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UNIQUENESS OF WEAK SOLUTIONS TO THE BOUSSINESQ
EQUATIONS WITHOUT THERMAL DIFFUSION∗

NICOLE BOARDMAN† , RUIHONG JI‡ , HUA QIU§ , AND JIAHONG WU¶

Abstract. This paper focuses on the general d-dimensional (d≥2) Boussinesq equations with the
fractional dissipation (−∆)αu and without thermal diffusion. Our primary goal here is the uniqueness
of weak solutions to this partially dissipated system in the weakest possible setting. The issue of the
uniqueness of weak solutions is very important and can be quite difficult as in the case of the Leray-
Hopf weak solutions to the 3D Navier-Stokes equations. We present two main results. The first is
the global existence and uniqueness of weak solutions which assesses the global existence of L2-weak
solutions for any α>0 and the uniqueness of the weak solutions when α≥ 1

2
+ d

4
for d≥2. Especially

the 2D Boussinesq equations without thermal diffusion have unique and global L2 weak solutions.
The second result establishes the zero thermal diffusion limit with an explicit convergence rate for
the aforementioned weak solutions. This convergence result appears to be the very first one on weak
solutions of partially dissipated Boussinesq systems.
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1. Introduction
This paper concerns itself with the d-dimensional (d-D) Boussinesq system

∂tu+u ·∇u=−ν(−∆)αu−∇P +θed, x∈Rd, t>0,

∂tθ+u ·∇θ= 0, x∈Rd, t>0,

∇·u= 0, x∈Rd, t>0,

(u,θ)|t=0 = (u0,θ0), x∈Rd,

(1.1)

where u, P and θ represent the velocity field, the pressure and the temperature, respec-
tively, and ν >0 denotes the kinematic viscosity and ed= (0,0,·· · ,1) is the unit vector
in the vertical direction. Here the fractional Laplacian (−∆)α with α>0 is defined via
the Fourier transform,

F((−∆)αf)(ξ) = (4π2|ξ|2)αF(f)(ξ),

where F(f)(ξ) denotes the Fourier transform of f ,

F(f)(ξ) =

∫
Rd
f(x)e−2πix·ξ dx.

We may sometimes use Λ = (−∆)
1
2 . When θ= 0, (1.1) reduces to the generalized Navier-

Stokes equations.

∗Received: July 12, 2018; Accepted (in revised form): July 1, 2019. Communicated by Yaguang
Wang.
†Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA (nicki.board

man@okstate.edu).
‡Corresponding author. Geomathematics Key Laboratory of Sichuan Province, Chengdu University

of Technology, Chengdu 610059, P.R. China (jiruihong09@cdut.cn).
§Department of Mathematics, South China Agricultural University, Guangzhou 510642, P.R. China

(tsiuhua@scau.edu.cn).
¶Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA (jiahong.wu

@okstate.edu).

1595

mailto: nicki.boardman@okstate.edu
mailto: nicki.boardman@okstate.edu
mailto: jiruihong09@cdut.cn
mailto: tsiuhua@scau.edu.cn
mailto: jiahong.wu@okstate.edu
mailto: jiahong.wu@okstate.edu


1596 BOUSSINESQ EQUATIONS

The Boussinesq equations model large scale atmospheric and oceanic flows that are
responsible for cold fronts and the jet stream (see, e.g., the books by Gill [21], Pedlosky
[42] and Majda [39]). In addition, the Boussinesq system also plays an important
role in the study of the Rayleigh-Benard convection, one of the most commonly studied
convection phenomena (see, e.g., [14,15,20]). The first equation in (1.1) reflects Newton’s
second law, with the left-hand side being the acceleration and the right-hand side being
the forces due to viscosity, the pressure gradient and the buoyancy. The term θed
models the buoyancy in the direction of gravitational force. The temperature difference
generates density difference, which in turn generates the buoyancy force. The second
equation in (1.1) simply states that the temperature is transported by the velocity field.

Although the diffusion process is normally modeled by the standard Laplacian op-
erator, there are geophysical circumstances in which the Boussinesq equations with
fractional Laplacian arise. Flows in the middle atmosphere travelling upwards undergo
changes due to the changes in atmospheric properties, although the incompressibility
and Boussinesq approximations are applicable. The effect of kinematic and thermal
diffusion is attenuated by the thinning of atmosphere. This anomalous attenuation can
be modeled using the space fractional Laplacian (see [12,21]).

The Boussinesq system retains some key features of the 3D Euler and Navier-
Stokes equations such as the vortex stretching mechanism. The inviscid 2D Boussi-
nesq equations are identical to the Euler equations for the 3D axisymmetric swirling
flows [40]. Equation (1.1) is a partially dissipated system with no thermal diffusion.
Fundamental issues on the Boussinesq system with partial or fractional dissipation
such as the global existence, uniqueness and regularity problem have attracted enor-
mous interests during the last fifteen years and significant progress has been made
[1–5,8–11,13,16–19,23–31,33–38,46–49,52,54].

Our goal here is twofold. The first is to establish the global existence and uniqueness

of weak solutions of (1.1) with initial data u0∈L2(Rd),θ0∈L2(Rd)∩L
4d
d+2 (Rd). Our

key point here is the uniqueness of solutions in a very weak setting for a partially
dissipated system. Although the global regularity of this partially dissipated system in
smoother functional settings has been extensively investigated, the issue concerned here
is quite different. The uniqueness in the weakest possible functional settings is what
we care about here. The issue of the uniqueness of weak solutions is very important
and can be quite difficult as in the case of the Leray-Hopf weak solutions of the 3D
Navier-Stokes equations. The Boussinesq system concerned here involves only partial
dissipation and the solution space appears to be the weakest setting in which one can
prove the uniqueness.

Our second goal is to understand the zero thermal diffusion limit of the fully dissi-
pative Boussinesq equations

∂tu
(η) +u(η) ·∇u(η) =−ν(−∆)αu(η)−∇P (η) +θ(η)ed, x∈Rd, t>0,

∂tθ
(η) +u(η) ·∇θ(η) =η∆θ(η), x∈Rd, t>0,

∇·u(η) = 0, x∈Rd, t>0,

(u(η),θ(η))|t=0 = (u
(η)
0 ,θ

(η)
0 ), x∈Rd

(1.2)

and show that the solution of (1.2) converges strongly to the corresponding solution
of (1.1) with an explicit convergence rate as η→0. Due to the weak initial setup

u
(η)
0 ∈L2(Rd),θ(η)

0 ∈L2(Rd)∩L
4d
d+2 (Rd), we resort to lower regularity quantities and the

Yudovich approach. Our precise results are stated in the following theorems.
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Theorem 1.1. Consider the d-D Boussinesq equations in (1.1).

(1) Let α>0 and (u0,θ0)∈L2(Rd) with ∇·u0 = 0. Let T >0 be arbitrarily fixed. Then
(1.1) has a global weak solution (u,θ) on [0,T ] satisfying

u∈Cw([0,T ];L2)∩L2(0,T ;Hα), θ∈Cw([0,T ];L2)∩L∞(0,T ;L2).

(2) Let α≥ 1
2 + d

4 . Assume u0∈L2(Rd) and θ0∈L2(Rd)∩L
4d
d+2 (Rd) with ∇·u0 = 0.

Then (1.1) has a unique and global weak solution (u,θ) satisfying

u∈C([0,T ];L2)∩L2(0,T ;Hα), u∈ L̃1(0,T ;B
1+ d

2
2,2 ),

θ∈Cw([0,T ];L2)∩L∞(0,T ;L2∩L
4d
d+2 ),

where the definition of L̃1(0,T ;B
1+ d

2
2,2 ) can be found in Section 2. Especially, u

satisfies

sup
q≥2

1
√
q

∫ T

0

‖∇u(t)‖Lq dt<∞.

Theorem 1.1 assesses the global existence of weak solutions for any α>0 and any
L2 initial data, and the uniqueness when α≥ 1

2 + d
4 . A special consequence of Theorem

1.1 is the global existence of Leray-Hopf weak solutions to the d-D generalized Navier-
Stokes equations with any α>0 and u0∈L2(Rd), and the uniqueness of weak solutions
of the d-D Navier-Stokes equations with α≥ 1

2 + d
4 . Even though there is no thermal

diffusion, the crucial step of passing to the limit in the thermal convection term still
goes through.

Theorem 1.2. Let α≥ 1
2 + d

4 . Assume u0, θ0, u
(η)
0 , θ

(η)
0 satisfy

u0, u
(η)
0 ∈L2(Rd), ∇·u0 = 0, ∇·u(η)

0 = 0, θ0, θ
(η)
0 ∈L2(Rd)∩L

4d
d+2 (Rd).

Let (u,θ) and (u(η),θ(η)) be the corresponding weak solutions of (1.1) and (1.2), respec-

tively. Then the difference (ũ,h̃) with

ũ=u(η)−u, h̃=h(η)−h, −∆h(η) =θ(η), −∆h=θ

satisfies, for any t>0,

‖(ũ,∇h̃)(t)‖2L2 ≤CM (1−e−C0t)
(
‖ũ0,∇h̃0)‖2L2 +ηt

)e−C0t

, (1.3)

where C is a pure constant, M =‖θ0‖2L2 +‖θ(η)
0 ‖2L2 and

C0 =C

∫ t

0

(
1+‖Λ 1

2 + d
4 u‖2L2 +

‖∇u(η)‖Lp
p

)
dτ <∞.

We summarize closely related previous results on the Boussinesq equations without
thermal diffusion to clarify how our theorems are different. The study of the global
well-posedness of the 2D Boussinesq equations, namely (1.1) with d= 2 and α= 1 in
the whole space was initiated in the papers of Hou-Li [25] and of Chae [13], in which
the global and unique solutions were obtained for the initial data (u0,θ0)∈Hs(R2) with



1598 BOUSSINESQ EQUATIONS

s>2. The global existence and uniqueness of solutions to (1.1) with d= 3 and α≥ 5
4

was investigated by several researchers (see, e.g., [32, 43, 50, 51, 53]). The regularity
assumptions on the initial data in these papers are (u0,θ0)∈Hs(R3) with s> 5

2 (s> 5
4

in [32]). The 2D Boussinesq system in a bounded domain with the Dirichlet boundary
condition was first studied by Lai, Pan and Zhao [33] and the global existence and
uniqueness was obtained in the functional setting (u0,θ0)∈H3(R2). Danchin and Paicu
extended the Fujita-Kato result for the Naviver-Stokes equations to the Boussinesq
system and, as a special consequence, obtained the well-posedness of the finite energy
solutions for the 2D Boussinesq equations [18]. The paper of Larios, Lunasin and
Titi [34] seriously sought the uniqueness of solutions of (1.1) in a weak setup. They
were able to show, among many other results, that u0∈H1(T2) and θ0∈L2(T2) lead to
a unique and global strong solution of (1.1). Here T2 denotes the 2D periodic box. For
the bounded domain Ω with Dirichlet boundary conditions, the work of He [22] further
reduced the regularity assumption to (u0,θ0)∈L2(Ω) and still managed to show the
uniqueness. There are many more interesting results on the existence and uniqueness
of the solutions to (1.1) with intermediate regularity settings (see, e.g., [27–29]). The
zero thermal diffusion limit does not appear to have been much studied, especially in
the circumstance when the functional setting is weak.

The proof of Theorem 1.1 starts with the global existence of weak solutions for any
α>0 and (u0,θ0)∈L2(Rd). This process starts with showing the global existence of
smooth solutions (u(n),θ(n)) to a sequence of approximate systems. It is then followed
by establishing global uniform bounds on this sequence and obtaining the strong L2

convergence of u(n). It finishes with passing to the limit. Due to the lack of thermal
diffusion, there is no strong convergence in θ(n). However, we can still pass to the limit in
the thermal convection term due to the strong L2 convergence of u(n). When α≥ 1

2 + d
4 ,

the weak solution is unique. Due to the weak regularity setting of the solutions, u is not
Lipschitz and the corresponding vorticity is not necessarily bounded. The proof makes
use of the following smoothing property of the velocity

‖u‖
L̃1

(
0,T ;B

1+ d
2

2,2

)≤C(T,‖u0‖L2 ,‖θ0‖
L2∩L

4d
d+2

)
, (1.4)

and a special consequence of (1.4). The definition of the Besov related space

L̃1(0,T ;B
1+ d

2
2,2 ) is provided in Section 2. Equation (1.4) is proven via the Littlewood-

Paley decomposition and Besov spaces techniques. The proof for the coincidence of two
weak solutions (u(1),θ(1)) and (u(2),θ(2)) is based on the bounds for the L2-norms of the
differences

‖u(1)−u(2)‖L2 +‖∇h(1)−∇h(2)‖L2 ,

where h(1) and h(2) satisfy

−∆h(i) =θ(i), i= 1,2.

Due to the lack of thermal diffusion and the weak regularity of θ, it is not possible
to bound the difference ‖θ(1)−θ(2)‖L2 . The introduction of h(1) and h(2) reduce the
regularity requirements and helps facilitate the proof.

To prove Theorem 1.2 and compare the solutions (u(η),θ(η)) of (1.2) and (u,θ) of
(1.1), we make use of the lower regularity quantities h(η) and h satisfying

−∆h(η) =θ(η), −∆h=θ
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and estimate the difference

‖(u(η)−u)(t)‖2L2 +‖(∇h(η)−∇h)(t)‖2L2

via Yudovich techniques.

The rest of this paper is divided into three sections and an appendix. Section 2
provides the definitions of the Littlewood-Paley decomposition as well as the functional
settings associated with the Besov spaces and related facts. Section 3 proves Theorem
1.1. Due to the length of the proof for the global existence of weak solutions, the proof
of this part is given in the Appendix. Section 4 proves Theorem 1.2.

2. Preliminaries
This section provides the definitions of the Littlewood-Paley decomposition, func-

tional settings associated with the Besov spaces and related facts. In addition, an
Osgood-type inequality is also stated here for the convenience of readers. More details
can be found in several books and many papers (see, e.g., [6, 7, 41,44,45]).

To introduce the Besov spaces, we start with a few notations. S denotes the usual
Schwarz class and S ′ its dual, the space of tempered distributions. S0 denotes a subspace
of S defined by

S0 =

{
φ∈S :

∫
Rd
φ(x)xγ dx= 0, |γ|= 0,1,2, ·· ·

}
and S ′0 denotes its dual. S ′0 can be identified as

S ′0 =S ′/S⊥0 =S ′/P

where P denotes the space of multinomials. For each j∈Z, we write

Aj =
{
ξ∈Rd : 2j−1≤|ξ|<2j+1

}
. (2.1)

The Littlewood-Paley decomposition asserts the existence of a sequence of functions
{Φj}j∈Z∈S such that

suppΦ̂j⊂Aj , Φ̂j(ξ) =Φ̂0(2−jξ) or Φj(x) = 2jdΦ0(2jx),

and

∞∑
j=−∞

Φ̂j(ξ) =

{
1 , if ξ∈Rd \{0},
0 , if ξ= 0.

Therefore, for a general function ψ∈S, we have

∞∑
j=−∞

Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for ξ∈Rd \{0}.

In addition, if ψ∈S0, then

∞∑
j=−∞

Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ∈Rd.
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That is, for ψ∈S0,

∞∑
j=−∞

Φj ∗ψ=ψ

and hence

∞∑
j=−∞

Φj ∗f =f, f ∈S ′0 (2.2)

in the sense of weak-∗ topology of S ′0. For notational convenience, we define

∆̊jf = Φj ∗f = 2jd
∫

Φ0(2j(x−y))f(y)dy, j∈Z. (2.3)

The homogeneous Littlewood-Paley decomposition (2.2) can then be written as

f =

∞∑
j=−∞

∆̊jf, f ∈S ′0.

Definition 2.1. For s∈R and 1≤p,q≤∞, the homogeneous Besov space B̊sp,q con-
sists of f ∈S ′0 satisfying

‖f‖B̊sp,q ≡‖2
js‖∆̊jf‖Lp‖lq <∞.

We now choose Ψ∈S such that

Ψ̂(ξ) = 1−
∞∑
j=0

Φ̂j(ξ), ξ∈Rd.

Then, for any ψ∈S,

Ψ∗ψ+

∞∑
j=0

Φj ∗ψ=ψ

and hence

Ψ∗f+
∞∑
j=0

Φj ∗f =f (2.4)

in S ′ for any f ∈S ′. To define the inhomogeneous Besov space, we set

∆jf =

0, if j≤−2,
Ψ∗f, if j=−1,
Φj ∗f, if j= 0,1,2, ·· · .

(2.5)

The inhomogeneous Littlewood-Paley decomposition (2.4) can then be written as

f =

∞∑
j=−1

∆jf, f ∈S ′.
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Definition 2.2. The inhomogeneous Besov space Bsp,q with 1≤p,q≤∞ and s∈R
consists of functions f ∈S ′ satisfying

‖f‖Bsp,q ≡‖2
js‖∆jf‖Lp‖lq <∞.

The Besov spaces B̊sp,q and Bsp,q with s∈ (0,1) and 1≤p,q≤∞ can be equivalently
defined by the norms

‖f‖B̊sp,q =

(∫
Rd

(‖f(x+ t)−f(x)‖Lp)q

|t|d+sq
dt

)1/q

,

‖f‖Bsp,q =‖f‖Lp +

(∫
Rd

(‖f(x+ t)−f(x)‖Lp)q

|t|d+sq
dt

)1/q

.

When q=∞, the expressions are interpreted in the normal way. We will also use the
space-time spaces introduced by Chemin-Lerner (see, e.g., [6]).

Definition 2.3. For t>0, s∈R and 1≤p,q,r≤∞, the space-time spaces L̃rt B̊
s
p,q and

L̃rtB
s
p,q are defined through the norms

‖f‖L̃rt B̊sp,q ≡‖2
js‖∆̊jf‖LrtLp‖lq ,

‖f‖L̃rtBsp,q ≡‖2
js‖∆jf‖LrtLp‖lq .

Here Lrt is the abbreviation for Lr(0,t). These spaces are related to the classical space-
time spaces Lrt B̊

s
p,q and LrtB

s
p,q via the Minkowski inequality, if r≥ q,

L̃rt B̊
s
p,q⊆Lrt B̊sp,q, L̃rtB

s
p,q⊆LrtBsp,q

and, if r<q,

L̃rt B̊
s
p,q⊃Lrt B̊sp,q, L̃rtB

s
p,q⊃LrtBsp,q

Many frequently used function spaces are special cases of Besov spaces. The follow-
ing proposition lists some useful equivalence and embedding relations.

Proposition 2.1. For any s∈R,

H̊s∼ B̊s2,2, Hs∼Bs2,2.

For any s∈R and 1<q<∞,

B̊sq,min{q,2} ↪→W̊ s
q ↪→ B̊sq,max{q,2}.

In particular, B̊0
q,min{q,2} ↪→Lq ↪→ B̊0

q,max{q,2}.

For notational convenience, we write ∆j for ∆̊j . There will be no confusion if we

keep in mind that ∆̊j associated with the homogeneous Besov spaces is defined in (2.3)
while those associated with the inhomogeneous Besov spaces are defined in (2.5). Besides
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the Fourier localization operators ∆j , the partial sum Sj is also a useful notation. For
an integer j,

Sj≡
j−1∑
k=−1

∆k,

where ∆k is given by (2.5). For any f ∈S ′, the Fourier transform of Sjf is supported
on the ball of radius 2j and

Sjf(x) = 2djΨ(2jx)∗f(x) = 2dj
∫

Ψ(2j(x−y))f(y)dy.

The operators ∆j and Sj defined above satisfy the following properties:

∆j∆kf = 0 if |k−j|≥2 and ∆j(Sk−1f∆kf) = 0 if |k−j|≥3.

Bernstein’s inequalities are useful tools on Fourier localized functions and these
inequalities trade integrability for derivatives. The following proposition provides
Bernstein-type inequalities for fractional derivatives.

Proposition 2.2. Let α≥0. Let 1≤p≤ q≤∞.
1) If f satisfies

supp f̂ ⊂{ξ∈Rd : |ξ|≤K2j},

for some integer j and a constant K>0, then

‖(−∆)αf‖Lq(Rd)≤C1 22αj+jd( 1
p−

1
q )‖f‖Lp(Rd).

2) If f satisfies

supp f̂ ⊂{ξ∈Rd : K12j≤|ξ|≤K22j}

for some integer j and constants 0<K1≤K2, then

C1 22αj‖f‖Lq(Rd)≤‖(−∆)αf‖Lq(Rd)≤C2 22αj+jd( 1
p−

1
q )‖f‖Lp(Rd),

where C1 and C2 are constants depending on α,p and q only.

We shall also use Bony’s notion of paraproducts to decompose a product into three
parts

f g=Tf g+Tg f+R(f,g),

where

Tf g=
∑
j

Sj−1f∆jg, R(f,g) =
∑
j

∑
k≥j−1

∆kf∆̃kg

with ∆̃k = ∆k−1 +∆k+∆k+1. Finally, we state an Osgood-type inequality to be used
in the subsequent sections (see, e.g., [6]).

Lemma 2.1. Let a>0 and 0≤ t0<T . Let ρ be a measurable function from [t0,T ] to
[0,a]. Let γ(t)>0 be a locally integrable function on [t0,T ]. Let φ≥0 be a continuous
and non-decreasing function on [0,a]. Assume that ρ satisfies, for some constant c

ρ(t)≤ c+

∫ t

t0

γ(s)φ(ρ(s))ds for a.e. t∈ [t0,T ].
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Then, if c>0, we have, for a.e. t∈ [t0,T ],

−M(ρ(t))+M(c)≤
∫ t

t0

γ(τ)dτ,

where

M(x) =

∫ a

x

dr

φ(r)
.

If c= 0 and ∫ a

0

dr

φ(r)
=∞,

then ρ(t) = 0 a.e. t∈ [t0,T ].

3. Proof of Theorem 1.1
This section proves Theorem 1.1. Naturally the proof is divided into two main

parts. The first part is the proof of the global existence of weak solutions of (1.1) with
any α>0. This is accomplished in Proposition 3.1, which is stated in this section here.
Since the proof of Proposition 3.1 is lengthy, we leave it to the Appendix. The second
part is the proof of the uniqueness of weak solutions of (1.1) when α≥ 1

2 + d
4 . In order

to prove the uniqueness, we first prove a major smoothing estimate for the velocity field
in Proposition 3.2.

We start with the definition of weak solutions of (1.1) with any α>0.

Definition 3.1. Consider (1.1) with α>0 and (u0,θ0)∈L2(Rd) and ∇·u0 = 0. Let
T >0 be arbitrarily fixed. A pair (u,θ) satisfying

u∈Cw([0,T ];L2)∩L2(0,T ;H̊α), ∇·u= 0,

θ∈Cw([0,T ];L2)∩L∞(0,T ;L2)

is a weak solution of (1.1) on [0,T ] if (a) and (b) below hold:

(a) For any φ∈C∞0 (Rd× [0,T )) with ∇·φ= 0,

−
∫ T

0

∫
Rd
u ·∂tφdxdt−

∫
Rd
u0(x) ·φ(x,0)dx−

∫ T

0

∫
Rd
u ·∇φudxdt

+

∫ T

0

∫
Rd

(−∆)α/2u ·(−∆)α/2φdxdt=

∫ T

0

∫
Rd
θed ·φdxdt. (3.1)

(b) For any ψ∈C∞0 (Rd× [0,T ))

−
∫ T

0

∫
Rd
∂tψθdxdt−

∫
Rd
θ0(x)ψ(x,0)dx=

∫ T

0

∫
Rd
u ·∇ψθdxdt. (3.2)

For any α>0 and (u0,θ0)∈L2(Rd), (1.1) always has a global weak solution. In the
special case when θ≡0, this result assesses the global existence of weak solutions of the
generalized Navier-Stokes equations with any α>0 and u0∈L2(Rd).

Proposition 3.1. Consider (1.1) with α>0 and (u0,θ0)∈L2(Rd) and ∇·u0 = 0.
Let T >0 be arbitrarily fixed. Then (1.1) has a global weak solution (u,θ) as given in
Definition 3.1 satisfying

‖θ(t)‖L2 ≤‖θ0‖L2 ,
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‖u(t)‖2L2 +2ν

∫ t

0

‖Λαu(τ)‖2L2 dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2.

The proof of Proposition 3.1 is long and the details will be provided in the Appendix.
Next we establish a smoothing estimate for the weak solution shown in Proposition 3.1.

Proposition 3.2. Let d≥2. Consider (1.1) with α≥ 1
2 + d

4 . Assume (u0,θ0) satisfies

u0∈L2(Rd), ∇·u0 = 0, θ0∈L2(Rd)∩L
4d
d+2 (Rd).

Let (u,θ) be the corresponding global weak solution of (1.1). Then, for any 0<t≤T ,

‖u‖
L̃1
tB

1+ d
2

2,2

≤ C(t,‖u0‖L2 ,‖θ0‖L2). (3.3)

As a special consequence,

sup
p≥2

∫ t

0

‖∇u(τ)‖Lp√
p

dτ ≤C(t,‖u0‖L2 ,‖θ0‖L2). (3.4)

Proposition 3.2 is proven via the Littlewood-Paley decomposition and Besov space
techniques. The proof for the 2D case is partially different from that for the general
d-D case with d≥3. We need a lemma for the 2D case.

Lemma 3.1. Assume (u0,θ0)∈L2(Rd) with ∇·u0 = 0. Consider the 2D Boussinesq
equation in (1.1) with α= 1. Let (u,θ) be the corresponding weak solution. Then u
satisfies ∫ T

0

‖u(t)‖2L∞ dt≤ C(T,‖u0‖L2 ,‖θ0‖L2). (3.5)

Proof. Applying ∆j to the velocity equation and then dotting with ∆ju yields

1

2

d

dt
‖∆ju‖2L2 +ν22j‖∆ju‖2L2 =−

∫
R2

∆ju ·∆j(u ·∇u)dx+

∫
R2

∆ju ·∆j(θe2)dx

≤‖∆ju‖L2‖∆j(u ·∇u)‖L2 +‖∆ju‖L2‖∆jθ‖L2 .

Eliminating ‖∆ju‖L2 from each side and integrating in time yield

‖∆ju(t)‖L2 +ν

∫ t

0

22j‖∆ju‖L2 dτ

≤‖∆ju0‖L2 +

∫ t

0

‖∆j(u ·∇u)‖L2 dτ+

∫ t

0

‖∆jθ‖L2 dτ.

Taking the l2-norm and identifying Hs with Bs2,2 for s≥0, we have∥∥∥∥ sup
0≤τ≤t

‖∆ju(τ)‖L2

∥∥∥∥
l2

+ν‖u‖L̃1(0,t;H2)

≤‖u0‖L2 +

∫ t

0

‖u ·∇u‖L2 dτ+

∫ t

0

‖θ(τ)‖L2 dτ

≤‖u0‖L2 +‖∇u‖L2
tL

2‖u‖L2
tL
∞+‖θ‖L1

tL
2 . (3.6)
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According to the Littlewood-Paley decomposition and by Bernstein’s inequality,∫ t

0

‖u(τ)‖2L∞ dτ ≤
∫ t

0

∞∑
j=−1

∞∑
k=−1

2j 2k ‖∆ju‖L2 ‖∆ku‖L2 dτ

:=H1 +H2, (3.7)

where

H1 =

∫ t

0

∑
|j−k|≤N

·· · , H2 =

∫ t

0

∑
|j−k|>N

·· · .

Due to |j−k|≤N , the summation in H1 includes the diagonal entries j=k and 2N
sub-diagonal entries. Therefore,

H1 =

∫ t

0

∞∑
j=−1

2j‖∆ju‖L2 (2j−N‖∆j−Nu‖L2 +2j−N+1‖∆j−N+1u‖L2

+·· ·+ 2j+N‖∆j+Nu‖L2)dτ

≤ 1

2

∫ t

0

∞∑
j=−1

(
22j‖∆ju‖2L2 +22(j−N)‖∆j−Nu‖2L2 + ·· ·

+22j‖∆ju‖2L2 +22(j+N)‖∆j+Nu‖2L2

)
dτ

≤CN
∫ t

0

∞∑
j=−1

22j‖∆ju‖2L2 dτ

=CN ‖∇u‖2L2
tL

2 , (3.8)

where C is a pure constant independent of N . The summation in H2 contains two
identical parts and thus

H2 = 2

∫ t

0

∑
j−k>N

2j ‖∆ju‖L2 2k ‖∆ku‖L2 dτ

= 2

∫ t

0

∞∑
j=N

2j‖∆ju‖L2

j−N−1∑
m=−1

2m‖∆mu‖L2 dτ

≤2−N+1
∞∑
j=N

∫ t

0

22j‖∆ju‖L2 dτ

j−N−1∑
m=−1

2m+N−j sup
0≤τ≤t

‖∆mu(τ)‖L2

≤2−N+1

∥∥∥∥∫ t

0

22j‖∆ju‖L2 dτ

∥∥∥∥
l2

∥∥∥∥∥
j−N−1∑
m=−1

2m+N−j sup
0≤τ≤t

‖∆mu(τ)‖L2

∥∥∥∥∥
l2

≤2−N+1‖u‖L̃1(0,t;H2)

∥∥∥∥ sup
0≤τ≤t

‖∆ju(τ)‖L2

∥∥∥∥
l2

, (3.9)

where we have used Young’s inequality for sequence convolution. Combining (3.6), (3.7),
(3.8), (3.9) and Proposition 3.1 yields∫ t

0

‖u(τ)‖2L∞ dτ ≤CN ‖∇u‖2L2
tL

2
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+C 2−N+1
(
‖u0‖L2 +‖∇u‖L2

tL
2‖u‖L2

tL
∞+‖θ‖L1

tL
2

)2

≤ 1

2
‖u‖2L2

tL
∞+C(t,‖∇u‖2L2

tL
2 ,‖u0‖L2 ,‖θ0‖L2), (3.10)

where we have chosen N such that

C 2−N+1‖∇u‖L2
tL

2 ≤
1

2
.

(3.10) then yields the desired global bound in (3.5). This completes the proof of Lemma
3.1.

Proof. (Proof of Proposition 3.2.) Let j∈Z and j≥0. Applying ∆j to the first
equation of (1.1) yields

∂t∆ju+ν(−∆)α∆ju=−∆j∇P +∆j(θed)−∆j(u ·∇u).

Dotting with ∆ju, integrating by parts and using ∇·u= 0, we have

1

2

d

dt
‖∆ju‖2L2 +ν22αj‖∆ju‖2L2 ≤‖∆jθ‖L2‖∆ju‖L2 +I, (3.11)

where

I=−
∫
Rd

∆j(u ·∇u) ·∆judx.

We estimate I. By the notion of paraproducts provided in Section 2,

I=−
∑
|j−k|≤3

∫
Rd

∆j(Sk−1u ·∇∆ku) ·∆judx

−
∑
|j−k|≤3

∫
Rd

∆j(∆ku ·∇Sk−1u) ·∆judx

−
∑
k≥j−1

∫
Rd

∆j(∆ku ·∇∆̃ku) ·∆judx.

In order to shift one spatial derivative to Sku via a commutator, we further write the
first term above into three terms to obtain

I= I1 +I2 +I3 +I4 +I5, (3.12)

where

I1 =−
∑
|j−k|≤3

∫
Rd

[∆j ,Sk−1u ·∇]∆ku ·∆judx,

I2 =−
∑
|j−k|≤3

∫
Rd

(Sk−1u−Sj−1u) ·∇∆j∆ku ·∆judx,

I3 =−
∫
Rd
Sj−1u ·∇∆ju ·∆judx,

I4 =−
∑
|j−k|≤3

∫
Rd

∆j(∆ku ·∇Sk−1u) ·∆judx,
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I5 =−
∑
k≥j−1

∫
Rd

∆j(∆ku ·∇∆̃ku) ·∆judx.

We immediately get I3 = 0 because of ∇·u= 0. To bound I1, we write the commutator
into the integral form via the kernel functions defined in Section 2,

[∆j ,Sk−1u ·∇]∆ku

=

∫
Rd

Φj(x−y)Sk−1u(y) ·∇∆ku(y)dy−Sk−1u(x) ·
∫
Rd

Φj(x−y)∇∆ku(y)dy

=

∫
Rd

Φj(x−y)(Sk−1u(y)−Sk−1u(x)) ·∇∆ku(y)dy,

Taking the L2-norm of the commutator,

‖[∆j ,Sk−1u ·∇]∆ku‖L2

≤‖∇Sk−1u‖L∞
∥∥∥∥∫

Rd
|Φj(x−y)||x−y||∇∆ku(y)|dy

∥∥∥∥
L2

≤‖∇Sk−1u‖L∞ ‖xΦj(x)‖L1‖∇∆ku‖L2

≤C 2−j ‖∇Sk−1u‖L∞ ‖∇∆ku‖L2 ,

where we have invoked the fact

‖xΦj(x)‖L1 =

∫
Rd
|x|2dj |Φ0(2jx)|dx≤C 2−j .

Therefore, by Hölder’s inequality,

|I1|≤
∑
|j−k|≤3

‖[∆j ,Sk−1u ·∇]∆ku‖L2‖∆ju‖L2

≤C ‖∆ju‖L2

∑
|j−k|≤3

2−j ‖∇Sk−1u‖L∞‖∇∆ku‖L2

≤C ‖∆ju‖L2

∑
|j−k|≤3

‖∇Sk−1u‖L∞‖∆ku‖L2 ,

where we have used Bernstein’s inequality,

2−j‖∇4ku‖L2 ≤C2k−j‖4ku‖L2 ≤C‖4ku‖L2 .

Since the summation above is over k for |j−k|≤3, it suffices to deal with the represen-
tative term with j=k. Therefore, without loss of generality,

|I1|≤C ‖∆ju‖2L2‖∇Sju‖L∞ . (3.13)

The estimate for I2 is easy. Since Sk−1u−Sj−1u contains the terms of the form ∆mu
with m between k−2 and j−2, we can use Bernstein’s inequality to shift one derivative
from ∇∆ku to Sk−1u−Sj−1u. Therefore,

|I2|≤C ‖∆ju‖L2

∑
|j−k|≤3

∑
min{k−2,j−2}≤m≤max{k−2,j−2}

‖∆m∇u‖L∞ ‖∆ku‖L2
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Since the summation above is over a finite number of terms, it suffices to keep the bound
for the representative term, for the sake of conciseness. Therefore,

|I2|≤C‖∇∆ju‖L∞‖∆ju‖2L2 . (3.14)

The estimate of I4 is direct. Again we only keep the bound for the representative term,

|I4|≤
∑
|j−k|≤3

‖∆ju‖L2‖∆j(∆ku ·∇Sk−1u)‖L2

≤C‖∆ju‖2L2‖∇Sju‖L∞ . (3.15)

By the fact that ∇·u= 0,

I5 =−
∑
k≥j−1

∫
Rd

∆j∇·(∆ku⊗∆̃ku) ·∆judx.

By Hölder’s inequality,

|I5|≤ C ‖∆ju‖L2 2j
∑
k≥j−1

‖∆j(∆ku⊗∆̃ku)‖L2

≤ C ‖∆ju‖L2 2j
∑
k≥j−1

‖∆ku‖L2‖∆̃ku‖L∞ . (3.16)

Inserting the bounds of (3.13), (3.14), (3.15) and (3.16) in (3.12) yields

1

2

d

dt
‖∆ju‖2L2 +C0 22αj‖∆ju‖2L2

≤‖∆jθ‖L2‖∆ju‖L2 +C‖∆ju‖2L2‖∇Sju‖L∞

+C‖∇∆ju‖L∞‖∆ju‖2L2 +C2j‖∆ju‖L2

∑
k≥j−1

‖∆ku‖L2‖∆̃ku‖L∞ . (3.17)

We further treat the right-hand side of (3.17) as follows. We distinguish between d= 2
and d≥3. In the case when d= 2,

‖∇Sju‖L∞(R2)≤2j‖Sju(t)‖L∞(R2), ‖∇∆ju‖L∞(R2)≤ C 2j‖∆ju(t)‖L∞(R2).

Inserting the bounds above in (3.17), eliminating ‖∆ju‖L2 from each side and integrat-
ing in time, we have

‖∆ju(t)‖L2 +C0 22αj

∫ t

0

‖∆ju(τ)‖L2 dτ ≤‖∆ju0‖L2

+

∫ t

0

‖∆jθ(τ)‖L2dτ+C

∫ t

0

2j‖∆ju‖L2 ‖Sju(τ)‖L∞ dτ

+C

∫ t

0

2j‖∆ju(τ)‖L2 ‖∆ju(τ)‖L∞ dτ+C

∫ t

0

2j
∑
k≥j−1

‖∆ku(τ)‖L2 ‖∆̃ku‖L∞ dτ.

Taking the l2-norm of the sequence above and identifying B0
2,2 with L2, we obtain, after

recalling the bound for ‖u‖L2
tL
∞ in Lemma 3.1,

‖u(t)‖L2 +C0

∥∥∥∥22αj

∫ t

0

‖∆ju(τ)‖L2dτ

∥∥∥∥
l2
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≤2‖u0‖L2 +

∫ t

0

‖θ(τ)‖L2dτ+C

∫ t

0

‖u(τ)‖L∞‖∇u(τ)‖L2 dτ

+C

∫ t

0

‖u(τ)‖L∞

∥∥∥∥∥∥2j
∑
k≥j−1

‖∆ku(τ)‖L2

∥∥∥∥∥∥
l2

dτ

≤2‖u0‖L2 +

∫ t

0

‖θ(τ)‖L2dτ+C ‖∇u‖L2
tL

2 ‖u‖L2
tL
∞ <∞,

where we have used the bound, by Young’s inequality for sequence convolution,∥∥∥∥∥∥2j
∑
k≥j−1

‖∆ku(τ)‖L2

∥∥∥∥∥∥
l2

=

∥∥∥∥∥∥
∑
k≥j−1

2j−k 2k‖∆ku(τ)‖L2

∥∥∥∥∥∥
l2

≤C ‖2k‖∆ku(τ)‖L2‖l2 =C ‖∇u(τ)‖L2 .

We thus have obtained (3.3) for the case d= 2. When d≥3, we bound some of the terms
on the right of (3.17) differently. By Bernstein’s inequality and Sobolev’s inequality,

‖∇Sju‖L∞(Rd)≤C 2( 1
2 + d

4 )j ‖∇Sju‖
L

4d
d+2 (Rd)

≤C 2( 1
2 + d

4 )j ‖Λ 1
2 + d

4 u‖L2 ,

‖∇∆ju‖L∞(Rd)≤ C 2( 1
2 + d

4 )j ‖Λ 1
2 + d

4 u‖L2 ,

‖∆̃ku‖L∞(Rd)≤C 2( d4−
1
2 )k ‖∆̃ku‖

L
4d
d−2 (Rd)

≤C 2( d4−
1
2 )k ‖Λ 1

2 + d
4 u‖L2 .

Inserting the estimates above in (3.17), eliminating ‖∆ju‖L2 from each side and inte-
grating in time lead to

‖∆ju(t)‖L2 +C0 22αj

∫ t

0

‖∆ju(τ)‖L2 dτ

≤‖∆ju0‖L2 +

∫ t

0

‖∆jθ(τ)‖L2dτ+C

∫ t

0

‖∆ju‖L22( 1
2 + d

4 )j ‖Λ 1
2 + d

4 u‖L2 dτ

+C

∫ t

0

2j
∑
k≥j−1

‖∆ku(τ)‖L22( d4−
1
2 )k ‖Λ 1

2 + d
4 u‖L2 dτ.

Taking the l2-norm of the sequence above, we have

‖u(t)‖L2 +C0

∥∥∥∥22αj

∫ t

0

‖∆ju(τ)‖L2dτ

∥∥∥∥
l2

≤2‖u0‖L2 +

∫ t

0

‖θ(τ)‖L2dτ+J1 +J2, (3.18)

where

J1 = C

∥∥∥∥∫ t

0

‖∆ju‖L22( 1
2 + d

4 )j ‖Λ 1
2 + d

4 u‖L2 dτ

∥∥∥∥
l2

≤ C
∫ t

0

‖2( 1
2 + d

4 )j‖∆ju‖L2‖l2 ‖Λ
1
2 + d

4 u‖L2 dτ

= C

∫ t

0

‖Λ 1
2 + d

4 u(τ)‖2L2 dτ
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and

J2 = C

∥∥∥∥∥∥
∫ t

0

2j
∑
k≥j−1

‖∆ku(τ)‖L22( d4−
1
2 )k ‖Λ 1

2 + d
4 u‖L2 dτ

∥∥∥∥∥∥
l2

= C

∥∥∥∥∥∥
∫ t

0

∑
k≥j−1

2j−k 2( d4 + 1
2 )k‖∆ku(τ)‖L2 ‖Λ 1

2 + d
4 u‖L2 dτ

∥∥∥∥∥∥
l2

≤ C
∫ t

0

∥∥∥∥∥∥
∑
k≥j−1

2j−k 2( d4 + 1
2 )k‖∆ku(τ)‖L2

∥∥∥∥∥∥
l2

‖Λ 1
2 + d

4 u‖L2 dτ

≤ C
∫ t

0

‖Λ 1
2 + d

4 u(τ)‖2L2 dτ.

Inserting the bounds for J1 and J2 in (3.18) leads to

‖u(t)‖L2 +C0‖u‖
L̃1
tB

1+ d
2

2,2

≤‖u0‖L2 + t‖θ0‖L2 +C

∫ t

0

‖Λ 1
2 + d

4 u(τ)‖2L2 dτ,

which is the desired global bound in (3.3). Next we show that (3.3) implies (3.4). By
Bernstein’s inequality,

‖∇u‖Lp(Rd)≤
∞∑

j=−1

‖∇∆ju‖Lp(Rd)≤C
∞∑

j=−1

2j2dj ( 1
2−

1
p )‖∆ju‖L2(Rd),

where C is a constant independent of p. By Hölder’s inequality for sequences,∫ t

0

‖∇u‖Lpdt≤
∞∑

j=−1

2−
d
p j

∫ t

0

2(1+ d
2 )j‖∆ju‖L2dτ

≤

 ∞∑
j=−1

2−
2d
p j

 1
2 (∫ t

0

2(1+ d
2 )j‖∆ju‖L2dτ

)
l2
.

Since  ∞∑
j=−1

2−
2d
p j

 1
2

≤C
(∫ ∞
−1

2−
2d
p (x−1)dx

) 1
2

=C
√
p,

(3.3) then implies ∫ t

0

‖∇u‖Lpdt≤C
√
p‖u‖

L̃1
tB

1+ d
2

2,2

≤C√p,

where C depends on T , ‖u0‖L2 and ‖θ0‖L2 only. We thus have shown (3.4). This
completes the proof of Proposition 3.2.

We now prove Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Due to Proposition 3.1 and Proposition 3.2, it
suffices to show the uniqueness of the weak solutions of (1.1). Suppose (1.1) has two
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weak solutions (u(1),θ(1)) and (u(2),θ(2)) with the same initial data (u0,θ0). We show

that (u(1),θ(1)) and (u(2),θ(2)) must coincide. To do so, we consider the difference (ũ, θ̃)
with

ũ :=u(1)−u(2), θ̃ :=θ(1)−θ(2).

Let P (1) and P (2) be the corresponding pressure terms and P̃ :=P (1)−P (2). In addition,
we introduce the lower regularity quantities h(1) and h(2) satisfying

−∆h(1) =θ(1), −∆h(2) =θ(2)

and set

h̃=h(1)−h(2).

It follows from (1.1) that (ũ, θ̃) satisfies
∂tũ+u(1) ·∇ũ+ ũ ·∇u(2) +ν(−∆)αũ+∇P̃ = θ̃ed,

∂tθ̃+u(1) ·∇θ̃+ ũ ·∇θ(2) = 0,

∇· ũ= 0,

(ũ, θ̃)|t=0 = 0.

(3.19)

Dotting the first equation of (3.19) by ũ and integrating by parts, we have

1

2

d

dt
‖ũ‖2L2 +ν‖Λαũ‖2L2 = −

∫
ũ ·∇u(2) · ũdx+

∫
θ̃ ·(ed · ũ)dx

:=K1 +K2. (3.20)

where we have invoked the fact that, for α≥ 1
2 + d

4 ,∫
Rd
u(1) ·∇ũ · ũdx= 0

due to ∇·u(1) = 0, ∇· ũ= 0 and∫ T

0

∫
Rd
|u(1) ·∇ũ · ũ|dxdt≤

∫ T

0

‖u(1)(t)‖L2‖Λ 1
2 + d

4 ũ(t)‖2L2 dt<∞.

By Hölder’s and Sobolev’s inequalities, for d≥3,

|K1|≤‖ũ‖L2‖∇u(2)‖
L

4d
d+2
‖ũ‖

L
4d
d−2

≤C‖ũ‖L2 ‖Λ 1
2 + d

4 u(2)‖L2 ‖Λ 1
2 + d

4 ũ‖L2

≤ ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C ‖Λ 1

2 + d
4 u(2)‖2L2‖ũ‖2L2 . (3.21)

For d= 2,

|K1|≤‖ũ‖2L4 ‖∇u(2)‖L2

≤‖ũ‖L2 ‖∇ũ‖L2 ‖∇u(2)‖L2

≤ ν

16
‖∇ũ‖2L2 +C ‖∇u(2)‖2L2‖ũ‖2L2 . (3.22)
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By integration by parts and an interpolation inequality,

|K2|=
∫
Rd
|(−∆h̃)(ed · ũ)|dx

≤‖∇h̃‖L2‖∇ũ‖L2

≤C‖∇h̃‖L2‖ũ‖
d−2
d+2

L2 ‖Λ
1
2 + d

4 ũ‖
4
d+2

L2

≤C‖∇h̃‖L2(‖ũ‖L2 +‖Λ 1
2 + d

4 ũ‖L2)

≤ ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C ‖∇h̃‖L2(‖ũ‖L2 +‖∇h̃‖L2). (3.23)

Dotting the second equation in (3.19) with h̃ yields

1

2

d

dt
‖∇h̃‖2L2 =−

∫
Rd
u(1) ·∇θ̃ h̃dx−

∫
Rd
ũ ·∇θ(2)h̃dx :=K3 +K4. (3.24)

We estimate K4 first. The case with d= 2 is treated differently from d≥3. For d≥3,
by integration by parts, Hölder’s inequality and Sobolev’s inequality,

|K4|≤
∫
Rd
|θ(2)ũ ·∇h̃|dx

≤‖θ(2)‖
L

4d
d+2
‖∇h̃‖L2‖ũ‖

L
4d
d−2

≤‖θ0‖
L

4d
d+2
‖∇h̃‖L2‖Λ 1

2 + d
4 ũ‖L2

≤ ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C ‖θ0‖2

L
4d
d+2
‖∇h̃‖2L2 . (3.25)

For d= 2, by Hölder’s inequality and Sobolev’s inequality,

|K4|≤‖θ(2)‖L2 ‖ũ‖L2p ‖∇h̃‖Lq

≤C√p‖ũ‖1/pL2 ‖∇ũ‖1−1/p
L2 ‖θ0‖L2 ‖∇h̃‖1−

1
p

L2 ‖∆h̃‖
1
p

L2

≤C√p(‖ũ‖L2 +‖∇ũ‖L2)‖∇h̃‖1−
1
p

L2

≤ ν

16
‖∇ũ‖2L2 +‖ũ‖2L2 +Cp‖θ0‖

2
p

L2 ‖∇h̃‖
2(1− 1

p )

L2 , (3.26)

where 1<p, q<∞ satisfy

1

p
+

2

q
= 1

and we have used the fact that ‖∆h̃‖L2 ≤‖θ(1)‖L2 +‖θ(2)‖L2 ≤2‖θ0‖L2 . Recalling θ̃=

−∆h̃ and integrating by parts, we have

K3 =

∫
Rd
u(1) ·∇∆h̃h̃dx

=−
∫
Rd
∂xku

(1)
j ∂xj∂xk h̃h̃dx−

∫
Rd
u

(1)
j ∂xj∂xk h̃∂xk h̃dx

=

∫
Rd
∂xku

(1)
j ∂xk h̃∂xj h̃dx,
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where the repeated indices are summed and we have used ∇·u(1) = 0. By Hölder’s
inequality, for p> d

2 and 1
p + 2

q = 1,

|K3|≤C‖∇u(1)‖Lp‖∇h̃‖2Lq

≤C‖∇u(1)‖Lp‖∇h̃‖
2− dp
L2 ‖θ̃‖

d
p

L2

≤C ‖∇u(1)‖Lp ‖θ0‖
d
p

L2 ‖∇h̃‖
2− dp
L2 . (3.27)

Adding (3.20) and (3.24) and collecting the estimates in (3.21), (3.22), (3.23), (3.25),
(3.26) and (3.27), we find that, for δ>0,

Gδ(t) :=‖ũ(t)‖2L2 +‖∇h̃(t)‖2L2 +δ

obeys the differential inequality, when d= 2,

d

dt
Gδ(t)≤C

(
1+‖∇u(2)‖2L2

)
Gδ(t)+C

(
1+
‖∇u(1)‖Lp

p

)
pM

1
p Gδ(t)

1− 1
p (3.28)

and, for d≥3,

d

dt
Gδ(t)≤C

(
1+‖Λ 1

2 + d
4 u(2)‖2L2

)
Gδ(t)+C

‖∇u(1)‖Lp
p

pM
d
2p Gδ(t)

1− d
2p , (3.29)

where we have written M =‖θ0‖2L2 . Optimizing the quantities pM
1
p Gδ(t)

1− 1
p and

pM
d
2p Gδ(t)

1− d
2p with respect to p, we obtain

pM
1
p Gδ(t)

1− 1
p ≥eGδ(t)(lnM− lnGδ),

with the minimum being reached at p= ln M
Gδ(t)

(in the case when ln M
Gδ(t)

<2, p is taken

to be 2+ln M
Gδ(t)

), and

pM
d
2p Gδ(t)

1− d
2p ≥ d

2
eGδ(t)(lnM− lnGδ)

with the minimum being reached at p= d
2 ln M

Gδ(t)
. Then both (3.28) and (3.29) are

reduced to the following form

Gδ(t)≤Gδ(0)+C

∫ t

0

γ(s)φ(Gδ(s))ds,

where

γ(t) =C+C‖Λ 1
2 + d

4 u(2)‖2L2 +C
‖∇u(1)‖Lp

p
, φ(r) = r+r(lnM− lnr).

It follows from Proposition 3.3 that∫ T

0

γ(t)dt<∞.

Let

Ω(x) =

∫ 1

x

dr

φ(r)
=

∫ 1

x

dr

r+r(lnM− lnr)
= ln(1+lnM− lnx)− ln(1+lnM).
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It then follows from Lemma 2.1 that

−Ω(Gδ(t))+Ω(Gδ(0))≤
∫ t

0

γ(s)ds.

Therefore,

−ln(1+lnM− lnGδ(t))+ln(1+lnM− lnGδ(0))≤
∫ t

0

γ(s)ds.

Therefore, for C̃(t) =
∫ t

0
γ(s)ds,

Gδ(t)≤ (eM)1−e−C̃(t)

Gδ(0)e
−C̃(t)

.

Letting δ→0+ and noting that G0(0) = 0, we obtain

G0(t) :=‖ũ(t)‖2L2 +‖∇h̃(t)‖2L2 = 0.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2
This section provides the proof of Theorem 1.2.

Proof. Let (u,θ) and (u(η),θ(η)) be the weak solutions of (1.1) and (1.2), respec-

tively. Then the difference (ũ, θ̃) with

ũ=u(η)−u, θ̃=θ(η)−θ

satisfies 
∂tũ+u(η) ·∇ũ+ ũ ·∇u+ν(−∆)αũ+∇P̃ = θ̃ed,

∂tθ̃+u(η) ·∇θ̃+ ũ ·∇θ=η∆θ̃+η∆θ,

∇· ũ= 0,

(ũ, θ̃)|t=0 = (ũ0, θ̃0),

(4.1)

where P̃ :=P (η)−P with P (η) and P being the corresponding pressure terms of (1.1)
and (1.2), respectively. We introduce the lower regularity quantities h(η) and h satisfying

−∆h(η) =θ(η), −∆h=θ

and set

h̃=h(η)−h.

Dotting the first equation of (4.1) by ũ and integrating by parts, we have

1

2

d

dt
‖ũ‖2L2 +ν‖Λαũ‖2L2 = −

∫
ũ ·∇u · ũdx+

∫
θ̃ ·(ed · ũ)dx

:=L1 +L2. (4.2)

The two terms on the right of (4.2) can be bounded similarly in the proof of Theorem
1.1 and we have

|L1|≤
ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C ‖Λ 1

2 + d
4 u‖2L2 ‖ũ‖2L2
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and

|L2|≤
ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C ‖∇h̃‖L2(‖ũ‖L2 +‖∇h̃‖L2)

≤ ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C (‖ũ‖2L2 +‖∇h̃‖2L2).

Dotting the second equation in (4.1) with h̃ yields

1

2

d

dt
‖∇h̃‖2L2 +η‖∆h̃‖2L2 =L3 +L4 +L5, (4.3)

where

L3 :=

∫
Rd
u(η) ·∇θ̃ h̃dx,

L4 :=

∫
Rd
ũ ·∇θh̃dx,

L5 :=−η
∫
Rd

∆θh̃dx.

As in the proof of Theorem 1.1, L3 admits the following bound,

|L3|≤C ‖∇u(η)‖Lp‖θ0‖
d
p

L2‖∇h̃‖
2− dp
L2 ,

where p> d
2 . L4 can also be similarly bounded as K4 in the proof of Theorem 1.1. For

d= 2,

|L4|≤
ν

16
‖∇ũ‖2L2 +‖ũ‖2L2 +Cp‖θ0‖

2
p

L2 ‖∇h̃‖
2(1− 1

p )

L2

and, for d≥3,

|L4|≤
ν

16
‖Λ 1

2 + d
4 ũ‖2L2 +C ‖θ0‖2

L
4d
d+2
‖∇h̃‖2L2 .

By integration by parts and Hölder’s inequality,

|L5|≤η‖θ‖L2‖∆h̃‖L2 ≤ η
2
‖∆h̃‖2L2 +

η

2
‖θ‖2L2 .

Adding (4.2) and (4.3) and incorporating the bounds for L1 through L5, we find, for
δ>0,

Eδ(t) :=‖ũ(t)‖2L2 +‖∇h̃(t)‖2L2 +δ

satisfies, for d= 2,

d

dt
Eδ(t)≤

η

2
‖θ‖2L2 +C

(
1+‖Λu‖2L2

)
Eδ(t)+C

(
1+
‖∇u(η)‖Lp

p

)
pM

1
p Eδ(t)

1− 1
p

and, for d≥3,

d

dt
Eδ(t)≤

η

2
‖θ‖2L2 +C

(
1+‖Λ 1

2 + d
4 u‖2L2

)
Eδ(t)+C

‖∇u(η)‖Lp
p

pM
d
2p Eδ(t)

1− d
2p .
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By following a similar procedure as in the proof of Theorem 1.1 and applying Lemma
2.1, we obtain

Eδ(t)≤ (eM)1−e−C̃(t) (
Eδ(0)+ηt‖θ‖2L2

)e−C̃(t)

(4.4)

where M =‖θ0‖2L2 +‖θ(η)
0 ‖2L2 denotes the sum of the initial L2-norms squared, and C̃(t)

is the uniform bound (independent of η)

C̃(t) =C

∫ t

0

(
1+‖Λ 1

2 + d
4 u‖2L2 +

‖∇u(η)‖Lp
p

)
dτ <∞.

Even though u(η) is the solution of (1.2), the bound

sup
q≥2

∫ t

0

‖∇u(η)‖Lp
p

dτ <∞

is uniform in η since it only depends on ‖θη‖L2 . Letting δ→0 in (4.4) yields

‖ũ(t)‖2L2 +‖∇h̃(t)‖2L2 ≤ (eM)1−e−C̃(t)
(
‖ũ0‖2L2 +‖∇h̃0‖2L2 + ηt‖θ‖2L2

)e−C̃(t)

,

which is the desired bound (1.3). This completes the proof of Theorem 1.2.
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Appendix. Global existence of weak solutions. This section provides the
proof of Proposition 3.1. For readers’ convenience, we first list several simple facts to
be used in the proof. The first two lemmas are Picard’s existence and extension results
(see, e.g., [40]).

Lemma 5.1 (Picard Existence and Uniqueness Theorem). Let E be a Banach space.
Let O⊆E be an open subset. Let F :O−→E be a locally Lipschitz map. More precisely,
for any y∈O, there is a neighborhood of y (denoted by U(y)) and L=L(y,U) such that

‖F (y)−F (z)‖E≤L‖y−z‖E , ∀z∈U(y).

Then, for any y0∈O, the ODE {
dy
dt =F (y),

y|t=0 =y0∈O.
(5.1)

has a unique local solution, namely, there is T >0 and a unique solution y=y(t) satis-
fying y∈C1(0,T ;O).

Lemma 5.2 (Picard Extension Theorem). Assume the conditions in Lemma 5.1 hold
and Let y=y(t) be the local solution. Then either y(t) is global in time, namely, T =∞,
or for a finite T0>0, limt→T0

y(t) /∈O.
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Lemma 5.3 (Hodge Decomposition in Rd). For every v∈L2(Rd)∩C∞(Rd), there
exist unique w and p satisfying

v=w+∇p, ∇·w= 0,

and w∈L2(Rd)∩C∞(Rd),∇p∈L2(Rd)∩C∞(Rd), and ‖v‖2L2 =‖w‖2L2 +‖∇p‖2L2 .

We introduce a few notations. f̂(ξ) represents the Fourier transform of f ,

f̂(ξ) =

∫
Rd
e−2πix·ξf(x)dx.

For a positive integer n, we denote by B(0,n) the ball centered at the origin with radius
n, and define

Ĵnf(ξ) =χB(0,n)(ξ) f̂(ξ).

In addition, we write

L2
n={f ∈L2(Rd) :supp f̂ ⊂B(0,n)},

L2
n,σ ={f ∈L2

n(Rd) :∇·f = 0}.

A special consequence of Lemma 5.3 is the following fact.

Corollary 5.1. There exists a linear bounded operator P :L2
n→L2

n,σ satisfying:

• For any f ∈L2
n, ‖Pf‖L2 ≤‖f‖L2 .

• For any f ∈L2
n,σ, Pf =f .

Especially, for any f ∈L2
n, P2f =Pf .

In addition, we will also need the following Lions-Aubin compactness lemma.

Lemma 5.4 (Lions-Aubin Compactness Lemma). Let X1 ↪→X2 ↪→X3 be three Banach
spaces with the first embedding being compact and the second being continuous. Let
T >0. For 1≤p,q≤+∞, let

W ={u∈Lp(0,T ;X1),∂tu∈Lq(0,T ;X3)}.

Then,

(i). If p<+∞, then the embedding of W into Lp(0,T ;X2) is compact;

(ii). If p= +∞ and q>1, then the embedding of W into C(0,T ;X2) is compact.

Lemma 5.4 states that any bounded sequence in W has a convergent subsequence in
Lp(0,T ;X2).

We are now ready to prove Proposition 3.1.

Proof. (Proof of Proposition 3.1.) The proof is divided into several steps. The
first step is to show the global existence of smooth solutions to a sequence of approximate
systems. The second is to establish uniform bounds for this sequence of solutions and
extract a strongly convergent subsequence. The third is to verify that the limit of the
subsequence is actually the weak solution.

Step I: The global existence of smooth solutions to an approximate system.
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Let n∈N and we seek a solution (u(n),θ(n))∈L2
n satisfying

∂tu
(n) +PJn(u(n) ·∇u(n))+ν(−∆)αu(n) =PJn(θ(n)ed),

∂tθ
(n) +Jn(u(n) ·∇θ(n)) = 0,

∇·u(n) = 0,

u(n)(x,0) =Jnu0, θ
(n)(x,0) =Jnθ0.

(5.2)

We remark that functions in L2
n(Rd) are smooth.

L2
n⊆∩∞m=0H̊

m.

In fact, let f ∈L2
n,

‖f‖2
H̊m

= Σ|β|=m‖Dβf‖2L2 = Σ|β|=m‖D̂βf‖2L2 = Σ|β|=m‖(2πiξ)β f̂‖2L2 ≤ (2πn)2β‖f‖2L2 .

We use the Picard theorem to show that (5.2) has a unique global solution in L2
n. To

this end, we first apply Lemma 5.1 to show (5.2) has a local-in-time solution. We can
rewrite (5.2) as

dy

dt
=F (y),

with

Y = (u(n),θ(n))T ,

F (Y ) = (F1(Y ),F2(Y ))T

= (−PJn(u(n) ·∇u(n))−ν(−∆)αu(n) +PJn(θ(n)ed),−Jn(u(n) ·∇θ(n)))T .

We set E=L2
n and O=E. We verify that F :E−→E is locally Lipschitz. Assume

Y ∈L2
n and show F (Y )∈L2

n. Clearly F (Y )∈L2(Rd). In fact,

‖F1(Y )‖L2 ≤‖u(n) ·∇u(n)‖L2 +‖ν(−∆)αu(n)‖L2 +‖θ(n)‖L2

≤‖u(n)‖L4‖∇u(n)‖L4 +ν‖u(n)‖H̊2α +‖θ(n)‖L2

≤‖u(n)‖
H̊
d
4
‖u(n)‖

H̊1+ d
4

+ν‖u(n)‖H̊2α +‖θ(n)‖L2

≤ (2πn)2(1+ d
4 )‖u(n)‖2L2 +ν(2πn)2α‖u(n)‖L2 +‖θ(n)‖L2 .

That is F1(Y )∈L2(Rd). Similarly, F2(Y )∈L2(Rd). Obviously,

supp F̂1(Y ), supp F̂2(Y )⊆B(0,n).

Therefore, F (Y )∈L2
n(Rd). Next we show F (Y ) is locally Lipschitz. Let Y =

(u(n),θ(n))T ∈L2
n and Z= (v(n),ρ(n))T ∈L2

n and consider

‖F2(Y )−F2(Z)‖L2

=‖−Jn(u(n) ·∇θ(n))+Jn(v(n) ·∇ρ(n))‖L2

=‖−Jn((u(n)−v(n)) ·∇θ(n))−Jn(v(n) ·∇(θ(n)−ρ(n)))‖L2

≤‖(u(n)−v(n)) ·∇θ(n)‖L2 +‖v(n) ·∇(θ(n)−ρ(n))‖L2

≤‖u(n)−v(n)‖L2‖∇θ(n)‖L∞+‖v(n)‖L∞‖∇(θ(n)−ρ(n))‖L2

≤‖u(n)−v(n)‖L2‖θ(n)‖
H̊1+ d

2
+ε +‖v(n)‖

H̊
d
2
+ε‖θ(n)−ρ(n)‖H̊1
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≤ (2πn)1+ d
2 +ε‖θ(n)‖L2‖u(n)−v(n)‖L2 +(2πn)1+ d

2 +ε‖v(n)‖L2‖θ(n)−ρ(n)‖L2

≤L‖Y −Z‖L2 ,

where ε>0 is a small parameter and L= 2(2πn)1+ d
2 +ε(‖Y ‖L2 +r) for ‖Z−Y ‖L2 ≤ r.

Therefore F2(Y ) is locally Lipschitz. Similarly, F1(Y ) is locally Lipschitz. Lemma 5.1
implies (5.2) has a unique local-in-time solution in L2

n.

Next we use the Picard Extension Theorem, Lemma 5.2 to show that the solution
is global in time. It suffices to show that for any t≤T , ‖(u(n),θ(n))‖L2 <+∞. This is
done by the energy method. Dotting (5.2) by (u(n),θ(n)) yields

1

2

d

dt
(‖u(n)‖2L2 +‖θ(n)‖2L2)+ν‖Λαu(n)‖2L2 =M1 +M2 +M3,

where <f,g>=
∫
Rd f(x)g(x)dx and

M1 =−
∫
Rd

PJn(u(n) ·∇u(n)) ·u(n)dx,

M2 =

∫
Rd

PJn(θ(n)ed) ·u(n)dx,

M3 =−
∫
Rd
Jn(u(n) ·∇θ(n)) ·θ(n)dx.

We note that

M1 =−
∫

PJn(u(n) ·∇u(n)) ·u(n)dx=−
∫
Jn(u(n) ·∇u(n)) ·Pu(n)dx

=−
∫
Jn(u(n) ·∇u(n)) ·u(n)dx=−

∫
(u(n) ·∇u(n)) ·u(n)dx= 0.

Similarly, M3 = 0. Clearly, |M2|≤‖u(n)‖L2‖θ(n)‖L2 . Therefore,

d

dt
(‖u(n)‖2L2 +‖θ(n)‖2L2)+2ν‖Λαu(n)‖2L2 ≤‖u(n)‖L2‖θ(n)‖L2 .

Similarly,

1

2

d

dt
‖θ(n)‖L2 = 0 or ‖θ(n)(t)‖L2 =‖Jnθ0‖L2 .

Consequently,

‖u(n)(t)‖L2 ≤‖Jnu0‖L2 + t‖Jnθ0‖L2 ≤‖u0‖L2 + t‖θ0‖L2

and

‖u(n)(t)‖2L2 +2ν

∫ t

0

‖Λαu(n)‖2L2dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2.

Therefore, (u(n),θ(n))∈L2
n for all time t≤T . Then Lemma 5.2 allows us to conclude

that (u(n),θ(n)) is global in time.

Step 2. Extraction of a strongly convergent subsequence.

This step extracts a subsequence of u(n) that converges strongly in L2(0,T ;L2(Rd))
using the Aubin-Lions lemma. In order to use the Aubin-Lions method we show that

∂tu
(n)∈L2(0,T ;H−s), (5.3)
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where s= max{α,1+ d
2 −α}. Let φ∈Hs. We take the L2-inner product of φ and the

velocity equation in (5.2) leads to∫
Rd
φ ·∂tu(n) dx=Q1 +Q2 +Q3,

with

Q1 =−
∫
φ ·PJn(u(n) ·∇u(n)) dx,

Q2 =−ν
∫
φ ·(−∆)αu(n) dx,

Q3 =

∫
φ ·PJn(θ(n)ed) dx.

Integrating by parts, and applying Hölder’s and Sobolev’s inequalities yield

|Q1|≤‖u(n)‖2
L

2d
d−α
‖∇PJnφ‖

L
d
α

≤C ‖u(n)‖L2‖Λαu(n)‖L2 ‖PJnφ‖
H1+ d

2
−α

≤C ‖u(n)‖L2‖Λαu(n)‖L2 ‖φ‖
H1+ d

2
−α .

Using integration by parts and Hölder’s inequality, we have

|Q2|≤ν‖Λαφ‖L2‖Λαu(n)‖L2 ≤ν‖φ‖Hs‖Λαu(n)‖L2 .

Clearly,

|Q3|≤‖φ‖Hs ‖θ(n)‖L2 .

Therefore,∣∣∣∣∫ φ ·∂tu(n) dx

∣∣∣∣≤C‖φ‖Hs(‖Λαu(n)‖L2(1+‖u(n)‖L2)+‖θ(n)‖L2

)
.

That is,

‖∂tu(n)‖H−s ≤C
(
‖Λαu(n)‖L2(1+‖u(n)‖L2)+‖θ(n)‖L2

)
.

Squaring and integrating in time yield∫ T

0

‖∂tu(n)‖2H−s dt

≤C
∫ T

0

(
1+‖u(n)‖L2

)2

‖Λαu(n)‖2L2 dt+C

∫ T

0

‖θ(n)‖2L2 dt

+C

∫ T

0

(
1+‖u(n)‖L2

)
‖Λαu(n)‖L2‖θ(n)‖2L2 dt

≤C sup
0≤t≤T

(1+‖u(n)‖2L2)

∫ T

0

‖Λαu(n)‖2L2 dt+CT sup
0≤t≤T

‖θ(n)‖L2

+C

(
T sup

0≤t≤T
‖θ(n)‖L2

)
·
(

sup
0≤t≤T

(1+‖u(n)‖L2)

)∫ T

0

‖Λαu(n)‖2L2 dt
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<+∞.

Thus we have obtained (5.3). Since we have

u(n)∈L2(0,T ;Hα(Rd)), ∂tu
(n)∈L2(0,T ;H−s(Rd)),

and the facts that Hα(Rd) ↪→L2(Rd) is locally compact and L2(Rd) ↪→H−(1+ d
2−α) is

continuous, we can apply the Aubin-Lions Lemma to conclude that u(n) has a convergent
subsequence in L2(0,T ;L2(Rd)). Let u be the limit of u(n) and θ be the weak limit of
θ(n). Clearly,

θ∈L∞(0,T ;L2(Rd)), u∈L∞(0,T ;L2(Rd))∩L2(0,T ;Hα(Rd)).

Step 3. Passing to the limit.
This step shows that (u,θ) obtained in the previous step is a weak solution of (1.1). It
is easy to see from (5.2) that, for any φ∈C∞0 (Rd× [0,T )) with ∇·φ= 0, and for any
ψ∈C∞0 (Rd× [0,T )),

−
∫ T

0

∫
Rd
u(n) ·∂tφdxdt−

∫
Rd
u

(n)
0 ·φ(x,0)dx−

∫ T

0

∫
Rd
u(n) ·∇(Jnφ)u(n)dxdt

+

∫ T

0

∫
Rd

Λαu(n) ·Λαφdxdt=
∫ T

0

∫
Rd
θ(n)ed ·Jnφdxdt,

−
∫ T

0

∫
Rd
∂tψθ

(n)dxdt+

∫
Rd
θ

(n)
0 ψ(x,0)dx=

∫ T

0

∫
Rd
u(n) ·∇(Jnψ)θ(n)dxdt.

The task is then to verify that, as n→∞, the terms above converge to the correspond-
ing terms in the definition of the weak solution given in Definition 3.1. We need the
strong convergence u(n)→u in L2(0,T ;L2). It suffices to consider the convergence of
the nonlinear terms. Let

A :=−
∫ T

0

∫
Rd
u ·∇(Jnφ)udxdt,

A(n) :=−
∫ T

0

∫
Rd
u(n) ·∇(Jnφ)u(n)dxdt,

and consider the difference

A(n)−A=−
∫ T

0

∫
Rd

(u(n)−u) ·∇(Jnφ)u(n)dxdt

+

∫ T

0

∫
Rd
u ·∇(Jnφ−φ)u(n)dxdt

+

∫ T

0

∫
Rd
u ·∇φ ·(u(n)−u)dxdt

=R1 +R2 +R3.

Using Hölder’s inequality, we have

|R1|≤‖u(n)−u‖L2(Rd×[0,T ])‖∇Jnφ‖L∞(Rd×[0,T ])‖u(n)‖L2(Rd×[0,T ])

≤C‖u(n)−u‖L2(Rd×[0,T ])‖φ‖H2+ d
2
‖u0‖L2(Rd×[0,T ])→0 as n→∞.
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Similarly,

|R2|≤‖u‖L2(Rd×[0,T ])‖∇(Jnφ−φ)‖L∞(Rd×[0,T ])‖u(n)‖L2(Rd×[0,T ])

≤C‖u0‖L2‖Jnφ−φ‖
H2+ d

2
‖u0‖L2→0 as n→∞

and, as n→∞,

|R3|≤‖u‖L2(Rd×[0,T ])‖∇φ‖L∞(Rd×[0,T ])‖u(n)−u‖L2(Rd×[0,T ])→0.

Therefore |A(n)−A|→0 as n→∞. The convergence of the other nonlinear terms is
slightly different. We do not have strong convergence in θ(n). Define

B :=−
∫ T

0

∫
Rd
u ·∇(Jnψ)θdxdt,

B(n) :=−
∫ T

0

∫
Rd
u(n) ·∇(Jnψ)θ(n)dxdt

and consider the difference

B(n)−B=−
∫ T

0

∫
Rd

(u(n)−u) ·∇(Jnψ)θ(n)dxdt

+

∫ T

0

∫
Rd
u ·∇(Jnψ−ψ)θ(n)dxdt

+

∫ T

0

∫
Rd
u ·∇ψ ·(θ(n)−θ)dxdt

=W1 +W2 +W3.

Using Hölder’s inequality, we have

|W1|≤‖u(n)−u‖L2(Rd×[0,T ])‖∇Jnψ‖L∞(Rd×[0,T ])‖θ(n)‖L2(Rd×[0,T ])

≤C‖u(n)−u‖L2(Rd×[0,T ])‖ψ‖H2+ d
2
‖θ0‖L2(Rd×[0,T ])→0 as n→∞.

Similarly,

|W2|≤‖u‖L2(Rd×[0,T ])‖∇(Jnψ−ψ)‖L∞(Rd×[0,T ])‖θ(n)‖L2(Rd×[0,T ])

≤C‖u0‖L2‖Jnψ−ψ‖
H2+ d

2
‖θ0‖L2→0 as n→∞.

W3 is estimated differently from R3 since we do not have strong convergence in θ(n).
Since L2 functions can be approximated by smooth functions with compact support,
u ·∇ψ can be treated as a test function. Since θ(n) converges weakly to θ, we thus have

W3→0 as n→ ∞.

Hence |B(n)−B|→0 as n→∞. Therefore, (u,θ) is indeed a weak solution. This com-
pletes the proof of Proposition 3.1.
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