b2, dividing the
time integral into several pieces and taking advantage of the special structure of the equations of b1 and
b2, we further show that, for any t > 0,

‖∇b(t)‖L2 ≤ C(1 + t)−1,

which in turn allows us to improve the decay rate for ‖b(t)‖L2 ,

‖b(t)‖L2 ≤ C(1 + t)− 1
2 .

The decay rates for ‖u(t)‖L2 and ‖∇u(t)‖L2 are obtained by applying and generalizing the Fourier splitting
method of Schonbek [31].

The rest of the paper is divided into two sections. Section 2 proves Theorem 1.1 while Sect. 3 supplies
the proof of Theorem 1.2.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, the global existence and uniqueness of smooth
solution to (1.3). The key component of the proof is the global a priori bound for (u, b) in Hs with s ≥ 3.
For the sake of clarity, we divide the estimates into several regularity levels. The first subsection proves
the global H1 bound, the second subsection establishes Lq-bounds for ω and Δb for any q ∈ (1,∞) and
the third subsection provides the global bound for ‖∇u‖L∞ and finishes the proof of Theorem 1.1.

2.1. Global H1 Estimate

We prove that any classical solution of (1.3) admits a global H1-bound, as stated in the following propo-
sition.

Proposition 2.1. Assume α > 0, μ ≥ 0, κ > 0 and (u0, b0) ∈ H1(R2) with ∇ · u0 = ∇ · b0 = 0. Then the
corresponding solution (u, b) obeys the following uniform bounds, for any 0 < t < ∞,

‖u(t)‖2
L2 + ‖b(t)‖2

L2 + 2
∫ t

0

(
μ‖Λαu‖2

L2ds + κ‖∂2b1‖2
L2 + κ‖∂1b2‖2

L2

)
ds ≤ C, (2.1)

‖ω(t)‖2
L2 + ‖j(t)‖2

L2 + 2μ

∫ t

0

‖Λαω(s)‖2
L2ds +

∫ t

0

H(b, s)ds ≤ C, (2.2)

where Λs = (−Δ)s/2,

H(b, t) = κ

∫
R2

(
(∂11b2)2 + (∂11b1)2 + (∂22b2)2 + (∂22b1)2

)
dx

and C’s are positive constants depending on κ and ‖(u0, b0)‖H1 only.
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Proof. Taking the L2 inner product of (1.3) with (u, b) and integrating in time yield

‖u(t)‖2
L2 + ‖b(t)‖2

L2 + 2μ

∫ t

0

‖Λαu(s)‖2
L2ds + 2κ

∫ t

0

(‖∂2b1(s)‖2
L2 + ‖∂1b2(s)‖2

L2

)
ds

≤ ‖u0‖2
L2 + ‖b0‖2

L2 ,

which is (2.1). The vorticity ω = ∇ × u = ∂1u2 − ∂2u1 and the current density j = ∇ × b = ∂1b2 − ∂2b1

satisfy
∂tω + u · ∇ω + μ(−Δ)αω = b · ∇j,

∂tj + u · ∇j − κ∂111b2 + κ∂222b1 = b · ∇ω + T (∇u,∇b),
(2.3)

where T (∇u,∇b) = 2∂1b1(∂1u2 + ∂2u1) − 2∂1u1(∂1b2 + ∂2b1). Taking the inner products of the vorticity
equation in (2.3) with ω and the current density equation with j, adding the results and integrating by
parts, we have

1
2

d

dt

(‖ω(t)‖2
L2 + ‖j(t)‖2

L2

)
+ μ‖Λαω‖2

L2 + I =
∫
R2

T j dx,

where

I = κ

∫
R2

(−∂111b2 + ∂222b1)j dx.

We first show I = H(b, t). In fact,

I = κ

∫
R2

(−∂111b2 + ∂222b1)(∂1b2 − ∂2b1)dx

= κ

∫
R2

(−∂111b2∂1b2 + ∂111b2∂2b1 + ∂222b1∂1b2 − ∂222b1∂2b1)dx

= κ

∫
R2

(
(∂11b2)2 + (∂11b1)2 + (∂22b2)2 + (∂22b1)2

)
dx ≡ H(b, t)

due to ∂1b1 + ∂2b2 = 0. By Hölder’s inequality and Sobolev’s inequality,∫
R2

Tjdx ≤ C ‖∇u‖L2‖∇b‖L4‖j‖L4

≤ C ‖ω‖L2‖j‖2
L4 ≤ C(κ) ‖ω‖2

L2‖j‖2
L2 +

κ

8
‖∇j‖2

L2 ,

where we have used the fact that the Calderon-Zygmund operators are bounded on Lp (1 < p < ∞). It
is easy to verify that

κ

4
‖∇j‖2

L2 ≤ H(b, t).

Indeed,

κ‖∇j‖2
L2 = κ‖(∂1j, ∂2j)‖2

L2 = κ‖((∂11b2 − ∂12b1), (∂12b2 − ∂22b1))‖2
L2

= κ‖((∂11b2 + ∂22b2), (−∂11b1 − ∂22b1))‖2
L2 ≤ 4H(b, t).

Combining the estimates above yields
d

dt

(‖ω(t)‖2
L2 + ‖j(t)‖2

L2

)
+ 2μ‖Λαω‖2

L2 + H(b, t) ≤ C(κ)‖ω‖2
L2‖j‖2

L2 .

Gronwall’s inequality, together with the fact

‖j‖2
L2 ≤ 2‖∂1b2‖2

L2 + 2‖∂2b1‖2
L2

allows us to conclude that
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‖ω(t)‖2
L2 + ‖j(t)‖2

L2 + 2μ

∫ t

0

‖Λαω(s)‖2
L2ds +

∫ t

0

H(b, s)ds

≤ (‖ω0‖2
L2 + ‖j0‖2

L2

)
exp

{
C(κ)

∫ t

0

‖j(s)‖2
L2ds

}

≤ (‖∇u0‖2
L2 + ‖∇b0‖2

L2

)
exp

{
C(κ)

(‖u0‖2
L2 + ‖b0‖2

L2

)}
.

This completes the proof of Proposition 2.1. �

2.2. Lq -Bounds for ω and Δb with q ∈ (1, ∞)

This subsection presents the global bound for ‖Δb‖L2
t Lq

x
and ‖ω‖L∞

t Lq
x

for q ∈ (1,∞). As aforementioned
in the introduction, due to the lack of full Laplacian dissipation, the maximal regularity estimate for the
2D heat operator can not be used here. Instead, we make use of a key observation on the special structure
of the MHD equations and the maximal regularity estimate for the 1D heat operator. We remark this
step does not allow us to obtain the global bounds for q = ∞.

Proposition 2.2. Assume that u0 and b0 satisfy the conditions in Theorem 1.1. Let (u, b) be the corre-
sponding solution of the (1.3). Then (u, b) obeys, for any q ∈ (1,∞) and any 0 < t < ∞,

‖Λ1+αb‖L∞(0,t;L2), ‖Δb‖L2(0,t;Lq), ‖ω‖L∞(0,t;Lq) ≤ C(t, u0, b0). (2.4)

To prove this proposition, we recall the maximal regularity property for the heat operator (see, e.g.,
[2], [26, p.64]).

Lemma 2.3. Assume Kd(x, t) is the heat kernel of d-dimensional heat equation

Kd(x, t) = (4πt)− d
2 e− |x|2

4t

and define the operator A as

Af(x, t) ≡
∫ t

0

∫
Rd

Kd(y, s)Δxf(x − y, t − s) dyds.

Then, for any T ∈ (0,∞] and p, q ∈ (1,∞), the operator A maps Lp(0, T ;Lq(Rd)) to Lp(0, T ;Lq(Rd)).

We are now ready to prove Proposition 2.2.

Proof of Proposition 2.2. We first bound ‖Λ1+αb‖L∞(0,t;L2). Taking the inner product of magnetic equa-
tions in (1.3) with Λ2+2αb leads to

1
2

d

dt
‖Λ1+αb(t)‖2

L2 +
κ

2
‖Λ2+αb‖2

L2 ≤
∫
R2

(b · ∇u − u · ∇b)Λ2+2αb dx, (2.5)

where we have used the following observation

‖Λ1+α∂2b1‖2
L2 + ‖Λ1+α∂1b2‖2

L2

≥ 1
2
‖Λ1+α(∂1b2 − ∂2b1)‖2

L2 =
1
2
‖Λ1+αj‖2

L2 ≥ 1
2
‖Λ2+αb‖2

L2 .

Applying Hölder inequality, Proposition 2.1 and Young’s inequality, the right hand side of (2.5) can be
bounded by∫

R2
(b · ∇u) · Λ2+2αb dx

≤ ‖Λα(b · ∇u)‖L2 ‖Λ2+αb‖L2

≤
(
‖Λαb‖∞‖∇u‖L2 + ‖b‖∞‖Λα∇u‖L2

)
‖Λ2+αb‖L2

≤ κ

8
‖Λ2+αb‖2

L2 + C
(
‖b‖2

L2 + ‖Λ2b‖2
L2

)
‖ω‖2

L2 + C
(
‖b‖2

L2 + ‖Λ1+αb‖2
L2

)
‖Λαω‖2

L2
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≤ κ

8
‖Λ2+αb‖2

L2 + C‖Λ1+αb‖2
L2‖Λαω‖2

L2 + C
(
H(b, t) + ‖Λαω‖2

L2 + 1
)

and ∫
R2

(u · ∇b) · Λ2+2αb dx ≤ ‖Λα(u · ∇b)‖L2 ‖Λ2+αb‖L2

≤
(
‖Λαu‖

L
2
α

‖∇b‖
L

2
1−α

+ ‖u‖∞‖Λα∇b‖L2

)
‖Λ2+αb‖L2

≤ κ

8
‖Λ2+αb‖L2 + C‖Λ1+αb‖2

L2‖ω‖2
L2 + C

(
‖u‖2

L2 + ‖Λ1+αu‖2
L2

)
‖Λ1+αb‖2

L2

≤ κ

8
‖Λ2+αb‖L2 + C‖Λ1+αb‖2

L2

(
‖Λαω‖2

L2 + 1
)
.

Combining the estimates and employing Gronwall’s inequality give

‖Λ1+αb(t)‖2
L2 ≤

(
‖Λ1+αb0‖2

L2 + C + Ct
)

exp(C + Ct). (2.6)

In addition, (2.6), together with Proposition 2.1, implies

‖b(t)‖L∞ ≤ ‖b(t)‖L2 + ‖Λ1+αb(t)‖L2 ≤ C.

We now prove the global Lq-bounds for ω and Δb. To serve this purpose, we write the second equation
of (1.3) in the integral form

b1(x1, x2, t) =
∫
R

K1(y2, t) b01(x1, x2 − y2) dy2

+
∫ t

0

∫
R

K1(y2, s) (b · ∇u1 − u · ∇b1)(x1, x2 − y2, t − s) dy2ds

= J1 + J2.

For any 2 < q < ∞, we bound ‖∂22b1‖L2(0,t;Lq(R2)). Taking the Lq-norm with respect to x1 and then the
Lq-norm in x2, we have ∫ t

0

‖∂22J1‖2
Lq(R2)ds

≤
∫ t

0

∥∥∥∥
∫
R

K1(y2, s) ∂x2x2b01(x1, x2 − y2)dy2

∥∥∥∥
2

Lq(R2)

ds

≤ C

∫ t

0

‖K1‖2
L1(R) ‖∂x2x2b01‖2

Lq(R2) ds

≤ C t ‖b01‖2
H3 . (2.7)

where we have used the fact ‖K1‖L1(R) = 1. To estimate J2, we first take the Lq-norm in x1 and then
the Lq-norm in x2, we obtain, after applying Lemma 2.3,∫ t

0

‖∂22J2‖2
Lq(R2)ds

≤ C

∫ t

0

‖b · ∇u1 − u · ∇b1‖2
Lq(R2) ds

≤ C

∫ t

0

(
‖b‖2

L∞‖∇u1‖2
Lq + ‖u‖2

L2q‖∇b1‖2
L2q

)
ds

≤ C

∫ t

0

(
‖ω‖2

Lq +
(
‖u‖2

L2 + ‖∇u‖2
L2

)(
‖b‖2

L2 + ‖Δb‖2
L2

)
ds

≤ C

∫ t

0

‖ω‖2
Lqds + C

∫ t

0

(H(b, s) + 1)ds



1548 B.-Q. Dong et al. JMFM

≤ C

∫ t

0

‖ω‖2
Lqds + C(t + 1), (2.8)

where Hölder’s inequality, Sobolev’s inequality and Proposition 2.1 have been used. Combining the esti-
mates above, we have

∫ t

0

‖∂22b1(s)‖2
Lq(R2)ds ≤ C

∫ t

0

‖ω‖2
Lqds + Ct + C. (2.9)

We now prove that ‖∂12b1‖Lp(0,t;Lq(R2) is bounded globally. ‖∂12J1‖2
Lq(R2) can be bounded as in (2.7),

∫ t

0

‖∂12J1‖2
Lq(R2)ds ≤ C t ‖b01‖2

H3 .

But ‖∂12J2‖2
Lq(R2) is estimated differently from (2.8) due to the lack of dissipation in x1-direction. The

special structure of the equation of b still allows us to gain the needed derivative. Due to ∇ · u = 0 and
∇ · b = 0, we have the following observation

∂12 (b · ∇u1 − u · ∇b1) = ∂12 (∂1(b1u1) + ∂2(b2u1) − ∂1(u1b1) − ∂2(u2b1))
= ∂22 (∂1(b2u1) − ∂1(u2b1)) .

As a consequence, we have, by Lemma 2.3 and Proposition 2.1,
∫ t

0

‖∂12J2‖2
Lq(R2)ds

=
∫ t

0

∥∥∥∥
∫ s

0

∫
R

K1(y2, τ)∂12(b · ∇u1 − u · ∇b1)(x1, x2 − y2, s − τ)dy2dτ

∥∥∥∥
2

Lq(R2)

ds

=
∫ t

0

∥∥∥∥∂22

∫ s

0

∫
R

K1(y2, τ)(∂1(b2u1) − ∂1(u2b1))(x1, x2 − y2, s − τ)dy2dτ

∥∥∥∥
2

Lq(R2)

ds

≤ C

∫ t

0

‖∂1(b2u1) − ∂1(u2b1)‖2
Lq(R2) ds

≤ C

∫ t

0

(
‖b‖2

L∞‖∇u‖2
Lq + ‖u‖2

L2q‖∇b‖2
L2q

)
ds

≤ C

∫ t

0

‖ω‖2
Lqds +

∫ t

0

(
‖u‖2

L2 + ‖∇u‖2
L2

)(
‖b‖2

L2 + ‖Δb‖2
L2

)
ds

≤ C

∫ t

0

‖ω‖2
Lqds + C

∫ t

0

(H(b, s) + 1)ds

≤ C

∫ t

0

‖ω‖2
Lqds + C(t + 1).

Hence we have reached the following bound
∫ t

0

‖∂12b1(s)‖2
Lq(R2)ds ≤ C

∫ t

0

‖ω‖2
Lqds + Ct + C. (2.10)

We now consider b2, the second component of b. Again we write the equation for b2 in (1.3) in the following
integral form

b2(x1, x2, t) =
∫
R

K1(y1, t)b02(x1 − y1, x2)dy1

+
∫ t

0

∫
R

K1(y1, s)(b · ∇u2 − u · ∇b2)(x1 − y1, x2, t − s)dy1ds.
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Likewise, we obtain∫ t

0

‖∂11b2(s)‖2
Lq(R2)ds +

∫ t

0

‖∂12b2(s)‖2
Lq(R2)ds ≤ C

∫ t

0

‖ω‖2
Lqds + Ct + C, (2.11)

where the only difference in the estimation of ∂12b2(s) lies in the relation

∂12 (b · ∇u2 − u · ∇b2) = ∂12 (∂1(b1u2) + ∂2(b2u2) − ∂1(u1b2) − ∂2(u2b2))
= ∂11 (∂2(b1u2) − ∂2(u1b2)) .

Combining (2.9), (2.10) and (2.11) leads to∫ t

0

‖Δb(s)‖2
Lq(R2)ds

≤ C

∫ t

0

(
‖∂22b1(s)‖2

Lq(R2) + ‖∂22b2(s)‖2
Lq(R2) + ‖∂11b2(s)‖2

Lq(R2) + ‖∂11b1(s)‖2
Lq(R2)

)
ds

= C

∫ t

0

(
‖∂22b1(s)‖2

Lq(R2) + ‖∂12b1(s)‖2
Lq(R2) + ‖∂11b2(s)‖2

Lq(R2) + ‖∂12b2(s)‖2
Lq(R2)

)
ds

≤ C

∫ t

0

‖ω‖2
Lqds + Ct + C. (2.12)

Due to the Calderon–Zygmund inequality,∫ t

0

‖∇j(s)‖2
Lq(R2)ds ≤ C

∫ t

0

‖Δb(s)‖2
Lq(R2)ds

≤ C

∫ t

0

‖ω‖2
Lqds + Ct + C. (2.13)

Multiplying the vorticity equation in (2.3), namely

∂tω + u · ∇ω + μ(−Δ)αω = b · ∇j

by |ω|q−2ω and integrating on R
2, we have

1
q

d

dt
‖ω(t)‖q

Lq + C(q)μ‖Λα(|ω| q
2 )‖2

L2

≤
∫
R2

b · ∇j|ω|q−2ωdx ≤ ‖b‖L∞‖∇j‖Lq‖ω‖q−1
Lq

≤ C‖∇j‖Lq‖ω‖q−1
Lq ≤ C

(
‖∇j‖2

Lq + ‖ω‖2
Lq

)
‖ω‖q−2

Lq , (2.14)

where we have invoked the lower bound, for any α ∈ (0, 1],∫
R2

ω|ω|q−2 (−Δ)αω dx ≥ C(q) ‖Λα(|ω| q
2 )‖2

L2 .

Integrating (2.14) in time and combining with (2.13) lead to

‖ω(t)‖2
Lq ≤ ‖ω0‖2

Lq +
∫ t

0

(
‖∇j‖2

Lq + ‖ω‖2
Lq

)
ds

≤ C

∫ t

0

‖ω‖2
Lqds + Ct + C.

Applying Gronwall’s inequality yields the desired bound

‖ω(t)‖2
Lq ≤ C(t + 1) (1 + C t exp(Ct))

and, due to (2.12), ∫ t

0

‖Δb(s)‖2
Lq(R2)ds ≤ Ct(t + 1)(1 + C t exp(Ct)).
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Sobolev’s inequality then implies ∫ t

0

‖∇b(s)‖L∞(R2)ds ≤ C(t, u0, b0).

This completes the proof of Proposition 2.2. �

2.3. L∞-Bound for the Gradient ∇u

Making use of the global bounds obtained in two previous subsections, we obtain a global bound for the
L∞-norm of ∇u. This crucial global bound then ensures a global bound for ‖(u, b)‖Hs for any s ≥ 3.

Proposition 2.4. Assume (u0, b0) satisfies the conditions stated in Theorem 1.1. Let (u, b) be the corre-
sponding solution of (1.3). Then, (u, b) admits the following global bounds, for any 0 < t < ∞,∫ t

0

‖∇u(τ)‖L∞ dτ ≤ C(t, u0, b0), ‖(u(t), b(t))‖Hs ≤ C(t, u0, b0).

Proof. Taking the inner product of (2.3) with (−Δω,−Δj), we have
1
2

d

dt

(
‖∇ω(t)‖2

L2 + ‖∇j(t)‖2
L2

)
+ μ‖Λ1+αω‖2

L2 +
κ

2
‖Δj‖2

L2

≤
∫
R2

(u · ∇ω − b · ∇j)Δωdx +
∫
R2

(u · ∇j − b · ∇ω)Δjdx

−
∫
R2

(T (∇u,∇b))Δjdx,

where we have used the following observation∫
R2

(−∂111b2 + ∂222b1)(−Δ∂1b2 + Δ∂2b1)dx

=
∫
R2

(−∂111Λb2∂1Λb2 + ∂111Λb2∂2Λb1 + ∂222Λb1∂1Λb2 − ∂222Λb1∂2Λb1)dx

=
∫
R2

(
(∂11Λb2)2 + (∂11Λb1)2 + (∂22Λb2)2 + (∂22Λb1)2

)
dx

≥ 1
2

∫
R2

|ΔΛb|2dx =
1
2
‖Δj‖2

L2 .

Applying Propositions 2.1 and 2.2, we have∫
R2

(u · ∇ω − b · ∇j)Δωdx

≤ C ‖∇u‖
L

2
α

‖∇ω‖L2‖∇ω‖
L

2
1−α

+
(
‖b‖L∞‖Δj‖L2 + ‖∇b‖

L
2

1−α
‖∇j‖

L
2
α

)
‖∇ω‖L2

≤ C ‖ω‖
L

2
α

‖∇ω‖L2‖Λ1+αω‖L2 +
(
‖b‖L∞‖Δj‖L2 + ‖Λ1+αb‖L2‖∇j‖

L
2
α

)
‖∇ω‖L2

≤ μ

8
‖Λ1+αω‖2

L2 +
κ

8
‖Λ2j‖2

L2 + C
(
1 + ‖∇j‖2

L
2
α

)
‖∇ω‖2

L2 ,∫
R2

(u · ∇j − b · ∇ω)Δjdx

≤ C (‖u‖L4‖∇j‖L4 + ‖b‖L∞‖∇ω‖L2)‖Δj‖L2

≤ κ

8
‖Λ2j‖2

L2 + C‖∇ω‖2
L2 + C‖∇j‖2

L4

and
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∫
R2

T (∇u,∇b)Δj dx

≤ C ‖∇u‖
L

2
α

‖∇b‖
L

2
1−α

‖Δj‖L2

≤ κ

8
‖Λ2j‖2

L2 + C‖ω‖2

L
2
α

‖Λ1+αb‖2
L2 ≤ κ

8
‖Λ2j‖2

L2 + C.

Combining these estimates and applying Gronwall’s inequality yield

(‖∇ω(t)‖2
L2 + ‖∇j(t)‖2

L2) +
μ

2

∫ t

0

‖Λ1+αω‖2
L2ds +

κ

2

∫ t

0

‖Λ2j‖2
L2ds

≤
(
‖∇ω0‖2

L2 + ‖∇j0‖2
L2

)
(Ct + exp(C + Ct)),

which implies
∫ t

0

‖∇u(s)‖L∞ds ≤
∫ t

0

(
‖∇u‖L2 + ‖Λ2+αu‖L2

)
ds ≤ C(t, u0, b0).

To show the global bound for (u, b) in Hs, we start with the energy inequality

1
2

d

dt

(
‖u‖2

Hs + ‖b‖2
Hs

)
+ μ‖Λαu‖2

Hs +
κ

2
‖Λb‖2

Hs

=
∫
R2

[Λs, u · ∇]u · Λsudx +
∫
R2

[Λs, u · ∇]b · Λsbdx

+
∫
R2

[Λs, b · ∇]b · Λsudx +
∫
R2

[Λs, b · ∇]u · Λsbdx, (2.15)

where [a, b] is the standard commutator notation, namely [a, b] = ab − ba. Invoking the commutator
estimate (see, e.g., [24])

‖[Λs, f ]g‖Lp ≤ C‖∇f‖Lq ‖Λs−1g‖Lr + C ‖∇sf‖Lq1 ‖g‖Lr1

where s > 0, p, r, q1 ∈ (1,∞), q, r1 ∈ [1,∞] and 1/p = 1/q + 1/r = 1/q1 + 1/r1, the right hand side of
(2.15) can be bounded by

C (‖∇u‖L∞ + ‖∇b‖L∞)
(‖u‖2

Hs + ‖b‖2
Hs

)
.

Gronwall’s inequality then leads to

‖u‖2
Hs + ‖b‖2

Hs ≤ C(t, u0, b0).

This completes the proof of Proposition 2.4. �

With the global bounds in the previous propositions at our disposal, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof is achieved via a standard procedure. First we seek the solution of a
regularized system. We begin by introducing a few notation. For ε > 0, we denote by φε the standard
mollifier, namely

φε(x) = ε−2φ(ε−1|x|)
with

φ ∈ C∞
0 (R2), φ(x) = φ(|x|), suppφ ⊂ {x||x| < 1},

∫
R2

φ(x) dx = 1.

For any locally integrable function v, define the mollification Jεv by

Jεv = φε ∗ v.
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Let P denote the Leray projection operator (onto divergence-free vector fields). We seek a solution (uε, bε)
of the system

∂tu
ε + PJε((Jεu

ε) · ∇(Jεu
ε)) + μJ 2

ε (−Δ)αuε = PJε((Jεb
ε) · ∇(Jεb

ε)),

∂tb
ε
1 + Jε((Jεu

ε) · ∇(Jεb
ε
1)) − κJ 2

ε ∂22b
ε
1 = Jε((Jεb

ε) · ∇(Jεu
ε
1)),

∂tb
ε
2 + Jε((Jεu

ε) · ∇(Jεb
ε
2)) − κJ 2

ε ∂11b
ε
2 = Jε((Jεb

ε) · ∇(Jεu
ε
2)),

∇ · uε = ∇ · bε = 0

(uε, wε)(x, 0) = (u0 ∗ φε, b0 ∗ φε) = (uε
0, b

ε
0).

(2.16)

Following the lines as those in the proofs of Propositions 2.1, 2.2 and 2.4, we can establish the global
bound, for any t ∈ (0,∞),

‖uε(t)‖2
Hs + ‖bε(t)‖2

Hs ≤ C(t, u0, b0). (2.17)

A standard compactness argument allows us to obtain the global existence of the classical solution (u, b)
to (1.3). The uniqueness can also be easily established. We omit further details. This completes the proof
of Theorem 1.1. �

3. Proof of Theorem 1.2

This section proves Theorem 1.2. For the sake of clarity, we divide the estimates into several decay levels.
Correspondingly, this section is divided into three subsections. The first subsection shows that

(1 + t)
(‖∇u(t)‖2

L2 + ‖∇b(t)‖2
L2

) → 0 as t → ∞,

which follows from the uniform global H1 bounds for (u, b) and the time integrability of ‖Λαu‖2
L2 ,

‖(∂2b1, ∂1b2)‖2
L2 and ‖Λαω‖2

L2 . The second subsection proves the global optimal bounds for b,

‖∇b(t)‖L2 ≤ C(1 + t)−1, ‖b(t)‖L2 ≤ C(1 + t)− 1
2 .

To achieve this goal, we first obtain the intermediate decay rate, for any ε > 0,

‖(u(t), b(t))‖L2 ≤ C(1 + t)− 1
2+ε for any t > 0. (3.1)

To prove (3.1), we represent u, b1 and b2 in integral forms and make use of the special structures of the
equations of b1 and b2. Once (3.1) is proven, we further differentiate the integral representations of b1

and b2, divide the time integral into several pieces and take advantage of the special structure of the
equations of b1 and b2 to show that, for any t > 0,

‖∇b(t)‖L2 ≤ C(1 + t)−1,

which in turn allows us to improve the decay rate for ‖b(t)‖L2 ,

‖b(t)‖L2 ≤ C(1 + t)− 1
2 .

The third subsection provides faster decay rates for ‖u(t)‖L2 and ‖∇u(t)‖L2 , which are obtained by
applying and generalizing the Fourier splitting method of Schonbek [31].

3.1. Decay Estimates for ‖(∇u, ∇b)‖L2

This subsection shows that the L2-norm of ∇u and ∇b decays faster than (1 + t)− 1
2 as t → ∞. More

precisely, the following proposition holds.

Proposition 3.1. Suppose (u, b) is a solution of (1.3) with the corresponding initial data (u0, b0) ∈ H1.
Then

t
(‖∇u(t)‖2

L2 + ‖∇b(t)‖2
L2

) → 0 as t → ∞. (3.2)
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Proof. As in the proof of Proposition 2.1, we have for 0 ≤ s < t ≤ ∞,

‖u(t)‖2
L2 + ‖b(t)‖2

L2 + 2μ

∫ t

s

‖Λαu(τ)‖2
L2dτ + 2κ

∫ t

s

(
‖∂2b1(τ)‖2

L2 + ‖∂1b2(τ)‖2
L2

)
dτ

≤ ‖u(s)‖2
L2 + ‖b(s)‖2

L2 (3.3)

and

‖ω(t)‖2
L2 + ‖j(t)‖2

L2 + 2μ

∫ t

s

‖Λαω(τ)‖2
L2dτ

≤
(
‖ω(s)‖2

L2 + ‖j(s)‖2
L2

)
exp

{
C(κ)

∫ t

s

‖j(τ)‖2
L2dτ

}

≤
(
‖ω(s)‖2

L2 + ‖j(s)‖2
L2

)
exp

{
C(κ)

∫ t

0

‖j(τ)‖2
L2dτ

}

≤
(
‖ω(s)‖2

L2 + ‖j(s)‖2
L2

)
exp

{
C(κ)(‖u0‖2

L2 + ‖b0‖2
L2)

}
. (3.4)

Therefore, ∫ ∞

0

‖∇b(s)‖2
L2ds =

∫ ∞

0

‖j(s)‖2
L2ds

≤ 2
∫ ∞

0

(
‖∂2b1(τ)‖2

L2 + ‖∂1b2(τ)‖2
L2

)
dτ ≤ C(‖u0‖L2 + ‖b0‖L2).

By Sobolev’s inequality,∫ ∞

0

‖∇u(s)‖2
L2ds ≤

∫ ∞

0

(
‖Λαu(s)‖2

L2 + ‖Λαω(s)‖2
L2)ds ≤ C(‖u0‖H1 + ‖b0‖H1

)
.

A special consequence is that∫ t

t
2

(
‖∇u(τ)‖2

L2 + ‖∇b(τ)‖2
L2

)
dτ → 0 as t → ∞.

(3.4) then implies
t

2
exp

{−C(κ)(‖u0‖2
L2 + ‖b0‖2

L2)
}(

‖∇u(t)‖2
L2 + ‖∇b(t)‖2

L2

)

≤
∫ t

t
2

(
‖∇u(τ)‖2

L2 + ‖∇b(τ)‖2
L2

)
dτ,

which yields the desired decay rate

(1 + t)
(
‖∇u(t)‖2

L2 + ‖∇b(t)‖2
L2

)
→ 0 as t → ∞.

This completes the proof of Proposition 3.1. �

3.2. Optimal Decay Rates for b and ∇b

This subsection derives the optimal decay rates for ‖b(t)‖L2 and ‖∇b(t)‖L2 . To do so, we need to overcome
the difficulty due to the lack of full Laplacian dissipation. We make use of a key observation on the
structure of the equation of b. First we recall the Lp −Lq decay estimates of the heat operator associated
with the fractional Laplacian.

Lemma 3.2. (Schonbek [32]) Let α > 0, μ > 0, 1 ≤ p ≤ q ≤ ∞ and m ≥ 0. The following Lp − Lq

estimate on the semigroup e−κ(−Δ)αt is valid for any t > 0,

‖∇me−μ(−Δ)αtf‖Lq(R2) ≤ C t
− m

2α − 1
α

(
1
p − 1

q

)
‖f‖Lp(R2). (3.5)
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Proposition 3.3. Assume the same conditions as in Theorem 1.2. Then the corresponding solution (u, b)
of (1.3) admits the following decay rates

‖b(t)‖L2 ≤ C(1 + t)− 1
2 , ‖∇b(t)‖L2 ≤ C(1 + t)−1. (3.6)

Proof. We write the momentum equation of (1.3) in the integral form,

u(t) = e−μ(−Δ)αtu0 +
∫ t

0

e−μ(−Δ)α(t−s)
P(b · ∇b − u · ∇u)(s) ds

= e−μ(−Δ)αtu0 +
∫ t

2

0

e−μ(−Δ)α(t−s)
P(b · ∇b − u · ∇u)(s) ds

+
∫ t

t
2

e−μ(−Δ)α(t−s)
P(b · ∇b − u · ∇u)(s) ds, (3.7)

where P denotes the Leray projection onto divergence-free vector fields. This projection allows us to
eliminate the pressure term. We start with the estimates of the first term. For t ≥ 1, we use Plancherel’s
Theorem and (1.4) to obtain

‖e−μ(−Δ)αtu0‖L2(R2
x) = ‖e−μ|ξ|2αtû0‖L2(R2

ξ) ≤ C‖e−μ|ξ|2αt
√

|ξ|‖L2(R2
ξ) ≤ Ct−

3
4α .

For t < 1,

‖e−μ(−Δ)αtu0‖L2(R2
x) ≤ ‖u0‖L2(R2

x).

Therefore,

‖e−μ(−Δ)αtu0‖L2(R2) ≤ C(1 + t)− 3
4α ,

where C = C(u0) is a constant independent of t. By Lemma 3.2,∥∥∥∥∥
∫ t

2

0

e−μ(−Δ)α(t−s)
P(b · ∇b − u · ∇u)(s) ds

∥∥∥∥∥
L2

=

∥∥∥∥∥
∫ t

2

0

∇e−μ(−Δ)α(t−s)
P(b ⊗ b − u ⊗ u)(s) ds

∥∥∥∥∥
L2

≤ C

∫ t
2

0

(t − s)− 1
α

(
‖b(s)‖2

L2 + ‖u(s)‖2
L2

)
ds.

Also by Lemma 3.2, for any 2 < 1
α < r < 2

α ,∥∥∥∥∥
∫ t

t
2

e−μ(−Δ)α(t−s)
P(b · ∇b − u · ∇u)(s) ds

∥∥∥∥∥
L2

=
∫ t

t
2

(t − s)− 1
α ( 2+r

2r − 1
2 )‖b · ∇b − u · ∇u‖

L
2r

2+r
ds

≤ C

∫ t

t
2

(t − s)− 1
αr

(
‖b(s)‖Lr‖∇b(s)‖L2 + ‖u(s)‖Lr‖∇u(s)‖L2

)
ds

≤ C

∫ t

t
2

(t − s)− 1
αr

(
‖b(s)‖ 2

r

L2‖∇b(s)‖2− 2
r

L2 + ‖u(s)‖ 2
r

L2‖∇u(s)‖2− 2
r

L2

)
ds,

where we have used Hölder’s inequality and the Gagliardo-Nirenberg inequality. Inserting these estimates
in (3.7), we have
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‖u(t)‖L2 ≤ C(1 + t)− 3
4α + C

∫ t
2

0

(t − s)− 1
α (‖b(s)‖2

L2 + ‖u(s)‖2
L2) ds

+C

∫ t

t
2

(t − s)− 1
αr

(
‖b(s)‖ 2

r

L2‖∇b(s)‖2− 2
r

L2 + ‖u(s)‖ 2
r

L2‖∇u(s)‖2− 2
r

L2

)
ds. (3.8)

We recall the integral form of b1 in(1.3),

b1(x1, x2, t) = K1(x2, t) ∗ b01 +
∫ t

0

K1(x2, t − s) ∗ (b · ∇u1 − u · ∇b1)(s)ds (3.9)

where K1 denotes the 1D heat kernel. For t < 1,

‖K1(x2, t) ∗ b01‖L2 ≤ ‖b01‖L2 .

For t ≥ 1, by Plancherel’s Theorem and (1.4),

‖K1(x2, t) ∗ b01(x1, x2)‖L2(R2) = ‖K̂1(ξ2, t)̂b01(ξ1, ξ2)‖L2
ξ

≤ C ‖K̂1(ξ2, t) ‖b̂01(ξ1, ξ2)‖L2
ξ1

‖L2
ξ2

≤ C
∥∥∥e−κ|ξ2|2t

√
|ξ2|

∥∥∥
L2

ξ2

≤ C t−
1
2 .

Therefore,

‖K1(x2, t) ∗ b01(x1, x2)‖L2(R2) ≤ C(1 + t)− 1
2 . (3.10)

Thanks to

b · ∇u1 − u · ∇b1 = ∂1(b1u1) + ∂2(b2u1) − ∂1(u1b1) − ∂2(u2b1) = ∂2(b2u1 − u2b1)

and Lemma 3.2, the second term in (3.9) is bounded by∥∥∥∥
∫ t

0

K1(x2, t − s) ∗ (b · ∇u1 − u · ∇b1)(x1, x2, s)ds

∥∥∥∥
L2(R2)

≤
∫ t

0

∥∥∥∂2K1(x2, t − s) ∗ ‖(b2u1 − u2b1)(x1, x2, s)‖L2
x1

∥∥∥
L2

x2

ds

≤ C

∫ t

0

(t − s)− 1
2 ‖(b2u1 − u2b1)(s)‖L2(R2)ds

≤ C

∫ t

0

(t − s)− 1
2 ‖u‖

L
2

1−α
‖b‖

L
2
α

ds

≤ C

∫ t

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds. (3.11)

Combining (3.10) and (3.11) yields

‖b1(t)‖L2 ≤ C(1 + t)− 1
2 + C

∫ t

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds. (3.12)

b2 can be similarly estimated. In fact, we begin with the integral form of b2,

b2(x1, x2, t) = K1(x1, t) ∗ b02 +
∫ t

0

K1(x1, t − s) ∗ (b · ∇u2 − u · ∇b2)(x1, x2, s)ds,

As in (3.10),

‖K1(x1, t) ∗ b02‖L2 ≤ C(1 + t)− 1
2 .

As in (3.11), by revoking the identity

b · ∇u2 − u · ∇b2 = ∂1(b1u2) + ∂2(b2u2) − ∂1(u1b2) − ∂2(u2b2) = ∂1(b1u2 − u1b2),
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we have ∥∥∥∥
∫ t

0

K1(x1, t − s) ∗ (b · ∇u2 − u · ∇b2)(x1, x2, s)ds

∥∥∥∥
L2(R2)

≤
∫ t

0

∥∥∥∂1K1(x1, t − s) ∗ ‖(b1u2 − u1b2)(x1, x2, s)‖L2
x2

∥∥∥
L2

x1

ds

≤ C

∫ t

0

(t − s)− 1
2 ‖(b1u2 − u1b2)(s)‖L2ds

≤ C

∫ t

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds.

Therefore b2 obeys the same bound. Therefore, after splitting the time integral into two parts and applying
an interpolation inequality, we have

‖b(t)‖L2 ≤ C(1 + t)− 1
2 + C

∫ t

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

≤ C(1 + t)− 1
2 + C

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

+C

∫ t

t
2

(t − s)− 1
2 ‖u‖1−α

L2 ‖∇u‖α
L2 ‖b‖α

L2‖∇b‖1−α
L2 ds. (3.13)

Adding (3.8) and (3.13) yields

‖u(t)‖L2 + ‖b(t)‖L2

≤ C(1 + t)− 3
4α + C(1 + t)− 1

2 + C

∫ t
2

0

(t − s)− 1
α (‖b(s)‖2

L2 + ‖u(s)‖2
L2) ds

+C

∫ t

t
2

(t − s)− 1
αr

(
‖b(s)‖ 2

r

L2‖∇b(s)‖2− 2
r

L2 + ‖u(s)‖ 2
r

L2‖∇u(s)‖2− 2
r

L2

)
ds

+C

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

+C

∫ t

t
2

(t − s)− 1
2 ‖u‖1−α

L2 ‖∇u‖α
L2 ‖b‖α

L2‖∇b‖1−α
L2 ds. (3.14)

First we show that, under the condition that 0 < α < 1
2 and for any small ε > 0,

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C (1 + t)− 1
2+ε. (3.15)

This is achieved via an iterative procedure. It is the term

C

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

in (3.14) that forces us to go through such a procedure. The first step is to show, for any t ≥ 0,

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C (1 + t)−( 1
2− α

2 ). (3.16)

For notational convenience, writing

M1(t) = sup
0≤s≤t

{
(1 + s)

1
2− α

2 (‖u(s)‖L2 + ‖b(s)‖L2)
}

and

ϕ(t) = t
1
2

(
‖∇u(t)‖L2 + ‖∇b(t)‖L2

)
,
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we have from (3.14)

M1(t) ≤ C(1 + t)
1
2− 3

4α − α
2 + C(1 + t)− α

2

+C(1 + t)
1
2− α

2

∫ t
2

0

(t − s)− 1
α

(
‖b(s)‖2

L2 + ‖u(s)‖2
L2

)
ds

+CM 2
r
1 (t)(1 + t)

1
2− α

2

∫ t

t
2

(t − s)− 1
αr s−1+ 1

r ϕ2− 2
r (s)s− 2

r ( 1
2− α

2 ) ds

+C(1 + t)
1
2− α

2

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

+CM1(t)(1 + t)
1
2− α

2

∫ t

t
2

(t − s)− 1
2 s−1+ α

2 ϕ(s)ds. (3.17)

The terms on the right-hand side can be further bounded as follows. For 0 < α < 1
2 ,

(1 + t)
1
2− α

2

∫ t
2

0

(t − s)− 1
α

(
‖b(s)‖2

L2 + ‖u(s)‖2
L2

)
ds

≤ C
(
‖b0‖2

L2 + ‖u0‖2
L2

)
(1 + t)

3
2− 1

α − α
2 → 0 as t → ∞. (3.18)

Due to 1
αr > 1

2 and ϕ(t) → 0 as t → ∞,

(1 + t)
1
2− α

2

∫ t

t
2

(t − s)− 1
αr s−1+ 1

r ϕ2− 2
r (s)s− 2

r ( 1
2− α

2 ) ds → 0 as t → ∞. (3.19)

By (3.3) and Hölder’s inequality,

(1 + t)
1
2− α

2

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

≤ (‖b0‖2
L2 + ‖u0‖2

L2)
α
2

(∫ t
2

0

‖Λαu‖2
L2 ds

) 1
2

(∫ t
2

0

‖∇b‖2
L2 ds

) 1−α
2

≤ C. (3.20)

We remark that this is the term that prevents us from getting higher-order decay than the one in (3.16).
Due to ϕ(t) → 0 as t → ∞, By (3.3) and Hölder’s inequality,

(1 + t)
1
2− α

2

∫ t

t
2

(t − s)− 1
2 s−1+ α

2 ϕ(s)ds → 0 as t → ∞. (3.21)

Inserting the estimates (3.18), (3.19), (3.20) and (3.16) in (3.17), we obtain

M1(t) ≤ C + CM 2
r
1 (t) +

1
2
M1(t) ≤ C +

1
2
M1(t)

which implies M1(t) ≤ C or the desired bound in (3.16). The second step makes use of (3.16) to show
the higher-order decay, for any t ≥ 0,

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C (1 + t)−( 1
2− α

2 )(1+α). (3.22)

The proof of (3.22) is similar to the that of (3.16). For notational convenience, we write ρ2 =
(

1
2 − α

2

)
(1+

α). We begin by setting

M2(t) = sup
0≤s≤t

{
(1 + s)ρ2(‖u(s)‖L2 + ‖b(s)‖L2)

}

and then proceed as in (3.17),
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M2(t) ≤ C(1 + t)ρ2− 3
4α + C(1 + t)− 1

2+ρ2

+C(1 + t)ρ2

∫ t
2

0

(t − s)− 1
α

(
‖b(s)‖2

L2 + ‖u(s)‖2
L2

)
ds

+CM 2
r
2 (t)(1 + t)ρ2

∫ t

t
2

(t − s)− 1
αr s−1+ 1

r ϕ2− 2
r (s)s− 2

r ρ2 ds

+C(1 + t)ρ2

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

+CM2(t)(1 + t)ρ2

∫ t

t
2

(t − s)− 1
2 s−1+ α

2 ϕ(s)ds. (3.23)

The terms on the right of (3.23) can be similarly estimated as before except the term

(1 + t)ρ2

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds,

which can be bounded, due to (3.16),

(1 + t)ρ2

∫ t
2

0

(t − s)− 1
2 ‖Λαu‖L2 ‖b‖α

L2‖∇b‖1−α
L2 ds

≤ (1 + t)ρ2(1 + t)− 1
2

(∫ t
2

0

‖Λαu‖L2 dx

) 1
2

(∫ t
2

0

‖∇b‖2
L2 ds

) 1−α
2

(∫ t
2

0

‖b(s)‖2
L2ds

)α
2

≤ C (1 + t)− α2
2

(∫ t
2

0

‖Λαu‖L2 dx

) 1
2

(∫ t
2

0

‖∇b‖2
L2 ds

) 1−α
2

(∫ t
2

0

(1 + s)−1+α ds

)α
2

≤ C (1 + t)− α2
2

(∫ t
2

0

‖Λαu‖L2 dx

) 1
2

(∫ t
2

0

‖∇b‖2
L2 ds

) 1−α
2

(1 + t)
α2
2

≤ C.

Inserting this estimate and the estimates for other terms in (3.23) yields the global bound

M2(t) < ∞.

Proceeding in this fashion, we can further show that

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C (1 + t)−( 1
2− α

2 )(1+α+α2)

and more generally, for any natural number N ,

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C (1 + t)−( 1
2− α

2 )(1+α+α2+···+αN ).

Since, as N → ∞,

1 + α + α2 + · · · + αN → 1
1 − α

,

for any given ε > 0, we can take N sufficiently large such that

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C (1 + t)− 1
2+ε,

which is the desired bound in (3.15).
We now turn to the decay estimate of ‖∇b‖L2 and the goal is the improved decay rate in (3.6). As in

the proof of (3.12), we have
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‖∂2b1(x1, x2, t)‖L2(R2)

≤ ‖∂2K1(x2, t) ∗ b01‖L2(R2)

+
∫ t

0

‖∂2K1(x2, t − s) ∗ (b · ∇u1 − u · ∇b1)(s)‖L2(R2)ds

≤ ‖∂2K1(x2, t) ∗ b01‖L2(R2)

+
∫ t

2

0

∥∥∥∂22K1(x2, t − s) ∗ ‖(b2u1 − u2b1)(x1, x2, s)‖L2
x1

∥∥∥
L2

x2

ds

+
∫ t

t
2

∥∥∥∂22|∂2|− 1
4 K1(x2, t − s) ∗ ‖|∂2| 1

4 (b2u1 − u2b1)(x1, x2, s)‖L2
x1

∥∥∥
L2

x2

ds

=: I1 + I2 + I3.

By Plancherel’s theorem and (1.4),

I1 = ‖∂2K1(x2, t) ∗ b01(x1, x2)‖L2(R2) ≤ C(1 + t)−1.

By Lemma 3.2, for any small ε > 0,

I2 ≤
∫ t

2

0

(t − s)−1‖b2u1 − u2b1‖L2ds

≤
∫ t

2

0

(t − s)−1‖u‖ 1
2
L2‖∇u‖ 1

2
L2‖b‖ 1

2
L2‖∇b‖ 1

2
L2 ds

≤ C

∫ t
2

0

(t − s)−1(1 + s)− 3
4+ ε

2 ϕ
1
2 (s)‖∇b‖ 1

2
L2 ds,

where ϕ(t) is defined as

ϕ(t) = (1 + t)
1
2

(
‖∇u(t)‖L2 + ‖∇b(t)‖L2

)
.

Similarly,

I3 ≤
∫ t

t
2

(t − s)−1+ 1
8

∥∥∥|∂2| 1
4 (b2u1 − u2b1)

∥∥∥
L2(R2)

ds

≤
∫ t

t
2

(t − s)− 7
8

(
‖|∂2| 1

4 b‖L4‖u‖L4 + ‖|∂2| 1
4 u‖L4‖b‖L4

)
ds

≤
∫ t

t
2

(t − s)− 7
8

(
‖u‖ 1

2
L2‖∇u‖ 1

2
L2‖b‖ 1

4
L2‖∇b‖ 3

4
L2 + ‖u‖ 1

4
L2‖∇u‖ 3

4
L2‖b‖ 1

2
L2‖∇b‖ 1

2
L2

)
ds

≤ C

∫ t

t
2

(t − s)− 7
8

(
(1 + s)− 5

8+ ε
4 ϕ

1
2 (s)‖∇b‖ 3

4
L2 + (1 + s)− 3

4+ ε
2 ϕ

3
4 (s)‖∇b‖ 1

2
L2

)
ds.

Putting these estimates together yields

‖∂2b1‖L2 ≤ C(1 + t)−1 + C

∫ t
2

0

(t − s)−1(1 + s)− 3
4+ ε

2 ϕ
1
2 (s)‖∇b‖ 1

2
L2ds

+C

∫ t

t
2

(t − s)− 7
8

(
(1 + s)− 5

8+ ε
4 ϕ

1
2 (s)‖∇b‖ 3

4
L2 + (1 + s)− 3

4+ ε
2 ϕ

3
4 (s)‖∇b‖ 1

2
L2

)
ds.

‖∂1b2‖L2 admits the same bound. Thanks to ∇ · b = 0,

‖∇b‖L2 = ‖∇ × b‖L2 ≤ 2‖∂2b1‖L2 + 2‖∂1b2‖L2

and thus ‖∇b‖L2 obeys the same bound. Therefore,

M3(t) = sup
0≤s≤t

{(1 + s)‖∇b(s)‖L2}
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satisfies

M3(t) ≤ C + CM 1
2
3 (t)(1 + t)

∫ t
2

0

(t − s)−1(1 + s)− 5
4+ ε

2 ϕ
1
2 (s)ds

+CM 3
4
3 (t)(1 + t)

∫ t

t
2

(t − s)− 7
8 (1 + s)− 11

8 + ε
4 ϕ

1
2 (s)ds

+CM 1
2
3 (t)(1 + t)

∫ t

t
2

(t − s)− 7
8 (1 + s)− 5

4+ ε
2 ϕ

1
2 (s)ds

≤ C + CM 1
2
3 (t) + CM 3

4
3 (t) ≤ C +

1
2
M3(t),

which implies,

M3(t) ≤ C or ‖∇b(t)‖L2 ≤ C(1 + t)−1.

To obtain the optimal bound for ‖b(t)‖L2 . We insert the new decay rate for ‖∇b‖L2 in (3.14) to obtain

‖u(t)‖L2 + ‖b(t)‖L2

≤ C(1 + t)− 3
4α + C(1 + t)− 1

2 + C

∫ t
2

0

(t − s)− 1
α

(
‖b(s)‖2

L2 + ‖u(s)‖2
L2

)
ds

+C

∫ t

t
2

(t − s)− 1
αr

(
‖b(s)‖ 2

r

L2‖∇b(s)‖2− 2
r

L2 + ‖u(s)‖ 2
r

L2‖∇u(s)‖2− 2
r

L2

)
ds

+C

∫ t

0

(t − s)− 1
2

(
‖u‖L2 + ‖b‖L2

)
‖∇u‖ 1

2
L2‖∇b‖ 1

2
L2ds

≤ C(1 + t)− 1
2α + C(1 + t)− 1

2 + C

∫ t
2

0

(t − s)− 1
α (1 + s)−1+2ε ds

+C

∫ t

t
2

(t − s)− 1
αr (1 + s)−1+ ε

r ds + C

∫ t

0

(t − s)− 1
2 (1 + s)− 5

4+εds

≤ C(1 + t)− 1
2 . (3.24)

The proof of Proposition 3.3 is now completed. �

3.3. Faster Decay Rates for ‖u‖L2 and ‖∇u‖L2

This subsection improves the decay rates for ‖u‖L2 and ‖∇u‖L2 by applying and generalizing the Fourier
splitting method [31].

Proposition 3.4. Assume the initial data (u0, b0) satisfies the conditions in Theorem 1.2. Assume 0 <
α < 1

2 . Let (u, b) be the corresponding solution of (1.3). Then u admits the following decay rates, for any
t > 0,

‖u(t)‖L2 ≤ C(1 + t)−( 3
2− α

2 ), ‖∇u(t)‖L2 ≤ C(1 + t)−1− α
2 . (3.25)

Proof. Taking the inner product of u with the momentum equation in (1.3) yields
1
2

d

dt
‖u(t)‖2

L2 + μ‖Λαu‖2
L2 =

∫
R2

(b · ∇)b · u dx.

By Sobolev’s inequality and the decay rates in the previous subsections,
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∫
R2

(b · ∇)b · u dx ≤
∫
R2

Λ−α∇ · (b ⊗ b) · Λαu dx

≤ μ

2
‖Λαu‖2

L2 + C‖Λ1−α(b ⊗ b)‖2
L2

≤ μ

2
‖Λαu‖2

L2 + C‖b‖2

L
2
α

‖Λ1−αb‖2

L
2

1−α

≤ μ

2
‖Λαu‖2

L2 + C ‖b‖2α
L2 ‖∇b‖4−2α

L2

≤ μ

2
‖Λαu‖2

L2 + C(1 + t)−4+α,

where we have invoked Sobolev’s inequalities. For a large constant k > 0, we set

B(t) =
{

ξ ∈ R
2 : μ|ξ|2α <

k − 1
1 + t

}
.

It is then clear that

μ‖Λαu‖2
L2 ≥ μ

∫
Bc(t)

|ξ|2α|û(ξ)|2dξ ≥ k − 1
1 + t

∫
R2

|û(ξ)|2dξ − k − 1
1 + t

∫
B(t)

|û(ξ)|2dξ.

Therefore,

d

dt
‖u(t)‖2

L2 +
k − 1
1 + t

‖u‖2
L2 ≤ k − 1

1 + t

∫
B(t)

|û(ξ)|2dξ + C(1 + t)−4+α

or
d

dt

(
(1 + t)k−1‖u(t)‖2

L2

) ≤ C(1 + t)k−2

∫
B(t)

|û(ξ)|2dξ + C(1 + t)k−5+α. (3.26)

Taking the Fourier transformation of the momentum equation in (1.3) yields

|û(ξ)| ≤ |e−μ|ξ|2αtû0| +
∫ t

0

e−μ|ξ|2α(t−s)|Ĝ(ξ, s)|ds,

where G represents the nonlinear terms including the pressure term. Clearly,

|Ĝ(ξ, s)| ≤ |û · ∇u| + |b̂ · ∇b| + |∇̂π|

≤ |ξ|‖u‖2
L2 + ‖b‖L2‖∇b‖L2 +

∣∣∣∣∣∣
∑
i,j

ξiξj

|ξ|2 (û · ∇u − b̂ · ∇b)

∣∣∣∣∣∣
≤ |ξ|‖u‖2

L2 + C(1 + s)− 3
2 .

Therefore, ∫ t

0

e−μ|ξ|2α(t−s)|Ĝ(ξ, s)|ds ≤ |ξ|
∫ t

0

‖u‖2
L2ds + C.

Inserting the inequalities above in (3.26), together with the decay of u, we have

d

dt

(
(1 + t)k−1‖u(t)‖2

L2

) ≤ (1 + t)k−2‖e−μ(−Δ)αtu0‖2
L2 + (1 + t)k−2− 1

α

+ (1 + t)k−1

∫
B(t)

∣∣∣∣|ξ|
∫ t

0

‖u(τ)‖2
L2dτ

∣∣∣∣
2

dξ

+C(1 + t)k−5+α.

Applying Lemma 3.2 and the decay of u in (3.24), we have

d

dt

(
(1 + t)k−1‖u(t)‖2

L2

)
≤ (1 + t)k−2− 3

2α + (1 + t)k−2− 2
α ln2(1 + t) + C(1 + t)k−5+α.
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Integrating in time implies

‖u(t)‖L2 ≤ C(1 + t)−( 3
2− α

2 ), t > 0.

We now prove the improved decay rate for ‖∇u‖L2 . Taking the L2-inner product of ω with the vorticity
equation in (2.3) yields

1
2

d

dt
‖ω(t)‖2

L2 + μ‖Λαω‖2
L2 =

∫
R2

(b · ∇)j ω dx.

The term on the right-hand side can be bounded as, thanks to the decay rates of ‖b‖L2 and ‖∇b‖L2 ,∫
R2

(b · ∇)j ωdx ≤
∫
R2

Λ−α∇ · (bj) Λαω dx

≤ μ

2
‖Λαω‖2

L2 + C‖Λ1−αj‖2

L
4

2−α
‖b‖2

L
4
α

+ C‖Λ1−αb‖2

L
2

1−α
‖j‖2

L
2
α

≤ μ

2
‖Λαω‖2

L2 + ‖b‖α
L2‖∇b‖2−α

L2 ‖j‖α
L2‖∇j‖2−α

L2

+C‖∇b‖2
L2 ‖j‖2α

L2 ‖∇j‖2−2α
L2

≤ μ

2
‖Λαω‖2

L2 + C(1 + t)−2− 5α
2 ‖∇j‖2−α

L2

+C(1 + t)−2−2α‖∇j‖2−2α
L2 .

To further the estimates, we invoke the lower bound

μ‖Λαω‖2
L2 ≥ μ

∫
Bc(t)

|ξ|2α|ω̂(ξ)|2dξ ≥ k − 1
1 + t

∫
R2

|ω̂(ξ)|2dξ − k − 1
1 + t

∫
B(t)

|ω̂(ξ)|2dξ

and the estimate

|ω̂(ξ)| ≤ |e−μ|ξ|2αtω̂0| +
∫ t

0

|e−μ|ξ|2α(t−s)( ̂b · ∇j − u · ∇ω)|ds

≤ ||ξ|e−μ|ξ|2αtû0| + C|ξ|
∫ t

0

‖b‖L2‖j‖L2ds + C|ξ|
∫ t

0

‖u‖L2‖ω‖L2ds

≤ | ̂∇e−μ(−Δ)αtu0| + C|ξ|
∫ t

0

(1 + t)− 3
2 ds + C|ξ|

∫ t

0

(1 + t)− 1
2−min{ 3

4α , 2− α
2 }ds

≤ | ̂∇e−μ(−Δ)αtu0| + C|ξ|.
Combining these estimates, we have

d

dt

(
(1 + t)k‖ω(t)‖2

L2

) ≤ C(1 + t)k−1

∫
B(t)

|ω̂(ξ)|2dξ

+ C(1 + t)k−2− 5α
2 ‖∇j‖2−α

L2 + C(1 + t)k−2−2α‖∇j‖2−2α
L2

≤ C(1 + t)k−1‖∇e−μ|(−Δ)αtu0‖2
L2 + C(1 + t)k−1

∫
B(t)

|ξ|2dξ

+ C(1 + t)k−2− 5α
2 ‖∇j‖2−α

L2 + C(1 + t)k−2−2α‖∇j‖2−2α
L2

≤ C(1 + t)k−1− 5
2α + C(1 + t)k−1− 2

α

+ C(1 + t)k−2− 5α
2 ‖∇j‖2−α

L2 + C(1 + t)k−2−2α‖∇j‖2−2α
L2 .

Integrating in time and noting that
∫ ∞
0

‖∇j‖2ds < C, we obtain, for t > 0,
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‖ω(t)‖2
L2 ≤ C(1 + t)−k + C(1 + t)− 5

2α + C(1 + t)− 2
α

+C(1 + t)−k

∫ t

0

(1 + s)k−2− 5α
2 ‖∇j‖2−α

L2 ds

+C(1 + t)−k

∫ t

0

(1 + s)k−2−2α‖∇j‖2−2α
L2 ds

≤ C(1 + t)− 2
α + C(1 + t)−k

(∫ t

0

(1 + s)
2
α (k−2− 5α

2 )

)α
2

(∫ t

0

‖∇j‖2
L2ds

) 2−α
2

+C(1 + t)−k

(∫ t

0

(1 + s)
1
α (k−2−2α)

)α (∫ t

0

‖∇j‖2
L2ds

)1−α

≤ C(1 + t)−2−α.

This completes the proof of Proposition 3.4. �
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