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THE 3D INCOMPRESSIBLE BOUSSINESQ EQUATIONS WITH
FRACTIONAL PARTIAL DISSIPATION*

WANRONG YANGT, QUANSEN JIU#, AND JIAHONG WU$

Abstract. The system of the 3D Boussinesq equations is one of the most important models for
geophysical fluids. The fundamental problem of whether or not reasonably smooth solutions to the
3D Boussinesq equations with the standard Laplacian dissipation can blow up in a finite time is an
outstanding open problem. The Boussinesq equations with partial or fractional dissipation not only
naturally generalize the classical Boussinesq equations, but also are physically relevant and mathemati-
cally important. This paper focuses on a system of the 3D Boussinesq equations with fractional partial
dissipation and proves that any H1l-initial data always leads to a unique and global-in-time solution.
The result of this paper is part of our efforts devoted to the global well-posedness problem on the
Boussinesq equations with minimal dissipation.
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1. Introduction

The Boussinesq equations model geophysical fluids such as atmospheric fronts and
oceanic currents as well as fluids in our daily life such as the Rayleigh-Benard convection
(see, e.g., [2-4,10,11]). The standard 3D incompressible Boussinesq equations are given
by

Ou+u-Vu=—-Vp+vAu+0fes,
V-u=0, (1.1)
0i0+u-VO=rA0,

where u denotes the velocity field, p the pressure, v the viscosity, 6 the temperature, e
the unit vertical vector and x the thermal diffusivity. Given sufficiently smooth initial
data

u(x,0) =ug(x), 0(x,0)=00(x),

the issue of whether (1.1) has a unique global-in-time solution is an outstanding open
problem.

The global regularity problem on the 3D Boussinesq equations is supercritical in
the sense that, if we replace the Laplacian operator in the velocity equation of (1.1)
by a fractional Laplacian —(—A)® with «> %, then the hyperdissipative Boussinesq
equations

Ou+tu-Vu=—-Vp—v(—A)*u+0es,
V-u=0, (1.2)
00 +u-VO=rA6O
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618 THE 3D BOUSSINESQ EQUATIONS

always possess a unique global solution. In fact, the global existence and regularity

result actually holds for (1.2) with k=0 (see, e.g., [5,12,19,21]). We note that the

critical exponent a:g makes the kinetic energy invariant under the natural scaling.

Here the fractional Laplacian operator (—A)® is defined via the Fourier transform (see,
e,g., [13])

(ZA)f(&) =[¢ o).

This paper attempts to reduce the dissipation in (1.2). We consider the following
system of Boussinesq equations

Opur +(u-V)uy =—01p— V(A +A Ju,
Opug + (u-V)ug =—0ap— V(A2 +A2 )u2,
Opuz+ (u-V)ug=—03p— V(A2 +A Yug + 0, (1.3)
V-u=0,

0 +u-VO=—rA20.

wojon N wojen

Here A= (—A)% denotes the Zygmund operator and A) with v>0 and k=1,2,3 are
directional fractional operators defined via the Fourier transform

A= F©). k=123
We prove the following theorem.

THEOREM 1.1.  Assume ug € H(R3) with V- uo=0, and 6y € H*(R?)NL>(R3). As-
sume y > %- Then (1.3) has a unique global solution (u,0) satisfying, for any T >0,

(u,0) € L>=(0,T; H' (R?)),

(Af A € PR < (0,7), (A Af)Vur € L2(R® x (0.7)),
(A5 ADuz € LA(RP % (0,T)), (A, Af)Vus € L (RS x (0,T)),
(Af Aus € 2R < (0,7)), (A Af)Vus € L2(R® x (0.7)),
A”@ELZ(RS x (0,7)), A”*V@ELQ(R3 x(0,7)).

Compared with (1.2), each of the equations of u1, ug and uz in (1.3) only has two
directional hyperdissipation. When there is no thermal diffusion, or k=0, it does not
appear possible to prove the global existence and regularity. The fractional dissipation
in @ helps bound the nonlinearity in the ten;perature equation. It is clear that the global
existence and regularity still holds when A? (k=1,2,3) in (1.3) is replaced by A?° with
any o> %

This work was partially motivated by our recent result on the 3D Navier—Stokes
equations with fractional partial dissipation [20]. We recently introduced the Navier—
Stokes equations with directional hyperdissipation and proved the global regularity of
the Navier—Stokes with directional hyperdissipation, namely (1.3) with §=0. [20] im-
proves the classical result for the hyperdissipative Navier—Stokes equations With (—=A)*u
(see, e.g., [6,9,15]). In contrast to (1.2), Theorem 1.1 requires only > 17 55> not y>1.
It is worth mentioning two important papers, one by Tao [14] and one by Barbato,
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Morandin and Romito [1], on the Navier—Stokes equations with logarithmically super-
critical hyperdissipation. The magneto-hydrodynamic equations with hyperdissipation
have also been investigated (see, e.g., [16,18]).

The proof of Theorem 1.1 naturally divides into two main parts: the existence part
and the uniqueness part. The global existence and regularity part boils down to showing
the global H' a priori bound. The global L?-bound follows directly from a standard
energy estimate. However, the global H'-bound is not a trivial consequence of energy
estimate. One key idea is how to effectively make use of the reduced dissipation to
bound the nonlinearity. Since the dissipation is only available in some directions, it is
necessary to write the corresponding nonlinear terms, say

IE/V((u-V)u)-Vudz

explicitly into components, due to V-u=0,

3 3 3
I= Z /8iuj8ju18iu1da:+ Z /8iuj6ju28iqua:+ Z /8iuj8ju38iu3da:.

ij=1 ij=1 ij=1

Several tool lemmas are employed to facilitate the estimates of the terms above (see Sec-
tion 2). Integration by parts and the divergence-free condition V-u=0 are repeatedly
applied to rebalance the derivatives. The requirement > ;—g appears to be necessary
in order to control the terms generated by the nonlinearity u-V#. The proof for the
uniqueness makes use of the difference of two solutions in L? and we actually establish
a stronger version than stated in Theorem 1.1.

The global regularity result presented here constitutes an important first step in
our program on the global well-posedness of the Boussinesq equations with partial or
fractional dissipation. Our aim here is the global regularity for the Boussinesq equations
with minimal regularization. It is our hope that this program will help develop new
techniques and sharpen classical tools. Our next step in this program is to show the
global regularity for

Opur + (u-V)uy =—0p— V(Alg +A§)u1,

Byus + (u- Vs = —op— (A5 + A2 Jus,

Ayuz + (u-V)uz = —83p—vA3uz +96, (1.4)
V-u=0,

Of0+u-VO=0,

which does not involve thermal diffusion. The approach for (1.4) is to consecutively
prove global bounds in more and more regular spaces: H!' and H % and then H* for
general s> % The details appear to be very complex and we have not had a definite
answer to the global regularity problem on (1.4) yet.

The rest of this paper proves Theorem 1.1.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Naturally the proof is divided
into two parts: the existence part and the uniqueness part. The existence part boils
down to a global a priori bound on (u,f) in H! while the uniqueness part evaluates
the difference of two solutions in the regularity class stated in Theorem 1.1. The rest
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of this section is divided into three subsections. The first subsection lists some of the
tools used subsequently, the second shows the global a priori H' bound and the third
proves the uniqueness.

Throughout the rest of this paper, we use || f||z2 to denote ||f||r2s) and ||f]|rz
to denote the one-dimensional L?-norm (in terms of z;), and ||f|z=  to denote the
E

two-dimensional L?-norm (in terms of z; and z;). In addition, we also use the notion

Iy, g, e, =W Azg, llzs, Moy, -
2.1. Preparations. This subsection states four tool lemmas to be used later.
The first one is the following trace lemma. A proof can be found in [17].

LEMMA 2.1.  Let s>0. Let f=f(x1,2") with 2’ = (29,23, - ,2q) be a d-dimensional
function and f € H""2(RY). Then there exists a constant C=C(d,s) such that

185,12 2, 5 <Oy gy

The second one is a Sobolev embedding inequality involving one-dimensional func-
tions. A simple proof can be found in [20].

LEMMA 2.2. Let 2<p<oo. Let s> % —%. Then, there exists a constant C'=C(p,s)

such that, for any 1D functions f € H*(R),

1

1=1(3-3) b33
I fllr < ClE It P Iassii .

L2(R)

The third one contains two well-known calculus inequalities (see, e.g., [7, p.334]).
In this lemma J = (I —A)2 denotes the inhomogeneous differentiation operator.

LEMMA 2.3. Let s>0. Let p,p1,ps € (1,00) and pa,ps € [1,00] satisfying
111 11
P PL P2 P3 P1

Then, for two constants Cy and Cs,

[ (FDe <CLUIT fllze llgllee + 179l Les [|f ]| 2oa),
17°(f 9) = f T glle < Co (I fllzor llgllzes +117° " gllLes [V fllzea ).

The next tool lemma states one version of the Minkowski inequality, which is the
foundation for exchanging two Lebesgue norms (see, e.g., [8]).

LEMMA 2.4. Let f=f(x,y) with x €R™ and yeR™ be a measurable function on
R™ xR™. Let 1<g<p<oc. Then

Il ze @y Iz @my < IFI e eyl L2 @ny-

2.2. Global H'-bound for (u,0). This subsection establishes a global H!-
bound on solutions of (1.3). More precisely, we prove the following proposition.
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PROPOSITION 2.1.  Assume ug € H*(R?) with V-ug=0 and 0y € H*(R3)NL>(R3)
Let (u,0) be the corresponding solution of (1.3). Then, (u,0) obeys Lemma 2.5 and the

following global H' bound, for any t>0,
(I9u()22 + [ V6]22) +u/ lad, %)v@unmmv/ 1A A Vs 2. dr

w1 AT Vsl i [ 1809013, dr
0 0
Clllwollm Wl nz=)

where, for the sake of brevity, we have written

5 5 5 5
1AL, AS)Vun | g2 = [|A] Vur [ 2 + [|Ag Vi | 2.

A necessary step in the proof of Proposition 2.1 is the following global L2-bound

which follows from a direct L? energy estimate involving (1.3)
Assume ug € H with V-ug=0 and 0y € L*>(R3)NL>®(R3). Let (u,0)

LEMMA 2.5.
the corresponding solution of (1.3). Then, for any t>0

t 5 5 5 5
) :+20 [ (NAT AT )+ 1A A
AT A ()32 ) dr < (luollz + 160l =),

t
16(t)]I72 +2l’~/0 |AY6(7)|[Z2dr <|160]Z2,
16@)|lLe <ll6ollLe,  2<g<oo.

We are now ready to prove Proposition 2.1
Proof. (Proof of Proposition 2.1.) Taking the L?-inner product of Au with the

first three equations of (1.3) and integrating by parts, we have
5 5 5 5 5 5 5
IIVUI|L2+V||( 1 §)VU1HL2+V||(A§1aA34)vu2||L2+V”( 1:05)Vus||z2

2dt
*72/8u38u18u1daz7 /é)u]auQé)quxf /8u]8u;58u;3dac
7,j=1

1,7=1 1,7=1

(2.1)

=L+ L+ 13+14.
We now bound the terms above. Some of the estimates on the terms involving only u
are similar to those in [20]. We first estimate I;. To do so, we write out the nine terms

explicitly,
—/ ((8111,1)3 + 61 (5% 31’&2 82U1 + 81u1 81U3 83u1

(52101)2 O1u1 + (32161)2 Oattg + 0oty Oauz O3y
(83u1)2 O1u1 + 0311 O3us Ooug + (83’LL1)2 (93U3) X (22)

I =
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When we estimate the terms above, we keep in mind that we have the space and time
L? integrability of the terms

5 5 5 5 5 5
Af Uy, Aél Ui, A; Uz, Ag Uz, Af us, Aél us

and the left hand side of (2.1) allows us to control the space and time L?-norm of the
terms

5 5 5 5 5 5
(AL A)(01,02,03)u1,  (A3,A3)(01,02,03)ua, (Af,A3)(01,02,05)us.

The terms in (2.2) will be labelled as I11, 12, --- according to the order they appear in
(2.2).
We first deal with I19, the second term in (2.2). We will return to I1; later. Inte-
gration by parts yields
I12 = —/81u1 al’LLgaQUl dl':/llqalagul 81u1 d:c—i—/uzﬁlalul@gul dx
i=1I121 +I120.
By Holder’s inequality and Lemma 2.4,

[ho1| <N10102un ez, rs [1OvuallLz, oo s lluells, s, -

By Gagliardo—Nirenberg’s inequality,
1
10102ua |z, rs, <CIA3 0105u1 ]2
and
1 1
husllea, os ., <Cllusll a1 Vaus 2o,

where Vj, =(01,02). Applying Gagliardo—Nirenberg’s inequality and Lemma 2.2 with
p=oc and s=1, we have

1
101urllL2, Lo £, <ClAfOrunllz | re
5 1 5 1
SCOlAfurllf2 [ AsAf ua -

Combining the estimates above and applying Young’s inequality yield

1 1 1 5 1 5 1
[T121| < C[|A3 0102us || p2 Juz || 72 IV huallf2 [[AT ua || 72 [[AsAT ur][ 72

14 5 14 5 5
< 128 142 drua |z + 195 A1 Ozur |72 + Clluallze A w72 [|Vhusl|7-.

Similarly,
1 1 1 1 1 1 1
[T122] < C[|A3 0101us || p2 [Juz |72 IV huall f2 [[Af O2ua || [[AsA] Oour | 7»-

Due to the elementary inequalities

1 4 s 1, s 1 1, 5 4 s
el <talt+ et el el< b+ el



WANRONG YANG, QUANSEN JIU, AND JIJAHONG WU 623
and Plancherel’s theorem, we have

1 5 5

[Ag O101ur |2 S C([[A] Orual|Lz +[[Ag OrualL2),
1 5 5

[Af Our||zz <C([[Afurp2 +[|Ag sl L2).

Therefore, by Young’s inequality,

[T122] < ||(A147 )81u1||L2 + (A AS ) D5 |2

- 128 128
+C lluall3e (AT At |22 Va3
We return to estimate I77, the first term in (2.1). I;; can be handled similarly as Ijo.
Integrating by parts and then bounding it as I121, we have
111:2/u18181u181u1d33
<CH8131U1||L2 L ||81161||L2 reert |luillzz ra

TlTB 2 2 13 1 xr3 T T1TY

AT A B |2+ <o 1] B[22+ C llun |32 AT w13 [ et 3

<
— 128 128

We now estimate I13. Integrating by parts, we have

Lz = */31u131u3331t1d$:/Ul3331U131U3d$+/ulalulala3u3dx
=131+ 1132
In fact, as in the estimates of Iio1,

Ii31 <C||0s01unllzz , ra ”81“3”L32L3?;L§1||u1||LfgL§”2

1 1
<C||A3 0301uq| L2 ||Ai1 51U3||iz ||A3A14 a1U3HZ2 ||u1||iz Vhuall7»

5 5 5 1 5 1 1 1
<C|\(Ai‘, 4)33U1HL2||A4U?>||fz||A433U3||iz||U1||22HVW1||22

+Cual[72 \IAfU3IIiz IV |72

Similarly,
Ih32 < C'||(9133UBHL§1$2 ng [ O1u1 ||L§3 Lg‘;L‘;l ||161||Lg2 LY s
5 1 1
<CIIA43w3IIL2 IIA4U1H22 HAzA“mlliz et 172 11185 ) [
A 0 A 0
< 128 1A Drusl72 + = 128 1A} Oous |22

+C 3 1AF 13 1101, 05)ua 3.

This settles the estimate of I;3. We turn to I14 and I15. Integrating by parts and
invoking the divergence-free condition V-u=0, we have

114+115:—/(82u1)281u1dx—/(82u1)262uzdw
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= /(82’&1)2 83u3 dx

= 72/’[1,3 (938211,1 82u1 dzx

<2||8382U1HL§11 7 ||82u1HL32Lg§L§1HUSHLis L,

5 1 1
<CIIA453U1||L2 AT ATy 2 1A (AT A o1 s | 5 ([ s | 5

2.5 2 2 2.3 2 2
< @ [(Af,AS)O3ur][72 + Cllus|lzz (AT A )ua 72 [ Vaus ||z

The estimates of I is more delicate. The integrand of I,
116 = —/62u3 83U1 62u1 dx

involves d3u; and dyug, but the first component equation of (1.3) involves no dissipation
in the third direction and the third component equation involves no dissipation in the
second direction. By integration by parts,

Il6 = /U1 8382U3 Bzul diE+/’LL1 82U3 (938211,1 dzx
=1I161+ 1162
The first term I161 can be estimated similarly as 1. In fact,

Ii61 < ||3332U3 22

EAED)

L4, H32U1||L2 L L4 ||U1||L31L4

ToTy
||A Daus||Fz + —= HA a7

1% %
+Clun |22 145 un |22 11(D2,85)un |2,

The estimates of I142 is different.

Do <[|0s02urllrz , s [102usllrz reers uillzz , o
<CJ|(Af,A 4>asu1||p\\Azagu?,n;\|A3A462u3||zz||u1||§2uA§u1H§z
<C|l(Af A >asu1||LzHazud||L2\|A Dual| 3 (AT, A Baus| 2
><||u1||zz ||A24u1|\22

5 5
||(Af7 )33U1||%2 + —(Af,A$)Dous||7»

v

- 128 128
3 o2 2

+C||U1||L2 ||A2 u1HL2 ||82U3HL2-

We now turn to the last three terms in (2.2). Due to V-4 =0, the last three terms in
(2.2) can regrouped into two terms,

—/83“183U2(92U1 +/82uQ(83u1)2d:c::Il7+118.
1,7 can be estimated as I;5. By integration by parts,

117:/u18333u282u1dx+/u18382u183u2dm::.7171 + I179.
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171 can be estimated similarly as I1» and we have

\h71| <|0303uzllzz , s, 102urllze 1o s llullzz, r

23 zolzg 25 L%1,
1 1 1
<C ||A4 0303uz]| 2 ||A4 Doy ||22 ||A4 02031 ||Zz w72 [|(Or,02)usll ;-

5
< A ADuzlFe + 1o (AT, AT D 13-

+C flun |32 (AT AT Y 22 [1(91,0)un | 2.

Similarly,
AdAd i Ad 2
(A A)Bsuz|2a + —= [I(AF AF)Dsur ]2

I
[ fira] < 128 128

5 5
+Cllun |32 1 (A5 A yua 22 (D1, 02)ua 2.

We deal with Ig,

Ilg = /62U2(83U1)2d$.

625

Due to the appearance of (G3u;)? and the lack of dissipation in the third direction in
the equation of u;, the handling of this term is more delicate. By integration by parts,

118:—2/UQ83U18283U1d$.

By Holder’s inequality and by Minkowski’s inequality,

18| <2(|0205ua |z, s lluzlL2

xyxsy ERED)

L 10suallLz, poe s -
By Lemma 2.2 and an interpolation inequality,

105ua L2, Lo L3, <C|AS Osuallrz,, Le
1
< C||A483u1||22 ||A4A163U1||z2
< C||33U1||L2 1A Osun |15 1143 Ar B |
< 105wl 2 AT AD)Ds [,
where we have invoked the interpolation inequality
1 4 5 1
145 w12z, <C oyl IATOsuall},
In addition,

luzllza,, og: <Clluallza A5 usl] 5o

ry1xg w3y

Inserting (2.4) and (2.5) in (2.3) yields

5 3 5 2 2 5 5 3
|11s] < CHA453U1||L2 luall 7 [[A3 w2l 22 [[O3udl 72 |(Af, A )Osui 72

= @ I(Af A3)O5u (T2 + C llualge [ Af uall7e [ Osus 72

(2.3)

(2.5)
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We remark that I and I g could have been treated in a similar fashion. We intention-
ally estimated them differently to make available different approaches that serve the

same purpose. We have finished estimating all terms in I in (2.1). Iy and I3 in (2.1)
can be similarly estimated as the terms in I; and we omit the details. Finally we deal

with I4,
I4=/VU3‘V9dw§ IVusll 2 VO] 2 < [ Vus|z2 + VO],
Putting all these estimates together, we have
5 5 5 5 5 5 9
IIVUIIL2+V||( {A) V|7 +v (A3 AF) V|72 +v ][ (Af, AF) Vs

SC(II(A{‘, A |2+ (A5 A yuall3s + (AT A us||3)

*(lullgz +llull22) IVl 22 + 17012 (2.6)

Taking the L2-inner product of A with the fifth equation of (1.3) and integrating

by parts, we have

||V9||Lz +r[[ATVOZ

2 dt
3 3
== 72/3171]8]9319(&1772/3271]8]9329d$72/3guj8]9839d$
j=1 j=1 j=1
2:K1+K2+K3. (27)
We first estimate K. To do so, we write out the three terms explicitly,
—/81U1(819)2d$—/811@819629d5(5—/61U3816839d1’

(2.8)

=K+ Ko+ Kis.

We first deal with K, the second term in (2.8). We will return to K17 and K3 later.
Integration by parts yields

Kiz = _/81“28198296155:/981U232519d$+/93231wa10dx
= K21+ Koo
By Holder’s inequality and Lemma 2.3,
K2 Z/Aé_“’(Halug)A;@lea:

<C[A3016]| 2 (116] < || A3~ D1l 2
Aéiﬁ/g”Lg‘i ngLQQ)a (2'9)

+lOruallLz e ri,

where iJr % :% with ©>2 and i>2. (2.9) is obtained by repeatedly applying Lemma
2.3 to A;V(HaluQ) first as a function of x5, then as a function of x3 and of z;. By

Gagliardo—Nirenberg’s inequality,

10ruzllzs poe e, SClASO1ullL2 | L

1T “‘3
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where i: % —p. Applying Lemma 2.2 with p=o00 and s= % —p, we have

IAS91usllrz |, 1o <C||A”81u2||L2 3 ||A4 PApamH“T”.

1T

By Gagliardo—Nirenberg’s inequality,
p 1-4e 8 e
[AS01usl| L2 <[|Oruall . * A7 Orus| -

Due to the elementary inequalities

|§3|7 |§2|§

Sk "\€2IP<

and Plancherel’s theorem, we have

5_ 5 5
A5 ASO us| L2 < C(||AS Druall 2 + [|AS Oruz]|12).
Then

4 4
1_?p 1 ip %)

(1-—
2(7— ) 2(5-p)
[O1uallrz pes pr, < CllOrusll . TN s,
1

><||(A§‘7 )51U2||2(4 &
4p+2
<CH51U2||L2 “11(AS Al 7
By an interpolation inequality,
1- =i | 2
1A~ 70ll .z <C||9||Loo A, 2 9HZ

Therefore, by Holder’s inequality and Lemma 2.1,

1— 1—2 (€hked)
HA2 79“L;3L33L52§C||||9HL3{ ||A2 2 QHLZ HL°° L2

r1 T3
2
n

(1*27);1
A, 7 0|

2
L35 L2,

()

<Cl6oll ;=" 16

F

1, 1=z
2t = A

T

Combining the estimates above and applying Young’s inequality yield

- s=de
Ka21s<7nAgalean(neuLmHA? ”alugan+wwau2nL;

%”ﬁ>

(A5, A5 )51U2||L2

1A ADdrusll ||90

< Y
< o300 + o

+C <||A%+

128
2,_10
O 41) lorual

where u, r and p have been selected to obey the constraints

A—y)E
2

Stz <,
0 <2
34 (2.10)

= \’—‘"R \H‘:I\t\:
+ -
M\»—":!\H

2
—p.
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When ~ satisfies the condition of Theorem 1.1
S 17
= 20’
17
50, then

we can choose u, i and p satisfying (2.10), for example, if v=
3 T 14
pP= 141 n= 27 n= 3

would fulfill the requirements. By Holder’s inequality and Young’s inequality,

| K122 < C'||0201uz|[ 2 (010 2 [|0]| Lo
1 5 4
< C||51U2||22||A431U2||22 1010/ 2 (|60 L
||A Drusal|2s +C||<91UQ||L2 ||319||L2 ||60||L°°

- 128
< 128 A5 Brusl|3a +C (| ruzl2 +110:6]2)-
Therefore, for v > ég,
5 5
(K12l < 152 ~A3B0)12: + o (A A a3

+C(IAO)Z2 + 1) (01022 +[1010]72).-

Similarly,
5
|K11|S128 ||A7819||L2+ H(Af, AJ)Orus |7

+C([A70]]7 +1)(||31U1HL2 +110:0]72)

and

[Kgl < oo 183000135 + o AT A5 Ores 3
+C([A70]7- +1)(||81u3||i2 +[1010]172)-

We have finished estimating all terms in K in (2.8). K» and K3 in (2.7) can be similarly

estimated as K7 and we omit the details. Putting all these estimates together, we have

d
AN RIS
(hAT AH T[22+ 185 A Ve 3+ (AT AT Vs 2
(2.11)

+C (A7 +1)(IVullZ: +[VOZ2)-

Combining (2.6) with (2.11), we obtain

d 5 5
—(IVull72 + VO] 72) +v (A, A A$)Vug|7

Vu3a +v)(ad,
o[ (AF AT ) Vg |2 + K| ATVO)2

<O ((IAF AD w22 + 105, A uall3a + 1 (AF, A

(Il + lul32) + [A7013: +1) (I Vull3: + [ V6 3:).

A usl32)

Gronwall’s inequality then yields the desired global bound. This completes the proof of
d

Proposition 2.1.
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2.3. Uniqueness. This section proves the uniqueness part of Theorem 1.1.
In fact, we prove a proposition that is slightly stronger than the desired uniqueness.
The uniqueness in the following proposition does not require both solutions are in the
regularity class induced by the existence part.

PROPOSITION 2.2.  Let T >0. Assume that (u™),01)) and (u®,0)) are two solutions
of (1.3) satisfying,

u®,09) e L>=(0,T; H (R%)), fori
yu'? e L2(R3 x (0,7
yug? € L?(R* x (0,7)),
yus? e L2(R3 x (0,T
AVOP e L2(R3 % (0,T)).

Il
[t
N

=
=
=

yWWu'l? e LA(R3 % (0,T)),
yWWul? € L2(R? x (0,T)),
yWul? € L2(R? x (0,T)),

~—
~—
—~

=

(
(
(
(

Honjor N s jor H o
Wl Wijor N o
-

Hoajor N s jor H o
Wl Wijor N o

=
>
=
>

Then (uM,0M) = (u?,0) on R3 x (0,T).

Proof. Let p™) and p(® be the pressures associated with ™M and u®, respectively.
Then the differences 1 =u" —u®, p=p1) —p@ and =01 —9?) satisfy

o

Oty + (u® V)i, + (- V)ulP = -9, p— V(A AL } i,
Oyt + (V) -V )iig + (T V)ul?) = —09p— V(A2+A Vi,
Oyt + (uV) - V)il + (- V ul? ——83]1—V(Af+A3)U3+§, (2.12)
8,0+ (u® V)8 +(i- V)0 = —xA29,

V-u=0,

U(x,0)=To(x), 6(x,0)=0(x).

Dotting (2.12) with % and invoking the divergence-free conditions V-u() =0 and V-7 =
0, we obtain

1d
2.dt

—/(ﬂ-V)u(Q)-ﬂdx—&-/ﬂggdx

_ / (- V)P o — / (- V) a5y da — / (- V)uiis do + / Tde
=J1+Jo+ I3+ Jy.

o N rojen

55 5 5
@132+ AT A 32 4w 1A A TllZe + 0 II(AT AT T3

We estimate J; and write its terms explicitly,

Jy = — / Uy 0y ulP ey da — / Ui 0pu\P 0y da — / t305u\P 0, da
=Ji1+Ji2+ Jis.

By Holder’s inequality and Lemma 2.2,

|l <llunllze l[arlls, pos s, 10y 2 Ll

<[l |Af @ 2

ryjw3

L |AF 0ruf? ||L3112L3<;

1 1 1
< C iyl 1A ST | 2, |AF Agiin | 22 A7 0yl |12, [|AF Ag0ru| 2,
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Inserting the interpolation inequality above,
i~ ~ 2 P
IAf@ e, <Cllaly AT, |
we obtain

5 5 2 1
un|<o||u1||L2u<Af, 4>u1||L2||A1u1>||L2HA Asul®|2,

5 . 2 2),, 2
< el AD 2 + C a2 1] u ) L 1A Al -

By Holder’s inequality and Lemma 2.2,

1] < [|02u” | 12 ||U2||L31L3§L§2 ||U1||L3;3L3°1L32

< C95uf?|| 2 ||A4u2||Lgl,2ng||A L

i ~ i . i1
< C|0u? | 2 || AT Tia | 2, || AL Dsin 2, [|AZ Tt || 2, || AL D1 | 2

Invoking the interpolation inequalities

1 4 5 1 1 4 5 1
1A3t2llzz, < Clluallze AZu2llz: o [1AZwllez, < Cllwllzs Azl
and thus
1 4 51 1 4 5 1
[ASUsllpe < Clluall}z [ASU2ll72, 1A T[22 < Cllud][ 2 [AS U] £5s
we have

2 -2 2 5 5 8 5 5 3
| 12| < cnazu& >\|Lz (oA ||u2|\ 2 AT AT 52 1(AS A s 7
5 5
< T8 AT A |2 + o8 2 I(AS A i3
+C 000 2, [ | 2 (a2

The estimate for Jy3 is similar to that for Jy5. In fact,

/13| < ||53U1 (e ||U1HL23L3;L4 [l 2, Lo 13,

AT A2+

< A AD)E
< o e A A Y|
2
+C 0501 2, [ | 2 s | 2.

Due to the symmetry, the estimates of J; and J3 are similar to those for J; and we omit
further details. Finally we deal with Jy,

J4=/ﬁ35d$§ s L2 116]| L2 < I3 17 + 11617 -
Collecting the bounds for Ji,Js,J3 and J4, we obtain
d o T ATV 2 T oATV 2 T A2
%”unm +v (AL A )un |72 +v|[(Ag A ez + v [[(Af A )us| 7

5 _ ~
< O Va2 [l 22 + [fas]| 22 + 16117
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Cllin )22 | AT @7, 14T 85027
+C | || 72 [|A] uy ||L2|| pul® |17,

~ = 2
+C i 22 AT u$ || | AL By >||L2
C ~ 112 A% (2) % A%a 7 213
+Clais |2 | AL w17 1AL 0puP | £ (2.13)

Dotting (2.12) with 0 and invoking the divergence-free conditions V-u(Y) =0 and V-u =
0, we obtain

2dt||e||m+fi||me||m - —/(a-vw(?)ﬁdgc

= —/61819(2)§dm—/62629(2)5(1:5—/53839(2)§dx
=Ly + Lo+ Ls.

For any parameters a, b, p and ¢ satisfying

1 1 1 1 1
a>0, b>0, a+b==, —-==-—a, —=--0,
2 p 2 q
we have, by Holder’s inequality and Lemma 2.4,
L <0102 1o W llez, ree ps 10022, 1o, 12 - (2.14)

By Sobolev’s inequality and an interpolation inequality,

||81 2)||L31T Lz, SCHA§819(2)||L2
<C0u0® 2 143000 2.
By Sobolev’s inequality, Lemma 2.2 and an interpolation inequality,

ltallzz, o s, <C|af U1||L§113L;o2
<CA{ T2, ||Afazul||%2
<Clanl 1A Ta I IAF, ADl2,
<Clalia IAF ADT .

By Sobolev’s inequality and an interpolation inequality,

1 ~
1612, r2, s <C|af Ollzz. ., rs, <CIATA30] 2

TS xq
—+b 1+h

<Clfl ||A79||L2
Inserting the bounds above in (2.14) and applying Young’s inequality yield

1
Z+b 140

1—7 5 2~ 3 ~ 4
L4 < ClI2 0|2 7 14300 a1 (AT Al 2 18112 IIAWIIL

5 5
< A+ A A 3

@097 g a5 1 130 18]
+C00 L 7 IATOO | Nl (161l - (2.15)

)
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10~

o satisfies
3 14b 1

4 —=1 or o= =

7y—5b— 7

T0+ 2

we have %ag 2 and thus
IA7016P) 125 < C(1+[|A79,0%)72)

)o =2. Therefore,

For > if 26
3+b
¥

It is easy to check that 2o+ (1—
14y
20~ (1 4 Yo _ ~
[l 22 1101l C ([t lz2 +110]172)-

It then follows from (2.10) that
AfAS) @

5
Ll < oo NG+ 128 I
+C100P s 77 (1 A0 |3) (132 + [16]32)-
Similarly,
Ll < oo A8+ oo i ad Ayl
T+ [A79,0P))[72) (@272 + 1161 72)

+C 026 "

and
5 5

L] < 1o IATB + o = e AT Al
+C||339(2)HL2 T+ 030D |135) (s ]| 22 +116]32)

Collecting the bounds for Lq,Ls and Ls, we obtain
2dt||e||m+n|we||m

AT ATV 2 3oAIV AT 2

o (N A 2+ 1A AD 2l + 1 (A, A s 32 )

a2

A AVOR L) () 7s + 10172

(2.16)

- 128
+C|IVe)| 1,
Combining (2.13) with (2.16), we obtain
(1a@lf2 +116117) + x| A70][7.
5 5.
V|22 +v [[(AF A2 |72 +v [[(AF A )t 7
112 0112

o |[(AF AL )i |2
5
D7 (14 [ATVOD2,) + [Vu@ || E, + 1) (2. + 16]122)

1
c(ve@)
+C w22 |Af u ‘”nzz A agu?)nm

2
fu® ||L2 EERU

+C 2] A
0

~ = 2 2
+Clis |2 [ A w15 1AL 02uP | fo.

Gronwall’s inequality then implies that (u(1),0()) = (u(®) 02 if (ug () 9(1)) (u ) g )

This completes the proof of Proposition 2.2
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