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Abstract. This paper rigorously establishes the stabilization effect of a background magnetic
field on electrically conducting fluids, a phenomenon that has been widely observed in physical
experiments and numerical simulations. This study is based on a 2 dimensional (2D) magnetohy-
drodynamic (MHD) system in which the velocity equation involves no dissipation and there is only
damping in the vertical component equation. Without the magnetic field, the corresponding vorticity
equation is a 2D Euler-like equation with an extra Riesz transform type term. The global in time
regularity and the stability near the trivial solution are well known open problems. When coupled
with the magnetic field through the MHD system, the background magnetic field stabilizes the fluid,
and the velocity as well as the vorticity remain small if they are initially so and decay algebraically
in time. To overcome the difficulties due to the lack of full dissipation or damping, we construct
suitable Lyapunov functionals and reduce the system to wave type equations.
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stability, decay rate
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1. Introduction. Well known to the community of mathematical fluid mechan-
ics is the open problem of whether or not the 2 dimensional (2D) Euler-like equations,

(1.1)

{
∂tω + (u · ∇)ω = R1ω, x ∈ R2, t > 0,

u = ∇⊥∆−1ω,

and

(1.2)

{
∂tω + (u · ∇)ω = R2

1ω, x ∈ R2, t > 0,

u = ∇⊥∆−1ω,

always possess global (in time) classical solutions. Here R1 = ∂1(−∆)−
1
2 denotes

the Riesz transform and the fractional Laplacian operator is defined via the Fourier
transform

̂(−∆)βf(ξ) = |ξ|2β f̂(ξ).
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5002 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

∇⊥ = (−∂2, ∂1) and u = ∇⊥∆−1ω represents the Biot–Savart law recovering the
velocity u from the vorticity ω := ∇ × u. The velocity formulation of the 2D Euler
equation is given by

∂tu+ (u · ∇)u = −∇p, ∇ · u = 0, x ∈ R2, t > 0,

with the corresponding vorticity ω = ∇× u satisfying

(1.3)

{
∂tω + (u · ∇)ω = 0, x ∈ R2, t > 0,

u = ∇⊥∆−1ω.

The global well-posedness of (1.3) has been well established [34]. Especially, the
classical Yudovich theory [61] asserts that any initial datum ω0 ∈ L1(R2) ∩ L∞(R2)
leads to a unique global weak solution ω ∈ L1(R2) ∩ L∞(R2). The proof of this
result relies crucially on the fact that ω is conserved along the particle trajectory.
However, the Yudovich framework fails on (1.1) and (1.2). The terms R1ω and R2

1ω
involve the Calderon–Zygmund type singular integral operators and are not bounded
on L∞. As a consequence, the L∞-norms of the solutions to (1.1) and (1.2) are not
known to be bounded. The Lq-norms of ω for 1 < q < ∞ are bounded, but these
Lq-norms could grow exponentially in q, as pointed out by Elgindi [17]. Therefore,
the Yudovich approach and its refinements do not work for (1.1) and (1.2). Whether
or not solutions of (1.1) and (1.2) can blow up in a finite time remains an outstanding
open problem. Some preliminary investigations on (1.1) and (1.2) and two other
closely related models have been conducted [9].

The corresponding velocity formulation for (1.2) is given by

(1.4)


∂tu1 + (u · ∇)u1 = −∂1P,

∂tu2 + (u · ∇)u2 + u2 = −∂2P,

∇ · u = 0

with damping only in the second component of the velocity equation. The global
regularity problem as well as the stability near the trivial solution of (1.4) remain
open. As we shall reveal in this paper, when the velocity is coupled with the magnetic
field via the MHD system, the background magnetic field actually stabilizes the fluid,
and both the velocity and vorticity remain small if they are initially so. In fact,
they actually decay algebraically in time. The magnetic field smooths and stabilizes
the velocity through coupling and interaction. The influence of an external magnetic
field on the behavior of electrically conducting fluids has been observed in many
experiments and numerical simulations (see, e.g., [1, 2, 3, 4, 21, 22]). One goal of this
paper is to establish these observations as mathematically rigorous facts.

We give a more precise description of what we achieve in this paper. Attention
is focused on the following 2D incompressible MHD equations

∂tu1 + (u · ∇)u1 = −∂1P + (B · ∇)B1, x ∈ R2, t > 0,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (B · ∇)B2, x ∈ R2, t > 0,

∂tB + u · ∇B = η∆B +B · ∇u, x ∈ R2, t > 0,

∇ · u = ∇ ·B = 0, x ∈ R2, t > 0,

(1.5)
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5003

where u = (u1, u2)>, B = (B1, B2)>, and P denote the velocity field of the fluid, the
magnetic field, and the scalar pressure, respectively. The parameters γ > 0 and η > 0
represent the damping coefficient and the magnetic diffusivity, respectively. Clearly,
(1.5) with B ≡ 0 reduces to the velocity equation in (1.4). Our main goal here is to
understand the stability problem on perturbations near a background magnetic field
and give a precise description on the large-time behavior of the perturbations. It is
easy to verify that the special steady state given by the background magnetic field,
namely,

u(0) ≡ 0, B(0) ≡ e2 := (0, 1),

solves (1.5). The perturbation (u, b) with b = B − B(0) near the steady state
(u(0), B(0)) solves the MHD equations

∂tu1 + (u · ∇)u1 = −∂1P + (b · ∇)b1 + ∂2b1, x ∈ R2, t > 0,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (b · ∇)b2 + ∂2b2, x ∈ R2, t > 0,

∂tb+ (u · ∇)b = η∆b+ (b · ∇)u+ ∂2u, x ∈ R2, t > 0,

∇ · u = ∇ · b = 0, x ∈ R2, t > 0.

(1.6)

The system (1.6) supplemented with the initial data

u(x, 0) = u0(x), b(x, 0) = b0(x)

will be the centerpiece of our study. By taking the curl of (1.6), we find that ω = ∇×u
and j = ∇× b satisfy

∂tω + (u · ∇)ω = γR2
1ω + (b · ∇)j + ∂2j,

∂tj + (u · ∇)j = η∆j + (b · ∇)ω + ∂2ω +Q,

(1.7)

where
Q = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).

The stability problem appears to be impossible on our first glance at the vorticity
equation alone. It is the 2D Euler equation with three forcing terms. As is well
known, the gradient of the Euler vorticity and more generally its Sobolev norm can
grow rapidly (even double exponentially) in time (see, e.g., [12, 28, 62]). The term
γR2

1ω can only aggravate the situation. Since Riesz transform type singular integral
operators R2

1 are not bounded on L∞, this term can actually inflate the L∞-norm of
the vorticity, as demonstrated in [17]. The two other terms b · ∇j and ∂2j are related
to the magnetic field b and the current density j, and they do not appear to be useful
when the vorticity equation is treated alone.

However, it is the smoothing and stabilization effects of the magnetic field via the
coupling and interaction that help stabilize the fluid and make this stability problem
possible. To reveal these effects, we first eliminate the pressure P by applying the
Leray–Helmholtz projection operator P := I − ∇∆−1∇· to the velocity equation in
(1.6). Noticing that

P(0, u2)> = (0, u2)> −∇∆−1∇ · (0, u2)> = ∆−1∂2
1u = −R2

1u,
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5004 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

(1.6) is then converted into
∂tu = γR2

1u+ ∂2b+N1, x ∈ R2, t > 0,

∂tb = η∆b+ ∂2u+N2, x ∈ R2, t > 0,

∇ · u = ∇ · b = 0, x ∈ R2, t > 0,

(1.8)

where N1 and N2 are the nonlinear terms

N1 = P((b · ∇)b− (u · ∇)u),

N2 = (b · ∇)u− (u · ∇)b.

By differentiating (1.8) in t and making several substitutions, we find
∂ttu− (η∆ + γR2

1)∂tu− (γη ∂11u+ ∂22u) = N3,

∂ttb− (η∆ + γR2
1)∂tb− (γη ∂11b+ ∂22b) = N4,

∇ · u = ∇ · b = 0,

(1.9)

where

N3 = (∂t − η∆)N1 + ∂2N2,

N4 = (∂t − γR2
1)N2 + ∂2N1.

Similarly, we can rewrite (1.7) as
∂ttω − (η∆ + γR2

1)∂tω − (γη ∂11ω + ∂22ω) = N5,

∂ttj − (η∆ + γR2
1)∂tj − (γη ∂11j + ∂22j) = N6,

(1.10)

where

N5 = (∂t − η∆)(b · ∇j − u · ∇ω) + ∂2(b · ∇ω − u · ∇j +Q),

N6 = (∂t − γR2
1)(b · ∇ω − u · ∇j +Q) + ∂2(b · ∇j − u · ∇ω).

Amazingly, all physical quantities u, b, ω, and j satisfy exactly the same wave equa-
tions with various nonhomogeneous terms. In comparison with the original system of
(ω, j) in (1.7), the wave equations (1.10) obeyed by (ω, j) exhibit much more smooth-
ing and stabilization properties, which make the stability and large-time behavior
problem plausible. By taking advantage of these dissipative and dispersive effects,
we are able to establish the desired global stability and provide sharp decay rates
for the solution. The precise statements of our results are given in the following two
theorems.

Theorem 1.1. Let (u0, b0) ∈ H3(R2) with ∇ · u0 = 0 and ∇ · b0 = 0. Then there
exists sufficiently small δ = δ(γ, η) > 0 such that, if

‖∇u0‖H2(R2) + ‖∇b0‖H2(R2) ≤ δ,
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5005

then (1.6) possesses a unique global solution (u, b) ∈ C([0,∞);H3(R2)) satisfying

‖(u, b)(t)‖2H1(R2) +

∫ t

0

(
‖u2(τ)‖2L2(R2) + ‖∇u(τ)‖2L2(R2) + ‖∇b(τ)‖2H1(R2)

)
dτ

≤ C (‖u0‖2H1(R2) + ‖b0‖2H1(R2)),

(1.11)

‖(∇u,∇b)(t)‖2H2(R2) +

∫ t

0

(
‖∂1u(τ)‖2L2(R2) + ‖∇2u(τ)‖2H1(R2) + ‖∇2b(τ)‖2H2(R2)

)
dτ

≤ C δ2

(1.12)

for any t > 0 and some constant C > 0. Furthermore, the following time decay
estimate holds:

‖∇u(t)‖H2(R2) + ‖∇b(t)‖H2(R2) ≤ C (‖(u0, b0)‖L2(R2) + δ) (1 + t)−
1
2 ,(1.13)

when δ is small enough. In particular, for any 2 < q <∞, as t→∞,

‖u2(t)‖L2(R2) → 0, ‖(u, b)(t)‖W 2,q(R2) → 0, and ‖(u, b)(t)‖W 1,∞(R2) → 0.
(1.14)

As Theorem 1.1 states, the H1-norm of the solution is uniformly bounded by
the initial H1-norm regardless of the size of the initial H1-norm. The smallness
assumption is not imposed on ‖(u0, b0)‖L2(R2). In the uniform bounds in (1.11) and
(1.12), several time integral bounds are not a direct consequence of the damping or
dissipation in the original system. For example,∫ t

0

‖∂2u‖2L2(R2) dτ ≤ C δ
2,

∫ t

0

‖∂2ω(τ)‖2H1(R2) dτ ≤ Cδ
2

are consequences of the smoothing effects due to the wave structure in (1.9).
Efforts are also devoted to establishing sharp decay rates for the solution estab-

lished in Theorem 1.1. The regularization effect of the wave structure is exploited
to achieve this goal. We solve the linearized system in (1.8) or, equivalently, (1.9)
explicitly and represent the nonlinear system in an integral form. More precisely, we
convert (1.8) into the system

û(ξ, t) = M̂1(t)û0 + M̂2(t)̂b0 +

∫ t

0

(
M̂1(t− τ)N̂1(τ) + M̂2(t− τ)N̂2(τ)

)
dτ,(1.15)

b̂(ξ, t) = M̂2(t)û0 + M̂3(t)̂b0 +

∫ t

0

(
M̂2(t− τ)N̂1(τ) + M̂3(t− τ)N̂2(τ)

)
dτ,(1.16)

where the kernel functions are given by

M̂1 = η|ξ|2G1 +G2, M̂2 = iξ2G1, M̂3 = −η|ξ|2G1 +G3

with

G1(t) =
eλ2t − eλ1t

λ2 − λ1
, G2(t) =

λ2e
λ2t − λ1e

λ1t

λ2 − λ1
= eλ2t + λ1G1(t),

G3(t) =
λ2e

λ1t − λ1e
λ2t

λ2 − λ1
= eλ1t − λ1G1(t).
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5006 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

Here λ1 and λ2 are the roots of the characteristic equation

λ2 + (η|ξ|2 + γξ2
1 |ξ|−2)λ+ (γηξ2

1 + ξ2
2) = 0

or, more explicitly,

λ1 =
−(γξ2

1 |ξ|−2 + η|ξ|2)−
√

Γ

2
, λ2 =

−(γξ2
1 |ξ|2 + η|ξ|−2) +

√
Γ

2
,

where
Γ = (γξ2

1 |ξ|−2 + η|ξ|2)2 − 4(γηξ2
1 + ξ2

2).

The integral representation in (1.15) and (1.16) does not appear to be simple with the
kernel functions being nonhomogeneous and frequency dependent. By appropriately
estimating the Sobolev norms of the solutions, we are able to obtain the sharp decay
rates stated in the following theorem.

Theorem 1.2. Assume (u0, b0) ∈ L1(R2)∩H3(R2) with ∇·u0 = 0 and ∇·b0 = 0
satisfying

‖(u0, b0)‖L1(R2) + ‖(u0, b0)‖H3(R2) ≤ δ

for some δ small enough. Then for m = 0, 1, 2, the small global solution (u, b) of the
system (1.6) obeys

‖Dmu(t)‖L2(R2) + ‖Dmb(t)‖L2(R2) ≤ Cδ(1 + t)−
1+m

2 ,

where C > 0 is a constant independent of δ and t.

The decay rates obtained in Theorem 1.2 for the solution of the nonlinear system
in (1.6) are the same as those for the 2D heat equation as well as the Navier–Stokes
equations (see, e.g., [39, 41]). They are optimal. This reaffirms the smoothing and
stabilization effect of the magnetic field on the fluids.

The results presented in Theorems 1.1 and 1.2 not only rigorously confirm the
smoothing and stabilization effects of the magnetic field on electrically conducting
fluids, they also advance the courses on how to understand the stability problem
when the underlying model involves only partial dissipation. The MHD equations
have recently attracted extensive interests due to their wide physical applicability and
their mathematical significance. The MHD equations model electrically conducting
in the presence of a magnetic field and serve as the center piece of the magneto-
hydrodynamics initiated by the Nobel laureate Alfvén (see, e.g., [3, 10, 30]). The
resistive MHD model studied in this paper is applicable when the fluid viscosity can be
ignored while the role of resistivity is important such as in magnetic reconnection and
magnetic turbulence [36]. Mathematically the MHD equations share many features
with the Navier–Stokes and the Euler equations; however, the MHD equations are
not a combination of a pair of the Navier–Stokes type equations, but an integrated
and interactive system. The MHD equations can model much richer phenomena than
the Navier–Stokes equations such as the Alfvén waves.

There are substantial recent developments on fundamental issues concerning the
MHD equations such as the global regularity and stability problems. One recent
focus is on the MHD equations with only partial or fractional dissipation. Significant
progress has been made (see, e.g., [4, 5, 6, 8, 11, 14, 15, 16, 18, 19, 20, 23, 24, 25, 26, 27,
29, 31, 32, 33, 35, 37, 38, 40, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]).
However, many important issues remain outstandingly open. One of them is the
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stability problem of the MHD equations with only magnetic diffusion (without the
viscous dissipation). Theorems 1.1 and 1.2 presented in this paper solve this stability
problem when the velocity equation also involves one component damping and obtain
precise and sharp large-time behavior on the solutions. These results are completely
new and will be useful for future investigations of PDE systems with only partial
dissipation.

We briefly explain how we prove Theorems 1.1 and 1.2. The framework in the
proof of Theorem 1.1 is the bootstrapping argument (see, e.g., [44, p. 21]). The
first step is to construct a suitable energy functional. In addition to the standard
H3-energy terms, we also include the regularization terms suggested by the wave
structure in (1.10). We set the energy functional E(t) to be

E(t) = E1(t) + E2(t) + E3(t),

where

E1(t) = sup
0≤τ≤t

(
‖ω(τ)‖2L2(R2) + ‖j(τ)‖2L2(R2)

)
+

∫ t

0

(
‖∂1u(τ)‖2L2(R2) + ‖∇j(τ)‖2L2(R2)

)
dτ,

E2(t) = sup
0≤τ≤t

(
‖∇ω(τ)‖2H1(R2) + ‖∇j(τ)‖2H1(R2)

)
+

∫ t

0

(
‖∂1ω(τ)‖2H1(R2) + ‖∇2j(τ)‖2H1(R2)

)
dτ,

E3(t) =

∫ t

0

‖∂2ω(τ)‖2H1(R2) dτ.

The inclusion of E3, suggested by (1.10), helps bound the nonlinear term (u · ∇)u in
the process of estimating the H3-norm of u. Otherwise, we would not be able to close
the estimates. An equivalent process is to design a Lyapunov functional given by

L(u, b)(t) = ‖(∇u(t),∇b(t))‖2H2(R2) + λ(∇u(t), ∂2∇b(t))H1(R2),

where λ > 0 is a small parameter and (F,G)H1 denotes the H1-inner product. The
main efforts are devoted to estimating E(t). This is a long and tedious process
involving applications of various anisotropic inequalities. We are able to show that

E(t) ≤ C∗1E(0) + C∗2E
3
2 (t) + C∗3E

5
4 (t).

An application of the bootstrapping argument would lead to the desired stability.
To obtain the optimal decay rates stated in Theorem 1.2, we make use of the

integral representation in (1.15) and (1.16). By dividing the frequency space into

suitable subdomains, we pinpoint the exact behavior of the kernel functions M̂1,
M̂2, and M̂3 and provide upper bounds for them in each subdomain. Due to the
nonlinearity in the system (1.15) and (1.16), we employ the bootstrapping argument,
which starts with the ansatz, for any t ≤ T ,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤ C0δ (1 + t)−
1
2 ,

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤ C1δ (1 + t)−1,

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤ C2δ (1 + t)−
3
2

D
ow

nl
oa

de
d 

10
/2

7/
20

 to
 1

39
.7

8.
24

4.
96

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5008 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

for suitably chosen C0, C1, and C2. Inserting the ansatz bounds in the integral
representation and invoking the upper bounds for the kernel functions, we obtain,
after carefully estimating the L2-norms on each subdomain,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤
C0

2
δ (1 + t)−

1
2 ,

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤
C1

2
δ (1 + t)−1,

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤
C2

2
δ (1 + t)−

3
2 .(1.17)

The bootstrapping argument then implies that T =∞ and (1.17) holds for all time.
The rest of this paper is naturally divided into two sections. Section 2 proves

Theorem 1.1 while section 3 presents the proof of Theorem 1.2.

2. Proof of Theorem 1.1. This section is devoted to proving Theorem 1.1.
We start with several tools to be used frequently in this section. The first provides
an anisotropic upper bound for integrals involving triple products. It was previously
stated and proven in [7].

Lemma 2.1. Assume f, g, h, ∂1g, ∂2h ∈ L2(R2). Then, for a constant C > 0,∫∫
fgh dx1 dx2 ≤ C‖f‖L2(R2)‖g‖

1
2

L2(R2)‖∂1g‖
1
2

L2(R2)‖h‖
1
2

L2(R2)‖∂2h‖
1
2

L2(R2).(2.1)

The second tool provides an easily verifiable condition under which a nonnegative
and integrable function actually approaches zero at infinity. It is [13, Lemma 3.1].

Lemma 2.2. Let f = f(t) with t ∈ [0,∞) be a nonnegative and uniform continu-
ous function. Assume f is integrable on [0,∞),∫ ∞

0

f(t) dt <∞.

Then

f(t)→ 0 as t→∞.

We remark that the uniform continuity condition in Lemma 2.2 can be replaced
by a slightly weaker assumption that for any δ > 0, there is ρ > 0 such that, for any
0 ≤ t1 < t2 with t2 − t1 ≤ ρ,

either f(t2) ≤ f(t1) or f(t2) ≥ f(t1) and f(t2)− f(t1) ≤ δ.

The following lemma assesses the precise decay rate for a nonnegative integrable
function when it decreases in a generalized sense.

Lemma 2.3. Let f = f(t) be a nonnegative continuous function satisfying, for
two constants a0 > 0 and a1 > 0,

(2.2)

∫ ∞
0

f(τ) dτ ≤ a0 <∞ and f(t) ≤ a1 f(s) for any 0 ≤ s < t.

Then, for a2 = max{2a1f(0), 2a0a1} and for any t > 0,

f(t) ≤ a2(1 + t)−1.
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Since the proof of Theorem 1.1 is long, for the sake of clarity, we divide it into
three main parts. This section is split into three subsections. The first part establishes
the global uniform H1-bound for the solution (u, b) and related time integral bounds.
Besides controlling the standard time integral terms, we are also able to bound the
time integral of ‖∇u(t)‖2L2 . This is not a consequence of the original damping and the
magnetic diffusion. It is obtained by taking into account the wave structure in (1.9)
and by evaluating a mixed term, namely, the inner product (∂2u, b). It is this bound
that helps us obtain the decay rate for ‖(∇u(t),∇b(t))‖L2 . This part of the proof is
provided in the first subsection.

The second main part is to construct the energy function E(t), given by

(2.3) E(t) = E1(t) + E2(t) + E3(t),

where

E1(t) = sup
0≤τ≤t

(
‖ω(τ)‖2L2 + ‖j(τ)‖2L2

)
+

∫ t

0

(
‖∂1u(τ)‖2L2 + ‖∇j(τ)‖2L2

)
dτ,

E2(t) = sup
0≤τ≤t

(
‖∇ω(τ)‖2H1 + ‖∇j(τ)‖2H1

)
+

∫ t

0

(
‖∂1ω(τ)‖2H1 + ‖∇2j(τ)‖2H1

)
dτ,

E3(t) =

∫ t

0

‖∂2ω(τ)‖2H1dτ.

The inclusion of E3, suggested by (1.10), helps bound the nonlinear term (u · ∇)u in
the process of estimating the H3-norm of u. Otherwise, we would not be able to close
the estimates. An equivalent process is to design a Lyapunov functional given by

L(u, b)(t) = ‖(∇u(t),∇b(t))‖2H2 + λ(∇u(t), ∂2∇b(t))H1 ,

where λ > 0 is a small parameter and (F,G)H1 denotes the H1-inner product. The
main efforts are devoted to estimating E(t). This is a long and tedious process
involving applications of various anisotropic inequalities such as Lemma 2.1 above.
We are able to show that

(2.4) E(t) ≤ C∗1E(0) + C∗2E
3
2 (t) + C∗3E

5
4 (t).

A bootstrapping argument is then applied to (2.4) to obtain the desired stability. The
second subsection provides the details.

The third main part is to prove the large-time behavior and decay estimates stated
in Theorem 1.1. Both Lemmas 2.2 and 2.3 will be used. In order to obtain the decay
rate for ‖∇u(t)‖H2 and ‖∇b(t)‖H2 , according to Lemma 2.3, we need to verify that,
for

f(t) := ‖∇u(t)‖H2 + ‖∇b(t)‖H2

and for any 0 ≤ t1 ≤ t2 and a uniform constant C > 0,∫ ∞
0

f(t) dt <∞ and f(t2) ≤ C f(t1).

The time integrability part is a consequence of the first part and (2.4) in the second
part, but the generalized decreasing property takes some effort. The idea is to use
E(t) defined in (2.3) with τ ∈ [t1, t] as a bridge. Since f(t) is part of E(t), we have
f(t2) ≤ E(t2). We then show that, for some constant C > 0,

(2.5) E(t2) ≤ C f(t1) + C E
3
2 (t2) + CE

5
4 (t2).
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5010 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

According to the second part, when the initial datum or E(0) is sufficiently small,
say, E(0) ≤ δ2, then E(t) remains uniformly small, E(t) ≤ C δ2. By taking δ to be
small, (2.5) implies that

E(t2) ≤ C f(t1).

As a consequence, we obtain f(t2) ≤ C f(t1) and Lemma 2.3 leads to the desired
decay rates. This part, together with the completion of the proof for Theorem 1.1, is
presented in the third subsection.

2.1. Uniform bounds in H1. As described above, this subsection proves the
uniform H1 and related time integral bounds stated in the following proposition.

Proposition 2.4. Assume the initial datum (u0, b0) ∈ H1 with ∇·u0 = ∇·b0 = 0.
Then the corresponding solution (u, b) of (1.6) satisfies

(
‖u(t)‖2H1 + ‖b(t)‖2H1

)
+

∫ t

0

(
‖u2(τ)‖2L2 + ‖∇u(τ)‖2L2 + ‖∇b(τ)‖2H1

)
dτ

≤ C (‖u0‖2H1 + ‖b0‖2H1).

Proof of Proposition 2.4. Taking the L2-inner product of (1.6) with (u, b), we
obtain

‖(u, b)(t)‖2L2 + 2

∫ t

0

(γ‖u2(τ)‖2L2 + η‖∇b(τ)‖2L2) dτ = ‖u0‖2L2 + ‖b0‖2L2 .

To prove the H1-bound, we resort to the equation of (ω, j) with ω = ∇×u, j = ∇×b,
∂tω + (u · ∇)ω = γR2

1ω + (b · ∇)j + ∂2j,

∂tj + (u · ∇)j = η∆j + (b · ∇)ω + ∂2ω +Q,

(2.6)

where

Q = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).

Multiplying (2.6) by (ω, j), integrating over R2, and applying Hölder’s inequality and
Gagaliardo–Nirenberg’s inequality, we obtain

1

2

d

dt
‖(ω, j)(t)‖2L2 + γ‖∇u2‖2L2 + η‖∇j‖2L2

=

∫
Qj dx

≤ C‖∇b‖L4‖∇u‖L2‖j‖L4

≤ C‖∇b‖
1
2

L2‖∇2b‖
1
2

L2‖∇u‖L2‖j‖
1
2

L2‖∇j‖
1
2

L2

≤ C‖∇j‖L2‖j‖L2‖ω‖L2 ≤ η

2
‖∇j‖2L2 + C‖j‖2L2‖ω‖2L2 ,(2.7)

where we have used the facts

‖R1ω‖L2 = ‖∂1u‖L2 = ‖∇u2‖L2 , ‖∇u‖L2 = ‖ω‖L2 ,

‖∇b‖L2 = ‖j‖L2 , ‖∇2b‖L2 = ‖∇j‖L2 .
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By Gronwall’s inequality,

‖(ω, j)(t)‖2L2 +

∫ t

0

(2γ‖∇u2(τ)‖2L2 + η‖∇j(τ)‖2L2) dτ

≤ C(‖(u0, b0)‖L2) ‖(ω0, j0)‖2L2 .(2.8)

Next we bound
∫ t

0
‖∂2u(τ)‖2L2dτ and show that∫ t

0

‖∂2u(τ)‖2L2dτ ≤ C (‖u0‖2H1 + ‖b0‖2H1).

The idea is to evaluate the L2-inner product (∂2u, b). It follows from (1.6) that

− d

dt
(∂2u, b) + ‖∂2u‖2L2 − ‖∂2b‖2L2 =

∫
∂2(u · ∇u) · b dx

+

∫ (
∂2u · (u · ∇b)− ∂2(b · ∇b) · b

)
dx

−
∫
∂2u · (b · ∇u) dx

+

∫
(γ∂2u2 b2 − η∂2u ·∆b) dx

:= I1 + I2 + I3 + I4.

Further dividing I1 into two terms, and applying Hölder’s inequality and the Sobolev
embedding inequality, we have

I1 = −
∫

(u1∂1u · ∂2b+ u2∂2u · ∂2b) dx

≤ ‖u1‖L4‖∂1u‖L2‖∂2b‖L4 + ‖u2‖L4‖∂2u‖L2‖∂2b‖L4

≤ C‖u1‖H1‖∂1u‖L2‖∂2b‖H1 + C‖u2‖H1‖∂2u‖L2‖∂2b‖H1

≤ C‖u‖H1(‖∂1u‖2L2 + ‖∇b‖2H1) + C‖u‖2H1‖∇b‖2H1 +
1

8
‖∂2u‖2L2 .

Similarly, I2 and I3 can be bounded as follows:

I2 =

∫ (
∂2u · (u · ∇b) + (b · ∇b) · ∂2b

)
dx

≤ ‖∂2u‖L2‖u‖L4‖∇b‖L4 + ‖b‖L2‖∇b‖2L4

≤ C(‖u‖2H1 + ‖b‖L2)‖∇b‖2H1 +
1

8
‖∂2u‖2L2

and

I3 =

∫
(b1∂1u · ∂2u+ b2∂2u · ∂2u) dx

≤ ‖b1‖L∞‖∂1u‖L2‖∂2u‖L2 + ‖b2‖L∞‖∂2u‖2L2

≤ C‖b‖
1
2

L2‖∇2b‖
1
2

L2

(
‖∂1u‖L2‖∂2u‖L2 + ‖∂2u‖2L2

)
≤ C‖b‖L2‖∇2b‖L2‖∂1u‖2L2 + C‖b‖2L2‖∇2b‖2L2‖∂2u‖2L2 +

1

8
‖∂2u‖2L2

≤ C‖b‖L2‖∇u‖L2(‖∇2b‖2L2 + ‖∂1u‖2L2) + C‖b‖2L2‖∇u‖2L2‖∇2b‖2L2 +
1

8
‖∂2u‖2L2 ,
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5012 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

where we have used the Gagaliardo–Nirenberg’s inequality ‖b‖L∞ ≤ C‖b‖
1
2

L2‖∇2b‖
1
2

L2

in I3. By integration by parts and Hölder’s inequality,

I4 = −γ
∫
u2 ∂2b2 dx− η

∫
∂2u ·∆b dx

≤ γ

2

(
‖u2‖2L2 + ‖∂2b2‖2L2

)
+

(
1

8
‖∂2u‖2L2 + 2η2‖∆b‖2L2

)
.

Collecting all the estimates above for I1 through I4 leads to

− 2
d

dt
(∂2u, b) + ‖∂2u‖2L2 −

(
γ‖u2‖2L2 + (2 + γ)‖∂2b‖2L2 + 4η2‖∆b‖2L2

)
≤ C

(
‖u‖H1 + ‖u‖2H1 + ‖b‖L2 + ‖b‖L2‖∇u‖L2 + ‖b‖2L2‖∇u‖2L2

)(
‖∂1u‖2L2 + ‖∇b‖2H1

)
≤ C(η, ‖u0‖2H1 , ‖b0‖2H1)

(
‖∂1u‖2L2 + ‖∇b‖2H1

)
.

(2.9)

Integrating (2.9) over [0, t] yields∫ t

0

‖∂2u(τ)‖2L2dτ

≤
∫ t

0

(γ‖u2(τ)‖2L2 + (2 + γ)‖∂2b(τ)‖2L2 + 4η2‖∆b(τ)‖2L2) dτ

+ (‖∂2u‖2L2 + ‖b‖2L2) + (‖∂2u0‖2L2 + ‖b0‖2L2) + C (‖u0‖2H1 + ‖b0‖2H1)

≤ C (‖u0‖2H1 + ‖b0‖2H1).

This completes the proof of Proposition 2.4.

2.2. Proof of (2.4). This subsection is devoted to the proof of (2.4). As previ-
ously mentioned at the beginning of this section, a crucial step in proving the desired
stability is to prove (2.4). We state it as a proposition for the purpose of easy reference
later on.

Proposition 2.5. Assume (u0, b0) ∈ H3 obeys the conditions stated in Theo-
rem 1.1. Let (u, b) be the corresponding solution of (1.6). Let E(t) be defined as in
(2.3). Then (2.4) holds.

Proof of Proposition 2.5. According to (2.3), E(t) consists of three pieces E1 and
E2 and E3. The first piece E1 contains the homogeneous Ḣ-norm of (u, b) and has
been estimated in (2.8),

E1(t) ≤ CE1(0).(2.10)

E2 contains the Ḣ2 and Ḣ3-norms of (u, b). Its upper bound depends on E3. It does
not appear possible to bound E2 without E3. The estimate E3 is not trivial and it
is the wave structure in (1.9) that leads to its boundedness. The rest of this proof
establishes the following bounds,

E2(t) ≤ CE 3
2 (t) + E2(0)(2.11)

and

E3(t)− C∗0 (η, γ)(E1(t) + E2(t)) ≤ C
(
E

3
2 (t) + E

5
4 (t)

)
+ E(0),(2.12)
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where C > 0 and C∗0 are constants. (2.10), (2.11), and (2.12) yield the desired global
bound in (2.4). We start with the proof of (2.11).

Taking the L2-inner product of (2.6) with (∆ω,∆j) and integrating by parts yield

1

2

d

dt
‖(∇ω,∇j)(t)‖2L2 + γ‖∂1ω‖2L2 + η‖∆j‖2L2

= −
∫

(∇u · ∇)ω · ∇ω dx+

∫
(∇b · ∇)j · ∇ω dx−

∫
(∇u · ∇)j · ∇j dx

+

∫
(∇b · ∇)ω · ∇j dx+

∫
∇Q · ∇j dx,

where we have used ‖R1∇ω‖L2 = ‖∂1ω‖L2 . By Hölder’s and Sobolev’s inequalities,

1

2

d

dt
‖(∇ω,∇j)(t)‖2L2 + γ‖∂1ω‖2L2 + η‖∆j‖2L2

≤ ‖∇u‖L∞
(
‖∇ω‖2L2 + ‖∇j‖2L2

)
+ 2‖∇b‖L∞‖∇j‖L2‖∇ω‖L2

+ 2
(
‖∇u‖L∞‖∇2b‖L2 + ‖∇b‖L∞‖∇2u‖L2

)
‖∇j‖L2

≤ C(‖ω‖H2 + ‖j‖H2)(‖∇ω‖2L2 + ‖∇j‖2L2),(2.13)

where we have used the simple facts

‖∇u‖L2 = ‖ω‖L2 , ‖∇b‖L2 = ‖j‖L2 , ‖∇2u‖L2 = ‖∇ω‖L2 , ‖∇2b‖L2 = ‖∇j‖L2 .

Applying ∆ to (2.6) and taking the inner product with (∆ω,∆j) leads to

1

2

d

dt
‖(∆ω,∆j)‖2L2 + γ‖∂1∇ω‖2L2 + η‖∇∆j‖2L2

= −
∫

∆(u · ∇)ω ∆ω dx+

∫
∆(b · ∇)j ∆ω dx−

∫
∆(u · ∇)j ∆j dx

+

∫
∆(b · ∇)ω ∆j dx+

∫
∆Q ∆j dx := J1 + J2 + · · ·+ J5.

By integration by parts, Hölder’s inequality, and Sobolev’s inequality,

J1 = −
∫

(∆u · ∇ω) ∆ω dx− 2

∫
∇u · ∇(∇ω) ∆ω dx

≤ ‖∆u‖L4‖∇ω‖L4‖∆ω‖L2 + 2‖∇u‖L∞‖∇2ω‖2L2

≤ C‖∆u‖H1‖∇ω‖H1‖∆ω‖L2 + C‖∇u‖H2‖∇2ω‖2L2

≤ C‖ω‖H2‖∇ω‖2H1 .

J1 would not be suitably bounded without E3. J3 can be bounded in a similar way:

J3 = −
∫

(∆u · ∇j) ∆j dx− 2

∫
∇u · ∇(∇j) ∆j dx

≤ ‖∆u‖L4‖∇j‖L4‖∆j‖L2 + 2‖∇u‖L∞‖∇2j‖2L2

≤ C‖ω‖H2‖∇j‖2H1 .
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5014 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

We combine J2 and J4. By integration by parts,

J2 + J4 =

∫ (
∆b · ∇j + 2∇b · ∇(∇j)

)
∆ω dx

+

∫ (
∆b · ∇ω + 2∇b · ∇(∇ω)

)
∆j dx

≤ ‖∆b‖L4‖∇j‖L4‖∆ω‖L2 + 4‖∇b‖L∞‖∇2j‖L2‖∇2ω‖L2

+ ‖∆b‖L4‖∇ω‖L4‖∆j‖L2

≤ C‖∆b‖H1‖∇j‖H1‖∆ω‖L2 + C‖∇b‖H2‖∇2j‖L2‖∇2ω‖L2

+ C‖∆b‖H1‖∇ω‖H1‖∆j‖L2

≤ C‖j‖H2

(
‖∇ω‖2H1 + ‖∇j‖2H1

)
.

By Hölder’s inequality and Sobolev’s inequality,

J5 ≤ C
∫ (
|∆∇b||∇u|+ |∇2b||∇2u|+ |∇b||∆∇u|) |∆j| dx

≤ C
(
‖∆∇b‖L2‖∇u‖L∞ + ‖∇2b‖L4‖∇2u‖L4 + ‖∇b‖L∞‖∇∆u‖L2

)
‖∆j‖L2

≤ C
(
‖∆∇b‖L2‖∇u‖H2 + ‖∇2b‖H1‖∇2u‖H1 + ‖∇b‖H2‖∇∆u‖L2

)
‖∆j‖L2

≤ C(‖ω‖H2 + ‖j‖H2)(‖∇ω‖2H1 + ‖∆j‖2L2).

We have thus obtained

d

dt
‖(∆ω,∆j)(t)‖2L2 + 2γ‖∂1∇ω‖2L2 + 2η‖∇∆j‖2L2

≤ C(‖ω‖H2 + ‖j‖H2)(‖∇ω‖2H1 + ‖∇j‖2H1).(2.14)

Combining (2.13) with (2.14), we have

d

dt
‖(∇ω,∇j)(t)‖2H1 + 2γ‖∂1ω‖2H1 + 2η‖∆j‖2H1

≤ C(‖ω‖H2 + ‖j‖H2)(‖∇ω‖2H1 + ‖∇j‖2H1).(2.15)

Integrating in time leads to, for some constant C > 0,

E2(t) ≤ C sup
0≤τ≤t

(‖ω(τ)‖H2 + ‖j(τ)‖H2)

∫ t

0

(‖∇ω(τ)‖2H1 + ‖∇j(τ)‖2H1) dτ

+ ‖(∇ω0,∇j0)‖2H1

≤ CE 3
2 (t) + E2(0),

which is (2.11).
We now turn to the proof of (2.12). Due to the wave structure in (1.9) and (1.10),

we realize that the time integral term
∫ t

0
‖∂2w(τ)‖H1 dτ in E3 can be generated as a

consequence of the inner products

(∂2∇u,∇b) and (∂2∇ω,∇j).

D
ow

nl
oa

de
d 

10
/2

7/
20

 to
 1

39
.7

8.
24

4.
96

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5015

We focus on the time evolution of these two inner products. Using (1.6), we have

d

dt
(∂2∇u,∇b) = (∂2∇ut,∇b) + (∂2∇u,∇bt)

=

∫
∂2∇

(
− (u · ∇)u− γ(0, u2)> + (b · ∇)b

)
· ∇b dx− ‖∂2∇b‖2L2

+

∫
∂2∇u · ∇

(
− (u · ∇)b+ η∆b+ (b · ∇)u

)
dx+ ‖∂2∇u‖2L2 ,(2.16)

where
∫
∂2∇(∇p) · ∇b dx = 0 due to ∇ · b = 0. Similarly, by (2.6),

d

dt
(∂2∇ω,∇j) =

∫
∂2∇

(
− (u · ∇)ω + γR2

1ω + (b · ∇)j
)
· ∇j dx− ‖∂2∇j‖2L2

+

∫
∂2∇ω · ∇

(
− (u · ∇)j + η∆j + (b · ∇)ω +Q

)
dx+ ‖∂2∇ω‖2L2 .(2.17)

Summing (2.16) and (2.17) yields

− d

dt

[
(∂2∇u,∇b) + (∂2∇ω,∇j)

]
+ ‖∂2ω‖2H1 − ‖∂2j‖2H1

=

∫ (
∂2∇(u · ∇)u− ∂2∇(b · ∇)b

)
· ∇b dx

+

∫
∂2∇u · (∇(u · ∇)b−∇(b · ∇)u) dx

+

∫ (
∂2∇(u · ∇)ω − ∂2∇(b · ∇)j

)
· ∇j dx

+

∫
∂2∇ω ·

(
∇(u · ∇)j −∇(b · ∇)ω

)
dx

−
∫
∂2∇ω · ∇Qdx

+

∫ [
γ(∂2∇u2 · ∇b2 − ∂2∇R2

1ω · ∇j)− η(∂2∇u · ∇∆b+ ∂2∇ω · ∇∆j)
]
dx

:= K1 + · · ·+K6.
(2.18)

We bound the terms in (2.18) one by one. By integration by parts, Hölder’s inequality,

the anisotropic inequality (2.1), and Sobolev’s inequality ‖v‖L4 ≤ C‖v‖
1
2

L2‖∇v‖
1
2

L2 ,

K1 =

∫
(u · ∇)u · ∂2∆b dx+

∫ (
∂2b · ∇b+ b · ∇∂2b

)
·∆b dx

≤ C‖u‖
1
2

L2‖∂1u‖
1
2

L2‖∇u‖
1
2

L2‖∂2∇u‖
1
2

L2‖∂2∆b‖L2 + ‖∂2b‖L4‖∇b‖L4‖∆b‖L2

+ ‖b‖L4‖∇∂2b‖L4‖∆b‖L2

≤ C‖u‖
1
2

L2‖∂1u‖
1
2

L2‖ω‖
1
2

L2‖∇ω‖
1
2

L2‖∂2∇j‖L2

+ ‖∂2b‖
1
2

L2‖∂2∇b‖
1
2

L2‖∇b‖
1
2

L2‖∆b‖
3
2

L2 + ‖b‖
1
2

L2‖∇b‖
1
2

L2‖∇∂2b‖H1‖∆b‖L2

≤ C
(
‖u‖

1
2

L2‖ω‖
1
2

L2 + ‖j‖L2 + ‖b‖
1
2

L2‖j‖
1
2

L2

)(
‖∂1u‖2L2 + ‖∇ω‖2L2 + ‖∇j‖2H1

)
≤ C

(
‖ω‖

1
2

L2 + ‖j‖
1
2

L2 + ‖j‖L2

)
(‖∂1u‖2L2 + ‖∇ω‖2L2 + ‖∇j‖2H1),(2.19)
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where we have used the uniform bound on ‖(u, b)‖L2 . Similarly, K2 can be bounded
by

K2 = −
∫

(u · ∇)b · ∂2∆u dx−
∫ (

(∇b · ∇)u+ (b · ∇)∇u
)
· ∂2∇u dx

≤ C‖u‖
1
2

L2‖∂1u‖
1
2

L2‖∇b‖
1
2

L2‖∂2∇b‖
1
2

L2‖∂2∆u‖L2 + ‖∇b‖L4‖∇u‖L4‖∂2∇u‖L2

+ ‖b‖L4‖∇2u‖L4‖∂2∇u‖L2

≤ C‖u‖
1
2

L2‖∂1u‖
1
2

L2‖j‖
1
2

L2‖∇j‖
1
2

L2‖∇2ω‖L2 + ‖∇b‖
1
2

L2‖∇2b‖
1
2

L2‖∇u‖
1
2

L2‖∇2u‖
3
2

L2

+ ‖b‖
1
2

L2‖∇b‖
1
2

L2‖∇2u‖H1‖∂2∇u‖L2

≤ C
(
‖j‖

1
2

L2 + ‖j‖
1
2

L2‖ω‖
1
2

L2

)
(‖∂1u‖2L2 + ‖∇j‖2L2 + ‖∇ω‖2H1).(2.20)

By integration by parts,

K3 =

∫
(u · ∇)ω ∂2∆j dx−

∫
(b · ∇)j ∂2∆j dx

≤
(
‖u‖L4‖∇ω‖L4 + ‖b‖L4‖∇j‖L4

)
‖∂2∆j‖L2

≤ C
(
‖u‖

1
2

L2‖∇u‖
1
2

L2‖∇ω‖H1 + ‖b‖
1
2

L2‖∇b‖
1
2

L2‖∇j‖H1

)
‖∂2∆j‖L2

≤ C
(
‖ω‖

1
2

L2 + ‖j‖
1
2

L2

)
(‖∇ω‖2H1 + ‖∇j‖2H2).(2.21)

For K4, we have

K4 =

∫ (
(∇u · ∇)j + (u · ∇)∇j −

(
∇b · ∇)ω − (b · ∇)∇ω

)
∂2∇ω dx

≤
(
‖∇u‖L4‖∇j‖L4 + ‖u‖L4‖∇2j‖L4 + ‖∇b‖L4‖∇ω‖L4 + ‖b‖L∞‖∇2ω‖L2

)
‖∂2∇ω‖L2

≤ C
(
‖∇u‖H1‖∇j‖H1 + ‖u‖

1
2

L2‖∇u‖
1
2

L2‖∇2j‖H1 + ‖∇b‖H1‖∇ω‖H1

+ ‖b‖
1
2

L2‖∇2b‖
1
2

L2‖∇2ω‖L2

)
‖∆ω‖L2

≤ C
(
‖ω‖

1
2

L2 + ‖∇j‖
1
2

L2 + ‖ω‖H1 + ‖j‖H1

)
(‖∇ω‖2H1 + ‖∇j‖2H2).

(2.22)

The terms in K5 are similar to the first and third terms in (2.22),

K5 ≤ C
(
‖∇u‖L4‖∇2b‖L4 + ‖∇b‖L4‖∇2u‖L4

)
‖∂2∇ω‖L2

≤ C
(
‖ω‖H1 + ‖j‖H1

)
(‖∇ω‖2H1 + ‖∇j‖2H1).(2.23)

By Hölder’s inequality,

K6 =

∫ [
− γ(∂2u2 ∆b2 + ∂2∇R2

1ω · ∇j)− η(∂2∇u · ∇∆b+ ∂2∇ω · ∇∆j)
]
dx

≤ 1

2

(
‖∂2u2‖2L2 + γ2‖∆b2‖2L2

)
+

(
1

4
‖∂2∇R2

1ω‖2L2 + γ2‖∇j‖2L2

)
+

(
1

2
‖∂2∇u‖2L2 +

η2

2
‖∇∆b‖2L2

)
+

(
1

4
‖∂2∇ω‖2L2 + η2‖∇3j‖2L2

)
≤ 1

2
(‖∂1u1‖2L2 + 3γ2‖∇j‖2L2) +

1

2
‖∂2ω‖2H1 + η2‖∆j‖2H1 ,(2.24)
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5017

where we have used ‖∂2∇R2
1ω‖L2 ≤ ‖∂2∇ω‖L2 . Inserting the bounds (2.19)–(2.24)

into (2.18), we obtain

‖∂2ω‖2H1 − C∗0 (‖∂1u1‖2L2 + ‖∇j‖2H2)

≤ 2
d

dt

[
(∂2∇u,∇b) + (∂2∇ω,∇j)

]
+ C

(
‖(ω, j)‖

1
2

H1 + ‖(w, j)‖H1

)(
‖∂1u‖2L2 + ‖∇ω‖2H1 + ‖∇j‖2H2

)
(2.25)

for C∗0 = 2 + 2η2 + 3γ2. Integrating (2.25) over [0, t] yields∫ t

0

‖∂2ω(τ)‖2H1dτ − C∗0
∫ t

0

(‖∂1u1(τ)‖2L2 + ‖∇j(τ)‖2H2) dτ

≤ (‖∂2∇u‖2H1 + ‖j‖2H1) + (‖∂2∇u0‖2H1 + ‖j0‖2H1)

+ C sup
0≤τ≤t

(
‖(ω, j)(τ)‖

1
2

H1 + ‖(ω, j)(τ)‖H1

)
·
∫ t

0

(
‖∂1u(τ)‖2L2 + ‖∇ω(τ)‖2H1 + ‖∇j(τ)‖2H2

)
dτ

≤ (‖∇ω‖2H1 + ‖j‖2H1) + C(E
3
2 (t) + E

5
4 (t)) + E(0),

which implies

E3(t)− C∗0 (E1(t) + E2(t)) ≤ C
(
E

3
2 (t) + E

5
4 (t)

)
+ E(0).

This completes the proof of (2.12). By taking a small number λ > 0 and considering
the combination

(2.10) + (2.11) + λ (2.12),

we find that there exist C∗1 > 0, C∗2 > 0, and C∗3 > 0 such that

E(t) ≤ C∗1E(0) + C∗2 E
3
2 (t) + C∗3E

5
4 (t),

which is (2.4). This completes the proof of Proposition 2.5.

2.3. Proof of Theorem 1.1. This subsection completes the proof of Theo-
rem 1.1 using the bounds obtained in the previous two subsections. We first apply
the bootstrapping argument to show the stability and then prove the part on the
large-time behavior of the solution.

Proof of Theorem 1.1. We now combine the uniform bounds in Propositions 2.4
and 2.5 to establish the global existence and stability of solutions to (1.6). Proposition
2.4 gives us the global uniform H1-bound regardless of the size of the initial datum
(u0, b0) in H1, namely,

‖(u(t), b(t))‖H1 ≤ C ‖(u0, b0)‖H1 .

The energy inequality obtained in Proposition 2.5,

(2.26) E(t) ≤ C∗1E(0) + C∗2 E
3
2 (t) + C∗3E

5
4 (t),

allows us to conclude that, if ‖(∇u0,∇b0)‖H2 is sufficiently small, say

(2.27) ‖(∇u0,∇b0)‖H2 ≤ δ :=

√
M

4C∗1
,
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5018 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

where

M := min

{
1,

1

(4C̃)4

}
with C̃ = max{C∗2 , C∗3},

then the solution remains uniformly small,

E(t) ≤ 2C∗1δ
2 or ‖(∇u(t),∇b(t))‖H2 ≤

√
2C∗1 δ.

This is shown by applying the bootstrapping argument to (2.26). The argument starts
with the ansatz that, for t ≤ T ,

E(t) ≤M.

By (2.26) and (2.27),

E(t) ≤ C∗1E(0) + C̃(E
1
2 (t) + E

1
4 (t))E(t)

≤ C∗1δ2 + 2C̃E
1
4 (t)E(t)

≤ C∗1δ2 +
1

2
E(t).

Then

E(t) ≤ 2C∗1δ
2 = 2C∗1

M

4C∗1
=
M

2
.

The bootstrapping argument implies that T =∞ and for any t <∞,

E(t) ≤ 1

2
M.

This completes the proof for the global existence and stability of solutions to (1.6).
We now prove the large-time behavior estimates stated in Theorem 1.1. First we

show

‖(∇u(t),∇b(t))‖L2 ≤ C(‖u0‖H1 , ‖b0‖H1) (1+ t)−
1
2 and ‖u2(t)‖L2 → 0 as t→∞.

The decay estimate is obtained by applying Lemma 2.3. We verify the conditions
(2.2) in Lemma 2.3. First of all, Proposition 2.4 implies∫ ∞

0

(
‖∇u(τ)‖2L2 + ‖∇b(τ)‖2L2

)
dτ ≤ C ‖(u0, b0)‖2H1 <∞.

In addition, as in the proof of (2.8), for 0 ≤ t1 < t2,

‖∇u(t2)‖2L2 + ‖∇b(t2)‖2L2 ≤ e
1
2η (‖u0‖2L2+‖b0‖2L2 )

(
‖∇u(t1)‖2L2 + ‖∇b(t1)‖2L2

)
.

Lemma 2.3 then yields

‖(∇u(t),∇b(t))‖L2 ≤ C ‖(u0, b0)‖H1 (1 + t)−
1
2 .

Due to the Gagaliardo–Nirenberg’s inequality, for any 2 < q <∞,

‖v‖Lq ≤ C‖v‖
2
q

L2‖∇v‖
1− 2

q

L2 ,(2.28)
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we find that ‖(u(t), b(t))‖Lq → 0 as t → ∞. Next we turn to the long-time behavior
of ‖u2(t)‖L2 . We will use Lemma 2.2 to show that

‖u2(t)‖L2 → 0 as t→∞.

By Proposition 2.4, ∫ ∞
0

‖u2(t)‖2L2 dt <∞.

It then suffices to verify the uniform continuity part of Lemma 2.2. Multiplying the
equation of u2 in (1.8) by u2 and integrating over R2, we have

1

2

d

dt
‖u2(t)‖22 + γ‖R1u2‖2L2 = −

∫
(P(u · ∇u))2 u2 dx

+

∫
(P(b · ∇b))2 u2 dx+

∫
∂2b2 u2 dx.

Recalling that P = I−∇∆−1∇· and using the fact that the singular integral operator
∆−1∇ · ∇· is bounded on L2 (see [42]), we have∣∣∣∣∫ (P(u · ∇u))2 u2 dx

∣∣∣∣ =

∣∣∣∣−∫ ∂2∆−1∇ · (u · ∇u) u2 dx

∣∣∣∣
=

∣∣∣∣∫ ∆−1∇ · ∇ · (u� u) ∂2u2dx

∣∣∣∣ ≤ ‖u� u‖L2‖∂2u2‖L2

≤ ‖u‖2L4‖∂2u2‖L2 ≤ C‖u‖L2‖∇u‖L2‖∂2u2‖L2 .

Similarly,∣∣∣∣∫ (P(b · ∇b))2 u2 dx

∣∣∣∣ =

∣∣∣∣∫ b · ∇b2 u2 dx+

∫
∆−1∇ · (b · ∇b) ∂2u2 dx

∣∣∣∣
≤ ‖b‖L4‖∇b‖L2‖u2‖L4 + ‖b‖2L4‖∂2u2‖L2

≤ C‖b‖2H1‖u2‖H1 .

By Hölder’s inequality,∣∣∣∣∫ ∂2b2 u2 dx

∣∣∣∣ ≤ 1

2
(‖∂2b2‖2L2 + ‖u2‖2L2).

Invoking the uniform bound of ‖(u, b)‖H1 in Proposition 2.4, we have

1

2

d

dt
‖u2(t)‖2L2 + γ‖R1u2‖2L2

≤ C‖u‖L2‖∇u‖2L2 + C‖b‖2H1‖u2‖H1 +
1

2
(‖∂2b2‖2L2 + ‖u2‖2L2)

≤ C∗(η, γ, ‖u0‖H1 , ‖b0‖H1),

1

2

d

dt
‖u2(t)‖2L2 + γ‖R1u2‖2L2

≥ −C‖u‖L2‖∇u‖2L2 − C‖b‖2H1‖u2‖H1 − 1

2
(‖∂2b2‖2L2 + ‖u2‖2L2)

≥ −C∗(η, γ, ‖u0‖H1 , ‖b0‖H1),
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5020 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

which verifies the uniform continuity of Lemma 2.2. As a consequence,

‖u2(t)‖L2 → 0 as t→∞.

Next we prove the decay estimate

‖(ω(t), j(t))‖H2 ≤ C (‖(u0, b0)‖L2 + δ) (1 + t)−
1
2 .

The tool is Lemma 2.3. We verify that

f(t) = ‖ω(t)‖2H2 + ‖j(t)‖2H2

satisfies the conditions of Lemma 2.3. First of all, since E(t) ≤ C δ2 <∞,∫ ∞
0

f(t)dt ≤ C (‖(u0, b0)‖2L2 + δ2) <∞.(2.29)

It then suffices to show the generalized monotonicity that, for any 0 ≤ t1 < t2 <∞,

f(t2) ≤ C f(t1).

The idea is to use E(t) as a bridge. With a slight abuse of notation, E(t) here is
defined as in (2.3) but with the starting time t1 instead of 0. Since f(t) is part of
E(t), we have f(t2) ≤ E(t2). We then show that, for some constant C > 0,

(2.30) E(t2) ≤ C f(t1) + C E
3
2 (t2) + CE

5
4 (t2).

According to the stability shown above, when the initial datum or E(0) is sufficiently
small, E(t) remains uniformly small, E(t) ≤ C δ2. By taking δ to be small, (2.30)
implies that

E(t2) ≤ C f(t1).

As a consequence, we obtain f(t2) ≤ C f(t1). We now verify (2.30). By (2.7),

d

dt
‖(ω, j)(t)‖2L2 + 2γ‖∇u2‖2L2 + η‖∇j‖2L2 ≤ C‖j‖2L2‖ω‖2L2 .(2.31)

By Gronwall’s inequality,

‖ω(t2)‖2L2 + ‖j(t2)‖2L2 ≤ (‖ω(t1)‖2L2 + ‖j(t1)‖2L2)eC(η)(‖u0‖2L2+‖b0‖2L2 ).

If we integrate (2.31) over [t1, t2] directly, we have

(‖ω(t2)‖2L2 + ‖j(t2)‖2L2) +

∫ t2

t1

(2γ‖∂1u(τ)‖2L2 + η‖∇j(τ)‖2L2) dτ

≤ (‖ω(t1)‖2L2 + ‖j(t1)‖2L2) + sup
t1≤τ≤t2

‖ω(τ)‖2L2

∫ t2

t1

‖j(τ)‖2L2 dτ

≤ C(η)
(

1 + (‖u0‖2L2 + ‖b0‖2L2)eC(η)(‖u0‖2L2+‖b0‖2L2 )
)

(‖ω(t1)‖2L2 + ‖j(t1)‖2L2).

(2.32)D
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5021

Next integrating (2.15) over [t1, t2] yields(
‖∇ω(t2)‖2H1 + ‖∇j(t2)‖2H1

)
+

∫ t2

t1

(
2γ‖∂1ω(τ)‖2H1 + 2η‖∆j(τ)‖2H1

)
dτ

≤
(
‖∇ω(t1)‖2H1 + ‖∇j(t1)‖2H1

)
+ C sup

t1≤τ≤t2
(‖ω(τ)‖H2 + ‖j(τ)‖H2)

∫ t2

t1

(‖∇ω(τ)‖2H1 + ‖∇j(τ)‖2H1) dτ

≤
(
‖∇ω(t1)‖2H1 + ‖∇j(t1)‖2H1

)
+ CE

3
2 (t2).(2.33)

Similarly, we obtain from (2.25) that∫ t2

t1

‖∂2ω(τ)‖2H1 dτ − C∗0
∫ t2

t1

(‖∂1u1(τ)‖2L2 + ‖∇j(τ)‖2H2) dτ

≤ (‖∂2∇u(t2)‖2H1 + ‖j(t2)‖2H1) + (‖∂2∇u(t1)‖2H1 + ‖j(t1)‖2H1)

+ C sup
t1≤τ≤t2

(
‖(ω, j)(τ)‖

1
2

H1 + ‖(ω, j)(τ)‖H1

)
·
∫ t2

t1

(
‖∂1u(τ)‖2L2 + ‖∇ω(τ)‖2H1 + ‖∇j(τ)‖2H2

)
dτ

≤ (‖∇ω(t2)‖2H1 + ‖j(t2)‖2H1) + (‖∇ω(t1)‖2H1 + ‖j(t1)‖2H1) + C(E
3
2 (t2) + E

5
4 (t2)).

(2.34)

(2.32), (2.33), and (2.34) imply that for some C∗4 > 0, C∗5 > 0,

E(t2) ≤ C∗4f(t1) + C∗5 (E
3
2 (t2) + E

5
4 (t2)).(2.35)

As we have shown in the stability part, for a uniform constant C and for all t ≥ 0,

E(t) ≤ C δ2

if the initial datum is sufficiently small, or E(0) ≤ δ2 for small δ > 0. If δ > 0 is
sufficiently small, we have

C∗5 (E
3
2 (t2) + E

5
4 (t2)) ≤ 1

2
E(t2).

Then (2.35) yields

E(t2) ≤ C∗4f(t1) +
1

2
E(t2)

or
E(t2) ≤ Cf(t1).

Combining with the simple fact that f(t2) ≤ E(t2), we obtain the generalized mono-
tonicity

f(t2) ≤ Cf(t1).(2.36)

Therefore, (2.29) and (2.36) verify the conditions of Lemma 2.3, which implies

f(t) ≤ C (‖(u0, b0)‖2L2 + δ2) (1 + t)−1.
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5022 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

That is, (1.13) holds:

‖∇u(t)‖H2 ≤ C (‖(u0, b0)‖L2 + δ) (1 + t)−
1
2

and ‖∇b(t)‖H2 ≤ C (‖(u0, b0)‖L2 + δ) (1 + t)−
1
2 .

The large-time behavior in (1.14) is a consequence of (2.28) and the Gagaliardo–

Nirenberg inequality ‖v‖L∞ ≤ C‖v‖
1
2

L2‖∇2v‖
1
2

L2 . This completes the proof of Theo-
rem 1.1.

3. Proof of Theorem 1.2. This section proves Theorem 1.2, the sharp decay
rates for the global solutions obtained in Theorem 1.1. We are assuming that the
initial datum (u0, b0) satisfies

(3.1) ‖(u0, b0)‖H3 ≤ δ, ‖(u0, b0)‖L1 ≤ δ,

and (u, b) is the corresponding global solution established by Theorem 1.1. We con-
stantly use the following properties of the solution (u, b),

‖(u, b)(t)‖2H3 +

∫ t

0

(‖u2(τ)‖2L2 + ‖∇u(τ)‖2H2 + ‖∇b(τ)‖2H3)dτ ≤ Cδ2(3.2)

and

‖∇u(t)‖H2 + ‖∇b(t)‖H2 ≤ Cδ(1 + t)−
1
2 ,(3.3)

where the C’s are constants independent of δ.
The sharp decay rates can no longer be shown by energy estimates. We need a

more explicit representation of the solution. The idea is to first convert (1.6) into an
integral representation. This is achieved by first solving the linearized system of (1.6)
or (1.9) and then applying Duhamel’s principle. The integral representation involves
several kernel functions and the large-time behavior of the solution replies crucially on
them. These Fourier multiplier operators are nonhomogeneous and depend crucially
on the frequency. Naturally we split the frequency space into subdomains suitably
and classify the behavior of these operators on each subdomain. Equivalently we
provide upper sharp upper bounds on their symbols. Once this is at our disposal, we
then launch the bootstrapping argument on the integral representation to deduce the
desired decay rates.

The following two tools will be frequently used in the estimates. The first pro-
vides an explicit decay rate for the heat kernel associated with a fractional Laplacian
Λα (α ∈ R). Here the fractional Laplacian operator can be defined through the Fourier
transform

Λ̂αf(ξ) = |ξ|αf̂(ξ).

The proof of the lemma can be found in many references (see, e.g., [15, 47]).

Lemma 3.1. Let α ≥ 0, β > 0, and 1 ≤ q ≤ p ≤ ∞. Then there exists a constant
C such that, for any t > 0,

(3.4) ‖Λαe−Λβtf‖Lp(Rd) ≤ C t−
α
β−

d
β ( 1

q−
1
p ) ‖f‖Lq(Rd).

The following lemma provides upper bounds for a convolution type integral. Its
proof is straightforward.
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5023

Lemma 3.2. Assume 0 < s1 ≤ s2. Then, for some constant C > 0,

∫ t

0

(1 + t− τ)−s1(1 + τ)−s2 dτ ≤


C(1 + t)−s1 if s2 > 1,

C(1 + t)−s1 ln(1 + t) if s2 = 1,

C(1 + t)1−s1−s2 if s2 < 1.

We now derive an integral representation satisfied by the solution of (1.8). Taking
the Fourier transform of (1.8) yields

∂tV̂ = AV̂ + N̂ ,

where

V̂ =

(
û
b̂

)
, A =

(
−γξ2

1 |ξ|−2 iξ2
iξ2 −η|ξ|2

)
, N̂ =

(
N̂1

N̂2

)
.

The solution of this nonhomogeneous ordinary differential equation can be represented
as

V̂ (t) = eAt V̂0 +

∫ t

0

eA(t−τ) N̂(τ)dτ.

In order to find a more explicit formula of eAt, we compute the eigenvalues and
eigenvectors of A. The characteristic polynomial associated with A is

λ2 + (γξ2
1 |ξ|−2 + η|ξ|2)λ+ (γηξ2

1 + ξ2
2) = 0.

The eigenvalues of the matrix A are given by

λ1 =
−(γξ2

1 |ξ|−2 + η|ξ|2)−
√

Γ

2
, λ2 =

−(γξ2
1 |ξ|2 + η|ξ|−2) +

√
Γ

2
,

where
Γ = (γξ2

1 |ξ|−2 + η|ξ|2)2 − 4(γηξ2
1 + ξ2

2).

The corresponding eigenvectors are

ρ1 =

(
λ1 + η|ξ|2

iξ2

)
, ρ2 =

(
λ2 + η|ξ|2

iξ2

)
.

Therefore, the matrix A can be diagonalized as

A = (ρ1, ρ2)

(
λ1 0

0 λ2

)
(ρ1, ρ2)−1.

Then

eAt =
1

(λ1 − λ2)iξ2

(
λ1 + η|ξ|2 λ2 + η|ξ|2

iξ2 iξ2

)

·

(
eλ1t 0

0 eλ2t

) (
iξ2 −(λ2 + η|ξ|2)

−iξ2 λ1 + η|ξ|2

)

=

(
η|ξ|2G1(t) +G2(t) G1(t)iξ2

G1(t)iξ2 −η|ξ|2G1(t) +G3(t)

)
,(3.5)
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5024 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

where

G1(t) =
eλ2t − eλ1t

λ2 − λ1
, G2(t) =

λ2e
λ2t − λ1e

λ1t

λ2 − λ1
= eλ2t + λ1G1(t),

G3(t) =
λ2e

λ1t − λ1e
λ2t

λ2 − λ1
= eλ1t − λ1G1(t).

Therefore, if we write

M̂1(t) = η|ξ|2G1(t) +G2(t), M̂2(t) = iξ2G1(t), M̂3(t) = −η|ξ|2G1(t) +G3(t),

(3.6)

then (u, b) can be represented as

û(ξ, t) = M̂1(t)û0 + M̂2(t)̂b0 +

∫ t

0

(
M̂1(t− τ)N̂1(τ) + M̂2(t− τ)N̂2(τ)

)
dτ,(3.7)

b̂(ξ, t) = M̂2(t)û0 + M̂3(t)̂b0 +

∫ t

0

(
M̂2(t− τ)N̂1(τ) + M̂3(t− τ)N̂2(τ)

)
dτ.(3.8)

When λ1 = λ2, the representation in (3.7) and (3.8) remains valid if we replace G1

by its limiting form

G1(t) = lim
λ2→λ1

eλ2t − eλ1t

λ2 − λ1
= t eλ1t.

More precisely, when λ1 = λ2, we replace G1(t) by its limit teλ1t, G2(t) by eλ1t +
λ1te

λ1t, and G3(t) by eλ1t − λ1te
λ1t in (3.5) to get

eAt =

(
η|ξ|2teλ1t + (1 + λ1t)e

λ1t iξ2te
λ1t

iξ2te
λ1t −η|ξ|2teλ1t + (1− λ1t)e

λ1t

)
.(3.9)

This can also be obtained by a direct calculation. When λ1 = λ2, the associated
eigenvector of A is

ρ =

(
λ1 + η|ξ|2

iξ2

)
,

and the general solution of ∂tV̂ = AV̂ is given by

a3 ρ e
λ1t + a4 (ρ t+ σ)eλ1t,(3.10)

where a3 and a4 are to be determined by the initial datum, and σ solves

(A− λ1I)σ = ρ.

After some simple computation, we find

σ =

(
1
0

)
.

We determine a3 and a4 by the initial datum û0 and b̂0. Setting t = 0 in (3.10) yields

a3 ρ+ a4 σ =

(
û0

b̂0

)
.(3.11)
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5025

Solving (3.11) gives

a3 =
1

iξ2
b̂0, a4 = û0 −

λ1 + η|ξ|2

iξ2
b̂0.

Inserting a3 and a4 in (3.10) yields

1

iξ2
b̂0

(
λ1 + η|ξ|2

iξ2

)
eλ1t +

(
û0 −

λ1 + η|ξ|2

iξ2
b̂0

)[ ( 1

0

)
+

(
λ1 + η|ξ|2

iξ2

)
t

]
eλ1t

=

(
eλ1t + (λ1 + η|ξ|2)teλ1t − 1

iξ2
(λ1 + η|ξ|2)2 teλ1t

iξ2te
λ1t −(λ1 + η|ξ|2)teλ1t + eλ1t

) (
û0

b̂0

)
.

Using the simple fact Γ = 0 or − 1
iξ2

(λ1 + η|ξ|2)2 = iξ2, we can see that the coefficient

matrix is the same as the one in (3.9).

The kernels M̂i(ξ, t) (i = 1, 2, 3) play a crucial role in the decay rates of u and

b. Clearly the behavior of M̂i(ξ, t) (i = 1, 2, 3) depends on the frequency ξ. We
classify their behavior and provide upper bounds by dividing the frequency space into
subdomains.

Proposition 3.3. We divide R2 into two subdomains, R2 = S1 ∪ S2 with

S1 :=

{
ξ ∈ R2 : either Γ < 0 or 0 ≤ Γ ≤

(
γξ2

1 |ξ|−2 + η|ξ|2

2

)2
}

S2 :=

{
ξ ∈ R2 : Γ >

(
γξ2

1 |ξ|−2 + η|ξ|2

2

)2

or 3(γξ2
1 |ξ|−2 + η|ξ|2)2 > 16(γηξ2

1 + ξ2
2)

}
.

Then we have
(1) there are two constants C > 0 and c0 > 0 such that, for any ξ ∈ S1,

Reλ1 ≤ −
γξ2

1 |ξ|−2 + η|ξ|2

2
, Reλ2 ≤ −

γξ2
1 |ξ|−2 + η|ξ|2

4
,

|G1(t)| ≤ te−
γξ21|ξ|

−2+η|ξ|2

4 t, |M̂i(ξ, t)| ≤ Ce−c0|ξ|
2t, i = 1, 2, 3;

(2) there is a constant C > 0 such that, for any ξ ∈ S2,

λ1 < −
3(γξ2

1 |ξ|−2 + η|ξ|2)

4
, λ2 ≤ −

γηξ2
1 + ξ2

2

γξ2
1 |ξ|−2 + η|ξ|2

,

|G1(t)| < 2

γξ2
1 |ξ|−2 + η|ξ|2

(
e−

3(γξ21|ξ|
−2+η|ξ|2)

4 t + e
− C|ξ|2

γξ21|ξ|
−2+η|ξ|2

t

)
,

|M̂i(t)| < C(e−
3
4 (γξ21 |ξ|

−2+η|ξ|2)t + e
− C|ξ|2

γξ21|ξ|
−2+η|ξ|2

t
), i = 1, 2, 3.
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5026 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

If we further write S2 = S21 ∪ S22 with

S21 := {ξ ∈ S2 : |ξ| ≤ 1} ,
S22 := {ξ ∈ S2 : |ξ| > 1} ,

then, for i = 1, 2, 3 and some constants C > 0, c1 > 0, c2 > 0,

|M̂i(ξ, t)| < C e−c1|ξ|
2t if ξ ∈ S21,

|M̂i(t)| < C e−c1|ξ|
2t + C e−c2t if ξ ∈ S22.

Proof of Proposition 3.3. For notational convenience, we denote B =
γξ2

1 |ξ|−2 + η|ξ|2. Then λ1, λ2, Γ can be rewritten as

λ1 =
−B −

√
Γ

2
, λ2 =

−B +
√

Γ

2
, Γ = B2 − 4(γηξ2

1 + ξ2
2).

For ξ ∈ S1, Γ < 0 or 0 ≤
√

Γ ≤ B
2 . It is then clear that

−3B

4
≤ Reλ1 ≤ −

B

2
, Reλ2 ≤ −

B

4
, |G1(T )| ≤ te−B4 t,

where we have used the mean-value theorem in bounding G1(t). If λ1 is a real number,
by the simple fact that x e−x ≤ C for x ≥ 0, we have

|M̂1(t)| =
∣∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣∣ ≤ Bte−B4 t + CBte−
B
4 t + e−

B
4 t ≤ Ce−c0|ξ|

2t

for some pure constant c0 dependent on γ and η. If λ1 is an imaginary number,
namely, Γ < 0 or

B2 − 4(γηξ2
1 + ξ2

2) < 0,

we further divide the consideration into two subcases:
√
γηξ2

1 + ξ2
2 ≤ |

√
Γ | and√

γηξ2
1 + ξ2

2 ≥ |
√

Γ |. In the case when
√
γηξ2

1 + ξ2
2 ≤ |

√
Γ|, by the definition of G1,

we have

|λ1G1(t)| =
√
γηξ2

1 + ξ2
2

|
√

Γ|
|eλ1t − eλ2t| ≤ Ce−B4 t.

In the case when
√
γηξ2

1 + ξ2
2 ≥ |

√
Γ |, we have

γηξ2
1 + ξ2

2 ≥ 4(γηξ2
1 + ξ2

2)−B2

or

3(γηξ2
1 + ξ2

2) ≤ B2.

Then

|λ1G1(t)| =
√
γηξ2

1 + ξ2
2 |G1(t)| ≤ CBte−B4 t ≤ Ce−B4 t.

As a consequence, if λ1 is an imaginary number, we obtain

|M̂1(t)| =
∣∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣∣ ≤ Bte−B4 t + Ce−
B
4 t ≤ Ce−c0|ξ|

2t.
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5027

In summary, for ξ ∈ S1,

|M̂1(t)| ≤ Ce−c0|ξ|
2t.(3.12)

Similarly,

|M̂3(t)| =
∣∣∣− η|ξ|2G1(t)− λ1G1(t) + eλ1t

∣∣∣ ≤ Ce−c0|ξ|2t.
The proof of the bound

(3.13) |M̂2(t)| ≤ Ce−c0|ξ|
2t

is similar to that for M1(t). By the definition of M̂2 in (3.6) and the upper bound for
G1 in (3.12), we have

|M̂2(t)| ≤ |ξ2|t e−
B
4 t.

To prove (3.13), we consider two cases |ξ2| ≤ |
√

Γ| and |ξ2| ≥ |
√

Γ|. In the first case
|ξ2| ≤ |

√
Γ |, we have

M̂2(t)| =
∣∣∣∣ ξ2√Γ

∣∣∣∣ |eλ1t − eλ2t| ≤ C e−c0|ξ|
2t,

where we have used x e−x ≤ C for x ≥ 0. In the second case, |ξ2| ≥ |
√

Γ | or∣∣B2 − 4(γηξ2
1 + ξ2

2)
∣∣ ≤ ξ2

2 ,

which is equivalent to
−ξ2

2 ≤ B2 − 4(γηξ2
1 + ξ2

2) ≤ ξ2
2 .

In particular,
B2 ≥ 4(γηξ2

1 + ξ2
2)− ξ2

2 ≥ ξ2
2 .

Therefore,

|M̂2(t)| ≤ B |G1(t)| ≤ Bte−B4 t ≤ C e−c0|ξ|
2t.

Now we assume ξ ∈ S2. Then B
2 <
√

Γ ≤ B and

−B ≤ λ1 < −
3

4
B,

λ2 =
Γ−B2

2(B +
√

Γ)
≤ −γηξ

2
1 + ξ2

2

B
≤ −C|ξ|

2

B
,

|G1(t)| ≤ 1

λ2 − λ1
(eλ1t + eλ2t) <

2

B

(
e−

3
4Bt + e−

C|ξ|2
B t

)
.

As a consequence,

|M̂1(t)| =
∣∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣∣ ≤ 2B|G1(t)|+ eλ2t < C
(
e−

3
4Bt + e−

C|ξ|2
B t

)
,

|M̂3(t)| =
∣∣∣− η|ξ|2G1(t)− λ1G1(t) + eλ1t

∣∣∣ < C
(
e−

3
4Bt + e−

C|ξ|2
B t

)
.

Since
√

Γ > B
2 ,

3

4
B2 > 4(γηξ2

1 + ξ2
2) ≥ ξ2

2 .
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5028 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

Therefore,

|M̂2(t)| < CB |G1(t)| < C(e−
3
4Bt + e−

C|ξ|2
B t

)
.

The upper bound for |M̂i(ξ, t)| with ξ ∈ S21 or ξ ∈ S22 is a consequence of the
following estimate:

|ξ|2

B
=

|ξ|2

γξ2
1 |ξ|−2 + η|ξ|2

≥ |ξ|2

γ + η|ξ|2
≥


C|ξ|2 if |ξ| ≤ 1,

C if |ξ| > 1.

This complete the proof of Proposition 3.3.

With the integral representation in (3.7) and (3.8) and the upper bounds for the
kernels in Proposition 3.3 at our disposal, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By differentiating (3.7) and (3.8), we find, for k = 1, 2 and
m = 0, 1, 2,

∂̂mk u(ξ, t) = M̂1(t)∂̂mk u0
+ M̂2(t)∂̂mk b0

+

∫ t

0

(
M̂1(t− τ)∂̂mk N1

(τ) + M̂2(t− τ)∂̂mk N2
(τ)
)
dτ,(3.14)

∂̂mk b(ξ, t) = M̂2(t)∂̂mk u0
+ M̂3(t)∂̂mk b0

+

∫ t

0

(
M̂2(t− τ)∂̂mk N1

(τ) + M̂3(t− τ)∂̂mk N2
(τ)
)
dτ.(3.15)

We apply the bootstrapping argument to (3.14) and (3.15) to establish the sharp
decay rates stated in Theorem 1.2. First we recall that the initial datum (u0, b0) is
assumed to satisfy (3.1), namely,

‖(u0, b0)‖H3 ≤ δ and ‖(u0, b0)‖L1 ≤ δ

for sufficiently small δ > 0. The bootstrapping argument makes the ansatz that, for
t ≤ T ,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤ C0δ (1 + t)−
1
2 ,(3.16)

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤ C1δ (1 + t)−1,(3.17)

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤ C2δ (1 + t)−
3
2 ,(3.18)

where Cm (m = 0, 1, 2) will be specified later. We then show via (3.14) and (3.15)
that (Dmu(t), Dmb(t)) admits a smaller upper bound,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤
C0

2
δ (1 + t)−

1
2 ,(3.19)

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤
C1

2
δ (1 + t)−1,(3.20)

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤
C2

2
δ (1 + t)−

3
2 .(3.21)

The bootstrapping argument then assesses that T =∞ and (3.19), (3.20), and (3.21)
actually hold for all time. The rest of the proof focuses on verifying (3.19), (3.20),
and (3.21).
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5029

We start with the estimate of ‖∂mk u‖L2(R2). Taking the L2 norm on both side of
(3.14), we have

‖∂mk u‖L2(R2) = ‖∂̂mk u(t)‖L2(R2) ≤ ‖M̂1(t)∂̂mk u0
‖L2(R2) + ‖M̂2(t)∂̂mk b0‖L2(R2)

+

∫ t

0

‖M̂1(t− τ)∂̂mk N1
(τ)‖L2(R2) dτ

+

∫ t

0

‖M̂2(t− τ)∂̂mk N2
(τ)‖L2(R2) dτ.(3.22)

We will estimate only the first term and the third term since the estimates for the other
two terms are similar. Without loss of generality, we assume t > 1. By Proposition 3.3
and Lemma 3.1, the first term on the right-hand side of (3.22) can be bounded as

‖M̂1(t)∂̂mk u0
‖L2(R2) ≤ C‖e−c̃0|ξ|

2t∂̂mk u0
‖L2(R2) + ‖e−c2t ∂̂mk u0

‖L2(R2)

= ‖ |ξ|me−c̃0|ξ|
2t ̂Λ−m∂mk u0

‖L2(R2) + e−c2t‖ ∂̂mk u0
‖L2(R2)

≤ C(1 + t)−
1+m

2 ‖u0‖L1(R2) + C(1 + t)−
1+m

2 ‖u0‖L2(R2)

≤ C(1 + t)−
1+m

2 δ,(3.23)

where c̃0 = min{c0, c1} and we have used e−c2t(1 + t)s ≤ C(c2, s) for any s ≥ 0. Now
we bound the third term in (3.22). Invoking Proposition 3.3 and using the fact that
the projection operator P is bounded in L2, we have∫ t

0

‖M̂1(t− τ)∂̂mk N1
(τ)‖L2(R2) dτ ≤

∫ t

0

‖M̂1(t− τ)∂̂mk Q1
(τ)‖L2(R2) dτ

≤ C
∫ t

0

‖e−c̃0|ξ|
2(t−τ)∂̂mk Q1

(τ)‖L2(R2) dτ

+ C

∫ t

0

e−c2(t−τ)‖∂̂mk Q1
(τ)‖L2(R2) dτ,(3.24)

where Q1 = u · ∇u− b · ∇b. When m = 0, we split the time integral in the first term
into two parts,∫ t

0

‖ e−c̃0|ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ =

∫ t
2

0

‖ e−c̃0|ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ

+

∫ t

t
2

‖ e−c̃0|ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ.

By Lemma 3.1, the ansatz (3.16), and (3.2), we get∫ t
2

0

‖ e−c̃0|ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ

=

∫ t
2

0

‖ |ξ| e−c̃0|ξ|
2(t−τ)Λ̂−1Q1(τ) ‖L2 dτ

≤ C
∫ t

2

0

(t− τ)−1(‖u(τ)⊗ u(τ)‖L1 + ‖b(τ)⊗ b(τ)‖L1) dτ

≤ C
( t

2

)−1

sup
0≤τ≤t

(‖u(τ)‖L2 + ‖b(τ)‖L2)

∫ t
2

0

(‖u(τ)‖L2 + ‖b(τ)‖L2) dτ

≤ CC0

( t
2

)−1

δ2

∫ t
2

0

(1 + τ)−
1
2 dτ ≤ CC0δ

2(1 + t)−
1
2 ,

D
ow

nl
oa

de
d 

10
/2

7/
20

 to
 1

39
.7

8.
24

4.
96

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5030 NICKI BOARDMAN, HONGXIA LIN, AND JIAHONG WU

where we have used u · ∇u = ∇ · (u⊗ u) and b · ∇b = ∇ · (b⊗ b). The estimate of the
second integral is slightly different:∫ t

t
2

‖ e−c̃0|ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ

≤ C
∫ t

t
2

(t− τ)−
1
2 ‖u · ∇u− b · ∇b‖L1 dτ

≤ C
∫ t

t
2

(t− τ)−
1
2 (‖u(τ)‖L2‖∇u(τ)‖L2 + ‖b(τ)‖L2‖∇b(τ)‖L2) dτ

≤ CC0δ
2

∫ t

t
2

(t− τ)−
1
2 (1 + τ)−1 dτ

≤ CC0δ
2
(

1 +
t

2

)−1
∫ t

t
2

(t− τ)−
1
2 dτ ≤ CC0δ

2(1 + t)−
1
2 ,

where we have used (3.3) for ‖(∇u,∇b)‖L2 . Due to the fact e−c2t(1 + t)s ≤ C(c2, s)
for any s > 0, the second term in (3.24) can be estimated as∫ t

0

e−c2(t−τ)‖Q̂1(τ)‖L2 dτ

≤ C
∫ t

0

(1 + t− τ)−s‖u(τ)‖
1
2

L2‖∇u(τ)‖L2‖∇2u(τ)‖
1
2

L2 dτ

≤ CC
1
2
0 δ

2

∫ t

0

(1 + t− τ)−s(1 + τ)−
1
2 dτ ≤ CC

1
2
0 δ

2(1 + t)−
1
2 ,

where s > 1 and we have used (3.16) and (3.3). In summary, when m = 0, the third
term in (3.22) is bounded by∫ t

0

‖M̂1(t− τ)N̂1(τ)‖L2 dτ ≤ C(C0 + C
1
2
0 )δ2(1 + t)−

1
2 .

The second term in (3.22) admits the same bound as the first term while the fourth
shares the bound with the third term. Therefore, we have shown that there exist
C3 > 0 and C4 > 0 such that

‖u(t)‖L2 ≤ C3δ(1 + t)−
1
2 + C4(1 + C0)δ2(1 + t)−

1
2 .

If C0 and δ satisfy

C3 ≤
C0

4
, C4(1 + C0)δ ≤ C0

4
,

then

‖u(t)‖L2 ≤ C0

2
(1 + t)−

1
2 .(3.25)

We now turn to the case when m = 1, 2. We again focus on the third term in
(3.22). First of all, we split the first time integral in (3.24) into two terms. The first
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5031

term is further estimated via (3.4) and the fact that

(t− τ)−
m+1

2 ≤ C (1 + t− τ)−
m+1

2 for any τ ∈ [0, t− 1]

while we use the fact 1 + t− τ ≤ 2 for τ ∈ [t− 1, t] in the second term. We obtain∫ t

0

‖ e−c̃0|ξ|
2(t−τ)∂̂mk Q1

(τ) ‖L2 dτ

≤
∫ t−1

0

‖ |ξ|m+1e−c̃0|ξ|
2(t−τ) ̂Λ−(m+1)∂mk Q1

(τ) ‖L2 dτ +

∫ t

t−1

‖∂̂mk Q1
(τ) ‖L2 dτ

≤ C
∫ t−1

0

(1 + t− τ)−
m+1

2 ‖Λ−1Q1(τ)‖L2 dτ

+ C(m)

∫ t

t−1

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1
(τ) ‖L2 dτ

≤ C
∫ t

0

(1 + t− τ)−
m+1

2 ‖Λ−1Q1(τ)‖L2 dτ

+ C(m)

∫ t

0

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1
(τ) ‖L2 dτ.

Thanks to the estimates e−c2t(1 + t)s ≤ C(c2, s) for any t > 0 and any constant
s > 0, the second integral term in (3.24) can be bounded by∫ t

0

e−c2(t−τ)‖∂̂mk Q1
(τ)‖L2 dτ ≤ C(m)

∫ t

0

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1
(τ)‖L2 dτ.

Thus,∫ t

0

‖M̂1(t− τ)∂̂mk N1
(τ)‖L2 dτ ≤ C

∫ t

0

(1 + t− τ)−
m+1

2 ‖Λ−1Q1(τ)‖L2 dτ

+ C(m)

∫ t

0

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1
(τ) ‖L2 dτ.(3.26)

For m = 1, by Hölder’s inequality and Sobolev’s inequality, we have∫ t

0

(1 + t− τ)−1‖Λ−1Q1(τ)‖L2 dτ

≤ C
∫ t

0

(1 + t− τ)−1(‖u(τ)‖2L4 + ‖b(τ)‖2L4) dτ

≤ C
∫ t

0

(1 + t− τ)−1(‖u(τ)‖L2‖∇u(τ)‖L2 + ‖b(τ)‖L2‖∇b(τ)‖L2) dτ.

Then, by (3.25), the ansatz (3.17), and Lemma 3.2,∫ t

0

(1 + t− τ)−1‖Λ−1Q1(τ)‖L2 dτ ≤ CC0C1δ
2

∫ t

0

(1 + t− τ)−1(1 + τ)−
3
2 dτ

≤ CC1δ
2(1 + t)−1.
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Similarly,

∫ t

0

(1 + t− τ)−1‖∂kQ1(τ)‖L2 dτ

≤
∫ t

0

(1 + t− τ)−1(‖∇u(τ)‖2L4 + ‖u(τ)‖L4‖∇2u(τ)‖L4

+ ‖∇b(τ)‖2L4 + ‖b(τ)‖L4‖∇2b(τ)‖L4) dτ

≤ C
∫ t

0

(1 + t− τ)−1(‖∇u(τ)‖L2‖∇2u(τ)‖L2 + ‖u(τ)‖
1
2

L2‖∇u(τ)‖
1
2

L2‖∇2u(τ)‖H1

+ ‖∇b(τ)‖L2‖∇2b(τ)‖L2 + ‖b(τ)‖
1
2

L2‖∇b(τ)‖
1
2

L2‖∇2b(τ)‖H1) dτ

≤ C(C1 + C
1
2
0 C

1
2
1 )δ2

∫ t

0

(1 + t− τ)−1(1 + τ)−
5
4 dτ ≤ C(C1 + C

1
2
1 )δ2(1 + t)−1,

where we have used (3.25), the ansatz (3.17), and the decay estimate

‖(∇2u(t),∇2b(t))‖H1 ≤ Cδ(1 + t)−
1
2 .

Therefore, the third term in (3.22) for m = 1 can be bounded by

∫ t

0

‖M̂1(t− τ)∂̂kN1(τ)‖L2 dτ ≤ C(1 + C1)δ2(1 + t)−1.(3.27)

Collecting the estimates (3.23) and (3.27) yields

‖∇u‖L2 ≤ C5δ(1 + t)−1 + C6(1 + C1)δ2(1 + t)−1

for some constants C5 > 0 and C6 > 0. Therefore, if C1 and δ satisfy

C5 ≤
C1

4
, C6(1 + C1)δ ≤ C1

4
,

then

‖∇u‖L2 ≤ C1

2
δ(1 + t)−1(3.28)

and the bootstrapping argument implies T =∞. Thus, the decay rate (3.28) indeed
holds for all time. Finally, we bound (3.26) for m = 2. With a similar argument as
for m = 1, we get

∫ t

0

(1 + t− τ)−
3
2 ‖Λ−1Q1(τ)‖L2 dτ ≤ CC0C1δ

2

∫ t

0

(1 + t− τ)−
3
2 (1 + τ)−

3
2 dτ

≤ Cδ2(1 + t)−
3
2 .
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STABILITY PROBLEM ON THE 2D MHD EQUATIONS 5033

Also, by Hölder’s inequality and Sobolev’s inequality,∫ t

0

(1 + t− τ)−
3
2 ‖∂2

kQ1(τ)‖L2 dτ

≤ C
∫ t

0

(1 + t− τ)−
3
2 (‖∇u(τ)‖L4‖∇2u(τ)‖L4 + ‖u(τ)‖L∞‖∇3u(τ)‖L2

+ ‖∇b(τ)‖L4‖∇2b(τ)‖L4 + ‖b(τ)‖L∞‖∇3b(τ)‖L2) dτ

≤ C
∫ t

0

(1 + t− τ)−
3
2 (‖∇u(τ)‖

1
2

L2‖∇2u(τ)‖L2‖∇3u(τ)‖
1
2

L2

+ ‖u(τ)‖
1
2

L2‖∇2u(τ)‖
1
2

L2‖∇3u(τ)‖L2

+ ‖∇b(τ)‖
1
2

L2‖∇2b(τ)‖L2‖∇3b(τ)‖
1
2

L2

+ ‖b(τ)‖
1
2

L2‖∇2b(τ)‖
1
2

L2‖∇3b(τ)‖L2) dτ.

Then using (3.25), (3.28), the ansatz (3.18), and ‖(∇3u,∇3b)‖L2 ≤ Cδ(1 + t)−
1
2 , we

have ∫ t

0

(1 + t− τ)−
3
2 ‖∂2

kQ1(τ)‖L2 dτ

≤ C(C
1
2
1 C2 + C

1
2
0 C

1
2
2 )δ2

∫ t

0

(1 + t− τ)−
3
2 (1 + τ)−

3
2 dτ

≤ C(C2 + C
1
2
2 )δ2(1 + t)−

3
2 .

Therefore, ∫ t

0

‖M̂1(t− τ)∂̂2
kN1

(τ)‖L2 dτ ≤ C(1 + C2)δ2(1 + t)−
3
2 .

As a consequence,

‖∇2u‖L2 ≤ C7δ(1 + t)−
3
2 + C8(1 + C2)δ2(1 + t)−

3
2

for the constant C7 > 0 and C8 > 0. Then the decay rate for ‖∇2u‖L2 follows from a
similar argument as the case m = 0, 1. This completes the proof of Theorem 1.2.
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