LECTURE 13

Conformal Mapping Techniques

Definition 13.1. Let D be a domain in the complex plane. A mapping $f: D \rightarrow \mathbb{C}$ is said to be conformal at a point $z_{0} \in D$ if f is analytic at every point z_{0} and $f^{\prime}\left(z_{o}\right) \neq 0$.

Theorem 13.2. Suppose that a transformation

$$
w=f(z)=u(x, y)+i v(x, y)
$$

is conformal on a smooth arc C. If along $f(C)$, a function $h(u, v)$ satisfies either of the conditions

$$
\begin{align*}
h(u, v) & =h_{o} \tag{13.1}\\
\frac{d h}{d n} & =0 \tag{13.2}
\end{align*}
$$

where h_{0} is a real constant and $\frac{d f}{d n}$ denotes the derivative h along the direction normal to $f(C)$, then the function

$$
H(x, y)=h(u(x, y), v(x, y))
$$

satisfies the corresponding condition

$$
\begin{align*}
H(x, y) & =h_{0} \tag{13.3}\\
\frac{d H}{d N} & =0 \tag{13.4}
\end{align*}
$$

where $\frac{d h}{d N}$ denotes derivatives normal to C.
Theorem 13.3. Suppose that the image of an analytic function

$$
f(z)=u(x, y)+i v(x, y)
$$

defined on a domain $D \subset \mathbb{C}$ is another domain $f(D) \subset \mathbb{C}$. If $h(u, v)$ is a harmonic function defined on $f(D)$, then the function

$$
H(x, y)=h(u(x, y), v(x, y))
$$

is harmonic in D.

Application: Find the electrostatic potential V in the space enclosed by the half circle $x^{2}+y^{2}=1, y \geq 0$ and the line $y=0$ when $V=0$ on the circular boundary and $V=1$ on the line segment $[-1,1]$.

Consider the transformation

$$
\begin{equation*}
w=f(z)=i \frac{1-z}{1+z} \tag{13.5}
\end{equation*}
$$

maps the upper half of the unit circle C onto the first quadrant of the w plane and the interval $[-1,1]$ onto the positive v axis.

We can determine the image of the region described above by figuring out how the boundaries are mapped. The circular part of the boundary can be parameterized by

$$
z_{1}(\theta)=e^{i \theta} \quad, \quad 0 \leq \theta \leq \pi
$$

and so the image of this boundary by f is the curve

$$
f \circ z_{1}(\theta)=i \frac{1-e^{i \theta}}{1+e^{i \theta}}=\tan (\theta / 2) \quad, \quad 0 \leq \theta \leq \pi
$$

which coincides with the positive real u-axis. The line segment $[-1,1]$ can be parameterized by

$$
z_{2}(t)=t \quad, \quad t \in[-1,1]
$$

and the image of $[-1,1]$ by f is

$$
\left\{\left.i \frac{1-t}{1+t} \right\rvert\, t \in[-1,1]\right\}
$$

It is clear that this corresponds to a line running along the positive imaginary axis. To see how the interior of the semi-circular region is mapped, we choose an arbitrary point, say $z=\frac{1}{2}+i \frac{1}{2}$, and compute its image.

$$
f\left(\frac{1}{2}+i \frac{1}{2}\right)=i \frac{1-\frac{1}{2}-\frac{1}{2} i}{1+\frac{1}{2}+\frac{1}{2} i}=\frac{\frac{1}{2} i+\frac{1}{2}}{\frac{3}{2}+\frac{1}{2} i}=\frac{1+i}{3+i}=\frac{(1+i)(3-i)}{10}=\frac{4+2 i}{10}
$$

This is evidently a point lying in the first quadrant. By continuity arguments we can conclude that all points of the original semi-circular region must be mapped into the first quadrant.

The next step is to find a solution of Laplace's equation that satisfies the boundaries conditions

$$
\begin{equation*}
V(u, 0)=1 \quad, \quad V(0, v)=0 \tag{13.6}
\end{equation*}
$$

Now the imaginary part of the analytic function

$$
\frac{2}{\pi} \log (w)=\frac{2}{\pi}(\ln (\rho)+i \phi)
$$

is a harmonic function that satisfies the boundary conditions (13.2). In terms of the coordinates u and v, this function is

$$
V(u, v)=\operatorname{Im}\left[\frac{2}{\pi} \log (u+i v)\right]=\frac{2}{\pi} \arctan \left(\frac{u}{v}\right) .
$$

Now all we have to do now is pull back this function to the z plane. From (13.5) we have

$$
\begin{align*}
u+i v & =\frac{1-x-i y}{1+x+i y} \tag{13.7}\\
& =\frac{(1-x-i y)(1+x-i y)}{(1+x+i y)(1+x-i y)} \tag{13.8}\\
& =\frac{1-x^{2}-y^{2}}{1+2 x+x^{2}+y^{2}}+i \frac{2 y}{1+2 x+x^{2}+y^{2}} \tag{13.9}
\end{align*}
$$

And so

$$
\begin{align*}
u & =\frac{1-x^{2}-y^{2}}{1+2 x+x^{2}+y^{2}} \tag{13.10}\\
v & =\frac{2 y}{1+2 x+x^{2}+y^{2}} \tag{13.11}
\end{align*}
$$

Thus,

$$
\begin{equation*}
V(x, y)=\frac{2}{\pi} \arctan \left(\frac{1-x^{2}-y^{2}}{2 y}\right) \tag{13.12}
\end{equation*}
$$

Homework: 4.8.4, 4.8.5

