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Abstract
This paper examines the initial-value problem for the two-dimensional 
magnetohydrodynamic equation  with only magnetic diffusion (without 
velocity dissipation). Whether or not its classical solutions develop finite time 
singularities is a difficult problem and remains open. This paper establishes 
two main results. The first result features a regularity criterion in terms of the 
magnetic field. This criterion comes naturally from our approach to obtain 
a global bound for the vorticity. Due to the lack of velocity dissipation, it 
is difficult to conclude the boundedness of the vorticity from the vorticity 
equation itself. Instead we derive and involve a new equation for the combined 
quantity of the vorticity and a singular integral operator on the tensor product 
of the magnetic field. This criterion may be verifiable. Our second main result 
is a weaker version of the small data global existence result, which is shown 
by the bootstrap argument.
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1.  Introduction

This paper examines the initial-value problem for the 2D incompressible magnetohydrody-
namic (MHD) equations

( )( ) ( ( ) ( ))

 η
+ ⋅ ∇ = −∇ + ⋅ ∇
+ ⋅ ∇ = ⋅ ∇ + ∆
∇ ⋅ = ∇ ⋅ =

=

⎧

⎨
⎪⎪

⎩
⎪⎪

u u u p b b

b u b b u b
u b

u b x u x b x

,
,

0, 0,
, , 0 , ,

t

t

0 0

� (1.1)

where u  =  u(x, t) denotes the velocity of the fluid, b  =  b(x, t) the magnetic field and  
p  =  p(x, t) the scalar pressure. The parameter ⩾η 0 denotes the magnetic diffusivity. Due to 
the lack of the velocity dissipation, the global well-posedness issue is extremely difficult and 
remains open.

The work presented here contributes to the efforts towards the resolution of the global 
regularity problem on the 2D MHD equations with partial or fractional dissipation. We recall 
some of the recent developments in this direction. For the convenience of the description, we 
write the 2D MHD equations with general partial dissipation as follows,

ν ν
η η

+ ⋅ ∇ = ⋅ ∇ −∇ + ∂ + ∂
+ ⋅ ∇ = ⋅ ∇ + ∂ + ∂
∇ ⋅ = ∇ ⋅ =

⎧
⎨
⎪

⎩⎪

u u u b b p u u

b u b b u b b

u b

,

,

0, 0.

t x x x x

t x x x x

1 2

1 2

1 1 2 2

1 1 2 2� (1.2)

The two extreme cases, (1.2) with ν ν η η> > > >0, 0, 0, 01 2 1 2  and (1.2) with 
ν ν η η= = = = 01 2 1 2 , are either too easy or too difficult. When ν ν η η= = = = 01 2 1 2 , (1.2) 
becomes completely inviscid and the global regularity issue remains outstandingly open. 
When ν ν η> > >0, 0, 01 2 1  and η > 02 , the global regularity can be established in a similar 
way as that for the 2D Navier-Stokes equations  (see, e.g. [24]). Mathematically it is very 
natural to study the intermediate cases. In addition, some of the partial dissipation cases do 
have strong physical backgrounds (see, e.g. [3, 26]). The global regularity issue on these cases 
has attracted considerable interests in the last few years and progress has been made for some 
cases (see, e.g. [4–9, 12, 13, 15, 16, 17–20, 22, 23, 27, 31, 33–37, 39–43]). Equation (1.2) 
with ν ν η η= > > =0, 0, 0, 01 2 1 2  and (1.2) with ν ν η η> = = >0, 0, 0, 01 2 1 2  were recently 
examined by Cao and Wu and shown to possess global classical solutions for any suffi-
ciently smooth data [6]. Some partial results have also been obtained for the case (1.2) with 
ν ν η η> = > =0, 0, 0, 01 2 1 2  ([4]).

Another prominent partial dissipation case is when there is only velocity dissipation (no 
magnetic diffusion), namely, (1.2) with ν ν= > 01 2  and η η= = 01 2 . The global well-posed-
ness for this case is open. The velocity dissipation alone is not enough to prove global bounds 
in any Sobolev space. Very recent efforts are devoted to global solutions near an equilibrium 
and progress has been made ([15, 22, 27, 37, 43]). The pioneering work of Lin et al in this 
direction reformulated the system in Lagrangian coordinates and estimated the Lagrangian 
velocity through the anisotropic Littlewood–Paley theory and anisotropic Besov space tech-
niques [22]. The paper of Ren et al obtained this global well-posedness near an equilibrium 
without resorting to the Lagrangian coordinates and rigorously confirmed an numerical obser-
vation by establishing explicit large-time decay rates [27]. Wu et al recently considered the 
MHD equations with a velocity damping term and obtained the global solutions near an equi-
librium [37]. The approach in [37] is completely different from those in [22, 27, 43]. Wu  
et al [37] offers a systematic new procedure for diagonalizing the system of linearized equa-
tions and converting the differential equations into an integral form.
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When there is only magnetic diffusion and no velocity dissipation, namely, ν ν= = 01 2  
and η η= > 01 2  in (1.2), the global regularity problem remains open. But we do have global 
H1-bound for (u, b) in this case [6, 20], which ensures the global existence of weak solutions. 
It is not clear if such weak solutions are unique or if they can be improved to classical solu-
tions when the initial datum is sufficiently smooth. In addition, the work of Cao et al [7] indi-
cates that this case is critical in the sense that a slight more dissipation would yield the global 
regularity. More precisely, if we replace ∆b by ( )− −∆ βb with any β> 1, then the resulting 
equation does have a global classical solution [7]. A different approach from [7] was later 
obtained by Jiu and Zhao [18].

The aim of this paper is to gain further understanding of the global regularity problem for 
the MHD equation with only magnetic diffusion, namely (1.1). We present two main results in 
hope that they shed light on the eventual resolution of this difficult global regularity problem. 
The first result features a regularity criterion, which may be verifiable and thus leads to the 
global regularity.

Theorem 1.1.  Let s  >  2. Assume ( ) ( )∈ Ru b H, s
0 0

2  with ∇ ⋅ = ∇ ⋅ =u b 00 0 . Let (u, b) be 
the local (in time) solution of (1.1) on [0, T* ). Let >T T*0 . If there is σ> 0 and an integer 
k0  >  0 such that b satisfies

( ) ∥ ( )∥
⩾

∫ ∑≡ ⊗ <∞σ
− ∞M T S b b t2 d ,

T

k k

k
k L0

0
1

0

0

� (1.3)

then the local solution can be extended to [0, T0]. Here ⊗b b denotes the tensor product and 
Sj denotes the identity approximator defined through the Littlewood–Paley decomposition (see 
section 2 for details).

We describe the difficulty in dealing with the global regularity problem and explain how 
the condition (1.3) naturally comes out. The magnetic diffusion does provide certain global 
regularity, but it fails to produce the crucial global bounds we need when they are applied 
on the vorticity equation. More precisely, energy estimates do yield the global H1-bound for  
(u, b). In addition, by taking advantage of the regularizing effect of the heat kernel, we can 
also show that, for any < <∞p2 , ⩽< ∞q2 ,

( ( )) ( ( ))ω∈ ∈ ∞R Rb L T W L T L0, ; , 0, ;q p p2, 2 2

for any T  >  0, where ω = ucurl . However, it is not clear if ∥ ∥ ( )ω <∞∞ ∞L T L0, ;  for all <∞T . 
The lack of the global bound for ∥ ∥ ( )∇ ∞ Rj L 2  with =j bcurl  makes it impossible to obtain a 
global bound directly from the vorticity equation

ω ω+ ⋅ ∇ = ⋅ ∇u b j.t� (1.4)

To circumvent this difficulty, we consider the combined quantity

( ) ( )ω= + ⊗ = −∆ −R RG b b , curl div.1

It is shown here that G satisfies

[ ]( ) ( )

( ( )) (( ) ( ) )

∑∂ + ⋅ ∇ = − ⋅ ∇ ⊗ − ∂ ⊗∂

+ ∇ ⊗ + ⊗ ∇
=

R R

R R ᵀ

G u G u b b b b

u b b b b u

, 2

,

t
k

k k
1

2

�

(1.5)

where ( )∇ ⊗u b b  denotes the standard multiplication of two matrices ∇u and ⊗b b, and ( )∇ ᵀu  
denotes the transpose of ∇u. Although (1.5) looks more complex than the vorticity equa-
tion (1.4), some of the terms on the right of (1.5) are less regularity demanding and can be 
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suitably bounded via commutator estimates. Since the singular integral type operator R is not 

bounded in ∞L , we intend to bound G in the Besov space ∞B ,1
0  (see section 2 for its definition). 

We remark that ∞B ,1
0  is a natural choice due to the fact that ⊂∞

∞B L,1
0  is slightly smaller than 

∞L  and the operator R functions well in ∞B ,1
0 . However, if the setup is ∞B ,1

0 , the estimate of G 
in this space generates a multiplication factor in terms of ∇u, namely

G C G f u0 1 d ,L B B L B

t

L
0t t,1

0
,1

0 1
,1

0∥ ∥ ⩽ (∥ ( )∥ ∥ ∥ ) ∥ ∥⎜ ⎟
⎛
⎝

⎞
⎠∫ τ+ + ∇∞

∞ ∞ ∞
∞� (1.6)

where G(0) denotes the initial data of G and f denotes the right-hand side of (1.5). We need 
(1.3) in order to show that

∥ ∥ ([ ] ) <∞∞
f .L T B0, ;1

0 ,1
0

In fact, (1.3) is needed only in controlling part of the last two terms in f . As a consequence, 
we can then show that

∥ ∥ ([ ] )ω <∞∞
∞

,L T B0, ;0 ,1
0

which is sufficient for further higher regularity of (u, b). Thus the local solution can be 
extended to [0, T0].

Our second result elucidates a basic fact on the 2D MHD equations  (1.1) with or even 
without a magnetic diffusion. Given any fixed time T  >  0. We can find sufficiently small data 
such that (1.1) always possesses a unique solution on [0, T ]. More precisely, we have the fol-
lowing theorem for (1.1).

Theorem 1.2.  Consider (1.1) with η> 0. Assume ( ) ( )∈ Ru b H, s
0 0

2  with s  >  2 and 
∇ ⋅ = ∇ ⋅ =u b 00 0 . Let T  >  0. Then, there exists ( )δ δ= >T 0 such that, if

∥ ∥ δ<b ,H0 s� (1.7)

then (1.1) has a unique solution (u, b) on [0, T ] satisfying

( ) ([ ] ( )) ([ ] ( ))∈ ∈∞ +R Ru b L T H b L T H, 0, ; and 0, ; .s s2 2 1 2

We remark that theorem 1.2 requires only the smallness of b0 (u0 needs not be small). For 
(1.1) without magnetic diffusion, namely (1.1) with η = 0, we need the smallness of both u0 
and b0.

Theorem 1.3.  Consider the inviscid MHD equation, namely (1.1) with η = 0. Let s  >  2. 
Assume ( ) ( )∈ Ru b H, s

0 0
2  with ∇ ⋅ = ∇ ⋅ =u b 00 0 . Let T  >  0. Then there exists ( )δ δ= >T 0 

such that, if

∥( )∥ ⩽ δu b, ,H0 0 s

then the inviscid MHD equation has a unique solution (u, b) on [0, T ] with

([ ] ( )) ([ ] ( ))∈ ∈R Ru C T H b C T H0, ; , 0, ; .s s2 2

We note that the results in theorems 1.2 and 1.3 are weaker than the standard small data 
global regularity results, which require the choice of the smallness fits all time T. However, 
for (1.1), it is not even clear whether sufficiently small data would yield global classical solu-
tions. The Lorentz forcing term and the lack of dissipation in the velocity equation make it 
very difficult to control the Sobolev norms of the solutions. Even if u is uniformly Lipschitz 
in time, namely

Q Jiu et alNonlinearity 28 (2015) 3935
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∥ ( )∥ ⩽∇ ⋅ ∞u t C, ,L

the Sobolev norm of b depends on the time integral of ∥ ∥∇ ∞u L , which still grows without 
bound. This simple reasoning indicates that the issue of small data global well-posedness may 
be as difficult as the well-posedness issue for general initial data.

Theorems 1.2 and 1.3 are proven through the bootstrap principle and their proofs are not 
very difficult. A good reference for the abstract bootstrap principle is the book by Tao [30, 
p 20].

The rest of this paper is divided into four sections. Section 2 makes several preparations 
including presenting the Littlewood–Paley decomposition, functional spaces and related ine-
qualities. Section 3 provides the global H1 bound and the L Lq p estimates on the solution and 
its derivatives by making use of the regularizing effects of the heat kernel. Section 4 proves 
theorem 1.1 while section 5 proves theorems 1.2 and 1.3. Throughout the rest of this paper, C 
stands for a generic constant. The Lp- norm of a function f is denoted by ∥ ∥f Lp, and the Sobolev 
norm by ∥ ∥f Ws p, .

2.  Preparations

This section  includes several parts. It recalls the Littlewood–Paley theory, introduces the 
Besov spaces, provides Bernstein inequalities as well as a commutator estimate.

We start with the definitions of some of the functional spaces and related facts that will be 
used in the subsequent sections. Materials on Besov space and related facts presented here can 
be found in several books and many papers (see, e.g. [1, 2, 25, 28, 32]).

2.1.  Fourier transform and the Littlewood–Paley theory

We start with several notations. S denotes the usual Schwarz class and ′S  its dual, the space of 
tempered distributions. S0 denotes a subspace of S defined by

{ }( )∫φ φ γ= ∈ = | |=γ �S S
R

x x x: d 0, 0, 1, 2,0
d

and ′S0 denotes its dual. ′S0 can be identified as

= =′ ′ ′⊥S S S S P/ / ,0 0

where P denotes the space of multinomials. On the Schwartz class, we can define the Fourier 
transform and its inverse via

ˆ ( )
( )

( ) ( )
( )

ˆ ( )∫ ∫ξ
π π

ξ ξ= =ξ ξ−

R R
f f x x f x f

1

2
e d ,

1

2
e d .

d
x

d
xi i

d d

To introduce the Littlewood–Paley decomposition, we write for each ∈Zj

{ ⩽ }ξ ξ= ∈ | | <− +RA : 2 2 .j
d j j1 1

The Littlewood–Paley decomposition asserts the existence of a sequence of functions 
{ }Φ ∈∈ SZj j  such that

( ) ( ) ( ) ( )ξ ξΦ ⊂ Φ = Φ Φ = Φ−� � �A x xsupp  , 2 or 2 2 ,j j j
j

j
jd j

0 0

and
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( ) { }∑ ξ ξ
ξ

Φ =
∈
==−∞

∞
� R⎧

⎨
⎩

1, if \ 0 ,
0, if 0.j

j

d

Therefore, for a general function ψ∈ S, we have

( ) ( ) ( )   { }∑ ξ ψ ξ ψ ξ ξΦ = ∈
=−∞

∞
� � � Rfor \ 0 .

j
j

d

In addition, if ψ∈ S0, then

( ) ( ) ( )    ∑ ξ ψ ξ ψ ξ ξΦ = ∈
=−∞

∞
� � � Rfor any .

j
j

d

That is, for ψ∈ S0,

∑ ψ ψΦ ∗ =
=−∞

∞

j
j

and hence

f f f,
j

j 0∑ Φ ∗ = ∈ ′
=−∞

∞

S

in the sense of weak-* topology of ′S0. For notational convenience, we define

∆ = Φ ∗ ∈Zf f j˚ , .j j� (2.1)

We now choose Ψ∈ S such that

( ) ( )∑ξ ξ ξΨ = − Φ ∈
=

∞
�� R1 , .

j
j

d

0

Then, for any ψ∈ S,

∑ψ ψ ψΨ ∗ + Φ ∗ =
=

∞

j
j

0

and hence

f f f
j

j
0
∑Ψ ∗ + Φ ∗ =
=

∞

in ′S  for any ∈ ′Sf . We set

f

j
f j
f j

0, if 2,
, if 1,
, if 0, 1, 2, .

j

j

⩽⎧
⎨
⎪

⎩⎪
∆ =

−
Ψ ∗ = −
Φ ∗ = �

� (2.2)

For notational convenience, we write ∆j for ∆̊j when there is no confusion. They are dif-
ferent for ⩽−j 1. As provided below, the homogeneous Besov spaces are defined in terms of 

∆̊j while the inhomogeneous Besov spaces are defined in ∆j. Besides the Fourier localization 
operators ∆j, the partial sum Sj is also a useful notation. For an integer j,
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∑≡ ∆
=−

−

S ,j
k

j

k
1

1

where ∆k is given by (2.2). For any ∈ ′Sf , the Fourier transform of Sj f is supported on the 
ball of radius 2j and

′⇀ SS f f in  .j

In addition, for two tempered distributions u and v, we also recall the notion of paraproducts

( )
⩽

∑ ∑= ∆ = ∆ ∆−
| − |

T v S u v R u v u v, ,u
j

j j
i j

i j1
2

and Bony’s decomposition

( )= + +uv T v T u R u v, .u v� (2.3)

2.2.  Besov spaces

Definition 2.1.  For ∈Rs  and ⩽ ⩽∞p q1 , , the homogeneous Besov space B̊p q
s

,  consists of 

∈ ′Sf 0 satisfying

f f2 ˚ .
B

js
j L l˚

p q
s p q

,
∥ ∥ ∥ ∥ ∥ ∥≡ ∆ <∞

Definition 2.2.  The inhomogeneous Besov space Bp q
s

,  with ⩽ ⩽∞p q1 ,  and ∈Rs  consists 
of functions ∈ ′Sf  satisfying

∥ ∥ ∥ ∥ ∥ ∥≡ ∆ <∞f f2 .B
js

j L lp q
s p q

,

2.3.  Bernstein inequalities

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions and these 
inequalities trade integrability for derivatives. The following proposition provides Bernstein 
type inequalities for fractional derivatives.

Proposition 2.3.  Let ⩾α 0. Let ⩽ ⩽ ⩽∞p q1 .

	(1)	If f satisfies

{ | | ⩽ }ξ ξ⊂ ∈� Rf Ksupp : 2 ,d j

		 for some integer j and a constant K  >  0, then

( )∥ ∥ ⩽ ∥ ∥( ) ( )Λα α + −
R Rf C f2 ,L

j jd p q
L1

1 1
q d p d

		 where C1 is a constant depending on αK p, ,  and q only.

	(2)	If f satisfies

{ ⩽ | | ⩽ }ξ ξ⊂ ∈� Rf K Ksupp : 2 2d j j
1 2

		 for some integer j and constants ⩽<K K0 1 2, then
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( )∥ ∥ ⩽ ∥ ∥ ⩽ ∥ ∥( ) ( ) ( )Λα α α + −
R R RC f f C f2 2 ,j

L L
j jd p q

L1 2
1 1

q d q d p d

where C2 is a constant depending on αK K p, , ,1 2  and q only.

2.4.  Commutator estimate and propagation of a Besov norm

The following commutator involving a standard singular integral operator will also be used 
(see, e.g. [29]).

Lemma 2.4.  Let R denote a standard singular integral operator, say Riesz transform or 
( )= −∆ −R curl div1 . Let ⩽< ∞p1 . For any integer k, for ⩽ ⩽s s0 , 11 2  and ⩽+s s 11 2 , we 

have

∥ ([ ] )∥ ⩽ ∥ ∥ ∥ ∥( )θ θ∆ ⋅ ∇ Λ Λ− −R u C u, 2k L s
s s k s

L
s

L
1p p p1 2 1 1 2 2� (2.4)

where ⩽< ∞p p1 ,1 2  and = +
p p p

1 1 1

1 2
.

In addition, we need the following estimate on the propagation of the Besov norm Bq,1
0  of 

solutions to a linear equation (see, e.g. [1, 14, 25]).

Lemma 2.5.  Consider the linear equation

( )
( ) ( )
θ θ ν θ
θ θ
∂ + ⋅ ∇ + −∆ =

=

α⎧
⎨
⎩

u f
x x

,
, 0 ,

t

0
� (2.5)

where ⩾ν 0 and ( )α∈ 0, 1 . Then, there exists C  >  0 such that

C f u1 d ,L B B L B

t

L0
0t q q t q,1

0
,1

0 1
,1

0∥ ∥ ⩽ (∥ ∥ ∥ ∥ ) ∥ ∥⎜ ⎟
⎛
⎝

⎞
⎠∫θ θ τ+ + ∇∞ ∞

where [ ]∈ ∞q 1,  .

3.  Preliminary bounds

This section proves some of the a priori bounds to be used in the subsequent section. It is 
divided into two subsections. The first subsection contains the global H1-bound while the sec-
ond subsection proves the global bounds for ∥ ∥ ( )ω RLp 2  and ∥ ∥ ( )Rb W p2, 2  for ( )∈ ∞p 2, .

3.1.  Global H1-bound for (u, b)

This subsection provides the global H1-bound. This bound has been known before (see, e.g. 
[6, 20]), but it is presented here for the sake of completeness. For the rest of this paper, as 
defined before, ω = ucurl  and =j bcurl .

Proposition 3.1.  If (u, b) solves system (1.1), then, for any t  >  0,

t j t j s s jd e
L L

t

L L L

C u b2 2

0

2
0

2
0

2
L L2 2 2 2 2

0 2
2

0 2
2

∥ ( )∥ ∥ ( )∥ ∥ ( )∥ ⩽ (∥ ∥ ∥ ∥ ) (∥ ∥ ∥ ∥ )∫ω ω+ + ∇ + +

�
(3.1)

and consequently
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u t b t b s s

C j u b

d

e .

H H

t

H

L L

C u b

L L

2 2

0

2

0
2

0
2

0
2

0
2

L L

1 1 2

2 2
0 2

2
0 2

2

2 2

∥ ( )∥ ∥ ( )∥ ∥ ( )∥

⩽ (∥ ∥ ∥ ∥ ) ∥ ∥ ∥ ∥(∥ ∥ ∥ ∥ )

∫
ω

+ +

+ + ++
�

(3.2)

Proof.  It follows easily from (1.1) that, for any t  >  0,

∥ ( )∥ ∥ ( )∥ ∥ ( )∥ ∥ ∥ ∥ ∥∫+ + ∇ = +u t b t b s s u b2 d .
L L

t

L L L
2 2

0

2
0

2
0

2
2 2 2 2 2� (3.3)

To prove (3.1), we employ the equations of ω and j,

ω ω+ ⋅ ∇ = ⋅ ∇u b j,t� (3.4)

( )ω+ ⋅ ∇ = ⋅ ∇ +∆ + ∇ ∇j u j b j Q u b, ,t� (3.5)

where

( ) ( ) ( )∇ ∇ = ∂ ∂ + ∂ − ∂ ∂ + ∂Q u b b u u u b b, 2 2 .1 1 1 2 2 1 1 1 1 2 2 1

Taking the L2-inner products of (3.4) with ω and of (3.5) with j, we obtain

(∥ ∥ ∥ ∥ ) ∥ ∥ ( )∫ω + + ∇ = ∇ ∇
t

j j Q u b j
d

d
2 2 , .

L L L
2 2 2

2 2 2

By the Hölder inequality and the Gagliardo–Nirenberg inequality,

( ) ⩽ ∥ ∥ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥
⩽ ∥ ∥ ∥ ∥ ∥ ∥

∫
ω

ω

∇ ∇ ∇ ∇

∇

Q u b j C u b j

C j

C j j

,

.

L L L

L L

L L L

2

2 4 4

2 4

2 2 2

By Young’s inequality,

t
j j C j j

d

d
2 .

L L L L L L
2 2 2 2 2 2

2 2 2 2 2 2(∥ ∥ ∥ ∥ ) ∥ ∥ ⩽ ∥ ∥ ∥ ∥ ∥ ∥ω ω+ + ∇ + ∇

In particular,

t
j j C j j

d

d
.

L L L L L L
2 2 2 2 2 2

2 2 2 2 2 2(∥ ∥ ∥ ∥ ) ∥ ∥ ⩽ ∥ ∥ (∥ ∥ ∥ ∥ )ω ω+ + ∇ +

Recalling the global L2-bound in (3.1)–(3.3) then follow from Gronwall’s inequality. This 
completes the proof of proposition 3.1. � □

3.2.  Bounds for ω Lp 2R∥ ∥ ( ) and b W p2, 2R∥ ∥ ( ) with [ )∈ ∞p 2,

In order to obtain the desired global bounds, we need to use a regularization property involv-

ing the heat operator. Let ( ) ( )π= − −| |K x t4 et
d x

t2

2

4  and write

( )= ∗∆ f K x fe .t
t

Then the following lemma holds (see, e.g. [21]).
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Lemma 3.2.  (Maximal L Lt
q

x
p regularity for the heat kernel) Define the operator A by

( )( )∫≡ ∆− ∆Af f s se d .
t

t s

0

Let ( )∈ ∞p q, 1, . Then A is bounded from ( ( ))RL T L0, ;p q d  to ( ( ))RL T L0, ;p q d  for every 
( ]∈ ∞T 0, .

We are ready to prove the desired bounds.

Proposition 3.3.  Assume that ( )u b,0 0  satisfies the conditions in theorem 1.1. Let p 2,[ )∈ ∞  
and ( )∈ ∞q 1, . Then the corresponding solution (u, b) of (1.1) obeys, for any T  >  0,

∥ ∥ ⩽ ∥ ∥ ⩽( ) ( )w C b C, ,L T L L T W0, ; 0, ;q p q p2,

where C is a constant depending on p, q, T and the initial data only.

Proof.  We write the second equation in (1.1) as

 −∆ =b b fdivt

with = −f b u u bi i i  (i  =  1, 2). The global bound in proposition 3.1 and Sobolev’s inequality 
indicate, for any p 2,[ )∈ ∞ ,

( )∈ ∞f L T L0, ; .i
p

Resorting to the heat kernel, we further write

( )     ( )( )∫= + ⋅∆ − ∆b x t b f s s, e e div , d .t
t

t s
0

0
� (3.6)

For any p 2,[ )∈ ∞  and >′p 1 satisfying + =
′

1
p p

1 1 ,

∥ ∥ ⩽ (∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ )
⩽ (∥ ∥ ∥ ∥ )
⩽ (∥ ∥ ∥ ∥ ∥ ∥ )
⩽ (∥ ∥ ∥ ∥ ∥ ∥ )
⩽

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

+ ∇

+
+
+

′∞ ∞ ∞ ∞ ∞

∞ ∞

∞ ∞ ∞

− ∞ ∞

b C K b K f

C b f

C b u b

C b u b

C,

L T L t L T L L t L T L L T L

L L T L

L L T L L T L

H L T H L T H

0, ; 0, ; 0 0, ; 0, ;

0 0, ;

0 0, ; 0, ;

0 0, ; 0, ;

p p

p

p p

s

1 1

2 2

1 1 1

�

(3.7)

where C is a constant depending on p, T and the initial data only. By (3.6) and lemma 3.2,

∥ ∥ ⩽ (∥ ∥ ∥ ∥ ∥ ∥ )
⩽ (∥ ∥ ∥ ∥ )
⩽ (∥ ∥ ∥ ∥ ∥ ∥ )
⩽

( ) ( ) ( )

( )

( ) ( )

∇ ∇ +
∇ +

+

∞

∞ ∞

b C K b f

C b f

C b u b

C.

L T L t L T L L L T L

L L T L

H L T H L T H

0, ; 0, ; 0 0, ;

0 0, ;

0 0, ; 0, ;

q p q p q p

p p

1

2 1 1
�

(3.8)

Multiplying (3.4) by ω ω| | −p 2  with p 2,[ )∈ ∞ , we obtain

∥ ∥ ⩽ ∥ ∥ ∥ ∥ ∥ ∥∫ω ω ω ω= ⋅ ∇ ⋅ | | ∇− −∞

p t
b j b j

1 d

d
.L

p p
L L L

p2 1
p p p

Therefore, for ( )∈ ∞q 1,  and + =
′

1
q q

1 1 ,
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∥ ( )∥ ⩽ ∥ ∥ ∥ ( )∥ ∥ ( )∥

⩽ ∥ ∥ ∥ ∥ ∥ ∥

⩽ (∥ ∥ ∥ ∥ )

∫ω ω

ω

ω

+ ∇

+ ∇

+ ∆

′

∞

∞

t b s j s s

C b j

C b

d

.

L L

t

L L

L L L L L

L L L

0
0

0

0

p p p

p

t
q t

q p

p
t
q p

�

(3.9)

In addition, applying ∆ to (3.6) and using lemma 3.2, we have

∥ ∥ ⩽ (∥ ∥ ∥ ∥ )

⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

ω

ω

∆ ∆ + ⋅ ∇ − ⋅ ∇

∆ + + ∇

∆ + + ∇

∞ ∞
−

∞ ∞
−

b C b b u u b

C b b u b

C b b u b .

L L L L L

L L L L L L L
L L

L L L L L L H
L L

0

0

0

t
q p p

t
q p

p
t t

q p
t

p

t

q
q p

p
t t

q p
t

t

q
q p

2 2 2
2 2

2 1 2
2 2

�

(3.10)

By inserting (3.10) into (3.9) and applying the Gronwall inequality, we obtain the desired 
bound for ∥ ∥ ( )w L T L0, ;q p . By Sobolev embedding, ( )∈ ∞u L T L0, ;q . As a consequence,

∥ ∥ ⩽ ∥ ∥ ∥ ∥
⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥
⩽

( ) ( ) ( )

( ) ( ) ( ) ( )ω
⋅ ∇ + ⋅ ∇

+∞ ∞

f u b b u

u j b

C

div 

.

L T L L T L L T L

L T L L T L L T L L T L

0, ; 0, ; 0, ;

0, ; 0, ; 0, ; 0, ;

q p q p q p

q q p q q p2 2 2 2

By (3.6) and lemma 3.2 again, we obtain, for any [ ) ( )∈ ∞ ∈ ∞p q2, , 1, ,

∥ ∥ ⩽ (∥ ∥ ∥ ∥ )
⩽

( ) ( )∆ ∆ +b C b f

C

div 

.
L T L L L T L0, ; 0 0, ;q p p q p

� (3.11)

This completes the proof of proposition 3.3. � □
We also need the global bound in the following proposition.

Proposition 3.4.  Assume that ( )u b,0 0  satisfies the conditions in theorem 1.1. Let (u, b) be the 
corresponding solution of (1.1). Let [ )∈ ∞p 2, . Then, for any T  >  0,

∥ ∥ ⩽ ∥ ∥ ⩽( ) ( )∞ ∞j C w C, ,L T L L T L0, ; 0, ;p p

where C depends on p, T and the initial data.

Proof.  Multiplying (3.5) by | | −j jp 2 , we obtain after integration by parts

∥ ∥ ( )∥| | | |∥+ − ∇ = +
−

p t
j p j j K K

1 d

d
1 ,L

p
p

L

2
2 2

1 2p 2� (3.12)

where

∫ ω= ⋅ ∇ | | −K b j j ,p
1

2

( )∫= ∇ ∇ | | −K Q u b j j, .p
2

2

The estimate for K1 is given by
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K p b j j

p b j j j

p
j j p b j

1

1

1

4
1 ,

p

L

p

L L L

p

p

L L L L
p

1
2

2
2

2
2

2
2

2
2 2 2

p p

p p

2

2

( ) ∣ ∣

⩽ ( )∥ ∥ ∥∣ ∣ ∣ ∣∥ ∥ ∥ ∥ ∥

∥∣ ∣ ∣ ∣∥ ( )∥ ∥ ∥ ∥ ∥ ∥

∫ ω

ω

ω

= − − ⋅ ∇

− ∇

−
∇ + −

−

− −

−
−

∞

∞�

�

(3.13)

where �A B means ⩽A C B for a constant C. By integration by parts,

∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫

| | = − | | − − | |

| | = − | | − − | |

− | | = | | + − | |

− | | = | | + − | |

− − −

− − −

− − −

− − −

b u j j u b j j p u b j j

b u j j u b j j p u b j j

b u j j u b j j p u b j j

b u j j u b j j p u b j j

∂ ∂ ∂ 1 ∂ ∂ ,

∂ ∂ ∂ 1 ∂ ∂ ,

∂ ∂ ∂ 1 ∂ ∂ ,

∂ ∂ ∂ 1 ∂ ∂ .

p p p

p p p

p p p

p p p

1 1 1 2
2

2 11 1
2

2 1 1
2

1

1 1 2 1
2

1 12 1
2

1 1 1
2

2

1 2 1 1
2

1 11 2
2

1 1 2
2

1

2 1 1 1
2

1 12 1
2

1 2 1
2

1

( )

( )

( )

( )

Therefore,

K p u b j j p u b j j

p u b j j p u b j j

u b j j

1 1

1 1

.

p p

p p

p

2 1 1 2 1
2

1 2 1 1
2

1 1 1 2
2

2 1 1 1
2

1 2
2

( ) | | ( ) | |

( ) | | ( ) | |

( )| |

∫ ∫
∫ ∫

∫

= − ∂ ∂ + − ∂ ∂

− − ∂ ∂ − − ∂ ∂

+ ⋅ ∇ ∂

− −

− −

−

Integrating by parts in the last term yields

K p u b j j p u b j j

p u b j j p u b j j

1 1

1 1 .

p p

p p

2 2 1 1 1
2

1 1 1 2
2

1 2 1 1
2

2 1 2 2
2

( ) | | ( ) | |

( ) | | ( ) | |

∫ ∫
∫ ∫

= − − ∂ ∂ − − ∂ ∂

+ − ∂ ∂ − − ∂ ∂

− −

− −

Therefore, by the Hölder and the Young inequalities,

⩽ ( )∥ ∥ ∥∣ ∣ ∣ ∣∥ ∥ ∥ ∥ ∥

( )∥ ∥ ∥∣ ∣ ∣ ∣∥ ∥ ∥ ∥ ∥

∥∣ ∣ ∣ ∣∥ ( )∥ ∥ ∥ ∥

− ∇ ∇

− ∇

−
∇ + −

− −

− −

−

∞

∞

∞

�

�

K p u j j b j

p u j j j j

p
j j C p u j

4 1

4 1

1

4
1 .

L

p

L p L

p

L

p

L p L

p

p

L L L
p

2

2
2

2
2

2
2

2
2

2
2

2
2

p

p

p

2

2

2

�

(3.14)

Inserting (3.13) with (3.14) in (3.12), we obtain

p t
j p j j

p b j p u j

p b p u b j

1 d

d
1

1 1

1 1 .

L
p

p

L

L L L
p

L L
p

L L
p

L L L
p

2
2 2

2 2 2 2

2 2 2

p

p p p

p p

2∥ ∥ ( )∥∣ ∣ ∣ ∣∥

( )∥ ∥ ∥ ∥ ∥ ∥ ( )∥ ∥ ∥ ∥

( )∥ ∥ ∥ ∥ ( )(∥ ∥ ∥ ∥ )∥ ∥

ω

ω

+ − ∇

− + −

− + − +

−

−∞ ∞

∞ ∞ ∞

�

�

Gronwall’s inequality yields the desired result. The bound
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∥ ∥ ⩽( )∞w CL T L0, ; p

follows from the vorticity equation and the bound for j. This proves proposition 3.4. � □

4.  Proof of theorem 1.1

This section proves theorem 1.1. The main effort is devoted to proving a global a priori bound 

for ∥ ∥ω
∞B ,1
0 . Due to the lack of a global bound on ∇j in ∞L , the global bound for ∥ ∥ω ∞L  does not 

follow directly from the vorticity equation

 ( )ω ω+ ⋅ ∇ = ⊗u b bcurl div .t� (4.1)

To overcome this difficulty, we consider the combined quantity

( ) ( )ω= + ⊗ = −∆ −R RG b b , curl div1� (4.2)

in order to eliminate the regularity-demanding term ( )⊗b bcurl div  in (4.1). More details will 
be provided in the following proof.

Proof of theorem 1.1.  As mentioned previously, a key step is to control ∥ ∥ω
∞B ,1
0  and this is 

achieved through the consideration of a new quantity G, as defined in (4.2). We first derive 
the equation for G. Multiplying the i-th component of the magnetic equation by bj, we have

( ) + ⋅ ∇ = ⋅ ∇ +∆b b u b b b u b b b .i t j i j i j i j� (4.3)

Similarly,

( ) + ⋅ ∇ = ⋅ ∇ +∆b b u b b b u b b b .j t i j i j i j i� (4.4)

Adding (4.3) to (4.4), the (i, j)-th component of ⊗b b satisfies

( ) ( ) ( ) ( ) ( ) ( ) ∑+ ⋅ ∇ = ∇ +∇ +∆ − ∂ ∂
=

ᵀb b u b b b b u u b b b b b b2 ,i j t i j i j i j i j
k

k i k j
1

2

or simply

b b u b b u b b b b u b b b b2 .t
k

k k
1

2

( ) ( ) ( ) ( ) ( ) ( ) ( )∑⊗ + ⋅ ∇ ⊗ = ∇ ⊗ + ⊗ ∇ + ∆ ⊗ − ∂ ⊗∂
=

ᵀ�

(4.5)

Applying curl div1( )= −∆ −R  to (4.5) yields to

b b u b b u b b

u b b b b u b b b b

,

curl div  2 .

t

k
k k

1

2

(( ( )) ( ) [ ]( )

( ( ) ( ) ( ) ) ( ) ( )∑

⊗ + ⋅ ∇ ⊗ = − ⋅ ∇ ⊗

+ ∇ ⊗ + ⊗ ∇ − ⊗ − ∂ ⊗∂
=

R R R

R Rᵀ

�

(4.6)

Adding (4.6)–(4.1) and setting ( )ω= + ⊗RG b b , we get

[ ]( ) ( )

( ( )) (( ) ( ) )

∑∂ + ⋅ ∇ = − ⋅ ∇ ⊗ − ∂ ⊗∂

+ ∇ ⊗ + ⊗ ∇
=

R R

R R ᵀ

G u G u b b b b

u b b b b u

, 2

.

t
k

k k
1

2

�

(4.7)
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According to lemma 2.5,

∥ ∥ ⩽ (∥ ∥ ∥ ∥ ) ∥ ∥⎜ ⎟
⎛
⎝

⎞
⎠∫ τ+ + ∇∞

∞ ∞ ∞
∞G C G f u1 d ,L B B L B

t

L0
0t t,1

0
,1

0 1
,1

0� (4.8)

where

[ ]( ) ( ) (( )( ) ) ( ( ))∑= − ⋅ ∇ ⊗ − ∂ ⊗∂ + ⊗ ∇ + ∇ ⊗
=

R R R Rᵀf u b b b b b b u u b b, 2 .
k

k k
1

2

If

∥ ∥ <∞
∞

f ,L Bt
1

,1
0� (4.9)

then we would be able to obtain a global bound for ∥ ∥ω
∞B ,1
0 , which would imply global regular-

ity. In fact, if we have (4.8) with (4.9), then

∥ ∥ ⩽ ∥ ∥ ∥ ∥ ⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ (∥ ∥ ∥ ∥ )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫

∫

ω τ

ω τ

+ ⊗ ⊗ + + ∇

⊗ + + +

∞ ∞ ∞ ∞
∞

∞ ∞

G b b b b C u

b b C u

1 d

1 d .

B B B B

t

L

B

t

L B

0

0

,1
0

,1
0

,1
0

,1
0

,1
0 2

,1
0

Gronwall’s inequality and ∥ ∥ ⩽ ∥ ∥⊗ <∞
∞ ∞

εb b bB B
2

,1
0

,1
 ( < <ε0 1) then imply that

∥ ∥ω <∞
∞B ,1
0

and then higher regularities follow.

It then suffices to check (4.9). The terms in f can be estimated as follows. By the commuta-
tor estimate in lemma 2.4, for ( )∈s 0, 1 ,

∥[ ]( )∥ ⩽ ∥ ∥ ∥ ( )∥⋅ ∇ ⊗ Λ Λ ⊗−
∞ ∞ ∞

R u b b C u b b, .B
s

B
s

B
1

,1
0

,1
0

,1
0

For any ( )∈s 0, 1 , ∥ ∥Λ
∞

us
B ,1

0  can be bounded by ∥ ∥ω Lq for some large ( )∈ ∞q 2, . In fact, by 
Bernstein’s inequality,

( )

( )

∥ ∥ ⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

( )

∑

∑

∑

∑

ω

ω

ω

Λ ∆ Λ + ∆ Λ

+ ∆

+ ∆

+

−
=

∞

=

∞
−

=

∞
− +

=

∞
− +

∞
∞ ∞

∞

u u u

C u C

C u C

C u C

2

2

2 .

s
B

s
L

k
k

s
L

L
k

s k
k L

L
k

s q k
k L

L L
k

s q k

1
0

0

1

0

1 2

0

1 2

q

q

,1
0

2

2

2

Therefore, if we choose ( )∈ ∞q 2,  such that − + <s 1 0
q

2 , then

∥ ∥ ⩽ (∥ ∥ ∥ ∥ )ωΛ + <∞
∞

u C u .s
B L Lq

,1
0 2
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The regularity of b also implies that, for ( )∈s 0, 1  close to 1,

∥ ( )∥Λ ⊗ <∞−
∞

b b .s
B

1
,1

0

In fact, in a similar fashion as above, if ( )∈ ∞�q 2,  such that − + + <
�

εs 0
q

2

∥ ( )∥ ⩽ ∥ ∥ ⩽ (∥ ∥ ∥ ∥ )Λ ⊗ Λ + ∇− −
∞ ∞

�εb b C b C b b .s
B

s
B L L

1 1 2 2 2
q

,1
0

,1
2

Therefore,

u b b C u b b, ,L B L L L L L L L L
2 2

t t t
q

t t
q1

,1
0 2 2 2 2∥[ ]( )∥ ⩽ (∥ ∥ ∥ ∥ ) (∥ ∥ ∥ ∥ )ω⋅ ∇ ⊗ + + ∇ <∞
∞

∞ ∞
�R

where we have used the bound in proposition 3.3. We now estimate the second term in f . For 
any >ε 0,

( ) ⩽ ∥ ∥∑ ∂ ⊗∂ ∇
= ∞

∞
R εb b b .

k
k k

B
B

1

2
2

,1
0 ,1

By Bernstein’s inequality,

( )

( )

∥ ∥ ⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

∑

∑

∑

∇ + ∆ ∇

+ ∆

+ Λ∆

+ Λ

γ γ

γ

=

∞

=

∞
+ +

=

∞
+ + −

∞
∞ε

ε

ε

εb C b C b

C b C b

C b C b

C b C b

2

2

2

,

B L
k

k
k L

L
k

k q k L

L
k

k q k L

L L

0

0

1 2

0

1 2

q

q

q

,1
2

2

2

2

where γ+ + < <ε 1 2
q

2 . Therefore, by proposition 3.3,

b b b C b C b .
k

k k

L B
L B L L L L

1

2
2 2 2

t

t t t
q

1
,1

0

2
,1

2 2 2( ) ⩽ ∥ ∥ ⩽ ∥ ∥ ∥ ∥∑ ∂ ⊗∂ ∇ + Λ <∞γ

=
∞

∞
R ε

We bound the last two terms in f . Their estimates are similar and we shall handle one of them. 
By Bernstein’s inequality,

u b b C u b b u b b

C b u b b .

B L
k

k L

L L
k

k L

1
0

2

0

,1
0 2

2

∥ ( ( ))∥ ⩽ ∥ ( ( ))∥ ∥ ( ( ))∥

⩽ ∥ ∥ ∥ ∥ ∥ ( ( ))∥

∑

∑ω

∇ ⊗ ∆ ∇ ⊗ + ∆ ∇ ⊗
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Following the notion of paraproducts, we write

( ( )) ( ( )) ( ( ))

( ( ))
| |⩽ | |⩽

⩾

∑ ∑

∑

∆ ∇ ⊗ = ∆ ∇ ∆ ⊗ + ∆ ∆ ∇ ⊗

+ ∆ ∆ ∇ ∆ ⊗
∼

−
−

−
−

−

u b b S u b b u S b b

u b b ,

k
k m

k m m
k m

k m m

m k
k m m

2
1

2
1

1
�

(4.10)
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where ∆ = ∆ +∆ +∆
∼

+ −m m m m1 1. By Bernstein’s inequality,
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By Bernstein’s inequality and the Hardy-Littlewood-Sobolev inequality, the third term in 
(4.10) can be bounded by
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The condition (1.3) is needed to handle the second term in (4.10). As in the estimate of the 
first term, we have

u S b b C S b b2 .
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Combining the estimates above, we have
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(4.11)

We provide some details for the last inequality, namely
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In fact, by the paraproduct decomposition,
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This proves (4.12). The proof of (4.13) is similar. According to proposition 3.3, the first two 
terms in (4.11) are time integrable if q is sufficiently large. Due to (1.3), the third term is also 

time integrable if we choose q large enough, say σ<
q

2 . Therefore we have proven (4.9). This 

completes the proof of theorem 1.1. � □

5.  Proofs of theorems 1.2 and 1.3

To prove theorem 1.2, we recall the following abstract bootstrap argument or continuity argu-
ment (see, e.g. Tao [30, p 20].

Lemma 5.1.  Let T  >  0. Assume that two statements C(t) and H(t) with [ ]∈t T0,  satisfy the 
following conditions:

	(a)	If H(t) holds for some [ ]∈t T0,  , then C(t) holds for the same t;
	(b)	If C(t) holds for some [ ]∈t T0,0  , then H(t) holds for t in a neighborhood of t0;
	 (c)	If C(t) holds for [ ]∈t T0,m  and →t tm  , then C(t) holds;
	(d)	C(t) holds for at least one [ ]∈t T0,1  .

		 Then C(t) holds for all [ ]∈t T0,  .

Proof of theorem 1.2.  We use the bootstrap argument. Let γ> 0 be a fixed large number, say

∥ ∥γ> b2 .H0 s

Denote by H(t) the statement that, for [ ]∈t T0, ,

∥ ∥ ∥ ∥ ⩽([ ] ) ([ ] )η γ+∞ +b bL t H L t H0, ; 0, ;s s2 1� (5.1)

and C(t) the statement that

∥ ∥ ∥ ∥ ⩽([ ] ) ([ ] )η
γ

+∞ +b b
2

.L t H L t H0, ; 0, ;s s2 1� (5.2)

The conditions (b)–(d) in lemma 5.1 are clearly true and it remains to verify (a) under the 
smallness condition (1.7). Once this is verified, then the bootstrap argument would imply that 
C(t), or (5.2) actually holds for any [ ]∈t T0, .
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First it is not difficult to show that (5.1) implies

∥ ∥ ⩽ (∥ ∥ )([ ] ) γ η∞u C u T, , , ,L t H H0, ; 0 0s s� (5.3)

where C0 will be made explicit later. It follows from the vorticity equation that the vorticity 
is bounded. In fact,

ω ω∂ + ⋅ ∇ = ⋅ ∇u b jt

yields
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0
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s s

s

1

2 1

�

(5.4)

A standard Hs-estimate involving the velocity equation yields

u C u u C u b b ,t H L H H H
2 2

s s s s∥ ∥ ⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥∂ ∇ + ⋅ ∇∞

or

∥ ∥ ⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥∂ ∇ +∞ +u C u u C b b .t H L H H H
s s s s 1

Inserting the logarithmic inequality

∥ ∥ ⩽ ( ∥ ∥ ∥ ∥ ( ∥ ∥ ))ω∇ + + +∞ ∞u C u e u1 logL L L Hs2

and invoking Gronwall’s inequality yield (5.3),

u C u T

CC T C u T T e u

, ,

exp exp 1 log ,

L t H H

L H

0, ; 0 0

1 0
2

0

s s

s2

∥ ∥ ⩽ (∥ ∥ )
( ( )( ( ∥ ∥ ) ( ∥ ∥ )))

([ ] ) γ

γ≡ + + + +

∞

where C1 is specified in (5.4) and C is a pure constant.

We write ( )= −∆σ σJ I /2 and recall that ∥ ∥ ∥ ∥≡ σσf J fH L2. Applying Js to the equation of b

η+ ⋅ ∇ = ⋅ ∇ + ∆b u b b u bt

and taking the inner product with Jsb, we have, by ∇ ⋅ =u 0,

t
b b C J ub b

1

2

d

d
.H H

s
L H

2 2s s s1 2 1∥ ∥ ∥ ∥ ⩽ ∥ ( )∥ ∥ ∥η+ + +

By the standard product estimate and the Sobolev embedding,

∥ ( )∥ ⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ⩽ ∥ ∥ ∥ ∥+∞ ∞J ub C u b C b u C u b .s
L H L H L H Hs s s s2

Therefore,
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+ ++ + +
t

b b C u b b b C u b
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By Gronwall’s inequality,
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Therefore, by (5.3),

∥ ( )∥ ⩽ ∥ ∥ (∥ ∥ )γ η⋅b t b C u T, , , ,H H H0 0s s s

and

∥ ( )∥ ∥ ∥ ⩽ ∥ ∥ (∥ ∥ )η γ η⋅ + +b t b b C u T, , , , .H L H H H0 0s
t

s s s2 1

It is then clear that we can choose sufficiently small ( )δ δ= T  such that

b b
2

.L H L Ht
s

t
s2 1∥ ∥ ∥ ∥ ⩽η

γ
+∞ +

This completes the proof of theorem 1.2. � □

We now turn to the proof of theorem 1.3.

Proof of theorem 1.3.  When the magnetic diffusion term is not present in (1.1), the system 
is inviscid. We need the smallness of both u0 and b0. The proof is proceeded slightly differ-
ently from the previous proof. We still use the the bootstrap argument. We set γ> 0 to be a 
fixed number satisfying

∥( )∥γ> u b2 , H0 0 s

and assume that

∥ ∥ ⩽ ∥ ∥ ⩽ [ ]([ ] ) ([ ] )γ γ ∈∞ ∞u b t T, , 0, .L t H L t H0, ; 0, ;s s

In particular, by the Sobolev embedding, for s  >  2,

∥ ∥ ⩽ ∥ ∥ ⩽ [ ]([ ] ) ([ ] )γ γ∇ ∇ ∈∞ ∞ ∞ ∞u C b C t T, , 0, .L t L L t L0, ; 0, ;

It then from (1.1) with η = 0 via standard energy estimates that

t
u b C u b u b

d

d
, , .H L L H

2 2
s s∥( )∥ ⩽ (∥ ∥ ∥ ∥ ) ∥( )∥∇ + ∇∞ ∞

Consequently,

u b t u b, , e .H H
C u b2

0 0
2 d

s s

t

L L
0∥( )( )∥ ⩽ ∥( )∥ (∥ ∥ ∥ ∥ )∫ τ∇ + ∇∞ ∞

It is then clear that we can choose ( )δ δ= T  such that, if ∥( )∥ δ<u b, H0 0 s ,

∥( )( )∥ ⩽ γu b t,
2

.Hs
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The bootstrap argument then implies that the inequality above holds for any [ ]∈t T0, . This 
completes the proof of theorem 1.3. � □

Acknowledgments

Jiu was partially supported by NSFC (No.11171229, No.11231006) and by Project of 
Beijing Chang Cheng Xue Zhe. Niu was partially supported by NSFC (No. 11471220) and 
the Beijing Natural Science Foundation (No. 1142004). Wu was partially supported by NSF 
grant DMS1209153 and the AT&T Foundation at Oklahoma State University. Wu thanks 
Professors Chongsheng Cao and Baoquan Yuan for discussions. Xu was partially supported 
by NSFC (No.11371059), BNSF (No.2112023) and by the Fundamental Research Funds for 
the Central Universities of China. In addition, Jiu and Wu were jointly supported by NSFC 
(No.11228102).

References

	 [1]	 Bahouri H, Chemin J-Y and Danchin R 2011 Fourier Analysis and Nonlinear Partial Differential 
Equations (Berlin: Springer)

	 [2]	 Bergh J and Löfström J 1976 Interpolation Spaces: an Introduction (Berlin: Springer)
	 [3]	 Biskamp D 1993 Nonlinear Magnetohydrodynamics (Cambridge: Cambridge University)
	 [4]	 Cao C, Regmi D and Wu J 2013 The 2D MHD equations with horizontal dissipation and horizontal 

magnetic diffusion J. Differ. Equ. 254 2661–81
	 [5]	 Cao C and Wu J 2010 Two regularity criteria for the 3D MHD equations J. Differ. Equ. 248 2263–74
	 [6]	 Cao C and Wu J 2011 Global regularity for the 2D MHD equations with mixed partial dissipation 

and magnetic diffusion Adv. Math. 226 1803–22
	 [7]	 Cao C, Wu J and Yuan B 2014 The 2D incompressible magnetohydrodynamics equations with only 

magnetic diffusion SIAM J. Math. Anal. 46 588–602
	 [8]	 Chen  Q, Miao  C and Zhang  Z 2007 The Beale–Kato–Majda criterion for the 3D magneto-

hydrodynamics equations Commun. Math. Phys. 275 861–72
	 [9]	 Chen Q, Miao C and Zhang Z 2010 On the well-posedness of the ideal MHD equations  in the 

Triebel–Lizorkin spaces Arch. Ration. Mech. Anal. 195 561–78
	[10]	 Elgindi T M and Rousset F 2015 Global regularity for some Oldroyd type models Commun. Pure. 

Appl. Math. 68 2005–21
	[11]	 Fan J, Nakamura G and Zhou Y 2014 Global Cauchy problem of 2D generalized MHD equations 

Monatsh Math 175 127–31
	[12]	 He  C and Xin  Z 2005 Partial regularity of suitable weak solutions to the incompressible 

magnetohydrodynamic equations J. Funct. Anal. 227 113–52
	[13]	 He C and Xin Z 2005 On the regularity of weak solutions to the magnetohydrodynamic equations 

J. Differ. Equ. 213 235–54
	[14]	 Hmidi T, Keraani S and Rousset F 2010 Global well-posedness for Euler–Boussinesq system with 

critical dissipation Commun. PDE 36 420–45
	[15]	 Hu X and Lin F 2014 Global existence for two dimensional incompressible magnetohydrodynamic 

flows with zero magnetic diffusivity arXiv: 1405.0082v1 [math.AP]
	[16]	 Jiu Q and Niu D 2006 Mathematical results related to a two-dimensional magneto-hydrodynamic 

equations Acta Math. Sci. Ser. B Engl. Ed. 26 744–56
	[17]	 Jiu Q and Zhao J 2014 A remark on global regularity of 2D generalized magnetohydrodynamic 

equations J. Math. Anal. Appl. 412 478–84
	[18]	 Jiu Q and Zhao J 2015 Global regularity of 2D generalized MHD equations with magnetic diffusion 

Z. Angew. Math. Phys. 66 677–87
	[19]	 Lei Z 2015 On Axially Symmetric incompressible magnetohydrodynamics in three dimensions  

J. Differ. Equ. 259 3202–15
	[20]	 Lei Z and Zhou Y 2009 BKM’s criterion and global weak solutions for magnetohydrodynamics 

with zero viscosity Discrete Contin. Dyn. Syst. 25 575–83

Q Jiu et alNonlinearity 28 (2015) 3935

http://dx.doi.org/10.1016/j.jde.2013.01.002
http://dx.doi.org/10.1016/j.jde.2013.01.002
http://dx.doi.org/10.1016/j.jde.2013.01.002
http://dx.doi.org/10.1016/j.jde.2009.09.020
http://dx.doi.org/10.1016/j.jde.2009.09.020
http://dx.doi.org/10.1016/j.jde.2009.09.020
http://dx.doi.org/10.1016/j.aim.2010.08.017
http://dx.doi.org/10.1016/j.aim.2010.08.017
http://dx.doi.org/10.1016/j.aim.2010.08.017
http://dx.doi.org/10.1137/130937718
http://dx.doi.org/10.1137/130937718
http://dx.doi.org/10.1137/130937718
http://dx.doi.org/10.1007/s00220-007-0319-y
http://dx.doi.org/10.1007/s00220-007-0319-y
http://dx.doi.org/10.1007/s00220-007-0319-y
http://dx.doi.org/10.1007/s00205-008-0213-6
http://dx.doi.org/10.1007/s00205-008-0213-6
http://dx.doi.org/10.1007/s00205-008-0213-6
http://dx.doi.org/10.1016/j.jfa.2005.06.009
http://dx.doi.org/10.1016/j.jfa.2005.06.009
http://dx.doi.org/10.1016/j.jfa.2005.06.009
http://dx.doi.org/10.1016/j.jde.2004.07.002
http://dx.doi.org/10.1016/j.jde.2004.07.002
http://dx.doi.org/10.1016/j.jde.2004.07.002
http://dx.doi.org/10.1080/03605302.2010.518657
http://dx.doi.org/10.1080/03605302.2010.518657
http://dx.doi.org/10.1080/03605302.2010.518657
http://arxiv.org/abs/1405.0082v1
http://dx.doi.org/10.1016/S0252-9602(06)60101-X
http://dx.doi.org/10.1016/S0252-9602(06)60101-X
http://dx.doi.org/10.1016/S0252-9602(06)60101-X
http://dx.doi.org/10.1016/j.jmaa.2013.10.074
http://dx.doi.org/10.1016/j.jmaa.2013.10.074
http://dx.doi.org/10.1016/j.jmaa.2013.10.074
http://dx.doi.org/10.1007/s00033-014-0415-8
http://dx.doi.org/10.1007/s00033-014-0415-8
http://dx.doi.org/10.1007/s00033-014-0415-8
http://dx.doi.org/10.1016/j.jde.2015.04.017
http://dx.doi.org/10.1016/j.jde.2015.04.017
http://dx.doi.org/10.1016/j.jde.2015.04.017
http://dx.doi.org/10.3934/dcds.2009.25.575
http://dx.doi.org/10.3934/dcds.2009.25.575
http://dx.doi.org/10.3934/dcds.2009.25.575


3955

	[21]	 Lemari P G 2002 Recent Developments in the Navier–Stokes Problem (Chapman and Hall/CRC 
Research Notes in Mathematics vol 431) (Boca Raton, FL: Chapman & Hall)

	[22]	 Lin F, Xu L and Zhang P 2015 Global small solutions to 2D incompressible MHD system J. Differ. 
Equ. 259 5440–85

	[23]	 Lin F and Zhang P 2014 Global small solutions to MHD type system (I): 3D case Commun. Pure. 
Appl. Math. 67 531–80

	[24]	 Majda  A and Bertozzi  A 2002 Vorticity and Incompressible Flow (Cambridge: Cambridge 
University)

	[25]	 Miao C, Wu J and Zhang Z 2012 Littlewood–Paley Theory and Applications to Fluid Dynamics 
Equations (Monographs on Modern Pure Mathematics vol 142) (Beijing: Science)

	[26]	 Priest E and Forbes T 2000 Magnetic Reconnection, MHD Theory and Applications (Cambridge: 
Cambridge University)

	[27]	 Ren X, Wu J, Xiang Z and Zhang Z 2014 Global existence and decay of smooth solution for the 2D 
MHD equations without magnetic diffusion J. Funct. Anal. 267 503–41

	[28]	 Runst T and Sickel W 1996 Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear 
Partial Differential Equations (Berlin: Walter de Gruyter)

	[29]	 Stefnov A and Wu J 2014 A global regularity result for the 2D Boussinesq equations with critical 
dissipation submitted for publication. Also posted in arXiv: 1411.1362 [math.AP]

	[30]	 Tao  T 2006 Nonlinear Dispersive Equations: Local and Global Analysis (CBMS Regional 
Conference Series in Mathematics) (Providence, RI: American Mathematical Society)

	[31]	 Tran  C, Yu  X and Zhai  Z 2013 On global regularity of 2D generalized magnetohydrodynamic 
equations J. Differ. Equ. 254 4194–216

	[32]	 Triebel H 1992 Theory of Function Spaces II (Boston: Birkhauser)
	[33]	 Wang  W and Zhang  Z 2012 Limiting case for the regularity criterion to the 3D magneto-

hydrodynamics equations J. Differ. Equ. 252 5751–62
	[34]	 Wu J 2003 Generalized MHD equations J. Differ. Equ. 195 284–312
	[35]	 Wu J 2008 Regularity criteria for the generalized MHD equations Commun. PDE 33 285–306
	[36]	 Wu J 2011 Global regularity for a class of generalized magnetohydrodynamic equations J. Math. 

Fluid Mech. 13 295–305
	[37]	 Wu J, Wu Y and Xu X 2015 Global small solution to the 2D MHD system with a velocity damping 

term SIAM J. Math. Anal. 47 2630–56
	[38]	 Xu L and Zhang P 2015 Global small solutions to three-dimensional incompressible MHD system 

SIAM J. Math Anal. 47 26–65
	[39]	 Yamazaki K 2014 On the global well-posedness of N-dimensional generalized MHD system in 

anisotropic spaces Adv. Differ. Equ. 19 201–24
	[40]	 Yamazaki K 2014 Remarks on the global regularity of the two-dimensional magnetohydrodynamics 

system with zero dissipation Nonlinear Anal. 94 194–205
	[41]	 Yamazaki K 2014 On the global regularity of two-dimensional generalized magnetohydrodynamics 

system J. Math. Anal. Appl. 416 99–111
	[42]	 Yuan B and Bai L 2014 Remarks on global regularity of 2D generalized MHD equations J. Math. 

Anal. Appl. 413 633–40
	[43]	 Zhang  T 2014 An elementary proof of the global existence and uniqueness theorem to 2D 

incompressible non-resistive MHD system, arXiv:1404.5681v1 [math.AP]

Q Jiu et alNonlinearity 28 (2015) 3935

http://dx.doi.org/10.1002/cpa.21506
http://dx.doi.org/10.1002/cpa.21506
http://dx.doi.org/10.1002/cpa.21506
http://dx.doi.org/10.1016/j.jfa.2014.04.020
http://dx.doi.org/10.1016/j.jfa.2014.04.020
http://dx.doi.org/10.1016/j.jfa.2014.04.020
http://arxiv.org/abs/1411.1362
http://dx.doi.org/10.1016/j.jde.2013.02.016
http://dx.doi.org/10.1016/j.jde.2013.02.016
http://dx.doi.org/10.1016/j.jde.2013.02.016
http://dx.doi.org/10.1016/j.jde.2012.01.043
http://dx.doi.org/10.1016/j.jde.2012.01.043
http://dx.doi.org/10.1016/j.jde.2012.01.043
http://dx.doi.org/10.1016/j.jde.2003.07.007
http://dx.doi.org/10.1016/j.jde.2003.07.007
http://dx.doi.org/10.1016/j.jde.2003.07.007
http://dx.doi.org/10.1080/03605300701382530
http://dx.doi.org/10.1080/03605300701382530
http://dx.doi.org/10.1080/03605300701382530
http://dx.doi.org/10.1007/s00021-009-0017-y
http://dx.doi.org/10.1007/s00021-009-0017-y
http://dx.doi.org/10.1007/s00021-009-0017-y
http://dx.doi.org/10.1137/140985445
http://dx.doi.org/10.1137/140985445
http://dx.doi.org/10.1137/140985445
http://projecteuclid.org/euclid.ade/1391109082
http://projecteuclid.org/euclid.ade/1391109082
http://projecteuclid.org/euclid.ade/1391109082
http://dx.doi.org/10.1016/j.na.2013.08.020
http://dx.doi.org/10.1016/j.na.2013.08.020
http://dx.doi.org/10.1016/j.na.2013.08.020
http://dx.doi.org/10.1016/j.jmaa.2014.02.027
http://dx.doi.org/10.1016/j.jmaa.2014.02.027
http://dx.doi.org/10.1016/j.jmaa.2014.02.027
http://dx.doi.org/10.1016/j.jmaa.2013.12.024
http://dx.doi.org/10.1016/j.jmaa.2013.12.024
http://dx.doi.org/10.1016/j.jmaa.2013.12.024
http://arxiv.org/abs/1404.5681v1

