Nonlinear Differ. Equ. Appl.

(2022) 29:42

© 2022 The Author(s),. under exclusive licence Nonlinear Differential Equations
to Springer Nature Switzerland AG

https://doi.org/10.1007 /s00030-022-00773-4 and Applications NoDEA

Check for
updates

Stability and large-time behavior for the 2D
Boussineq system with horizontal
dissipation and vertical thermal diffusion

Dhanapati Adhikari, Oussama Ben Said®, Uddhaba Raj Pandey
and Jiahong Wu

Abstract. This paper solves the stability and large-time behavior problem
on perturbations near the hydrostatic equilibrium of the two-dimensional
Boussinesq system with horizontal dissipation and vertical thermal diffu-
sion. The spatial domain Q is T x R with T = [0, 1] being the 1D periodic
box and R being the whole line. The results presented in this paper es-
tablish the observed stabilizing phenomenon and stratifying patterns of
the buoyancy-driven fluids as mathematically rigorous facts. The stabil-
ity and large-time behavior problem concerned here is difficult due to the
lack of the vertical dissipation and horizontal thermal diffusion. To make
up for the missing regularization, we exploit the smoothing and stabiliz-
ing effect due to the coupling and interaction between the temperature
and the fluids. By constructing suitable energy functional and introducing
the orthogonal decomposition of the velocity and the temperature into
their horizontal averages and oscillation parts, we are able to establish
the stability in the Sobolev space H? and obtain algebraic decay rates for
the oscillation parts in the H'-norm.
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1. Introduction

The goal of this paper is three-fold: first, to reveal and rigorously confirm the
stabilizing phenomenon of the temperature on buoyancy-driven fluids; second,
to assess the effect of the domain on the stability and large-time behavior
of perturbations near the hydrostatic equilibrium; and third, to develop an
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effective approach for the stability problem and decay properties on solutions
to the partially dissipated systems of partial differential equations.

The hydrostatic equilibrium is a significant steady-state of many geophys-
ical fluids [9,11]. Our atmosphere is mostly in hydrostatic equilibrium, with the
upward pressure gradient force balanced out by the downward gravitational
force. Understanding the stability and large-time behavior of perturbations
near this special equilibrium may help explain and predict some of the severe
weather phenomena [3,7].

Several studies have recently been conducted to rigorously understand the
influence of the temperature on the stability of perturbations near the hydro-
static equilibrium. Since the Boussinesq models are the most relevant models
for buoyancy-driven fluids, these studies are based on several incompressible
Bousinesq systems. The work of Doering, Wu, Zhao and Zheng [6] investigated
the stability of the hydrostatic equilibrium to the 2D Boussinesq system with
only kinematic dissipation (without thermal diffusion) and rigorously proved
the global asymptotic stability of any perturbation near the hydrostatic equi-
librium [6]. In addition, extensive numerical simulations are performed in [6]
to corroborate the analytical results and predict some phenomena that are not
proven. The work of Tao, Wu, Zhao and Zheng [12] resolves several important
issues left open in [6]. In particular, [12] provides a precise description of the
final buoyancy distribution in case of general initial conditions and the explicit
decay rate of the velocity field or the total mechanical energy. The paper of
Castro, Cordoba and Lear successfully established the stability and large time
behavior on the 2D Boussinesq equations with velocity damping instead of
dissipation [4]. We shall refrain from describing more results at this moment
but defer them until the later part of this introduction.

This paper focuses on the following 2D anisotropic Boussinesq system

U +U-VU=~-VP+voU+0Oey, x€Q, t>0,
at®+UV(“) = 77622@, (11)
V-U=0,

where U denotes the fluid velocity, P the pressure, © the temperature, and
v > 0 the kinematic viscosity and 7 the thermal diffusivity, respectively. Here
€9 is the unit vector in the vertical direction and the spatial domain €2 is given
by

Q=TxR,

with T = [0, 1] being a 1D periodic box and R being the whole line. (1.1) mod-
els anisotropic buoyancy-driven fluids in the circumstance when the vertical
dissipation and the horizontal thermal diffusion are negligible [11].

We are mainly concerned with the stability and the precise large-time
behavior of perturbations near the hydrostatic equilibrium (Upe, Op.) with

Uhe = 0; 6he = T2.
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For the static velocity Upe, the momentum equation is satisfied when the

pressure gradient is balanced by the buoyancy force, namely
1
~VPhe+Opees =0 or P = 59:3.

To understand the desired stability, we write the equation of the perturbation
denoted by (u,p, ), where

u=U—-Upe, p=P—Pre and 0 =0 — Op,.

It follows easily from (1.1) that the perturbation (u,p, ) satisfies the follow-
ing anisotropic Boussinesq equations with horizontal dissipation and vertical
thermal diffusion
Owu+u-Vu=—-Vp+rvdu+ ey,
0:0 +u - VO + uy = 10220,
V-u=0,
u(z,0) =up(x), 6(x,0) = 0O(x).

(1.2)

The system (1.2) obeyed by the perturbations differs from the original system
(1.1) by a single term, uy in the equation of #. Without this term, the L2-norm
of the velocity u to (1.1) can grow in time due to the buoyancy forcing term
fes. As pointed out in [2], solutions of the 3D Boussinesq equations with even
full dissipation and thermal diffusion can actually grow in time. This term in
(1.2) helps balance out fes in the energy estimates. Therefore, the buoyancy
forcing no longer plays a destabilizing role in (1.2).

However, the lack of full kinematic dissipation in the momentum equa-
tion becomes the main obstacle in the stability problem concerned here. Even
when the temperature is identically zero, § = 0, the fluid itself may not even
be stable. In fact, when 6 = 0, the fluid is governed by the 2D anisotropic
incompressible Navier-Stokes equastions

Odwu+u-Vu=—-VP +vonu, (13)
Veu=0
or, in terms of the vorticity w = V X u,
Ow +u-Vw =vow,
LA . (1.4)
u=V+tA T w:i=(=02,01)A w.

The stability problem on (1.3) in the Sobolev setting H? remains an open prob-
lem in the whole space case R2. The global well-posedness of (1.3) follows from
the classical Yudovich approach due to the boundedness of the vorticity itself
from (1.4). But the vorticity gradient Vw or more generally the second-order
derivatives of w in any Lesbesgue space LP with 2 < p < oo can potentially
grow rather rapidly in time. In fact, it appears that the best upper bound we
have for the whole space cases are double exponential in time,

Cllw(o
9O oo g2yt

Vo ()|l pa@2) < (Ve(0)] Loz
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Indeed in the case of the 2D Euler equation in a unit disk, Kiselev and Sverak
were able to construct an explicit vorticity solution whose gradient grows dou-
ble exponentially [8]. It is then clear that the stability problem would not be
possible if the temperature 6 does not stabilize the fluid.

In a previous work by Ben Said, Pandey and Wu [1], we explored the
influence of the temperature on the fluid when we study the stability of the
Boussinesq system in the whole space R?,

Ou+u-Vu=—-Vp+rvpu+be, zcR?t>0,

00+ u-VO+uy =n0110,

V-u=0,

u(z,0) = up(x), 6(x,0) =60y(x).
We remark that the Boussinesq systems are asymmetrical and the exchange
of the vertical dissipation with the horizontal one leads to different regular-
ity properties. As a consequence, (1.2) can not be dealt with via the same
approach as the one for (1.5). We slightly elaborate on how we exploited the
stabilizing effect of the temperature in the system (1.5) and explain why the
same mechanism would not work for (1.2). To unearth the influence of the
temperature on the fluid, we make use of the coupling in (1.5) to seek special
structure in the system. To do so, we first apply the Leray projection operator

P:=1-VA~'V.
to the velocity equation in (1.5) to eliminate the pressure
Opu = vaau + P(fey) — P(u - Vu). (1.6)

By the definition of P,

(1.5)

— -1
P(GGQ) = 062 — VAflv . (962) _ |: 3132A 9:| '

0 —03A710
Inserting (1.7) in (1.6) and writing (1.6) in terms of its component equations,
we obtain

(1.7)

(1.8)

Oyuy = v Oy — 3162A719 + Nl,
Oty = v Oaouts + 0101 AT10 + Ny,

where N7 and N> are the nonlinear terms,
Ni=—(u-Vu—01A7'V - (u-Vu)), No=—(u-Vug — ATV - (u-Vu)).
By differentiating the equations of (1.8) as well as the equation of 6 in ¢ and

making several substitutions, we find that (u,0) actually satisfies the wave
equations

{aﬁu — (0011 + v02) 0w + VD11 Dozt + O A~ u = Ny,

1.9
Ol — (nO11 + v022) 040 + 110220 + D11 A10 = Ny, (1.9)

where N3 and Ny represent the nonlinear terms. In comparison with (1.5), the
wave structure in (1.9) exhibits more smoothing and stabilizing properties.
In particular, the extra smoothing given by the wave term d;; A~ u is in the
horizontal direction. (1.5) originally has vertical dissipation and this extra
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horizontal smoothing makes up for what is lacking in (1.5). This is one of the
main reasons that [1] was able to solve the stability problem on (1.5).
The system (1.2) concerned here can also be converted into a system of
wave equations
{@tu — (77822 + V@ll)é)tu + z/nauaggu + 811A*1u = N5,

1.10
0 — (nDa2 + 1011)040 + V110226 + 11A710 = N, (1.10)

where N5 and Ng contain the nonlinear terms. (1.10) reveals more regularizing
properties than (1.2), but the extra smoothing given by the wave term 91 A~y
is in the horizontal direction. The system (1.2) itself has horizontal kinematic
dissipation and what we really need is the vertical regularization. Therefore
the extra horizontal smoothing in the wave equation (1.10) does not appear
to help. This explains the difference between (1.2) and (1.5) as well as why
the extra smoothing from the coupling with the temperature does not help us
with the stability problem concerned here.

The spatial domain here is taken to be Q2 = T x R. We explain how we
can take advantage of this domain to help with our stability problem. The
horizontal variable is in a periodic domain and the Fourier transform in the
horizontal variable is represented by a sequence of Fourier modes. Our idea is
to separate the zeroth horizontal Fourier mode from the non-zero modes. To
be more precise, we introduce several notation. Let f = f(x1,x2) be a function
defined on T x R that is integrable in 21 over the 1D periodic box T = [0, 1].
We define its horizontal average f by

flaz) = /Tf(x175'32)dx1- (1.11)

Clearly, f represents the zeroth Fourier mode of f. We decompose f into f
and the corresponding oscillation portion f,

f=T+/1 (1.12)

fcontains all non-zero Fourier modes. The decomposition in (1.12) has some
special properties. First of all, this decomposition is orthogonal in the Sobolev
space H*(2) for any non-negative integer k. In fact,

(f, f)Hk(Q) =0,
where (g, h) g ©) denotes the inner product in the homogeneous Sobolev space

HF*. Furthermore, f admits strong versions of the Poincaré type inequality
[fllzz) < ClO1fllz2@),  fllz=@) < Clovfllm (@)-
By invoking the decompositions
wu=u+u, 0=0+0

in the estimates of the H2-norm of (u,f) and applying the aforementioned
properties, we are able to deal with the nonlinear terms suitably, even when
there is only horizontal dissipation.
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We are ready to present our main results. The first result establishes the
H?-stability while the second result provides the decay rates of the oscillation

portion (u, #).

Theorem 1.1. Let T = [0,1] be a 1D periodic box and let Q = T x R. Assume
ug, o € H*(Q) and V - ug = 0. Then there exists € = e(v,n) > 0 such that, if

l[uollm= + (160l > < e,

then (1.2) has a unique global solution (u, @) that remains uniformly bounded
for all time, for any t > 0,

t
a2 + 10)]32 + 2V/0 10vu(T) |72 dr

t t
+2n/ Haze(r>||§q2dr+/ 16:6(7)|2adr < C<2
0 0

for some constant C > 0.

Theorem 1.1 asserts that the solution of (1.2) emanating from any small
initial perturbation (in the H?2-sense) is always global (in time) and remains
comparable to the initial size. This result takes advantage of the domain Q =
T x R to decompose both u and € into their horizontal averages and oscillation
parts in order to handle the nonlinear terms. When the spatial domain is the
whole space R?, no such decomposition is possible and the stability problem
on (1.2) in R? remains an open problem.

Theorem 1.1 implies that [|016(7)||3 is also time integrable. The temper-
ature equation has no horizontal dissipation and this horizontal regularization
reflects the extra smoothing and stabilizing resulting from the coupling and
interaction of the temperature and the fluid.

The next theorem rigorously establishes what we have observed in numer-
ical simulations of buoyancy-driven stratified fluids (see, e.g., [6]). Perturba-
tions governed by the Boussinesq systems near the hydrostatic equilibrium are
observed to stratify and eventually approach their horizontal averages while
the oscillation parts of both u and ¢ are observed to decay to zero. The follow-
ing theorem verifies that indeed the oscillation parts u and 6 decays to zero at
algebraic rates.

Theorem 1.2. Let ug, 0y € H?(Q2) with V-ug = 0. Assume that (uo, 0o) satisfies
[uollz> + [[6oll = < €,
for sufficiently small € > 0. Let (u,0) be the corresponding solution of (1.2).

Then the oscillation part (u,0) satisfies the following algebraic decay in time,

@l + 10]) s < (1 +1)72,

for some constant ¢ > 0 and for allt > 0. In addition, (u,0) has the asymptotic
behavior, ast — oo,

(a3 + 10))3) — 0.
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As a consequence of Theorem 1.2, the solution (u, @) of (1.2) approaches
the horizontal average (4, #) asymptotically, and the Boussinesq system (1.2)
evolves to the following 1D system eventually

R 0 0
o -Vu =(=],
040 +u - Vo = 778%?.

How do the results differ from some of the closely related work? We have
previously described several related work [4,6,12]. None of the previous work
has investigated the stability problem on the Boussinesq system when the ve-
locity equation involves only the horizontal dissipation. As aforementioned,
the Boussinesq systems are asymmetrical, and exchanging the x; and x5 vari-
ables results in systems with quite different properties. A previous work of Ben
Said, Pandey and Wu [1] examined the case when the velocity equation has
the vertical dissipation and when the spatial domain is R?. The approach of
[1] can not be extended to the case when the velocity dissipation is horizontal.
As we explained before, the two cases are different and the vertical dissipation
cases is more favorable in the sense that the extra horizontal dissipation from
the wave structure complements the vertical dissipation.

We now explain the main lines in the proofs for Theorem 1.1 and Theorem
1.2. Since the local well-posedness of (1.2) follows from a standard procedure
(see, e.g., [10]), the proof of Theorem 1.1 reduces to obtaining the global H?2-
bound for the solution (u,f) of (1.2). We use the bootstrapping argument
(see, e.g., [13]). To initiate the argument, we first construct a suitable energy
functional E(t). In order for the estimates involving E to be self-contained, we
need to include two pieces Fy(t) and Ea(t),

E(t) = Ex(t) + Ex(2).

The first piece Ej(t) includes the H2-norm of (u,6) and the corresponding
time integral part due to the partial dissipation, namely

t t

Bu(0) = gu (el + 10 3e) +20 [ foruladr + 20 [ 0u6lear
STSU 0 0

The second piece Eq(t) comes from the extra smoothing reflected in the wave

equation (1.10). As aforementioned, the wave term 911 A~16 in (1.10) provides

a weak horizontal smoothing for 6, which complements the vertical thermal

diffusion. Therefore,

t
Eg(t) I:/ H810H%2 dr.
0

Our main efforts are then devoted to proving the a priori energy inequality,
for t > 0,

3
2

E(t) < ClE(O) + CQE(t> . (1.13)
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The proof of (3.1) is naturally divided into two parts. The first part focuses
on the estimate of F; and we obtain

Ey < E1(0) + c3 By (£)? + cq Es(t)?. (1.14)
The second part proves
FEy < C5E1(0) + cg El(t) + c7 B4 (t)% + cg Eg(t)%, (1.15)

where ¢; through cg are all constants. Adding (1.14) to a suitable multiple of
(1.15) yields (1.13). An application of the bootstrapping argument to (1.13)
then implies the desired global bound. The proofs of (1.14) and (1.15) in-
volves various techniques such as the aforementioned orthogonal decomposi-
tion, Poincaré type inequalities and various anisotropic inequalities. We slightly
elaborate on the estimate of (1.15). Due to the lack of the horizontal thermal
diffusion, the time integral of [|916]|2, can not be bounded via the equation of
0. The strategy here is to make use of the vorticity equation,

819 = 8tw +u-Vw— Vauw.

We shift the time integrability of ||016]|%, to other terms involving the velocity
and the vorticity

t ¢
/ H@leH%sz:/ /8198twdxd7
0 0
t t
71// /5‘19811wd;ﬂd7+/ /819 (u- Vw)dx dr.
0 0

We further transfer the time derivative in the first term on the right from 0w
and invoke the equation of 6,

t t
/ /8193tw dxdr = /51 9(t)w(t)dx—/81 Howodac—/ /w@lated:rdT.
0 0

This process generates many terms, but fortunately we are able to prove (1.15)
after a lengthy estimates of all the terms.

To prove the algebraic decay rates on the H'-norm of the oscillation part
stated in Theorem 1.2, we write the system governing (u, 5) by first taking
the horizontal average of (1.2) and then taking the difference of (1.2) and the

horizontal average,

A+ u- Vi + U051 — vt + VP = ey,
9,0 + u - VO + u30:0 — 1026 + uz = 0.

(1.16)

The estimate of the H'-norm is naturally divided into the computations of
(@, 0)|| 12 and ||(V@, V)| 2. One main difficulty is that the equation of 6 has
only vertical diffusion, but the aforementioned Poincaré inequality can only
bound a function in terms of its horizontal derivatives. As a consequence of
this disparity, some of the nonlinear parts related to 6 can not be bounded
appropriately and require the upper bounds involving ||§|| 2. To deal with
these terms, we seek extra smoothing and stabilizing effect on ] by exploiting
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the coupling in (1.16). More precisely, we include the following extra term
along with the H'-norm to form a Lyapunov functional,
—4(tia, 0),

where § > 0 is a small constant and (7z,6) denotes the L?-inner product. The
time derivative of this inner product generates §||6]|%., which help balance

Hg 2. from the nonlinearity. After a long process of estimating the nonlinear
terms, we are able to establish the following energy inequality

d /- ~ _ - ~ 0~
= (s + 1813 — 8(332,6)) +vlonil3n +nlo:03: + Z1013 <o.

Especially, this inequality implies that the H'-norm satisfies, for any 0 < s <
2

@) 17 + 1017 < 3CIas) [ + 160s) 7). (1.17)

In addition, we obtain the time integrability of H’9v||%27

/ 18(0)]12 dt < oo,
0

which, together with the time integrability bounds from Theorem 1.1, implies

the time integrability of ||u(t)||%: + [|0(t)]|%1.

/Om(llﬂ(ﬂip +110(8)113) dt < oo. (1.18)

A elementary lemma applied to (1.17) and (1.18) leads to the desired algebraic
decay and the asymptotic behavior as t — oo,

@)1 + 1607 < C 1+ 072 t[@Dlzn + 100)]Iz) — 0.

The rest of this paper is divided into three main sections. Section 2 serves
as a preparation for the proofs of Theorems 1.1 and 1.2. It lists several crucial
properties on the orthogonal decomposition such as the Poincaré type inequal-
ity for the oscillation part f In addition, it also provides anisotropic inequali-
ties involving triple products defined on the domain 2. Section 3 presents the
proof of Theorem 1.1. This section is further divided into three subsections.
Two of the subsections are devoted to the proofs (1.14) and (1.15). Section 4
proves Theorem 1.2.

2. Preliminaries

This section makes several preparations. The first few lemmas are related to
the decomposition (1.12). Lemma 2.1 provides basic properties of the decom-
position (1.12) while Lemma 2.2 compares the 1D Sobolev inequalities on the
whole line R and on bounded domains. Lemma 2.3 presents anisotropic upper
bounds for triple products as well as for the L*°-norm on the domain 2. Lem-
mas 2.4 and 2.5 contain strong versions of the Poincaré type inequalities for
the oscillation part and anisotropic upper bounds when only the oscillation
part is involved.
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The first lemma provides several properties of f and fto be used in the
proof of our main results.

Lemma 2.1. Let Q = T xR. Assume that f defined on () is sufficiently reqular,
say f € H*(Q). Let f and f be defined as in (1.11) and (1.12). Then

(a) The average operator f and the oscillation operator f commute with
partial derivatives,

Of=01f=0, Oof =0of, Of=0f, Oof =af, ?20-

(b) If f is a divergence-free vector field, namely V - f = 0, then f and ]? are
also divergence-free,

V-f=0 and V~]7=O.

(c) f and f are orthogonal in H* for any integer k > 0, namely

(- Priey = [ DT DR fda =0, ey = 7V ey + 1 e
In particular,

Iy < Wy and 1 f ey < 11l coy-
The orthogonality is actually more general and holds for any integrable func-
tions,
f-gdr=0.
Q

The properties given in Lemma 2.1 can be easily verified via (1.11) and
(1.12).

The second lemma makes a comparison between the elementary 1D in-
equality on the whole line R and its bounded domain version.

Lemma 2.2. For any 1D function f € H'(R),
1 1
1 llzeeey < VI s 171 -
For any bounded domain such as T =[0,1] and f € H*(T),
||f||L°°(11‘) < ﬁ”f”m(qr) ||f ||L2(1r) + ||f||L2(11‘)»
in particular, if the function f has mean zero such as the oscillation part f,
1 1
1l < C IRy 111

The next lemma provides anisotropic upper bounds for triple products
and for the L*-norm of a 2D function. Anisotropic Sobolev inequalities have
become a necessary tool in the study of anisotropic equations. The whole space
version of these type of inequalities has previously been used in [5] in the 2D
cases and in [14] in the 3D case.
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Lemma 2.3. Let Q = T x R. For any f,g,h € L*(Q) with 01 f € L*(Q) and
Dag € L?(), then

| [ fahda] < CUAIEC1S1so + 1011 gl lblze . 20)
For any f € H?(R), we have
1z < CIFIE N Fllze + 100 fllz2) 3 10211 o
X (10212 + 10102f12) .

When f in Lemma 2.3 is replaced by the oscillation part f , the lower-
order part in (2.1) can be removed.

Lemma 2.4. Let Q = T x R. For any f,g,h € L*(Q) with 01 f € L*(Q) and
D29 € L?(Q), then

| [ Fanas| <cufiboiblolb ol bttis @2
For any f € H*(Q), we have
- ~ 1 ~1 ~ 1 ~ 1
1fllzoe @) < CUAIE N0 I L2102 11 72101021l = -

Lemma 2.5. Let f and f be defined as in (1.11) and (1.12). If||81f||Lz(Q) < 00,
then

1220 < ClIOLfllL2 (@),
where C' is a pure constant. In addition, if H81f||H1(Q) < 00, then
| fllLe ) < ClloLf e (-

As a direct consequence of Lemma 2.5 and the inequality (2.2), one has
-~ ~ 1 1
| [ Fahds| < Clon ol loagll . Il (2.3)

The last lemma provides an explicit decay rate in (2.5) for functions that
are integrable and are decreasing in a general sense, namely (2.4).

Lemma 2.6. Let f = f(t) be a nonnegative function satisfying , for two con-
stants Co > 0 and C; > 0,

/00 f(r)ydr < Co and f(t) <Cif(s) forany 0<s<t. (2.4)
0

Then, for Co = max{2C4 f(0),4CyC1} and for any t > 0,
ft) < Co(1+1)7 (2.5)
Furthermore, f(t) has the following large-time asymptotic behavior,

lim ¢ f(¢) = 0.
t—oo
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3. The H? nonlinear stability

This section is devoted to the proof of Theorem 1.1, which asserts the global
existence, uniqueness and stability of solutions to (1.2).

Proof of Theorem 1.1. Since the local well-posedness of (1.2) follows from a
standard procedure (see, e.g., [10]), our attention is focused on the global H?-
bound of the solution (u,f). We use the bootstrapping argument. To set up
the argument, we first define a suitable energy functional E(t). In order for
the estimate involving E to be self-contained, we need to include two pieces,
Ey(t) and Es(t)

E(t) = Ey(t) + Bx(1).

The first piece Ej(t) includes the H2-norm of (u,6) and the corresponding
time integral part due to the partial dissipation, namely

t t
B3 (1) = o (o) s+ 1007) ) + 20 [ 0rulfacr +20 [ 00

The second piece Eo(t) comes from the extra smoothing reflected in the wave
equation (1.10). As aforementioned, the wave term 911 A~16 in (1.10) provides
a weak horizontal smoothing for 6, which complements the vertical thermal
diffusion. Therefore,

t
Eg(t) I:/ H810H%2 dr.
0
Our main efforts are then devoted to proving the a priori energy inequality,
for t > 0,
E(t) < c1E(0) + 2 E(t)?. (3.1)

The proof of (3.1) consists of two main parts. The first part focuses on the
estimate of /1 and we obtain

E1 < E1(0) + ¢35 E1(£)? + cq Bo(t)2. (3.2)
The second part proves
By < ¢5F1(0) + ¢ E1(t) + c7 By () + cs Fa(t)?, (3.3)

where ¢; through cg are all constants. Adding (3.2) with 1/(2¢g) of (3.3) yields
the desired inequality in (3.1). The bootstrapping argument applied to (3.1)
then yields the desired global H?-bound on (u,#). We provide more details.
We set the initial data (ug,6p) to be sufficiently small, say

1
4y/ciea’

[ (w0, 00) || 2 < € :=
If we make the ansatz that
1

E(t) <
()_4637

then (3.1) implies

E(t) < a1 B(0) + %E(t% SE(t) < e, E(0)

| —
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or

261 1
E(t) <2c¢1E(0) <2 0o)|72 < —— = —-
( ) X 201 ( ) >~ ClH(u07 O)HH2 — 1601C% 80%
Since the bound in (3.5) is smaller than in the ansatz (3.4), the bootstrapping
argument then implies that, for any ¢ > 0,

<gg o 100 < Vi

which yields the desired global bound and stability.

For the sake of clarity, the rest of this section is divided into three sub-
sections. The first two subsections prove (3.2) and (3.3), respectively, while
the third subsection shows the uniqueness of the solutions. O

(3.5)

E(1)

3.1. Proof of (3.2)
This subsection proves (3.2). We start with the global L?-bound

t t
). 6(8)) 2 + 20 / 10yul2adr + 20 / 1026112 = || (o, 60) 2. (3.6)

Next we estimate the H'-norm via the temperature equation and the vorticity
equation

Ow +u-Vw = V811w+810, (3 7)
at9+U'V9+'LL2 :778229. ’
Taking the inner product of (w, V@) with (3.7), we obtain
1d
5 Sl + 190132 + vlorlZs +nll2: 9]
:—/VG-Vu-V@dJC+/(819-w—Vu2-Vﬁ)dx
= Il + IQ. (38)

Due to V - u = 0, there exists a stream function v so that u = V+¢ =
(=021, 01%) and Ap = w. Hence

I : = /(810 cw—YVuy - VO)dx = /(510A¢ — Vo - VO)dx
= /(foAalw + Ao 8)dx

—0. (3.9)

To make use of the anisotropic dissipation, we further split I; into four terms,

11::—/V9-Vu-v9dx
= —/81U1(319)2d5€—/811@8108206133

*/82114819820(1:67/32U2(829)2d1‘
=TI+ o+ Lz + iy (3.10)
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The goal here is to obtain upper bounds that are time-integrable. By V-u = 0,
integration by parts, Lemma 2.4 and Young’s inequaliy

Ill L= —/81U1(819)2d.’17 = —2/’[@819818296[.1‘
< ¢|[0101020]|12|010]|}2(|02010]|} 2 | uz]| 2
< 10201210101 3. 122
< clulla (1920032 + 1016113 ). (3.11)

By Lemmas 2.1 and 2.5,

112 L= —/811,62619829d$ = —/611,,6\2/6158296&3

< c]|0101 2 12110201 2. 10202011 2. 1016 .-
< c||ovull g2 110201 2116 22

< cl0lm= (110ral3e + 1026132 )- (3.12)

I3 contains two terms with “bad” derivatives douy and 016, so we need to
invoke the decompositions u = @ + u and 0 = 6 + 6,

113 L= —/32U1319829d$
= f/82m31582§dz7/32u~181§825dx

- / o0 0050dx — / Do1110100,0dx:
= Ii31 + I132 + I133 + I134. (3.13)
Due to Lemma 2.1,
11315:7/ agmalaaggdxi/ 8271825/81§dx1dx2:/ 62171625815519:2 :0
Q R T R
(3.14)

According to Lemma 2.4 and Young’s inequaliy
Iizo i = */ 82u~1515825dx
Q
_ 1 1 ~ 1 ~ 1
< c||020]| 2| 02ui |72 [|0102un || £ 2 [|010]| 72 [| 02010 £ »
1 1 1 1
< c||020|| m=[lull 72 101wl F2 1101 72 110261 7
3 1 1 1
< c||020]| B2 101wl £ [|wll E= 1011 2

1 1
< cllula 10113 (10201132 + 10reul3z2)- (3.15)
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Similarly,

Lz = — [ 0u1010050dx
Q

~ 1 ~ 1 ~ 1 ~ 1
< cl|Ozuxl| 12 |010] 721102010112 102011 72|01 028 £ -
1 3
< cfful| g=110101| 72 11020117
< cllullzz (1910132 + 19201132 )
I134 can be similarly bounded as I;33. In fact
1134 = —/ 82’17{8156256&3
Q
~ 1 ~ 1 ~ 1 1 N
< c[|010]1 711020101 72110201 72101020 £ 2 [| O2ur || 2
1 3
< cfful|£2([0101|7 211026 Fr
< cllullzz (110113 + 11020132 )
Inserting (3.14), (3.15), (3.16) and (3.17) in (3.13), we get
Iy < e (u, )l 2 (10101132 + 10201132 + Orully: )
By V-4 =0, and Lemmas 2.1 and 2.4,
114 .= —/82U2(829)2d.73 = /811,[1/(829)2dl‘

< cllovur | 72 10101u1 ]|} 2 [|020]| 7 21| 0202011} 2 [| 020 || L2
< 101l 2 [|01u]| 112|020 112

< cllfll 2 (Ionullfe + 110201132 )
Inserting the bounds in (3.11), (3.12), (3.18), (3.19) in (3.10) leads to
1y < cll(u, )2 (1010132 + 102612 + [9rulfe ).

By (3.20), (3.9) and (3.8) and the fact ||w||r2 = ||Vul L2,

1d
5 2 (IVullte + IV0I32) + |02V 0)22 + vorw]l3-
< cl|(u,0) 172 (1010132 + 102612 + |Orule ).

Integrating (3.21) in time over [0, ¢] yields,

t t
IVull + V6|2 +2n/ ||82V9||%2d7'—|—21// 18yw|Zadr
0 0

< |[Vuo||2e + [|V8o)|22 + c Ey(£)% + c Ea(t).

42

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Applying V to the first equation of (3.7) and dotting with Vw and applying
A to the second equation of (3.7) and dotting with Af, we obtain

1d

5 77 (IVIlZe + [ A0I1Z:) + |02 VOIIZ: + 01 V|72
= —/Vw -Vu-Vw d:c—/AH - Au- VG)daH—/(V@lH - Vw—Augy - Af)dx
=J1+ Jo + J3. (323)

Since V - u = 0, there exists a stream function ¢ such that we can write

u =Vt = (=010, 017)) and Ay = w. Hence,
Jg 1= /(V@ﬁ -Vw — Aug Af) dx = /(V819 -Vw — Ao Af) dx
= /(V810 -Vw — 01w Af) dx = /(V810 -Vw+ 01Vw - V) dx
= /81(V0 -Vw)dz = 0.
Integrating by parts, one can write Jo as follows
Jo 1= —/AG -Au - VO)dx
=— / AOAu1010dr — /AQAUQE)Qde

-2 / AOVuq - 1 VOdr — 2 / AOVuy - 0-VOdx
= Jo1 + Joo + Joz + Joa. (3.24)

To deal with Jo1, we invoke the decompositions © = @ + u and 6 = 6+ 0 to
write

Jop i =— / AOAu O, Oda = — / AOAu; 0, 0da
= / Aurd, OAGdz — / Aurd, OAGda
- / AU 0,0A0dx — / AU 0,0A0dx
= Jo11 + Jor2 + J213 + Jo14. (3.25)

According to Lemma 2.1,

J211 = 7/A’U,71(91§A9d17 = / AmAa/algd$1d$2 = / AmAgalngQ =0.
R T R
(3.26)
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Furthermore, Jo15 can be written explicitly as

Ja19 1= —/Ale(f?lG‘NAgd:v

= —/81117181§A§d:v—/622171815811%33— /822m815822§d$

= Ja121 + Ja122 + Jo123. (3.27)

Due to Lemma 2.1,

Jo191 i = — /81117181§A§dx =0. (328)
N
=0

Integrating by parts and using Lemma 2.1 yield

- 1 ~
Jo129 1= */5’221715193119(& =73 /322’17131(319)26158

1 ~
= 5 /822 81171(819)2dx =0. (329)
=0

It follows from Lemma 2.4 and Young’s inequality that

Jo123 = —/822771315822§dx

~ 1 ~ 1 ~ 1 ~ 1
< c[|0220]| 720102201 721010} 21| 0201 0| } 2 | 0221 | L2
3 1
< cllull g2 |9201| 7211010 7 2

< cllullz (11026132 + 1016132 ) (3.30)
Inserting the bounds in (3.28), (3.29) and (3.30) in (3.27) yields
Tora < ellulz (192613 + 0161132 ). (331)
By Lemmas 2.1 and 2.4,

Jorg 1= — / AU0,0A0ds = — / A7 0,00950dx:

1 B _ 1 _ 1 ~
< cf|Aup |, 1]01Aut |72 [|02020| 72 [|0202020|| 1 2 |01 0] 1.2
1 1 1 1
< cllull 72101 2 101wl 712|020 72 10101 2

< cllul 01 s (100013 + 10l +10:201%:). (3:32)
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Applying Lemma 2.4, we have
Jorg 1= — / NN

< | AT 32 |0y A 2 A7) 2 0201172 0] .

< clull e 10yl F 01 10201 0161 .

< el 10112 9nul e 0261 e 0161 .

< cllull 10172 (1916132 + 1026132 + 9rul32)- (3.33)
Collecting (3.26), (3.31), (3.32), (3.33) and inserting them in (3.25), we get

Tor < el Olls (101015 + 10013 + lorulda). (330
Using the decompositions of u and €, we can split Joy into four terms,

.]22 = —/AQAUQagedl‘
=— / AOATZ0x0dx — / AOAUZD050dx

- / AGATZ050dx — / AOAG050dx
= Joo1 + Joga + Jao3 + Jooa. (3.35)

We start with Joo1. By the divergence free condition of u, and Lemmas 2.1
and 2.4,

Joo1 = —/A?Auﬁ@ﬁdm = —/(9225822728296&];

= /822582 O1u7 O90dx = 0. (336)
~—
=0
Similarly,
Jooz 1= — / AgATQaQde =0. (337)

According to Lemmas 2.1 and 2.4 and Young’s inequality,
J222 = —/A?A%@g@dx
= —/82829A%826d$

1 1 _1 _1
< cf|Auzl| 1|01 Auzl|f2[|02020| 72 [|0202020|| 2 | 020 || 1.2
1 1 1 3
< cllull 72101 2 101wl 721020 7

1 1
< clullZ 1605 (19l + 02613 ). (3:39)
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By Lemma 2.4 and Young’s inequality,

Jogy 1= — / AOAU050dx

1 1 ~ 1 ~ 1

< c||Auz|| 72 (|01 Auz|| 72 [|AG] 72 (0240|172 1|020]| 2
1 1 1 3

< cllull 2 [10]] £2 | Ovul| £ [|020]| 72

< cllull 2 10172 (1910l + 192013 ) (3.39)
Inserting (3.36), (3.37), (3.38) and (3.39) in (3.35), we obtain
T2 < clul 161 o (10ruls + 19:61%2). (3.40)
To bound Ja3, we start by writing it into a summation of four integrals,
J23 = —2/A9Vu1 . 81V6dx
=-2 / A981U181819d1‘ — 2/A982u181829dx
= -2 / A581u181810da: — 2/A531U181819d$
- 2/A§82u181320dx —2 / A?@gulﬁlﬁgé)dz
= Jag1 + Jogo + Jazz + Josa. (3.41)
Using Lemma 2.1, we can write Js3; as
J231 = —2/A§81u181810dm = —2/A§81ﬁ8181§dx
=2 / 010,001,010, 0dx — 2 / 020,00, 110101 0da:
= Jagz11 + Joz12. (342)
By V - u = 0, integration by parts and Lemma 2.4,
J2311 = —2/8117/1(81315)2(11: = 2/82%(31815)2d$
= —4/%81815@281819@1‘

1 1 ~ 1 ~ 1 ~
< clluz|| 72 |01uz]| 72 01010|| ;2 | 0201010 |} 21| 0201010 L2
1 1 1 3
< cllull 72101 72 101wl 7211020 72

1 1
< cllull 2 10112 (101 ula + 10261132 )- (3.43)
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By Lemma 2.4 and Young’s inequality,

J2312 = —2/6282581’(]\1/61815d$
— i L ~ 1 ~ 1 ~
< cf|Orun |72 [10101un | 72 (101010 £ 2 |020101 01|72 10206 -
< cllully 101 (l0yulye + 02612 ). (3.49)
Collecting (3.43) and (3.44) and inserting them into (3.42), we get
1 1 2 2
Tt < clul F 017 (010l + 102012 ). (3.45)

To bound Jo32, we use Lemmas 2.1 and 2.4 to obtain

J232 = —Z/Agalulalalﬁdx
= —2/826253117{81815&1‘
< c||0nr || 2. (1010111 |22 1101010]| 2. (10201 016] 7. ]| 02020 .2
< cllull 1017 (1910l + 192013 ) (3.46)

By the decompositions u =u +u and § = 6 + 5,

J233 = —2/A§82u181629dx
-2 / AOOo10,050dx — 2 / NGO 01 0x0dx

=2 / AOOo U101 050dx —2 / 010,00,5T70,0x0dx —2 / Op02005T7 0, 050

= Jogz1 + Jasz2 + Jasss. (3.47)

According to Lemma 2.4 and Young’s inequality,

J2331 = —Q/Agagaialazgdx
1 1 ~ 1 ~ 1 ~
< cf|Ogurl| 72 [10102ur || 72 | AO|} 21|02 A0]| 7. [|01020]| 2
1 1 1 3
< cllull 211011 Fr2 |01 w]| 72 1| 9201 71

1 1
< clull 3 1605 (10l + 102613 ). (3.48)
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Using integration by parts, Lemma 2.1, Holder’s inequality and Lemma 2.2,
we have

Jogze 1= *2/815‘15@27181825@13

=2 / 010 010,17 8,0,0dx + 2 / 010(0yu10101020)da
"

= 2/815(821718181825)dx

=2 / 32171( / 315(816182§)dx1)dx2
R T

<2 / 021040 12 1010105012 ders
R

< 2(1057 | 25 11016 2, 12 H313132F9v||L§:2L31

T2 Ty

< cl|0aT1 | 112 0101 2 [|01.01. 020 2
< cllull = (1010113 + 110201132 ) (3.49)

Due to Lemma 2.4,

Jo333 1= —2/6282562716132§d13

< ¢]|010017.110101 0201122102020 7 | 0202020 ., || Do | .2
< cflull 219262 (3.50)

Combining (3.48), (3.49), (3.50) and inserting them in (3.47), we get
Jas < ellu,0) = (19vul + (0261 + [01012:). (351)
By Lemmas 2.1 and 2.4,
Joz4 1= —Q/Agagulalagedx
=-2 / 0050011 010,0d

< ¢]|01020]| 2. [10101020| 2. 102020 72110202020 2. 1| 02w || 2
< cflull 218202 - (3.52)

Inserting (3.45), (3.46), (3.51) and (3.52) in (3.41), we obtain

Ty < el (u, )2 (110rulBe + 10161132 + 19:01%2). (3.53)
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By u=u+u and 0 =0+ 0 and Lemma 2.1,
Jog 1= —2/AOVuz -, VOdx
= 72/(81u281620A9 + Oouz02020A0)dx
=-2 / 1120102010 — 2 / Dou2050,0 A0

= —2/81/@8182§A9d$—2/327282829A9dx—2/8217282829A9d$
= Jog1 + Josz + Jous. (3.54)

We start with Joy;. By Lemma 2.4 and Young’s inequality we have

Joup 1= —2 / 01120, 050 A0dx:

1 Bt 1 1 ~

< cl|Ovuzl| 72 [|0101uz]| 72 (| AB| 72 (|02 A0 72 [|02020| 1.2
1 1 1 3

< cllull 721101 72 1012l 72 1020 72

< cllull 2 1612 (101l + 10613 ) (3.55)
Next, using the divergence free condition of u and Lemma 2.1,
Joso = —2/82@82820A0dx = 2/81T182820A9dx =0. (3.56)
According to Lemma 2.4 and Young’s inequality,

J244 = —2/821]\2/82629A9d$

1 St 1 1

< cf|Oguz| 72 [|0102uz || 72 | A0 72 (| 0240 72 [|02020]| L2
1 1 1 3

< cllullF 1100 72 101 ul| 72 110201 7

< cllull 161 s (I0real3s + 192613 ) (3.57)
Collecting (3.55), (3.56), and (3.57) and inserting them in (3.54), we obtain
Joa < cllull 2101 2 (I 0rule + 19201152 ) (3.58)
Thus, by (3.34), (3.40), (3.53), (3.58), and (3.24),

Tz < el (u,0) = (110rula + 1010032 + 10:6)%2 ). (3.59)
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It remains to bound J;. To do so, we split it into four integrals

J1 ::—/Vquu'dex
= —/81’11,1(81(.{})2 dw—/31u281w32wd:r

—/82u181w82wdx—/agug(agw)Q dx

=Ju + Jiz + Jiz + Jia. (3.60)
Due to Lemmas 2.1 and 2.4,

J11 = —/81U1(81w)2 dx

__ / 0171 (O (1) e

1 1 1 1 _
< cf|0rur|| 72 [|0101ut || 72 |010]| f 2 [| 02010 £ 2 [| 010 .2
< cflull g2 [[Orul| 32 (3.61)

According to Lemmas 2.1 and 2.4,

J12 = */6111,2(91&)62&} dx
= 7/81/@581&8%; dx

1 1 1 1
< cl|Ovuzl| 72 [|0101uz]| f 2 [|010]| 21| 02010 7 2 [| Oaw]| .2
< cllull g2 l|Orulle (3.62)

Making use of the orthogonal decomposition of u; and w and Lemma 2.1, we
can write Ji3 as

J13 = —/82u181w82w dr = —/82u181a~u{92w dx

= —/aguTa@agwdw—/827161&82&(1:5—/821718@82(41 dzr
= Jig1 + Jiz2 + Juss. (3.63)

According to Lemma 2.1,
Ji31 = —/62’67161&)62@6&7 =0. (364)
To bound Jy32 we use Lemma 2.4

Ji32 = —/827181(7)82(7) dx

1 1 1 JU
< cf|0gtr || 2 [|020]| 12 101020 72 |010| {2 [| 02010} »

E .1
< cllull 21019201 £211010]| -

< cllullzz2|Ovul F-- (3.65)
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Similarly,
J133 = —/821/1,\{81&82(4) dx

1 .1 L 1
< cf|Oaw|| 21| O2un || 72 |0102un || 72 [|010]| } 2| 0201 @] 7 »

1 1
< || Vwl|p2[|0102u1 || 2 [|01@]] 72 | 02010 7 »

< cflull g2 | Ovu 2 (3.66)
Thus, by (3.64), (3.65), (3.66), and (3.63),
Jiz < cllull 2] 01wl (3.67)

Due to V- u = 0, Lemma 2.1, and the inequality (2.3)

Jig = —/52U2(52w)2 dz
_ / 011 (02 + 02)? dar
= —Q/ala;aﬁagadz - 2/8@7(32@)%:1:
< (19 2 + 119221 12 ) 19170 32102017 2 91 005 .
< cljull 2|l % (3.68)

Collecting the results obtained in (3.61), (3.62), (3.67), (3.68) and inserting
them in (3.60), we obtain

J1 < c|lull g2 ||0vul3e - (3.69)

Combining the upper bounds in (3.59), (3.69) and inserting them in (3.23), we
get

1d
5 IVl + 1 80122) + 10701122 + w0y Vel 22
< el )2 (J010lz + 19101132 + 02613 ) (3.70)

Integrating (3.70) in time over [0,t], we get
t t

V]2 + [ A6]12 +2n/ B d7+2u/ 10, Vw2, dr
0 0

t
< C/o II(u,9)||H2(||810||i2+||629||%12+||81u|\§p) dr+ | Auo||72 +]| Abo [ 7.2
< ||Aug|2s + | A2 + c By (t)? + ¢ E(t)?. (3.71)

(3.2) then follows from (3.6), (3.22) and (3.71).
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3.2. Proof of (3.3)

This subsection proves (3.3). We estimate the time integral of ||0,6||2.. Since
the equation of # has no horizontal dissipation, we need to use the coupling in
the vorticity equation with the equation of 6,

{(%w 4+ u-Vw=vdj 1w+ 010,

00 + 1 - V0 + us = s, (3.72)

Dotting the first equation of (3.72) by 0,6 and then integrating in space, we
get

10:10]|32: = /810(6tw —vojw+u- Vw)dx
= %/&&udx— /w(‘)l@tﬁdm—1//619811wdx+/819(u-Vw)dx

=A+B+C+D.

Due to Hélder inequality and Cauchy’s inequality, we have

t t d
/ Adr ::/ —/819wd$d7'

= /816(t)w(t)dx—/3190w0d93

< 1010l 2 [lwll L2 + [|0160]| L2 |woll 2
< 5 (1003 + i) + 5 (10oliZ +lwoliZ). (373
Integrating by parts and using the second equation in (3.72), we write B as
B = —/w@latgdm:/alwatﬂdx
= /8@(778220 —u-Vo — ug)d;v
:n/81w82829dx—/61wu2dx— /alwu~V9dx

= By 4+ By + Bs. (374)

By Holder’s inequality,

2
B, = n/alw D2000dx < 1| 01w]|L2]]02020]| L2 < ||O1ul|%e + "Znagenﬁp.
(3.75)

Integrating by parts and using Lemma 2.1 and 2.5, we have

By = —/alwugdx = —/81&u2dac= /@&ugdaj

< [|@l zellOruzllze < (013|201l L2 < [|Ovullfe. (3.76)
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By Lemma 2.1, one can decompose Bs as

B3 := —/81wu-V¢9dx

= —/81&“1615d$—/81&112829d$
:= B31 + Bss.

Due to Lemma 2.4,

B31 = 7/61L~uulalgdl‘

1 1 ~ 1 ~ 1
< @172 1010121172 10,9112 10201911l | 2
1 1 1 1
< cllull =0l i |91l 5210161319261
1 1
< cllull = ll0rul 1191611 10201 7
< cllullrz (J1ruliz + 1910032 + 102612 ).
Similarly,
B32 = 7/81&U2829d1’
1 1 1 1
< || 01|72 [101010]1 721|020 72 (102020 7 2 [ uz [ 22
< c|lull g2 (|01 ull m2|026|| 2
< cllullz= (|01l + 102032 ).
In view of (3.78), (3.79) and (3.77), we have
By < clull i (101ul%e + 1010]32 + 1020132 )

Combining (3.75), (3.76), (3.80) and inserting them in (3.74) yield

NoDEA

(3.77)

(3.78)

(3.79)

(3.80)

2
B < 2)j0vullys + 1102013 + ellull iz (101ulhe + 1020032 + 911132 ).

Hence,

t t 772 t
/ Bd7§2/ ||81u||§{2d7+—/ 020122 dr
0 0 4 0

t
o [l (100l + 10201 + 101013 )ar.

(3.81)

To bound the integral C', we use both Holder’s inequality and Young’s inequal-

ity

1
C = —y/619811wda: < v]|010]| 2 ]| 01wl L2 < Zualeuiz + V2| 01u)| %

Hence,

t t t
1
/ Cdr < 7/ H819H2L2d7+u2/ 19yu]%adr.
0 4 0 0

(3.82)
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Due to Lemma 2.1, D can be written as

D := /819(u -Vw)dr = /81§(u - Vw)dx
= /815’&18131’&26193—/615’&13182’&1(11‘

+/81§UQ6281’11,2d.’17— /815U28262U1d.’)3

= D1+ Do+ D3 + Dy. (3.83)

The integrals D; up to D3 can be bounded as follows. By using Lemmas 2.1
and 2.4,

D1 = /Blgul(?l@lwdx
:/315111818155(130

1 1 ~ 1 ~ 1
< ¢[|0101uz]| ;2|01 01Ovuz | 72 11010]| 7 21102010 f 2 l|ua [l 2
1 1
< cllull=llrull 210161 £ 19201 7
< cllullzz (Jlrulyz + 1910132 + 102612 ). (3.84)

D2 = —/815u18182u1dx

= —/61%181625710%

< ¢)|01Douit || 25110101 Dot || 2 (10101 721|9201 0] 72 | || 2

< cllull g2 (| Ovul 2 10101} 2 [| 020 712

< cllulls (9vullde + 1010]%2 + 19201 ). (3.85)
D3 = /815U28201U2d$

= /315’112628155(11‘

< ¢)|020113 25110201012 | 2 (10101 721|92010] 72 || 12

< cf|ul| g2 |01ul| 21| 010]| 72 1020 7

< cllullzz (J1rulyz + 1910132 + 192612 ). (3.86)
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Using the fact that w3 = 0 and the inequality (2.3), D4 can be bounded by
D4 = —/61§U28282U1d$ = —/(%gﬂzagaguldx

. ~1 ~1
< c||Oruz| 2010|172 (020101172 (| 0202ua || 1.2
1 1
< cf|ull 2| 01wl 2] 0101|721 026 | 7y
< cllull (10ruli3s + 19,613 + 192612 (3.87)

In view of (3.83), collecting the bounds in (3.84), (3.85), (3.86) and (3.87), we
get

D < cllullzs (9vullde + 1010]%2 + 102013 )

Hence,

t t
| par<c [ el (10wl + 101613 + 0261 ) dr
0 0
< By (1) 4 cBy(t)3. (3.88)
Therefore, combining the estimates (3.73), (3.81), (3.82) and (3.88), we obtain

¢ 1 1
| 1or01zar < 5 (1015 + ) + 5 (101 + )
t 772 t
v2 [ oltuar + % [ oatledr
0 4 0
1 t t
+f/ Hale\|§2dr+u2/ 10yul2pedr
4 0 0
t
b [ ull (10l + 101813 + 1020132 ) dr
0

1 st
<7 [ 10u8adr + cBvO) + cBr(t) + cEr()F + cEx(0),
0
which yields the desired inequality (3.3).

3.3. Uniqueness

For the sake of completeness, we provide the proof for the uniqueness part
of Theorem 1.1, although the proof is not difficult. We show that two so-
lutions (u™,p™M #M) and (u®,p? 0P) of (1.2) with one of them in the
H?-regularity class say (u(®),01)) € L=(0,T, H*(Q)) must coincide. Their
difference (u*,p*,0*) with u* = u —u?), p* = p(M) — p) g+ = (1) — H(2)
satisfies, according to (1.2)

ou* +u® . Vur +u* - Vul) + Vp* = v d11u* + 0*eq,
010" +u? - VO +u* - VO +ub =19 0anb*,

V.-u* =0,

u*(2,0) =0, 6*(x,0)=0.

(3.89)
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We estimate the difference (u*, p*, 0*) in L*(Q). Dotting (3.89) by (u*,0*) and
applying the divergence free condition of u*, we get

I ) + woree 1 + a1

= —/u*-Vu(l) ~u*dx—/u*-V0(1) 0" dx

=1 + . (3.90)
By Lemma 2.3 and the uniformly global bound for ||u™)|| g2,

I = —/u*-Vu(l) ~u* dx

< cllu 7 (lw*llaz + loruliz2) a2 10290V 2, w2

<c

< cfut]| 2 (HU*||L2 + ||31u*||L2) + [Ju*]|7
< cllu” [z + 0" |- (3.91)
By Lemma 2.3 and the uniformly global bound for [|0(M]| =,
I: f/u*~V0(1) 0% da

1 3 1 1
< VOO (1969 12 + 10980 12) ¥ 1671 e 0267l

<c
< cllO* 171020132 1w 2
< cllu = (1612 + 926" 12)
< cllu*lfe +ell0° 132 + 3110203 (3.92)
Inserting the estimates (3.91) and (3.92) in (3.90) yields
1d
2dt
* * v * 77 *
< el la + 1671172 ) + F 100w 32 + 3110267 13

1™, 01> + vl oru” Iz + nll 026717

or
d * * * *
@ 0 + vlovu”|[7z + 0020772 < el (u”, 67)]1 72 (3.93)

Gronwall’s inequality applied to (3.93) implies that ||u*||3. = [|6*|%. = 0. This
completes the proof of Theorem 1.1. O

4. Decay rates result

This section proves Theorem 1.2, which asserts the algebraic decay rates for

the H'-norm of the oscillation part (u, ) of the solution to (1.2).
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Proof of Theorem 1.2. We start the proof of Theorem 1.2 by writing the sys-
tem governing the horizontal average (u, 6), namely,

— 0 0
O+ u - Vi + =(-],
! <82p> (9) (4.1)
00 +u- V0 = n930.
Taking the difference of (1.2) and (4.1), we get

A+ u - Vi + uz0ou — vt + VP = ey,
040 + u - VO + U300 — 1020 + uz = 0.

(4.2)

Dotting the system (4.2) by (u, 6) yields,
1dy/, - ~ _ ~
5 27 (13 + 18122 ) + vilril3s + nl220]
:—/UoVﬂ~ﬂdz—/ﬂgagﬂwﬁdx—/u~V5'§dz—/iZ§82§~§dx

= Al + A2 + A3 + A4. (43)

By the divergence-free condition of v and Lemma 2.1,

Ay ::—/u-Vﬂ-ﬁdmz—/u-Vﬂ~ﬂdw+/u-Vﬂ-ﬂdm=O. (4.4)

=0 =0

Similarly,

Aj = /u .V - Odz = 0. (4.5)
By Lemma 2.4, the divergence free condition of u, and Lemmas 2.1 and 2.5,
A2 = /@82ﬂ~ udx

1 11 1
< |0zl 2 [[uzl| 72| O2uz | 72 |ull 72 (| 012 72
U VAU S
< || O] L2 (|0vul 72 (| Ovarl| 22 101wl 72 || O ]| £
< cflul| 2|01 2. (4.6)
By Holder’s inequality, and Lemmas 2.2 and 2.5,
A4 = 7/51,\-2/(925 gd:l?
< ¢[|02| g [z 221161 22
< ¢)| 0501|0115z | 2116 .2
< cl|0ll g2 | Oval g (10| >

< o= (Jlnl3n + 19113 )- (4.7)



NoDEA Stability and large-time behavior for the 2D Boussineq system Page 31 of 43 42

Collecting the estimates (4.4), (4.5), (4.6), (4.7) and (4.3) leads to

1dy/, - ~ N B
5 2 (32 + 18132 + vioril3: +nloa]13.
< el (u, )2 (0132 + 101132 ) (4.8)

Applying V to (4.2) yields

OV + V(u- Vi) + V(uz0:m) — vd2Vi + VVp = V(fes),

8V + V(u- V) + V(@20:8) — 102V + Viiz = 0. (+9)
Taking the L2-inner product of (4.9) with (Va, V), we obtain
3 S (19O + IVBOIE:) + vIonvals + 0,93
_ / V(u- Vi) - Vide — [ V(idsw) - Viidz
_ / V(u- V) Vids / Y (@00) - Vida
= By + By + B3 + Bu. (4.10)

According to Lemma 2.1, we write B explicitly into the following four inte-
grals,

By = —/V(m).vwx

:_/v(u-va)-vadx+/V(m)-vadx

=0

= —/81u181ﬂ . 81175133 - /3111,28217 . 8117dx

— /82U181ﬂ . agadl' — /82’11282’11 . 82ad$
= By + B2 + Bi3 + Bia. (4.11)
We start with By;. Due to Lemma 2.1 and the inequality in (2.3),

Bu = /81u18151~ 81ﬂdm = —/81171811? (’)ﬂdm

1 1 -
< cf|0101ul| 2 || Orur || 72 [|0201un || 72 [|Or ] 2
< cllull g2 [|0va]| 7 - (4.12)
Similarly,
Blg = - /81U282ﬂ' 81ﬂd:v = —/81/117-2/82&' alﬂdx

1 1 -
< || 0101uz || 2(|02ul| 72 (| 0202l 2 [| 01 ] 2

< cllull 2|01 1 (4.13)
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By (2.3),
B13 = 7/3211,1(911’1' 8217d;z:
1 1 ~
< || 0102u]| L2 (| O2un [| 72 [|202ua || 22 [| 01| 2
< clfull g2 || - (4.14)
According to the divergence-free condition of u, Lemma 2.1 and (2.3),
Bl4 = —/82@8217- 82ﬂd$ = /81’([;18217 . 8Qﬂd5€
== /aﬂfagﬂagﬂdx
1 1 N
< ¢||0102u] 2| O2ul| 72 (| 0202 ]| 72 [| O un || 2
< cllull = |0n%. (4.15)
In view (4.11), collecting the estimates (4.12), (4.13), (4.14) and (4.15) gives
By < c||ul| g2 |01 - (4.16)

We write By explicitly,
By — / Y (i07) - Viidar
= —/8@582@- Oudx — /821’5626~82ﬂda:
— /%Blazﬂ-alﬂdx — /ﬂ}@gagﬂ- Osudx

:= By + Bas 4+ Bas + Bay. (4.17)
We start with Bg;. By (2.3) and Lemma 2.1,

Bgl = —/316582H~ 6lﬂdl‘

1 1 _
< c[|0101u]| 21|02 7 2 || 02027 |} | Or iz 1.2
< cllull g |00l 7 - (4.18)
For Bas, we use the divergence-free condition of u, (2.3) and Lemma 2.1,
Boo := —/82%82@ - Ohudx = /81@{82@ - Oqudx
1 1 .
< |1 Orutl| L21|021l| £ [| 02027 7 - [| 2| 12
< cllull g 1017 31 - (4.19)

Due to the definition of @,

ng = /i&;alagﬂ . alﬂdac =0. (420)
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To estimate Bay, we make use of (2.3) and the divergence- free condition of u,
Boy = — /Zb\iagagﬂ - Ogudx

1 1 B
< ¢|[0102l| 2 (|01 uz| 71| O2uz|| 72 |02021] 1.2

< cllull g2 (|0va] 3 - (4.21)
Combining (4.18), (4.19), (4.20), (4.21) and (4.17), we obtain
Bay < c|jul| g2 ||01]| %1 - (4.22)

By the definition of w, we can split B3 into four integrals,

B = —/V(u-vé)-védx

:—/V(u-V§)~V§dx+/W-V§dx

=0

=— / 0,00,1,0,0dx — / 02001120, 0dx:

—/81582u182§dx—/82582?2825@

:= B31 + B3z + B33 + Baa. (4.23)

Integrating by parts and using Lemma 2.1 and Young’s inequality, we have
B31 = 7/81581@7615611‘: /32172(815)2@3 = 72/&58261581§d1’

< cl|0a01 0] 12 [ 22 | 913 | 2. 1101 ] 22 920481 .
< 3Bl b 103l 2o l61
< cllull i 1007 (013 + 120013 ) (4.24)
To deal with B3y, we use Lemma 2.4,
J e —— / 92001120, 0dx
< ||z ]| 2. 0104153 2. 026 2. 920,01 2, 041 .
< |0 21017 1 11920 111
< |0l (10r7l3 s + 192013 ) (4.25)
For Bs3, we invoke the decomposition u; = Uy +u; to write it into two integrals

B33 = —/Blgagulaggdx

= */81@82’[7{62§d1‘ — /8156217162%1:
:= Bss1 + Bsso. (4.26)
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By integration by parts, Holder’s inequality, and Lemmas 2.1 and 2.4,

BS31 = 7/8158251,\1/825611'

= / 00, 0911 x0dx + / 0051170, O0dx

< 02812 1010571 | 2| + €8] o 102701 £2 91029 .
< |0l =011l 11211028 72 + €102 191 027 161027 1.
< cll0ll > (Noriil3s + 10132 + 02031 ) (4.27)

Due to Lemma 2.2 and Holder’s inequality,

Bs33o := —/5827181825d17 :/8271/58182%3:1@:2
R T

<c [ 1oar| 1l 1010282, d:
R

< 00| s 61|22, 12 101020 2 1

Ty T T TTT
< |01 111 116]] 21101 020 2
< cllull= (18132 + 192013 )- (4.28)
Combining (4.27), (4.28) and (4.26), we obtain,
Bys < cl|(w,0)ll2 (1813 + 110201132 + llor7]3: ). (4.29)

According to the divergence-free condition of u and Lemma 2.4,

B34 = —/82582@58250’1‘ = /82581{[{82@&.%

1 1 ~ 1 ~ 1 ~
< cf|Ovurl| 720101 x| 1210201 72 (020201 2 | 020 || 1.2
< )| 21|01 ]| 511 [|920]) 11

<l (vl + 10281 ). (4.30)
Inserting the estimates (4.24), (4.25), (4.26) and (4.30) in (4.23) yields

By < cl|(u, )]l (0113 + 1020131 + 11813 )- (431)
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It remains to bound B,4. By integration by parts, we write B, into four terms
as follows,

By = —/V(’dgaﬁ) - Vlda
= —/81({6825) . 81§d.’£ - /82(172829) 82§dx
= —/815582581%33 — /%8182581§d$

- / Doz Da00s0dx — / Uz02050050dx:

:= B4 + Bys + B3 + Byy. (4.32)

We start with By;. To bound Byi, we use integration by parts and Holder’s
inequality

By = — / O1U20,00,0dx = / 010113 920 Oda
< cl|020| 112 010103 | 216 .2
< |0 2 |00 (0] 2
< cllfllz (onll3 + 19113 )- (4.33)
Due to the definition of the horizontal average 6,
Bi = — / 3010200, 0dx = 0. (4.34)
By the divergence-free condition of u and Lemma 2.4,
By = — / Dotz 0500,0dx = / O1110200,0dx
< o | 2 0101711211961 £ 02028 21102 2
< |0l zz21| 01| 2 1920 g
< |0l (1ol + 920113 ) (4.35)
Thanks to Lemmas 2.1 and 2.4,
By = — / U30,0,00,0dx
< clfiz| 210117311 21020 . 102028 £ 9202 .2
< )0 2101l 112|026 11
< cllfllz= (I0nal3 + 1102131 ) (4.36)
Inserting the estimates (4.33), (4.34), (4.35) and (4.36) in (4.32) gives

By < cll(w, )]l (|03 + 10:013: + 11813 )- (437)
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Combining (4.16), (4.22), (4.31) and (4.37) yields

1d ~ ~ ~
53 (IVEO32 + IV8(0) 22 ) + via Vil + 7|2 v6| 2.

< cll(w, )l > (Ilalﬂ(t)llip + 110208 17+ + II5II2L2)- (4.38)

In order to control the norm |62 appearing in (4.8) and (4.38), we need
to add the following term,

,% (6(2,9)) = ~8(0472,0) ~ 8(1iz, 04,

where § > 0 is a small constant to be fixed in the end of the proof. The
inclusion of this term will generate an extra regularization term to help bound
H§|| r2. Clearly this stabilizing term comes from the interaction between uw and
9. By Hélder’s inequality, one easily sees that, for sufficiently small § > 0,

1@, )13 — 6(a,6) > 0.

Due to the first equation of (4.2) and the fact that uz = 0, we have

Oz +u - Vg + @@—uaf@ + 0op = 6. (4.39)
=0
On the other hand, applying V- to the first equation of (4.2), we get
V- (u-Va) + V- (@0:7) + Af = o (4.40)
By (4.40), we can write
p= A"V (u-Va) — AV - (@0y3) + A16,0.
Hence,
Bof = —OAIV - (0- Vi) — DA IV - (Wa0T) + DadeA~10.  (4.41)

Using (4.39) and the second equation of (4.2), we get

52 Uz,0) = —6(0yuz,0) — 6(uz, 8:0)

gt
—5(0 — 0up + v02t5 — u - Viz, 0)

—_—

—6(u2,—u2+n829—u282 —Uu- VH)

= —5]|0]12. + /82p9dx — 5u/€) Uz0da +5/u - Viuz0dz

+ d|ua |- —6n/8§065dx+5/ﬂ517262§dx+6/u~V0~uN2dx
=Ny +---+ Ns. (4.42)



NoDEA Stability and large-time behavior for the 2D Boussineq system Page 37 of 43 42

We start with Ny. By (4.41), we have
Ny = 5/6255019;
- —5/62A*1V (-0 - Gz — 6/62A*1V - (3057) - Odar
+5/a232A*15.§dx
:= Na1 + Nag + Nos. (4.43)

By Holder’s inequality, the boundedness of the Riesz transform and Lemma 2.4,

Noy = —6/82A‘1V (u- V) - fdz

< c8)10:A7IY - (u- V)| 12|62
< c8lfu- V| 2]|8]] .2

< cdllu - Viil| 20 2

< cdl|ul| Lo || V| 22| 2

< cd|lull 72|01 V| 216 .2

< cblull 2101l 11116 2

< callull = (|l + 1613:). (4.44)

By Holder’s inequality, the boundedness of the Riesz transform and Lemma
2.2,

Nog := —6/82A_1V . (65(92@) . gdx

< cd]|0o ATV - (w3021) | 2 10 2
< cb)|uz02| 210 .2

< 0|07 s, [[a]] 2 1] 2

< 6105 1 [0 ] 2116 2

< cb|ul| g2 |01753 | 12| 2

< cllull = (Jlniil3: + 1632 ). (4.45)
For N3, we integrate by parts and use Plancherel’s theorem
Nos := 5/8262A—15-§d:c

- 5/62A—%§-62A—%§dx
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= 31,0103

_ & 2
= 52/]1{%9(/@52” déa

k€EZ
k#£0

5 [ ot Pdea = 510,012 (4.46)

kEZ
k#0

IN

where A = (—A)2 and we have used the fact that the oscillation part has the

horizontal mode equal to 0, or §(0,&3) = 0. Combining (4.44), (4.45), (4.46)
and (4.43) yields

N < coll(u, 0) = (|10niilys + 1013 ) + 01060032, (447)
By Holder’s inequality,
207 2~ Pl 2119. 77|12 0,50
N3 := —dv | Ojuzbdx < ov||07uzl|12]10]|12 < ov7||01ul|7: + ZH9||L2' (4.48)

To bound Ny, we use Lemma 2.1, Holder’s inequality, and Lemmas 2.3 and
2.5,

Ny = (5/u - Vus0dx
:5/u~Vﬂ5§d:c—5/u-Vﬂ59~dx
=0
< cblu - Vig| 216 2
< cd|uf| oo || Viz | 22 0] 2
< cd]|ull g2 |01 Vaiz | 2|6 2
< cd|ull 2 |01 1116 2
< eallull (103 + 18]32). (4.49)
By Lemma 2.5,
N5 = d[uz|}> < cd)|0rtial[32 < e8] 01] 31 (4.50)
Due to Holder’s inequality and Lemma 2.5,
Ng := —5n/8§§ﬂ§dx
< ¢0]|030]| .2 |[uz | 2
< 6100|111 (|01 153 .2
< ¢0]|020]| 1111|010 2

< co (10203 + lonls ) (4.51)
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Using Lemma 2.4 and Lemma 2.5, we get
Ny =35 / G050

< cdlluz |72 |0vuz|| 72 1020172 1102020 7 2 [z 2
< 0|l p= (01| 3 (4.52)

To deal with Ng, we first split it into three terms using Lemma 2.1,

Ng := 5/u.v§’d5dx

:5/u'V§U§dx—5/u-V§@dm

| ——
=0

=5 / @0, 0azde + 6 / w0 Biiada + 6 / wsdalizde
= Ngl + Ngg + Ngg. (453)
By Lemma 2.4 and divergence free condition of u, we have
Ngl = 5/%815&3@6
< cbllur 2. [|0vur | 2. iz 22 |02tz | 22 |01 6] .2
< ¢6)|0]| 2|01 % - (4.54)

By integration by parts, Holder’s inequality and Lemma 2.2,
Ngo := (5/171815135(133
. / w00, Trda
< 0[] pes, 10013 | 0
< cd|[ar] nes 18]l 2 0103 2
< cdl|ull g2 0] 2191 .2
< colluller (16132 + oniil%: ). (4.55)
Due to (2.3), Lemma 2.5 and the divergence-free condition of u,
N83 = 5/U232§E5d1‘
=6 / U305 0Usd
1 1 ~
< 6|0 uz|| L2 [[uz]| 7 [|O2uz | 721|020 12

< 803 6] 2 (4.56)
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In view of (4.53), combining (4.54), (4.55) and (4.56), we get
N < el (. 0)lLz= (107 + 13- (4.57)

Inserting (4.47), (4.48), (4.49), (4.50), (4.51), (4.52) and (4.57) in (4.42) leads
to

5% ) < 81613 + 0w, )l = (1917 + 1611
B2+ e (10nil + 12:013: ) (4.58)
Putting (4.8), (4.38) and (4.58) together, we obtain
@l + 083 — 50, )) + 2000730 + 200501
< cf| (s 0) 122 (1017131 + 1102013 + 19132
= 210012 + ol w0l = (190730 + 1132
+ e (vl + 19201131 )

Now, by Theorem 1.1, if £ > 0 is sufficiently small and ||ug||z2 + ||ol|lzz < &,
then ||(u(t),0(t))|| g2 < ce. Hence we get

d/ ~ - B -

= (1l + 181130 — 30632, 6)) + 20 0nl3n + 201020113

< ce([0nll3n + 190113 + 119113
30, ~ ~ ~
= 218132 + eoe (1ol + 18132

+ s (lonalds + 1020132 )

19

Choosing € > 0 such that ce < min(y, §), we get

d _ ~ L~ _ ~
= (1l + 18113 — 3(632.0)) + 20003 + 20102013
0 - ~ 0~
< < (lonil3 + 10:1%1 ) + Z118113.
36, ~ 0 ~ ~
— 221012 + 5 (ol + 1813 )
+ o (10ill3s + 192013
5§ ~ ~ ~
< =101 + s (arial + 1020113 )
Choosing 0 > 0 such that ¢/ < min(v,7, §), we obtain

d (- ~ — - ~ 0~
= (% + 161%1 — 6(a3,0) ) + vl onlid +nlldaBlE + ZI0113 <o.

dt
(4.59)
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Due to the choice of §, we have

1/ ~ -

5 (I3 + 1013 ) — 6iz.0) > o.
or

(@l + 1161:)-

I\D\OO

1 ~ _ ~
S U+ 10170) < Nallz + 1017 — o(u, 0) <
For any 0 < s < t, integrating (4.59) in time yields
Lo~ 2 T2 ! ~12 72 070
§(||U(f)HH1 HODz) + [ vllovullzn +n0ll02015 + 1161122 ) dr
(@)1 + 16()N370)-

Especially, for any 0 < s < t,

@)1 + 10013 < 3113 + 16(s) I3 (4.60)

[\D\OJ

and
A(nawm+m@wm+ 18]122) dr < C < .

Combining with the time integral bounds from Theorem 1.1,

/ 01u|%: dt < oo, / 10102, dt < 0o and / 1020]|%2 dt < oo,
0 0 0

we obtain

/0 (a7 + 10|17 dt < oo (4.61)
Applying Lemma 2.6 to (4.60) and (4.61) yields

@@ lFn + 1017 < et +8)7,
and the asymptotic behavior, as t — oo,

t (@) 7 + 16()3:) — 0.

This completes the proof of Theorem 1.2. O
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