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We study asymptotic behavior of the derivatives of Faber polynomials on a
set with corners at the boundary. Our results have applications to the questions
of sharpness of Markov inequalities for such sets. In particular, the found
asymptotics are related to a general Markov-type inequality of Pommerenke
and the associated conjecture of Erdős. We also prove a new bound for Faber
polynomials on piecewise smooth domains.
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1. FABER POLYNOMIALS AND THEIR DERIVATIVES

Let K be a compact connected set. Denote the unbounded connected
component of C \ K by Ω. Consider the canonical conformal mapping
Ψ : Δ → Ω, where Δ := {w : |w| > 1}, with the Laurent expansion at ∞

Ψ(w) = cw + c0 +
c1

w
+

c2

w2
+ . . . , |w| > 1, c > 0. (1.1)

We note that c = cap(K) is the logarithmic capacity of K. The Faber
polynomials {Fn(z)}∞n=0, deg Fn = n, are defined via the Laurent expansion
of the generating function (cf. [21] or [6])

Ψ′(w)
Ψ(w) − z

=
∞∑

n=0

Fn(z)
wn+1

, z ∈ K, |w| > 1. (1.2)
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They proved to be of considerable importance in approximation theory (see,
e.g., [6] and [20]), complex function theory [2] and orthogonal polynomials
(cf. [22] and [20]).

An equivalent definition of Faber polynomials can be given by using the
inverse conformal mapping Φ := Ψ−1. Then Fn(z) is the polynomial part
of the Laurent expansion of Φn(z) near z = ∞, i.e.,

Φn(z) = Fn(z) + En(z), z ∈ Ω, (1.3)

where

En(z) = O

(
1
z

)
, as z → ∞.

If the boundary of Ω is sufficiently smooth, then it is possible to show that

lim
n→∞En(z) = 0,

for z ∈ Ω, and even for z ∈ ∂Ω (see [21, Ch. 4] and [20]). Thus we arrive
at the classical asymptotics for Faber polynomials

Fn(z) = Φn(z) + o(1), n → ∞, (1.4)

where z ∈ Ω. Note that Faber polynomials typically tend to zero outside
Ω, as n → ∞ (cf. [21, Ch. 4] and [7]). Using standard methods, one can
prove the following asymptotics for the derivatives of Faber polynomials.

Proposition 1.1. Suppose that ∂Ω is an analytic curve, so that Φ can
be continued conformally through ∂Ω. Then there exist a domain Ω̃ ⊃ Ω
and r ∈ (0, 1) such that

F (k)
n (z) =

dk

dzk
(Φn(z)) + O(rn), as n → ∞, (1.5)

for any z ∈ Ω̃ and k = 0, 1, 2, . . . .

These asymptotics may be viewed as the differentiated versions of equa-
tions (1.3) and (1.4). One can obtain a similar result, for the derivatives up
to a certain order, in the case of sufficiently smooth (not analytic) bound-
ary ∂Ω. The ideas are close to those of [21, Ch. 4], but they require a much
more technical argument than the proof of Proposition 1.1.

Asymptotics for Faber polynomials in the case of non-smooth boundary
were obtained in [16]. If ∂Ω has the angle of opening απ at z ∈ ∂Ω, 0 <
α ≤ 2, with respect to Ω, then (1.4) must be replaced by

Fn(z) = αΦn(z) + o(1), as n → ∞ (1.6)
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(see Theorem 1.1 of [16] for the precise statement).
The primary goal of this note is to find the asymptotics for the derivatives

of Faber polynomials at the corner points of ∂Ω. We also consider appli-
cations of such asymptotics to Markov-type inequalities for derivatives of
polynomials on K.

It is not unexpected that our subject is directly related to the geometric
properties of ∂Ω via the conformal mapping Ψ. Let z0 ∈ ∂Ω be a point such
that two analytic arcs of ∂Ω meet at z0 and form the angle απ, 0 < α ≤ 2,
as measured in Ω. According to the result of Lehman [10], Ψ(w) allows an
asymptotic expansion in the neighborhood of w0, where Ψ(w0) = z0,

Ψ(w) − Ψ(w0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=0

∞∑
l=1

akl(w − w0)k+lα, α is irrational,

∞∑
k=0

q∑
l=1

[k/p]∑
m=0

aklm(w − w0)k+lp/q (log(w − w0))
m

,

α = p/q is rational.

(1.7)

In both cases, the first term of this expansion is given by

Ψ(w) − Ψ(w0) = aα(w − w0)α + . . . , aα �= 0 (1.8)

(see Theorem 1 of [10] and Section 3.4 of [12] for details). Our main result
below gives the asymptotics for the derivatives of Faber polynomials at an
“analytic corner.”

Theorem 1.1. Let ∂Ω be rectifiable. Suppose that Ω has the angle
απ, 0 < α ≤ 2, at its boundary point z0 = Ψ(w0), which is locally formed
by two analytic arcs of ∂Ω. Then

F (k)
n (z0) =

α k!nαk wn
0

(aαwα
0 )k Γ(αk + 1)

+ o(nαk), as n → ∞, (1.9)

where k = 0, 1, 2, . . . .

Note that the appropriate branch of the multiple valued function wα, 0 <
α ≤ 2, is defined by the expansion (1.7)-(1.8), together with the associated
coefficient aα.

If k = 0 then we obtain the asymptotics (1.6) for Faber polynomials
themselves (see [16] for a more general result). The case k = 1 gives
the asymptotics for the first derivative of Faber polynomials, which have
applications to Markov-type inequalities for the derivative of polynomials
on general sets. The fact that Faber polynomials can be used to show
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sharpness of Markov-type inequalities was already observed in the classical
paper of Szegő [23]. We develop his ideas and relate our asymptotics to
the result of Pommerenke [14] and the conjectures of Erdős [4]-[5].

2. MARKOV INEQUALITIES FOR GENERAL SETS

Define the uniform (sup) norm on K by

‖f‖K := sup
z∈K

|f(z)|.

The classical Markov inequality for K = [−1, 1] states that

‖P ′
n‖[−1,1] ≤ n2 ‖Pn‖[−1,1], (2.1)

where Pn is a polynomial of degree at most n (cf. Section 5.1 of [1] and
[19]). We have equality in (2.1) for the Chebyshev polynomial Tn(x) =
cos(n arccos x). On the other hand, Bernstein’s inequality for the unit disk
D gives

‖P ′
n‖D ≤ n ‖Pn‖D. (2.2)

Obviously, equality holds in (2.2) for Pn(z) = zn. Szegő [23] was apparently
the first to explain the nature of difference in the exponents of n in (2.1)
and (2.2), using the geometry of sets [−1, 1] and D in the complex plane.
He proved that

‖P ′
n‖K ≤ C(K)nα ‖Pn‖K , (2.3)

where απ is the largest angle at ∂Ω, 1 ≤ α ≤ 2, and C(K) is independent
of n ∈ N. The exponent α is sharp, as shown by Szegő with the help of
Faber polynomials. This also follows from Theorems 1.1 and 2.1, for k = 1,
which in addition give a lower bound for the constant C(K). Similarly, the
asymptotics (1.9) can be used to show the sharpness of inequalities for the
derivatives of higher order k ≥ 2.

A universal Markov-type inequality, for an arbitrary continuum K of
capacity cap(K), was obtained by Pommerenke [14]:

‖P ′
n‖K ≤ e n2

2 cap(K)
‖Pn‖K . (2.4)

Erdős conjectured that e could be replaced by 1 in (2.4), so that (2.1) would
follow from this general result, as cap([−1, 1]) = 1/2. After Rassias et al.
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[18] had noticed that his conjecture needed adjustment, Erdős restated it
in the corrected form

‖P ′
n‖K ≤ (1 + o(1))n2

2 cap(K)
‖Pn‖K , (2.5)

as n → ∞ (see, e.g., [5]).
Note that if the angle at z0 is 2π, in the setting of Theorem 1.1, then we

have

|F ′
n(z0)| =

1 + o(1)
|a2| n2, as n → ∞. (2.6)

It is also known that

‖Fn‖K ≤ 2, n ∈ N, (2.7)

for convex K (cf. [13]), so that we can estimate in this case

‖F ′
n‖K

‖Fn‖K
≥ |F ′

n(z0)|
2

=
1 + o(1)
2 |a2| n2, as n → ∞. (2.8)

Thus one might try to disprove (2.5) by finding an appropriate set K, such
that |a2| < cap(K). However, we verified for a number of special cases that

|a2| ≥ cap(K). (2.9)

In particular, we have a2 = 1/2 = cap([−1, 1]) for K = [−1, 1]. After the
initial version of this paper had been submitted for publication, Kühnau
[9] found an elegant proof of (2.9), which is based on a distortion theorem
of Löwner [11]. Hence (2.8)-(2.9) show that inequality (2.5) is sharp for
sets with outward pointing cusps.

We remark that the convexity of K is not essential in the above argument,
because (2.7) can be replaced by the following.

Theorem 2.1. If ∂Ω is a piecewise smooth Jordan curve formed by a
finite number of Dini-smooth arcs, then

lim sup
n→∞

‖Fn‖K ≤ 2. (2.10)

A Dini-smooth arc is a Jordan arc with a natural parametrization z(s),
such that z′(s) is Dini-continuous, and z′(s) �= 0 for any s ∈ [0, l] (see,
e.g., [12]). Note that the bound 2 in (2.10) cannot be decreased, which is
immediate from (1.6) (or from (1.9) with k = 0).
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3. PROOFS

Proof (Proposition 1.1). Let Ωr be a domain such that Φ(Ωr) = {w :
|w| > r}, r > 0. There exists r0 ∈ (0, 1) such that Φ has a conformal
extension into Ωr0 . Hence (1.3) is valid for any z ∈ Ωr0 , and En(z) is
analytic in Ωr0 . Denote the level curve of Φ by γr := {z : |Φ(z)| = r}, r >
r0. Using Cauchy integral formula, we obtain from (1.3) that

En(z) =
1

2πi

∫
γr

Φn(t) dt

t − z
, z ∈ Ωr, r > r0,

where integration is carried in clockwise direction. It follows by differenti-
ation of (1.3) that

F (k)
n (z) =

dk

dzk
(Φn(z)) +

k!
2πi

∫
γr

Φn(t) dt

(t − z)k+1
, z ∈ Ωr, k = 0, 1, 2, . . . .

(3.1)

We can estimate the remainder term for z ∈ Ωr′ , r < r′ < 1,∣∣∣∣ k!
2πi

∫
γr

Φn(t) dt

(t − z)k+1

∣∣∣∣ ≤ k!
2π

l(γr) rn

(dist(γr, γr′))k+1
, (3.2)

where l(γr) is the length of γr and

dist(γr, γr′) := min{|t − z| : t ∈ γr, z ∈ γr′}.
Thus (1.5) is a consequence of (3.1) and (3.2).

Proof (Theorem 1.1). Using Cauchy formula in (1.3), for a contour
γr := {z : |Φ(z)| = r > 1} and a point z ∈ Ω inside γr, we have that

Fn(z) =
1

2πi

∫
γr

Φn(t) dt

t − z
. (3.3)

This well known integral representation of Faber polynomials is valid for
any z ∈ K by analytic continuation (cf. [21]). Thus we obtain from (3.3)
that

F (k)
n (z) =

k!
2πi

∫
γr

Φn(t) dt

(t − z)k+1
=

k!
2πi

∫
|w|=r

wn Ψ′(w) dw

(Ψ(w) − z)k+1
, (3.4)

where z ∈ K and k = 0, 1, 2, . . . . Since ∂Ω is rectifiable, |Ψ′(w)| is integrable
over |w| = 1. Therefore, (3.4) gives that

F (k)
n (z0) =

k!
2πi

∫
γ

wn Ψ′(w) dw

(Ψ(w) − Ψ(w0))k+1
, z0 = Ψ(w0), (3.5)
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where γ is the contour consisting of the arc γ′ := {w : |w−w0| = s, |w| > 1}
and the arc γ′′ := {w : |w − w0| ≥ s, |w| = 1}, for a small but fixed s > 0.
Using expansion (1.7)-(1.8), we have that (see [10] and Section 3.4 of [12])

Ψ(w) − Ψ(w0) = aα(w − w0)α + g(w − w0)

and

Ψ′(w) = α aα(w − w0)α−1 + g′(w − w0),

for w in a neighborhood of w0, |w| > 1. The expansion for g starts as
follows:

g(w − w0) =

⎧⎨
⎩

b(w − w0)2α + . . . , α < 1,
b(w − w0)2 log(w − w0) + . . . , α = 1,
b(w − w0)1+α + . . . , α > 1.

Hence

Ψ′(w)
(Ψ(w) − Ψ(w0))k+1

=
α

ak
α (w − w0)αk+1

+ O

(
1

(w − w0)p

)
(3.6)

=
α

ak
α wαk+1(1 − w0/w)αk+1

+ O

(
1

(w − w0)p

)

=
α

ak
α wαk+1

0

1
(1 − w0/w)αk+1

+ O

(
1

(w − w0)p

)
,

where p < αk + 1. It follows that

k!
2πi

∫
γ

wn Ψ′(w) dw

(Ψ(w) − Ψ(w0))k+1
=

k!
2πi

(∫
γ′

+
∫

γ′′

)
wn Ψ′(w) dw

(Ψ(w) − Ψ(w0))k+1
, (3.7)

where the integral over γ′′ is bounded for all n ∈ N, as s ≤ |w − w0| ≤ 2
and |w| = 1. Since 1/(1−w0/w)αk+1 is analytic in C\ [0, w0], we have that

∣∣∣∣∣
1

2πi

∫
γ′

wn dw

(1 − w0/w)αk+1
− 1

2πi

∫
|w|=r

wn dw

(1 − w0/w)αk+1

∣∣∣∣∣ ≤ C(s), (3.8)

where C(s) is independent of n ∈ N. Using the formula for the (n + 1)st
coefficient of the Laurent expansion for 1/(1 − w0/w)αk+1 about w = ∞,
we obtain that

1
2πi

∫
|w|=r

wn dw

(1 − w0/w)αk+1
=

(
αk + n + 1

n + 1

)
wn+1

0 (3.9)

∼ nαk

Γ(αk + 1)
wn+1

0 , as n → ∞.
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The same argument shows that

1
2πi

∫
|w|=r

wn dw

(1 − w0/w)p
= O(np−1) = o(nαk), as n → ∞.

Thus we obtain from (3.6)-(3.9) that

F (k)
n (z0) =

α k!nαk wn
0

(aαwα
0 )k Γ(αk + 1)

+ o(nαk), as n → ∞,

where k = 0, 1, 2, . . . . One can deduce more precise information about
the error term, by applying similar analysis to the remaining terms of the
asymptotic expansion (3.6).

Proof (Theorem 2.1). Observe that Ψ extends to a homeomorphism
between {w : |w| = 1} and ∂Ω (see Theorem 2.1 of [12]). Consider the
function

v(t, θ) := arg
(
Ψ(eit) − Ψ(eiθ)

)
, t �= θ. (3.10)

Note that v(t, θ) has a jump discontinuity as a function of t, at t = θ, where
θ ∈ [0, 2π) is fixed. The magnitude of this jump, arising when t passes
through θ, is equal to the angle formed by ∂Ω at Ψ(eiθ), as measured in
Ω. Clearly, v(t, θ) can be defined continuously for t �= θ. It was proved in
[8, Th. 4] that v(t, θ) is of bounded variation as a function of t ∈ [0, 2π).
Hence we have the following integral representation for Faber polynomials

Fn

(
Ψ(eiθ)

)
=

1
π

∫ 2π

0

eint dtv(t, θ), 0 ≤ θ < 2π, (3.11)

which is due to Pommerenke (cf. [13], [15] and [8]).
Let δ > 0 be small. Since ∂Ω is rectifiable, we have that Ψ′(eit) ∈

L1 ([0, 2π)) , see [12, Th. 6.8]. Thus (3.10) gives that
∫ θ+2π−δ

θ+δ

eint dtv(t, θ) =
∫ θ+2π−δ

θ+δ

eint �
(

eitΨ′(eit)
Ψ(eit) − Ψ(eiθ)

)
dt. (3.12)

The regular modulus of continuity for a 2π-periodic continuous function f
is given by

ω∞(f, u) := sup
|x−y|≤u

|f(y) − f(x)|.

We also define the L1 modulus of continuity for a 2π-periodic function
f ∈ L1 ([0, 2π)) by

ω1(f, u) := sup
|h|≤u

∫ 2π

0

|f(x + h) − f(x)| dx.
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The corresponding L1 modulus of continuity on [θ+δ, θ+2π−δ] is denoted
by ω1(f, u; θ). Note that

min
t∈[θ+δ/2,θ+2π−δ/2]

|Ψ(eit) − Ψ(eiθ)| = c(δ) > 0.

Hence we have for u ∈ (0, δ/2)

ω1

(
�

(
eitΨ′(eit)

Ψ(eit) − Ψ(eiθ)

)
, u; θ

)
≤ ω1

(
eitΨ′(eit)

Ψ(eit) − Ψ(eiθ)
, u; θ

)

≤ ω1

(
eitΨ′(eit), u

)
maxt∈[0,2π] |Ψ(eit) − Ψ(eiθ)|

(c(δ))2

+
ω∞

(
Ψ(eit), u

) ∫ 2π

0
|eitΨ′(eit)| dt

(c(δ))2

≤ Aω1

(
Ψ′(eit), u

)
+ ω∞

(
Ψ(eit), u

) ∫ 2π

0
|Ψ′(eit)| dt

(c(δ))2
, (3.13)

where A is a positive constant independent of θ ∈ [0, 2π) and δ > 0. It
follows from Section 2.3.7 of [3] and (3.12) that

∫ θ+2π−δ

θ+δ

eint dtv(t, θ) → 0, as n → ∞, (3.14)

uniformly in θ ∈ [0, 2π), by a version of the Riemann-Lebesgue lemma.
We show in Lemma 3.1 below that for any ε > 0 there exists δ > 0 such

that

∫ θ+δ

θ−δ

|dtv(t, θ)| ≤ 2π + ε, θ ∈ [0, 2π). (3.15)

Combining (3.14), (3.15) and (3.11), we obtain that

lim sup
n→∞

‖Fn‖K ≤ 2 +
ε

π
,

which yields (2.10) after letting ε → 0.

Lemma 3.1. Suppose that the assumptions of Theorem 2.1 are satisfied.
For any ε > 0 there exists δ > 0 such that

∫ θ+δ

θ−δ

|dtv(t, θ)| ≤ 2π + ε, θ ∈ [0, 2π).
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Proof. We first note that the above integral expresses the variation of
the angle for the secant line through Ψ(eiθ) and Ψ(eit), as t runs from θ−δ
to θ + δ. This variation is clearly independent of parametrization for the
arc

γ := {Ψ(eit) : θ − δ ≤ t ≤ θ + δ}.
Also, it is well known that variation is an additive function, so that

V art (v(t, θ), [θ − δ, θ + δ]) = V art (v(t, θ), [θ − δ, θ)) (3.16)
+ V art (v(t, θ), (θ, θ + δ]) + β(θ),

where β(θ) is the angle at Ψ(eiθ) as measured in Ω. By choosing δ > 0
sufficiently small, we can assume that γ contains at most one corner point
of ∂Ω. If γ is smooth, then β(θ) = π. Furthermore, for any ε > 0 there is
δ > 0, independent of θ, such that

max (V art (v(t, θ), [θ − δ, θ)) , V art (v(t, θ), (θ, θ + δ])) ≤ ε/2,

by Theorem 5 of [8]. This gives that

V art (v(t, θ), [θ − δ, θ + δ]) ≤ π + ε, (3.17)

uniformly in θ.
If Ψ(eiθ) is a corner point, then we similarly obtain that

V art (v(t, θ), [θ − δ, θ + δ]) ≤ β(θ) + ε ≤ 2π + ε. (3.18)

Consider the remaining case when the corner point is at Ψ(eit0), t0 ∈
(θ, θ + δ). Following the same argument as for (3.17), we still have that

V art (v(t, θ), [θ − δ, t0]) ≤ π + ε/2, (3.19)

for all sufficiently small δ > 0, which are independent of θ. Thus we need
to estimate V art (v(t, θ), [t0, θ + δ]) . Note that the point Ψ(eiθ) is located
outside the arc

γ1 := {Ψ(eit) : t0 ≤ t ≤ θ + δ},
but it can be arbitrarily close to γ1. We now consider a more general vari-
ation function

h(z) := V ar (arg(ζ − z), ζ ∈ γ1) , z ∈ C.
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Let ζj := Ψ(tj), j = 0, . . . , k, where t0 < t1 < . . . < tk = θ + δ, be a
partition of γ1. Observe that

hk(z) :=
k−1∑
j=0

| arg(ζj − z) − arg(ζj+1 − z)|

is a continuous subharmonic function on C \ γ1, for any k ∈ N. By the
(generalized) maximum principle for subharmonic functions (cf. Theorems
2.3.1 and 3.6.9 in [17]), we have that

hk(z) ≤ max
ξ∈γ1

hk(ξ) ≤ max
ξ∈γ1

h(ξ), z ∈ C \ γ1.

Letting k → ∞, we obtain that

h(z) ≤ max
ξ∈γ1

h(ξ), z ∈ C \ γ1.

Since ξ is now positioned on the smooth arc γ1, it follows again that

V art (v(t, θ), [t0, θ + δ]) ≤ max
ξ∈γ1

V ar (arg(ζ − ξ), ζ ∈ γ1) ≤ π + ε/2,

as in (3.17) and (3.19). Combining (3.19) with the above estimate, we have
that

V art (v(t, θ), [θ − δ, θ + δ]) ≤ 2π + ε

in this remaining case too, so that the Lemma is proved.

Acknowledgement. The author would like to thank Professor D. Gaier
and the referee for valuable suggestions, and Professor R. Kühnau for com-
municating his nice proof of (2.9).
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5. P. Erdős, Some of my favourite unsolved problems, in “Tribute to Paul Erdős” (A.
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