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Abstract

Any classical solution of the two-dimensional incompressible Euler equation is
global in time. However, it remains an outstanding open problem whether classical
solutions of the surface quasi-geostrophic (SQG) equation preserve their regularity
for all time. This paper studies solutions of a family of active scalar equations in
which each component u j of the velocity field u is determined by the scalar θ
through u j = R�−1 P(�)θ , where R is a Riesz transform and� = (−�)1/2. The
two-dimensional Euler vorticity equation corresponds to the special case P(�) = I
while the SQG equation corresponds to the case P(�) = �. We develop tools to
bound ‖∇u||L∞ for a general class of operators P and establish the global regu-
larity for the Loglog-Euler equation for which P(�) = (log(I + log(I − �)))γ

with 0 � γ � 1. In addition, a regularity criterion for the model corresponding to
P(�) = �β with 0 � β � 1 is also obtained.

1. Introduction and statements of the main results

This paper studies solutions of the active scalar equation
{
∂tθ + u · ∇θ = 0, x ∈ R

d , t > 0,
u = (u j ), u j = Rl�

−1 P(�)θ, 1 � j, l � d,
(1.1)

where θ = θ(x, t) is a scalar function of x ∈ R
d and t � 0, u denotes a velocity

field with its component u j (1 � j � d) given by a Riesz transform Rl applied to
�−1 P(�)θ . To avoid any confusion, we remark that the notation a j = bl simply

means each a j given by bl for some l. Here the operators � = (−�) 1
2 , P(�) and

Rl are defined through their Fourier transforms, namely

�̂ f (ξ) = |ξ | f̂ (ξ), P̂(�) f (ξ) = P(|ξ |) f̂ (ξ), R̂l f (ξ) = iξl
|ξ | f̂ (ξ),
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where 1 � l � d is an integer, f̂ or F( f ) denotes the Fourier transform

f̂ (ξ) = F( f )(ξ) = 1

(2π)d/2

∫
Rd

e−i x ·ξ f (x) dx .

Our consideration is restricted to P satisfying the following assumption.

Assumption 1.1. The symbol P = P(|ξ |) assumes the following properties:

(1) P is continuous on R
d and P ∈ C∞(Rd \ {0});

(2) P is radially symmetric;
(3) P = P(|ξ |) is nondecreasing in |ξ |;
(4) There exist two constants C and C0 such that

sup
2−1�|η|�2

|(I −�η)
n P(2 j |η|)| � C P(C02 j )

for any integer j and n = 1, 2, . . . , 1 + [ d
2 ].

We remark that (4) in Assumption 1.1 is a very natural condition on sym-
bols of Fourier multiplier operators and is similar to the main condition in the
Mihlin–Hörmander Multiplier Theorem (see for example [84, p. 96]). For nota-
tional convenience, we also assume that P � 0. Some special examples of P
are

P(ξ) = (log(1 + |ξ |2))γ with γ � 0,

P(ξ) = (log(1 + log(1 + |ξ |2)))γ with γ � 0,

P(ξ) = |ξ |β with β � 0,

P(ξ) = (log(1 + |ξ |2))γ |ξ |β with γ � 0 and β � 0.

A particularly important case of (1.1) is the two-dimensional active scalar
equation

{
∂tθ + u · ∇θ = 0, x ∈ R

2, t > 0,
u = ∇⊥ψ ≡ (−∂x2ψ, ∂x1ψ), −�2ψ = P(�) θ

(1.2)

which generalizes the two-dimensional Euler vorticity equation
{
∂tω + u · ∇ω = 0,
u = ∇⊥ψ, �ψ = ω

(1.3)

and the SQG equation
{
∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, −�ψ = θ.

(1.4)

The two-dimensional Euler equation has been extensively studied and its global reg-
ularity has long been established (see for example [16,61,67]). The SQG equation
and its dissipative counterpart have recently attracted a lot of attention and numer-
ous efforts have been devoted to the global regularity and related issues concerning
their solutions (see for example [1–3,5–15,17–24,26–56,58–66,68–83,86–102]).
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The goal of this paper is to understand the global regularity issue concerning
solutions of (1.1) with a given initial datum

θ(x, 0) = θ0(x), x ∈ R
d . (1.5)

The key quantity involved in this issue is ‖∇u‖L∞ . Tools are developed here to
bound ‖� j∇u‖L p and ‖SN ∇u‖L p when a vector field u : R

d → R
d is related to

a scalar function θ by

(∇u) jk = RlRm P(�)θ

where 1 � j, k, l,m � d, (∇u) jk denotes the ( j, k)th entry of ∇u and Rl and Rm

denote the Riesz transforms. Here� j with j � −1 denotes the Fourier localization
operator and

SN =
N−1∑
j=−1

� j .

The precise definitions of� j and SN are provided in Appendix A. The assumption
that u is divergence-free is not used in deriving these bounds. The bounds obtained
here are summarized in the following theorem.

Theorem 1.2. Let u : R
d → R

d be a vector field. Assume that u is related to a
scalar θ by

(∇u) jk = RlRm P(�)θ,

where 1 � j, k, l,m � d, (∇u) jk denotes the ( j, k)th entry of ∇u,Rl denotes the
Riesz transform, and P obeys Assumption 1.1. Then, for any integers j � 0 and
N � 0,

‖SN ∇u‖L p � C p,d P(C02N )‖SN θ‖L p , 1 < p < ∞, (1.6)

‖� j∇u‖Lq � Cd P(C02 j )‖� jθ‖Lq , 1 � q � ∞, (1.7)

‖SN ∇u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N P(C02N )‖SN+1θ‖L∞ , (1.8)

where C p,d is a constant depending on p and d only and Cds’ depend on d only.

We remark that, in general, the constant C p,d grows linearly with respect to p
and thus (1.6) does not follow for p = ∞. With these bounds at our disposal, we
are able to establish global regularity results covering two special cases of P . The
first result is for (1.1) with P(|ξ |) = (log(1 + log(1 + |ξ |2)))γ . For the simplicity
of our presentation here, we state the result for the two-dimensional case of (1.1),
namely {

∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, �ψ = (log(1 + log(1 −�)))γ θ,

(1.9)

which we call the Loglog-Euler equation. Although any classical solution θ of (1.9)
obeys the global a priori bound

‖θ(·, t)‖L p � ‖θ(·, 0)‖L p for any 1 � p � ∞,



38 Dongho Chae, Peter Constantin & Jiahong Wu

the regularity of the velocity u recovered from the relation

u = ∇⊥ψ, �ψ = (log(1 + log(1 −�)))γ θ

is worse than in the case of the two-dimensional Euler equation. Nevertheless we
are able to obtain global regularity for (1.9) with 0 � γ � 1.

Theorem 1.3. Consider the initial-value problem (1.9) and (1.5) with γ and θ0
satisfying

0 � γ � 1, θ0 ∈ L1(R2) ∩ L∞(R2) ∩ Bs
q,∞(R2) (1.10)

where 2 < q � ∞ and s > 1. Then the initial-value problem (1.9) and (1.5) has a
unique global solution θ satisfying, for any T > 0,

θ ∈ L∞([0, T ]; Bs
q,∞(R2)), ∇u ∈ L∞([0, T ]; B1+s1

q,∞ (R2)),

where s1 < s.

The general version of Theorem 1.3, namely the global regularity result for
(1.1), will be stated in Section 3. Here Bs

q,∞ denotes an inhomogeneous Besov
space. The definition of a general Besov space Bs

p,q is provided in Appendix A.
Even though θ0 ∈ Bs

q,∞ implies θ0 ∈ L∞, the condition on θ0 is written as in
(1.10) to emphasize the importance of L∞ assumption. The global regularity stated
in the Besov space setting in Theorem 1.3 can be converted into a global regularity
statement in Sobolev spaces. Combining Theorem 1.3 and the embedding relations

W r
q ↪→ Br

q,∞ ↪→ Br1
q,min{2,q} ↪→ W r1

q , r > r1,

we can conclude that any initial data in W r
q with 2 < q � ∞ and r > 1 would

yield a global solution in W r1
q for any r1 < r .

Theorem 1.3 is proven by combining the Besov space techniques and the
following extrapolation inequality.

Proposition 1.4. Let u : R
d → R

d be a vector field. Assume that u is related to a
scalar θ by

(∇u) jk = RlRm(log(I + log(I −�)))γ θ (1.11)

where γ � 0, 1 � j, k, l,m � d, (∇u) jk denotes the ( j, k)th entry of ∇u and Rl

and Rm denote the Riesz transforms. Then, for any 1 � q � ∞ and s > d/q,

‖∇u‖L∞ � ‖θ‖L1∩L∞ + C‖θ‖L∞ log(1+‖θ‖Bs
q,∞)

(
log(1 + log(1+‖θ‖Bs

q,∞))
)γ

where C is a constant that depends on d, q and s only.
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The second special case studied here is when P(|ξ |) = |ξ |β with 0 � β � 1.
Our aim is to understand how the parameter β affects the regularity of solutions to
the initial-value problem

{
∂tθ + u · ∇θ = 0
u = ∇⊥ψ, −�2ψ = �βθ,

(1.12)

where 0 � β � 1. The evolution of patch-like initial data under (1.12) has
previously been studied in [33]. Clearly (1.12) bridges the two-dimensional Euler
and the SQG equations. It is hoped that this study would shed light on the global
regularity issue concerning the SQG equation.

It is unknown if all classical solutions of (1.12) conserve their regularity for all
time except in the case of the two-dimensional Euler equation. In order to deal with
global regularity for (1.12), it suffices to obtain a suitable bound for ‖∇u‖L∞(R2).
Intuitively, the relation

u = −∇⊥�−2+βθ

implies that ‖∇u‖L∞(R2) can be bounded more or less by a bound for�βθ . In fact,
this intuitive idea can be made rigorous and is reflected in the following logarithmic
Hölder inequality

‖S‖L∞ � C‖θ‖Cβ log(1 + ‖θ‖Cσ )+ C‖θ‖Lq , σ > β, q > 1,

where S denotes the symmetric part of ∇u and Cβ the Hölder space. This inequal-
ity, together with a bound for the back-to-labels map determined by u, allows us to
obtain the following regularity criterion.

Theorem 1.5. Consider (1.12) with 0 � β � 1. Let θ be a solution of (1.12) cor-
responding to the data θ0 ∈ Cσ (R2) ∩ Lq(R2) with σ > 1 and q > 1. Let T > 0.
If θ satisfies

∫ T

0
‖θ(·, t)‖Cβ(R2) dt < ∞,

then θ remains in Cσ (R2) ∩ Lq(R2) on the time interval [0, T ].

This criterion, especially, establishes global regularity for the two-dimensional
Euler equation and reduces to the well-known criterion for the SQG equation when
β = 1 (see [23]).

The rest of this paper is organized as follows. Section 2 is devoted to the bounds
in Theorem 1.2 and Proposition 1.4. Theorem 1.3 and its general version, the global
regularity result for (1.1) are stated and proven in Section 3. Section 4 details the
proof of Theorem 1.5. Appendix A provides the definition of Besov spaces and
some related facts.
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2. Bounds for ‖� j∇u‖Lq , ‖SN ∇u‖Lq and ‖∇u‖L∞

This section derives the bounds stated in Theorem 1.2 and proves the logarith-
mic interpolation inequality presented in Proposition 1.4.

We make use of a Mihlin and Hörmander Multiplier Theorem (see [84, p. 96])
in the proof of (1.6). This theorem is recalled first.

Theorem 2.1. Suppose that Q(ξ) is of class Ck in the complement of the origin of
R

d , where k > d
2 is an integer. Assume also that

|DαQ(ξ)| � B|ξ |−|α|, whenever |α| � k. (2.1)

Then Q ∈ Mq , 1 < q < ∞. That is, ‖TQ f ‖Lq � Cq‖ f ‖Lq , where TQ is defined
by

T̂Q f (ξ) = Q(ξ) f̂ (ξ).

For further reference, we rewrite (1.6) as a proposition.

Proposition 2.2. Let u : R
d → R

d be a vector field. Assume that u is related to a
scalar θ by

(∇u) jk = RlRm P(�)θ (2.2)

where 1 � j, k, l,m � d, (∇u) jk denotes the ( j, k)th entry of ∇u,Rl denotes the
Riesz transform and P obeys Assumption 1.1. Then, for any integer N � 0,

‖SN ∇u‖L p � C p,d P(C02N )‖SN θ‖L p , 1 < p < ∞, (2.3)

where C p,d is a constant depending on p and d only.

Proof. As detailed in Appendix A, the symbol of SN isψ(ξ/2N )withψ satisfying

ψ ∈ C∞
0 (R

d), suppψ ⊂ B

(
0,

11

12

)
, ψ(ξ) = 1 for |ξ | � 3

4
.

It follows from (2.2) that

̂(SN ∇u) jk(ξ) = Q(ξ)P(C02N )̂SN θ(ξ)

where Q(ξ) is supported on |ξ | � (11/12)2N and, for |ξ | � (11/12)2N ,

Q(ξ) = −ξlξm

|ξ |2
P(|ξ |)

P(C02N )
.

To apply Theorem 2.1, we verify (2.1). Clearly, for any α with |α| = 0, 1, . . . ,
1 + [ d

2 ],
∣∣∣∣Dα ξlξm

|ξ |2
∣∣∣∣ � C |ξ |−|α|.
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In addition, for any ξ �= 0, there is an integer j such that ξ = 2 jη with 2−1 �
|η| � 2. Trivially, for ξ in the support of Q, j � N . It is easy to see that Condition
(4) in Assumption 1.1 implies that

sup
2−1�|η|�2

|(−�η)n P(2 j |η|)| � C P(C02 j )

for n = 0, 1, . . . , 1 + [ d
2 ]. Then,

∣∣∣∣(−�ξ)n P(|ξ |)
P(C02N )

∣∣∣∣ =
∣∣∣∣(−�η)n 2−2nj P(2 j |η|)

P(C02N )

∣∣∣∣ (2.4)

� |η|2n|2 jη|−2n P(C02 j )

P(C02N )

� |η|2n|ξ |−2n .

A similar bound can be shown for any α with |α| = 0, 1, . . . , 1+[ d
2 ]. For example,

to show the bound for |α| = 1, we infer from Condition (4) in Assumption 1.1 and

�ηP(2 j |η|) = 22 j P ′′(2 j |η|)+ (d − 1)/|η|2 j P ′(2 j |η|)
that |2 j P ′(2 j |η|)| � C P(C02 j ). Then a similar estimate as in (2.4) yields∣∣∣∣Dα

ξ

P(|ξ |)
P(C02N )

∣∣∣∣ � |η||α||ξ |−|α|.

This verifies (2.1). (2.3) then follows as a consequence of Theorem 2.1. 
�
For the sake of clarity, we restate (1.7) in Theorem 1.2 as a proposition.

Proposition 2.3. Let u : R
d → R

d be a vector field. Assume that u is related to a
scalar θ by

(∇u) jk = RlRm P(�)θ

where 1 � j, k, l,m � d, (∇u) jk denotes the ( j, k)th entry of ∇u and Rl denotes
the Riesz transform. Here P obeys Assumption 1.1. Then, for any integer N � 0,

‖�N ∇u‖Lq � Cd P(C02N )‖�N θ‖Lq , 1 � q � ∞. (2.5)

where Cd is a constant depending on d only.

Remark 2.4. This proposition is invalid in the case when N = −1. The proof
requires the symbol of �N is supported away from the origin.

Proof of Proposition 2.3. Clearly,

(�N ∇u) jk = RlRm P(�)�N θ

and

̂(�N ∇u) jk(ξ) = −ξlξm

|ξ |2 P(|ξ |)�̂N θ(ξ).
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As defined in Appendix A, �̂N θ(ξ) = φ(ξ/2N )θ̂(ξ) with φ(ξ/2N ) supported in
the annulus (3/4)2N � |ξ | � (11/6)2N . We define a smooth function φ̃0 satisfying

φ̃0 ≡ 1 for 3/4 � |ξ | � 11/6 and supp φ̃0 ⊂ {ξ : 2−1 � |ξ | � 2}
and set φ̃N (ξ) = φ̃0(ξ/2N ). Then

̂(�N ∇u) jk(ξ) = −ξlξm

|ξ |2 P(|ξ |)φ̃N (ξ)�̂N θ(ξ)

or

(�N ∇u) jk = g ∗�N θ,

where g denotes the inverse Fourier transform

g(x) = 1

(2π)d/2

∫
Rd

ei x ·ξ
(

−ξlξm

|ξ |2 P(|ξ |)φ̃N (ξ)

)
dξ

Clearly, g(x) = 2Nd g1(2N x), where

g1(x) = − 1

(2π)d/2

∫
2−1�|η|�2

ei x ·η ηlηm

|η|2 P(2N |η|)φ̃0(η) dη

To show g ∈ L1(Rd), it suffices to show g1 ∈ L1(Rd). Since

(1 + |x |2)ng1(x) = − 1

(2π)d/2

∫
2−1�|η|�2

ei x ·η(I −�η)
n ηlηm

|η|2 P(2N |η|)φ̃0(η) dη,

we obtain, by (4) in Assumption 1.1,

(1 + |x |2)n|g1(x)| � C P(C02N ).

where C is a constant independent of N . Equation (2.5) then follows from Young’s
inequality. 
�

We now prove (1.8) of Theorem 1.2. In fact, we have the following proposition.

Proposition 2.5. Let u : R
d → R

d be a vector field. Assume that u is related to a
scalar θ by

(∇u) jk = RlRm P(�)θ,

where 1 � j, k, l,m � d, (∇u) jk denotes the ( j, k)th entry of ∇u and Rl denotes
the Riesz transform. Here P obeys Assumption 1.1. Then, for any integer N � 0,

‖SN ∇u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N P(C02N )‖SN+1θ‖L∞ , (2.6)

where Cd depends on d only.
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Proof. Splitting SN into two parts and applying Proposition 2.3 with q = ∞, we
have

‖∇SN u‖L∞ � ‖∇�−1u‖L∞ +
N−1∑
j=0

‖∇� j u‖L∞

� Cd‖�−1θ‖L2 +
N−1∑
j=0

Cd P(C02 j )‖� jθ‖L∞ (2.7)

Since P is nondecreasing according to Assumption 1.1 and the simple fact that

‖� jθ‖L∞ � C‖SN+1θ‖L∞ , j = 0, 1, . . . , N − 1,

we have

‖∇SN u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N P(C02N )‖SN+1θ‖L∞ ,

which is (2.6). 
�
We now prove Proposition 1.4, in which P assumes the special form

P(�) = (log(I + log(I −�)))γ .

Proof of Proposition 1.4. For any integer N � 0, we have

‖∇u‖L∞ � ‖�−1∇u‖L∞ +
N−1∑
k=0

‖�k∇u‖L∞ +
∞∑

k=N

‖�k∇u‖L∞ .

By Bernstein’s inequality and Proposition 2.3, we have

‖∇u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N (log(1 + log(1 + 22(N−1))))γ ‖θ‖L∞

+Cd

∞∑
k=N

(2k)
d
q ‖∇�ku‖Lq .

Since log(1 + 22(N−1)) = (log2 e)−1 log2(1 + 22(N−1)) � 2N , we apply Proposi-
tion 2.3 again to obtain

‖∇u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N (log(1 + N ))γ ‖θ‖L∞

+Cd

∞∑
k=N

(2k)
d
q (log(1 + k))γ ‖�kθ‖Lq .

By the definition of Besov space Bs
q,∞ (see Appendix A),

‖�kθ‖Lq � 2−sk‖θ‖Bs
q,∞ .

Therefore,

‖∇u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N (log(1 + N ))γ ‖θ‖L∞

+Cd‖θ‖Bs
q,∞

∞∑
k=N

(2k)

(
d
q −s

)
(log(1 + k))γ .
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Since d/q − s < 0, we obtain for large N ,

‖∇u‖L∞ � Cd‖θ‖L1∩L∞ + Cd N (log(1 + N ))γ ‖θ‖L∞

+Cd,q,s‖θ‖Bs
q,∞(2

N )

(
d
q −s

)
(log(1 + N ))γ .

If we choose N to be the largest integer satisfying

N � 1

s − d/q
log2

(
1 + ‖θ‖Bs

q,∞

)
,

we then obtain the desired result in Proposition 1.4. 
�

3. Global regularity for (1.1) with P(�) = (log(1 + log(1 −�)))γ

This section establishes the global existence and uniqueness of solutions to
(1.1) with P(�) = (log(1 + log(1 −�)))γ . The divergence-free condition on the
velocity field u is not necessary if we are willing to assume that θ is bounded in
L1 ∩ L∞ for all time. Of course when u is indeed divergence-free, the bound is then
a trivial consequence. In the two-dimensional case, this general theorem reduces to
Theorem 1.3 stated in the introduction.

Theorem 3.1. Consider the active scalar equation (1.1) with

P(�) = (log(1 + log(1 −�)))γ , 0 � γ � 1.

Assume that the initial data θ0 satisfies

θ0 ∈ X ≡ L1(Rd) ∩ L∞(Rd) ∩ Bs
q,∞(Rd),

with

d < q � ∞ and s > 1.

Assume either u is divergence-free or θ is bounded in L1 ∩ L∞ for all time. Then
(1.1) has a unique global in time solution θ that satisfies, for any T > 0,

θ ∈ L∞([0, T ]; Bs
q,∞(Rd)) and u ∈ L∞([0, T ]; B1+s′

q,∞ (Rd))

for any s′ < s.

Proof. The proof consists of two main components. The first component derives
a global a priori bound while the second constructs a unique local-in-time solution
through the method of successive approximation.

We start with the part on the global a priori bound, which is further divided into
two steps. The first step shows that for any d/q < σ < 1 and any T > 0,

‖θ(t)‖Bσq,∞ � C(T, ‖θ0‖X ), t � T

and the second step establishes the global bound in Bσ1
q,∞ for some σ1 > 1. A finite

number of iterations then yields the global bound in Bs
q,∞.
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When u is divergence-free, θ0 ∈ L1 ∩ L∞ implies that the corresponding solu-
tion θ of (1.9) satisfies the a priori bound

‖θ(·, t)‖L1∩L∞ � ‖θ0‖L1∩L∞ , t � 0. (3.1)

When u is not divergence-free, we assume that (3.1) holds. Of course, the bound
does not have to be ‖θ0‖L1∩L∞ . In the rest of the proof, we can completely avoid
using the divergence-free condition on u. This explains why the divergence-free
condition is not used in the estimates.

Let j � −1 be an integer. Applying � j to (1.9) and following a standard
decomposition, we have

∂t� jθ = J1 + J2 + J3 + J4 + J5 (3.2)

where

J1 = −
∑

| j−k|�2

[� j , Sk−1(u) · ∇]�kθ,

J2 = −
∑

| j−k|�2

(Sk−1(u)− S j (u)) · ∇� j�kθ,

J3 = −S j (u) · ∇� jθ,

J4 = −
∑

| j−k|�2

� j (�ku · ∇Sk−1(θ)),

J5 = −
∑

k� j−1

� j (�ku · ∇�̃kθ)

with �̃k = �k−1 +�k +�k+1. We remark that the convention Sk ≡ 0 for k � −1
is adopted here. This decomposition is now standard and can be found in many
references (see for example [16] or [57]).

Multiplying (3.2) by� jθ |� jθ |q−2, integrating in space, integrating by part in
the term associated with J3, and applying Hölder’s inequality, we have

d

dt
‖� jθ‖Lq � ‖J1‖Lq + ‖J2‖Lq + ‖ J̃3‖Lq + ‖J4‖Lq + ‖J5‖Lq . (3.3)

By a standard commutator estimate (see for example [16, p. 39; 94, p. 814–815]),

‖J1‖Lq � C
∑

| j−k|�2

‖∇Sk−1u‖L∞‖�kθ‖Lq .

By Hölder’s and Bernstein’s inequalities,

‖J2‖Lq � C‖∇�̃ j u‖L∞‖� jθ‖Lq .

We have especially applied the lower bound part in Bernstein’s inequalities (see
Proposition A.3). The purpose is to shift the derivative ∇ from θ to u. It is worth
pointing out that the lower bound does not apply when j = −1. In the case when
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j = −1, J2 involves only low modes and there is no need to shift the derivative
from θ to u. J2 is bounded differently. When j = −1, J2 becomes

J2 = −S0(u) · ∇�1�−1θ = −�−1u · ∇�1�−1θ,

whose Lq -norm can be bounded by

‖J2‖Lq � C‖�−1u‖Lq1 ‖�−1θ‖Lq2 with 1/q1 + 1/q2 = 1/q.

Here we have applied the upper bound part in Bernstein’s inequalities to remove ∇.
Recalling that each component of u is of the form R�−1(log(1 + log(1 −�)))γ θ ,
we apply the Hardy–Littlewood–Sobolev inequality [84, p. 119] to obtain

‖J2‖Lq � C‖(log(1 + log(1 −�)))γ�−1θ‖Lq3 ‖�−1θ‖Lq2

where 1/q1 = 1/q3 − 1/d. It then follows from Theorem 2.1 that

‖J2‖Lq � C‖�−1θ‖Lq3 ‖�−1θ‖Lq2 � C‖θ0‖2
L1∩L∞ .

Therefore the low modes can be bounded in terms of the L1 ∩ L∞-norm of θ0.
Similar estimates apply to the low modes in J4 and J5, but they will not be repeated
when we bound J4 and J5 below.

After integration by parts, the term J3 leads to a term J̃3 = 1
q (∇ · S j u)� jθ ,

and so

‖ J̃3‖Lq � C‖∇ · S j u‖L∞‖� jθ‖Lq .

For J4 and J5, we have

‖J4‖Lq � C
∑

| j−k|�2

‖�ku‖L∞‖∇Sk−1θ‖Lq

� C
∑

| j−k|�2

‖∇�ku‖L∞
∑

m�k−1

2m−k‖�mθ‖Lq ,

‖J5‖Lq � C
∑

k� j−1

‖�ku‖L∞‖�̃k∇θ‖Lq

� C
∑

k� j−1

‖∇�ku‖L∞‖�̃kθ‖Lq .

By Proposition 1.4, for any σ ∈ R,

‖J1‖Lq � C
∑

| j−k|�2

‖∇u‖L∞2−σ(k+1)2σ(k+1)‖�kθ‖Lq (3.4)

� C2−σ( j+1)‖θ‖Bσq,∞‖∇u‖L∞
∑

| j−k|�2

2σ( j−k) (3.5)

� C2−σ( j+1)‖θ‖Bσq,∞‖∇u‖L∞ , (3.6)
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where C is a constant depending on σ only. It is clear that ‖J2‖Lq and ‖ J̃3‖Lq obey
the same bound. For any σ < 1, we have

‖J4‖Lq � C‖∇u‖L∞
∑

| j−k|�2

∑
m<k−1

2m−k2−σ(m+1)2σ(m+1)‖�mθ‖Lq

� C‖∇u‖L∞‖θ‖Bσq,∞
∑

| j−k|�2

∑
m<k−1

2m−k2−σ(m+1)

= C2−σ( j+1)‖θ‖Bσq,∞‖∇u‖L∞
∑

| j−k|�2

2σ( j−k)
∑

m<k−1

2(m−k)(1−σ)

� C2−σ( j+1)‖θ‖Bσq,∞‖∇u‖L∞ .

where C is a constant depending on σ only and the condition σ < 1 is used to
guarantee that (m − k)(1 − σ) < 0. For any σ > 0,

‖J5‖Lq � C‖∇u‖L∞2−σ( j+1)
∑

k� j−1

2σ( j−k)2σ(k+1)‖�̃kθ‖Lq

� C2−σ( j+1)‖θ‖Bσq,∞‖∇u‖L∞ .

Collecting these estimates, we obtain, for any 0 < σ < 1,

d

dt
‖� jθ‖Lq � C2−σ( j+1)‖θ‖Bσq,∞‖∇u‖L∞ .

Integrating in time yields

‖θ(t)‖Bσq,∞ �(C‖θ0‖2
L1∩L∞ t+‖θ0‖Bσq,∞)+C

∫ t

0
‖θ(τ )‖Bσq,∞‖∇u(τ )‖L∞ dτ.

(3.7)

Invoking the extrapolation inequality in Proposition 1.4, we obtain, for d/q < σ <

1,

‖θ(t)‖Bσq,∞ � (C‖θ0‖2
L1∩L∞ t + ‖θ0‖Bσq,∞)

+C
∫ t

0
‖θ(τ )‖Bσq,∞[‖θ‖L1∩L∞ + (1 + ‖θ‖L∞)

× log(1 + ‖θ‖Bσq,∞)(log(1 + log(1 + ‖θ‖Bσq,∞)))
γ ] dτ.

It then follows from Gronwall’s inequality that, for any T > 0,

‖θ(t)‖Bσq,∞ � C(T, ‖θ0‖X ), t � T .

We now continue with the second step. Since d < q � ∞, we can choose σ
satisfying

d

q
< σ < 1, σ + 1 − d

q
> 1
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and then set σ1 satisfying

1 < σ1 < σ + 1 − d

q
.

This step establishes the global bound for ‖θ‖B
σ1
q,∞ . J1, J2 and J3 and J5 can be

bounded the same way as before, namely

‖J1‖Lq , ‖J2‖Lq , ‖ J̃3‖Lq , ‖J5‖Lq � C2−σ1( j+1)‖θ‖B
σ1
q,∞‖∇u‖L∞ .

‖J4‖Lq is estimated differently and bounded by the global bound in the first step.
We start with the bound

‖J4‖Lq � C
∑

| j−k|�2

‖∇�ku‖L∞
∑

m<k−1

2m−k‖�mθ‖Lq .

By Bernstein’s inequality and Proposition 2.3, we have

‖∇�ku‖L∞ � 2
dk
q ‖∇�ku‖Lq

� 2
dk
q (log(2 + k))γ ‖�kθ‖Lq .

Clearly,
∑

m<k−1

2m−k‖�mθ‖Lq = 2−σk
∑

m<k−1

2(m−k)(1−σ)2σm‖�mθ‖Lq

� C2−σk‖θ‖Bσq,∞ .

Therefore,

‖J4‖Lq � C
∑

| j−k|�2

2
dk
q (log(2 + k))γ ‖�kθ‖Lq 2−σk‖θ‖Bσq,∞

= C2−σ1( j+1)‖θ‖Bσq,∞
∑

| j−k|�2

2σ1( j−k)(log(2 + k))γ 2(σ1+ d
q −σ)k‖�kθ‖Lq

= C2−σ1( j+1)‖θ‖Bσq,∞‖θ‖B
σ2
q,∞

∑
| j−k|�2

2σ1( j−k)(log(2 + k))γ 2(σ1+ d
q −σ−σ2)k

where σ2 < 1 is chosen very close to 1 and satisfies

σ1 + 2

q
− σ − σ2 < 0.

Then, by the global bound in the first step,

‖J4‖Lq � C2−σ1( j+1)‖θ‖Bσq,∞‖θ‖B
σ2
q,∞ � C(T, ‖θ0‖X )2

−σ1( j+1).

Collecting the estimates in this step, we have

d

dt
‖� jθ‖Lq � C2−σ1( j+1)‖θ‖B

σ1
q,∞‖∇u‖L∞ + C(T, ‖θ0‖X )2

−σ1( j+1).
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By Proposition 1.4, for any d/q < σ < 1,

‖∇u‖L∞ � ‖θ‖L1∩L∞ + (1 + ‖θ‖L∞)

× log(1 + ‖θ‖Bσq,∞)(log(1 + log(1 + ‖θ‖Bσq,∞)))
γ

� C(T, ‖θ0‖X ).

Therefore,

‖θ(t)‖B
σ1
q,∞ � ‖θ0‖B

σ1
q,∞ + C(T, ‖θ0‖X )

(
1 +

∫ t

0
‖θ(τ )‖B

σ1
q,∞ dτ

)
.

Gronwall’s inequality then yields the global bound ‖θ(t)‖B
σ1
q,∞ � C(T, ‖θ0‖X ). If

s > σ1, we can repeat this step to achieve the desired regularity.
We now describe the process of constructing a local solution of (1.1). The solu-

tion is constructed through the method of successive approximation. Consider a
successive approximation sequence {θ(n)} satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(1) = S2θ0,

u(n) = (u(n)j ), u(n)j = Rl�
−1 P(�)θ(n),

∂tθ
(n+1) + u(n) · ∇θ(n+1) = 0,

θ(n+1)(x, 0) = Sn+2θ0,

(3.8)

where P(�) = (log(1 + log(1 −�)))γ . In order to show that {θ(n)} converges to
a solution of (1.1) , it suffices to prove the following properties of {θ(n)}:
(1) There exists T1 > 0 such that θ(n) is bounded uniformly in Bs

q,∞ for any
t ∈ [0, T ], namely

‖θ(n)(·, t)‖Bs
q,∞ � C1‖θ0‖X , t ∈ [0, T1], (3.9)

where C1 is a constant independent of n.
(2) There exists T2 > 0 such that η(n+1) = θ(n+1) − θ(n) is a Cauchy sequence

in Bs−1
q,∞,

‖η(n)(·, t)‖Bs−1
q,∞ � C22−n, t ∈ [0, T2], (3.10)

where C2 is independent of n and depends on T2 and ‖θ0‖X only.

These two properties are established by following the ideas of the previous part and
we provide some details for the proof of (3.9) and (3.10) at the end of this section.
Let T = min{T1, T2}. We conclude from these two properties that there exists θ
satisfying

θ(·, t) ∈ Bs
q,∞ for 0 � t � T,

θ(n)(·, t) ⇀ θ(·, t) in Bs
q,∞,

θ(n)(·, t) → θ(·, t) in Bs−1
q,∞.
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Due to the interpolation inequality, for any s − 1 � s̃ � s,

‖ f ‖Bs̃
q,∞ � C‖ f ‖s−̃s

Bs−1
q,∞

‖ f ‖̃s+1−s
Bs

q,∞ ,

we deduce that

θ(n)(·, t) → θ(·, t) in Bs̃
q,∞. (3.11)

In addition, by the relation u(n)k = Rl�
−1 P(�)θ(n) and Proposition 2.3, we can

easily check that

∇u(n), ∇u(·, t) ∈ Bs1
q,∞ for any s1 < s.

In order to pass to the limit in the nonlinear term, we write

u(n) · ∇θ(n+1) − u · ∇θ = u(n) · ∇(θ(n+1) − θ)+ (u(n) − u) · ∇θ.
We can show that, for any σ < s − 1,

u(n) · ∇(θ(n+1) − θ) → 0, (u(n) − u) · ∇θ → 0 in Bσq,∞, (3.12)

as n → ∞. Again, these can be proven by following the ideas in the first part
of this proof. Finally, uniqueness can be established by estimating the difference
of any two solutions in Bs−1

q,∞. An argument similar to that used in the proof of

‖η(n)(·, t)‖Bs−1
q,∞ � C22−n yields the conclusion that the difference must be zero.

This completes the proof of Theorem 3.1. 
�
We now provide some details for the proof of (3.9) and (3.10). Equation (3.9)

is proven by induction. Clearly,

‖θ(1)‖Bs
q,∞ = ‖S2θ0‖Bs

q,∞ � C1‖θ0‖Bs
q,∞ .

We now make the ansatz that, for any t ∈ [0, T1],
‖θ(n)(·, t)‖Bs

q,∞ � C1‖θ0‖X (3.13)

and prove that

‖θ(n+1)(·, t)‖Bs
q,∞ � C1‖θ0‖X . (3.14)

Following the idea of the previous part, we first prove (3.14) for any σ satisfying
d/q < σ < 1 and then iterate to get (3.14). As in the proof of the a priori bounds,
we have

d

dt
‖� jθ

(n+1)‖Lq �‖K1‖Lq +‖K2‖Lq +‖K̃3‖Lq +‖K4‖Lq + ‖K5‖Lq (3.15)

where K1, K2, K̃3, K4 and K5 are the counterparts of J1, J2, J̃3, J4 and J5, respec-
tively, with u replaced by u(n) and θ by θ(n+1). Similar estimates yield the coun-
terpart of (3.7), namely

‖θ(n+1)(t)‖Bσq,∞ � (C‖θ0‖2
L1∩L∞ t + ‖Sn+1θ0‖Bσq,∞)

+C
∫ t

0
‖θ(n+1)(τ )‖Bσq,∞‖∇u(n)(τ )‖L∞ dτ. (3.16)
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Recalling the relation between u(n) and θ(n) in (3.8), we have by applying Propo-
sition 1.4 and the inductive ansatz (3.13),

‖∇u(n)‖L∞ � ‖θ(n)‖L1∩L∞ + (1 + ‖θ(n)‖L∞)

× log(1 + ‖θ(n)‖Bσq,∞)(log(1 + log(1 + ‖θ(n)‖Bσq,∞)))
γ

� C(T1, ‖θ0‖X ). (3.17)

Inserting (3.17) in (3.16) and applying Gronwall’s inequality would allow us to
conclude (3.14) with s = σ , when the time interval [0, T1] is taken to be suffi-
ciently small. (3.14) is then obtained through iteration, as in the previous part. We
omit further details to avoid redundancy.

4. Generalized inviscid SQG equation

This section is devoted to the generalized inviscid SQG equation

{
∂tθ + (u · ∇)θ = 0, x ∈ R

2, t > 0,
u = ∇⊥ψ, −�2−βψ = θ, x ∈ R

2, t > 0,
(4.1)

where 0 � β � 1 is a parameter. (4.1) with β = 0 becomes the two-dimensional
Euler vorticity equation while (4.1) with β = 1 is the SQG equation. Except in the
case when β = 0, the global regularity issue for (4.1) remains open. This section
presents a regularity criterion in terms of the norm of θ in the Hölder space Cβ(R2),
which directly relates the regularity of θ to the parameter β. The precise conclusion
has been stated in Theorem 1.5 and we reproduce it here.

Theorem 4.1. Consider (4.1) with 0 � β � 1. Let θ be a solution of (4.1) corre-
sponding to the data θ0 ∈ Cσ (R2) ∩ Lq(R2) with σ > 1 and q > 1. Let T > 0. If
θ satisfies

∫ T

0
‖θ(·, t)‖Cβ(R2) dt < ∞, (4.2)

then θ remains in Cσ (R2) ∩ Lq(R2) on the time interval [0, T ].
Some special consequences of this theorem are given in the following remark.

Remark 4.2. In the special case whenβ = 0, Theorem 4.1 re-establishes the global
regularity for the two-dimensional Euler equation. In the special case when β = 1,
(4.1) becomes the inviscid SQG equation and Theorem 4.1 reduces to a regularity
criterion of [23] for the SQG equation.

To prove Theorem 4.1, we first establish two propositions. The first one bounds
the back-to-labels map (the inverse map of the particle trajectory) in terms of
the symmetric part of ∇u. The second proposition is a logarithmic Hölder space
inequality.



52 Dongho Chae, Peter Constantin & Jiahong Wu

Let X (a, t) be the particle trajectory determined by the velocity u, namely
{ d X (a,t)

dt = u(X (a, t), t),
X (a, 0) = a.

(4.3)

Let A(x, t) be the back-to-labels map or the inverse map of X . Then

A(X (a, t), t) = a for any a ∈ R
2. (4.4)

Let S denote the symmetric part of ∇u, namely

S = 1

2
(∇u + (∇u)T), (4.5)

where (∇u)T denotes the transpose of ∇u. The following proposition bounds ∇x A
in terms of S.

Proposition 4.3. Let u be a velocity field and let S be the strain tensor as defined
in (4.5). Let A be the back-to-labels map. Then,

‖∇x A(·, t)‖L∞ � exp

(∫ t

0
‖S(·, τ )‖L∞ dτ

)
.

The second proposition bounds the L∞-norm of S in terms of the logarithm of
the Hölder-norm of θ .

Proposition 4.4. Let 0 � β � 1. Assume that u and θ are related by

u = −∇⊥�−2+βθ (4.6)

If θ ∈ Cσ (R2) ∩ Lq(R2) with σ > β and q > 1,

‖S‖L∞ � C1‖θ‖Cβ log(1 + ‖θ‖Cσ )+ C2‖θ‖Lq , (4.7)

where C1 and C2 are constants depending on β, σ and q only.

The rest of this section is arranged as follows. We prove Theorem 4.1 first and
then provide the proofs of Propositions 4.3 and 4.4.

Proof of Theorem 4.1. Let X be the particle trajectory as defined in (4.3) and
A(x, t) be the back-to-labels map. The first equation in (4.1) implies that θ is
conserved along the particle trajectory,

θ(x, t) = θ0(A(x, t)), x ∈ R
2, t � 0.

Therefore, for any σ � 1,

‖θ(·, t)‖Cσ = sup
x �=y

|θ(x, t)− θ(y, t)|
|x − y|σ � ‖θ0‖Cσ ‖∇x A(·, t)‖σL∞ .

By Proposition 4.3, we have

‖θ(·, t)‖Cσ � ‖θ0‖Cσ exp

(
σ

∫ t

0
‖S(·, τ )‖L∞ dτ

)
.
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Therefore,

log(1 + ‖θ(·, t)‖Cσ ) � log(1 + ‖θ0‖Cσ )+ σ

∫ t

0
‖S(·, τ )‖L∞ dτ. (4.8)

According to Proposition 4.4,
∫ t

0
‖S(·, τ )‖L∞ dτ � C1

∫ t

0
‖θ(·, τ )‖Cβ log(1 + ‖θ(·, τ )‖Cσ ) dτ + C2t‖θ0‖Lq .

(4.9)

Combining (4.8) and (4.9) and applying Gronwall’s inequality yield

log(1 + ‖θ(·, t)‖Cσ ) � C log(1 + ‖θ0‖Cσ + ‖θ0‖Lq ) exp

(
C

∫ t

0
‖θ(·, τ )‖Cβ dτ

)
.

In particular, taking σ = 1 yields a bound for ‖∇θ‖L∞ . The desired regularity
θ ∈ Cσ with σ > 1 then follows easily from the bound for ‖∇θ‖L∞ . This com-
pletes the proof of Theorem 4.1. 
�
Proof of Proposition 4.3. Differentiating the identity in (4.4) with respect to t , we
obtain the equation for A,

∂t A + u · ∇ A = 0.

Taking the gradient with respect to x , we find

∂t (∇x A)+ u · ∇(∇x A) = ∇u(∇x A).

Taking (Euclidian) inner product of this equation with ∇x A, we find

1

2

D

Dt
|∇x A(x, t)|2 = −∇u(∇x A)) · (∇x A).

Adopting the Einstein summation convention, we have

(∇u(∇x A)) · (∇x A) = ∂xk u j∂x j Ai∂xk Ai = ∂x j uk∂xk Ai∂x j Ai

and thus

(∇u(∇x A)) · (∇x A) = ((∇u)T(∇x A)) · (∇x A) = (S(∇x A)) · (∇x A).

Therefore

1

2

D

Dt
|∇x A|2 � |S(x, t)||∇x A|2 � ‖S(·, t)‖L∞|∇x A|2,

and integrating along the particle trajectory we obtain

|∇x A(X (a, t), t)| � exp

(∫ t

0
‖S(·, τ )‖L∞ dτ

)
.

Proposition 4.3 follows from this immediately, taking the supremum over a ∈ R
2.

�
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Proof of Proposition 4.4. The proof is divided into two cases: β < 1 and β = 1.
The case β = 1 requires that σ > 1 and is handled differently from the case β < 1.

We first deal with the case when β < 1. Invoking the Riesz potential for the
operator �−2+β , the relation in (4.6) can be rewritten

u(x) = Cβ

∫
∇⊥

(
1

|x − y|β
)
θ(y) dy =

∫
Kβ(x − y)θ(y) dy

with

Kβ(x) = Cβ
(−x2, x1)

T

|x |2+β ,

where Cβ is a constant depending on β only. ∇u can be written as

∇u(x) = p.v.
∫

∇x K (x − y)θ(y) dy,

where p.v. denotes the principal value and ∇x K (x) can be explicitly written as

∇x K (x) = Cβ
1

|x |4+β

(
x1x2 x2

2−x2
1 −x1x2

)
+ Cβ

1

|x |2+β

(
0 −1
1 0

)
.

Therefore the symmetric part of ∇u can be written as

S(x) = p.v.
∫
�(x − y)θ(y) dy

where

�(x) = Cβ
1

|x |4+β

(
2x1x2 x2

2 − x2
1

x2
2 − x2

1 −2x1x2

)
.

The property that �(x) is homogenous of degree −(2 + β) and has zero mean on
the unit circle is useful in the following estimate of S.

Let χ(x) be a standard smooth cutoff function with χ(x) = 1 for |x | � 1
2 and

χ(x) = 0 for |x | � 1. Let 0 < ρ � R. We divide S into three parts,

S(x, t) = L1 + L2 + L3,

where

L1 =
∫
χ

( |x − y|
ρ

)
�(x − y)(θ(y)− θ(x)) dy,

L2 =
∫

|x−y|�R

(
1 − χ

( |x − y|
ρ

))
�(x − y)(θ(y)− θ(x)) dy,

L3 =
∫

|x−y|>R
�(x − y)θ(y) dy.
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Since σ > β,

|L1| � Cβ‖θ‖Cσ

∫
|x−y|�ρ

1

|x − y|2+β−σ dy

= Cβ‖θ‖Cσ ρ
σ−β.

L2 can be bounded as follows.

|L2| � Cβ‖θ‖Cβ

∫
ρ
2 �|x−y|�R

1

|x − y|2 dy

= Cβ‖θ‖Cβ log

(
2R

ρ

)
.

By Hölder’s inequality,

|L3| � Cβ,q R−1−β‖θ‖Lq

Setting ρ = log(1 + ‖θ‖Cσ ) and R = 1 yields (4.7).
We now turn to the case when β = 1. This case corresponds to the SQG

equation. Then σ > β = 1. It follows from the relation in (4.6) that

∇u(x) = p.v.
∫

ŷ ⊗ ∇θ(x + y)
dy

|y|2
where ŷ denotes the unit vector in the direction of y and a ⊗ b denotes the tensor
product of two vectors a and b. Therefore,

S(x) = p.v.
∫

1

2
(ŷ ⊗ ∇θ(x + y)+ ∇θ(x + y)⊗ ŷ)

dy

|y|2 .

The difference between this representation and the one in the case β < 1 is that this
formula involves ∇θ instead of just θ . ‖S‖L∞ can be bounded in a similar fashion
as in the case β < 1. In fact, we again use a smooth cutoff function χ to decompose
the integral into three parts and estimate each one of them as we did previously.
For example,

L1 = p.v.
∫
χ

( |y|
ρ

)
1

2
(ŷ ⊗ (∇θ(x + y)− ∇θ(x))

+(∇θ(x + y)− ∇θ(x))⊗ ŷ)
dy

|y|2
can be bounded by

|L1| �
∫

|y|�ρ
|∇θ(x + y)− ∇θ(x)| dy

|y|2
� ‖∇θ‖Cσ−1ρσ−1 � ‖θ‖Cσ ρ

σ−1.

We omit details for the estimates of the other parts. Putting the estimates together
yield the same bound as in the case β < 1. This completes the proof of Proposi-
tion 4.4. 
�
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Appendix A. Besov spaces and related facts

This appendix provides the definitions of � j , S j and inhomogeneous Besov
spaces. Related useful facts such as the Bernstein inequality are also provided here.
Materials presented in this appendix can be found in several books and papers (see
for example [4,16] or [85]).

Let S(Rd) and S ′(Rd) denote the Schwartz class and tempered distributions,
respectively. The partition of unity states that there exist two nonnegative radial
functions ψ, φ ∈ S such that

suppψ ⊂ B

(
0,

11

12

)
, suppφ ⊂ A

(
0,

3

4
,

11

6

)
,

ψ(ξ)+
∑
j�0

φ j (ξ) = 1 for ξ ∈ Rd , φ j (ξ) = φ(2− jξ),

suppψ ∩ suppφ j = ∅ if j � 1,

suppφ j ∩ suppφk = ∅ if | j − k| � 2,

where B(0, r) denotes the ball centered at the origin with radius r and A(0, r1, r2)

the annulus centered at the origin with the inner radius r1 and the outer radius r2.
For any f ∈ S ′, set

�−1 f = F−1(ψ(ξ)F( f )) = � ∗ f,

� j f = F−1(φ j (ξ)F( f )) = � j ∗ f, j = 0, 1, 2, . . . ,

� j f = 0 for j � −2,

S j =
j−1∑

k=−1

�k when j � 0,

where we have used F and F−1 to denote the Fourier and inverse Fourier trans-
forms. respectively. Clearly,

� = F−1(ψ), �0 = � = F−1(φ), � j (x) = F−1(φ j )(x) = 2 jd�(2 j x).

In addition, we can write

F(S j f ) = ψ

(
ξ

2 j

)
F( f ).

With these notation at our disposal, we now provide the definition of the inho-
mogeneous Besov space.

Definition A.1. For s ∈ R and 1 � p, q � ∞, the inhomogeneous Besov space
Bs

p,q is defined by

Bs
p,q = { f ∈ S ′ : ‖ f ‖Bs

p,q
< ∞},

where

‖ f ||Bs
p,q

≡
⎧⎨
⎩

(∑∞
j=−1(2

js‖� j f ‖L p )q
)1/q

, if q < ∞,

sup−1� j<∞ 2 js‖� j f ‖L p , if q = ∞.
(A.1)
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The Besov spaces and the standard Sobolev spaces defined by

W s
p = (1 −�)−s/2 L p

obey the simple facts stated in the following lemma (see [4]).

Proposition A.2. Assume that s ∈ R and p, q ∈ [1,∞].
(1) If s1 � s2, then Bs2

p,q ⊂ Bs1
p,q ,

(2) If 1 � q1 � q2 � ∞, then Bs
p,q1

⊂ Bs
p,q2

,

(3) If 1 � p1 � p2 � ∞, 1 � q1, q2 � ∞, and s1 � s2 + d
(

1
p1

− 1
p2

)
, then

Bs1
p1,q1

(Rd) ⊂ Bs2
p2,q2

(Rd),

(4) If 1 < p < ∞, then

Bs
p,min(p,2) ⊂ W s

p ⊂ Bs
p,max(p,2).

The following Bernstein type inequalities are very useful and have been used in
the previous sections. These types of inequalities can be found in many references
(see, for example [57, p. 32]).

Proposition A.3. Let α � 0. Let 1 � p � q � ∞.

(1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : |ξ | � K 2 j },
for some integer j and a constant K > 0, then

max|β|=k
‖Dβ f ‖Lq (Rd ) � C2

k j+ jd
(

1
p − 1

q

)
‖ f ‖L p(Rd ),

‖(−�)α f ‖Lq (Rd ) � C2
2α j+ jd

(
1
p − 1

q

)
‖ f ‖L p(Rd )

for some constant C depending on K , p and q only.
(2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : K12 j � |ξ | � K22 j }
for some integer j and constants 0 < K1 � K2, then

C2k j‖ f ‖Lq (Rd ) � max|β|=k
‖Dβ f ‖Lq (Rd ) � C2

k j+ jd
(

1
p − 1

q

)
‖ f ‖L p(Rd ),

C22α j‖ f ‖Lq (Rd ) � ‖(−�)α f ‖Lq (Rd ) � C2
2α j+ jd

(
1
p − 1

q

)
‖ f ‖L p(Rd ),

where the constants C depend on K1, K2, p and q only.

Acknowledgements. Chae’s research was partially supported by NRF grant No.2006-
0093854. Constantin’s research was partially supported by NSF grant DMS 0804380.
Wu’s research was partially supported by NSF grant DMS 0907913. Wu thanks the Depart-
ment of Mathematics at Sungkyunkwan University for its hospitality during his visit there,
and thanks Professor Changxing Miao for discussions.



58 Dongho Chae, Peter Constantin & Jiahong Wu

References

1. Abidi, H., Hmidi, T.: On the global well-posedness of the critical quasi-geostrophic
equation. SIAM J. Math. Anal. 40, 167–185 (2008)

2. Bae, H.: Global well-posedness of dissipative quasi-geostrophic equations in critical
spaces. Proc. Am. Math. Soc. 136, 257–261 (2008)

3. Barrios, B.: Regularization for the supercritical quasi-geostrophic equation.
arXiv:1007.4889v1. 28 Jul 2010

4. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin 1976
5. Blumen, W.: Uniform potential vorticity flow, Part I. Theory of wave interactions and

two-dimensional turbulence. J. Atmos. Sci. 35, 774–783 (1978)
6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Lapla-

cian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)
7. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and

the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)
8. Carrillo, J., Ferreira, L.: The asymptotic behaviour of subcritical dissipative quasi-

geostrophic equations. Nonlinearity 21, 1001–1018 (2008)
9. Chae, D.: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity

16, 479–495 (2003)
10. Chae, D.: On the continuation principles for the Euler equations and the quasi-geo-

strophic equation. J. Differ. Equ. 227, 640–651 (2006)
11. Chae, D.: On the regularity conditions for the dissipative quasi-geostrophic equations.

SIAM J. Math. Anal. 37, 1649–1656 (2006)
12. Chae, D.: The geometric approaches to the possible singularities in the inviscid fluid

flows. J. Phys. A 41, 365501–365511 (2008)
13. Chae, D.: On the a priori estimates for the Euler, the Navier-Stokes and the quasi-

geostrophic equations. Adv. Math. 221, 1678–1702 (2009)
14. Chae, D., Córdoba, A., Córdoba, D., Fontelos, M.: Finite time singularities in a

1D model of the quasi-geostrophic equation. Adv. Math. 194, 203–223 (2005)
15. Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasi-

geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)
16. Chemin, J.-Y.: Fluides parfaits incompressibles, Astérisque No. 230. Société

Mathématique de France, 1995
17. Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative

quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007)
18. Chen, Q., Zhang, Z.: Global well-posedness of the 2D critical dissipative quasi-

geostrophic equation in the Triebel-Lizorkin spaces. Nonlinear Anal. 67, 1715–1725
(2007)

19. Constantin, P.: Euler equations, Navier-Stokes equations and turbulence. Mathemat-
ical foundation of turbulent viscous flows. Lecture Notes in Mathematics, Vol. 1871.
Springer, Berlin, 1–43, 2006

20. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic
equation. Indiana Univ. Math. J. 50, 97–107 (2001)

21. Constantin, P., Iyer, G., Wu J.: Global regularity for a modified critical dissipative
quasi-geostrophic equation. Indiana Univ. Math. J. 57, 2681–2692 (2008)

22. Constantin, P., Lai, M.-C., Sharma, R., Tseng, Y.-H., Wu, J.: New numerical results
for the surface quasi-geostrophic equation. J. Sci. Comput. (accepted)

23. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-
geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

24. Constantin, P., Nie, Q., Schorghofer, N.: Nonsingular surface quasi-geostrophic
flow. Phys. Lett. A 241, 168–172 (1998)

25. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations.
SIAM J. Math. Anal. 30, 937–948 (1999)



Generalized Surface Quasi-geostrophic Equations 59

26. Constantin, P., Wu, J.: Regularity of Hölder continuous solutions of the supercritical
quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1103–1110
(2008)

27. Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative
hydrodynamic transport equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 159–
180 (2009)

28. Córdoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic
equation. Ann. Math. 148, 1135–1152 (1998)

29. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equa-
tions. Commun. Math. Phys. 249, 511–528 (2004)

30. Córdoba, D., Fefferman, Ch.: Behavior of several two-dimensional fluid equations
in singular scenarios. Proc. Natl. Acad. Sci. USA 98, 4311–4312 (2001)

31. Córdoba, D., Fefferman, Ch.: Scalars convected by a two-dimensional incompress-
ible flow. Commun. Pure Appl. Math. 55, 255–260 (2002)

32. Córdoba, D., Fefferman, Ch.: Growth of solutions for QG and 2D Euler equations.
J. Am. Math. Soc. 15, 665–670 (2002)

33. Córdoba, D., Fontelos, M., Mancho, A., Rodrigo, J.: Evidence of singularities for
a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA 102, 5949–5952
(2005)

34. Dabkowski, M.: Eventual regularity of the solutions to the supercritical dissipative
quasi-geostrophic equation. arXiv:1007.2970v1. 18 Jul 2010

35. Deng, J., Hou, T.Y., Li, R., Yu, X.: Level set dynamics and the non-blowup of the 2D
quasi-geostrophic equation. Methods Appl. Anal. 13, 157–180 (2006)

36. Dong, B., Chen, Z.: Asymptotic stability of the critical and super-critical dissipative
quasi-geostrophic equation. Nonlinearity 19, 2919–2928 (2006)

37. Dong, H.: Dissipative quasi-geostrophic equations in critical Sobolev spaces: smooth-
ing effect and global well-posedness. Discrete Contin. Dyn. Syst. 26, 1197–1211 (2010)

38. Dong, H., Du, D.: Global well-posedness and a decay estimate for the critical dissi-
pative quasi-geostrophic equation in the whole space. Discrete Contin. Dyn. Syst. 21,
1095–1101 (2008)

39. Dong, H., Li, D.: Finite time singularities for a class of generalized surface quasi-geo-
strophic equations. Proc. Am. Math. Soc. 136, 2555–2563 (2008)

40. Dong, H., Li, D.: Spatial analyticity of the solutions to the subcritical dissipative
quasi-geostrophic equations. Arch. Ration. Mech. Anal. 189, 131–158 (2008)

41. Dong, H., Pavlovic, N.: A regularity criterion for the dissipation quasi-geostrophic
equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1607–1619 (2009)

42. Dong, H., Pavlovic, N.: Regularity criteria for the dissipative quasi-geostrophic equa-
tions in Hölder spaces. Commun. Math. Phys. 290, 801–812 (2009)

43. Friedlander, S., Pavlovic, N., Vicol, V.: Nonlinear instability for the critically
dissipative quasi-geostrophic equation. Commun. Math. Phys. 292, 797–810 (2009)

44. Friedlander, S., Vicol, V.: Global well-posedness for an advection-diffusion equa-
tion arising in magneto-geostrophic dynamics. arXiv:1007.1211v1. 12 Jul 2010

45. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York, 1982
46. Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic

dynamics. J. Fluid Mech. 282, 1–20 (1995)
47. Hmidi, T., Keraani, S.: Global solutions of the super-critical 2D quasi-geostrophic

equation in Besov spaces. Adv. Math. 214, 618–638 (2007)
48. Hmidi, T., Keraani, S.: On the global well-posedness of the critical quasi-geostrophic

equation. SIAM J. Math. Anal. 40, 167–185 (2008)
49. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-

geostrophic equations. Commun. Math. Phys. 255, 161–181 (2005)
50. Ju, N.: Geometric constrains for global regularity of 2D quasi-geostrophic flows.

J. Differ. Equ. 226, 54–79 (2006)
51. Khouider, B., Titi, E.: An inviscid regularization for the surface quasi-geostrophic

equation. Commun. Pure Appl. Math. 61, 1331–1346 (2008)



60 Dongho Chae, Peter Constantin & Jiahong Wu

52. Kiselev, A.: Some recent results on the critical surface quasi-geostrophic equation: a
review. Hyperbolic problems: theory, numerics and applications. Proc. Sympos. Appl.
Math., Vol. 67, Part 1. AMS, Providence, RI, 105–122, 2009

53. Kiselev, A.: Regularity and blow up for active scalars, Math. Model. Math. Phenom.
5, 225–255 (2010)

54. Kiselev, A., Nazarov, F.: Global regularity for the critical dispersive dissipative
surface quasi-geostrophic equation. Nonlinearity 23, 549–554 (2010)

55. Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap.
Nauchn. Sem. POMI 370, 58–72 (2010)

56. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D
dissipative quasi-geostrophic equation. Invent. Math. 167, 445-453 (2007)

57. Lemarié-Rieusset, P.-G.: Recent developments in the Navier-Stokes problem, Chap-
man & Hall/CRC, Boca Raton, 2002

58. Li, D.: Existence theorems for the 2D quasi-geostrophic equation with plane wave
initial conditions. Nonlinearity 22, 1639–1651 (2009)

59. Li, D., Rodrigo, J.: Blow up for the generalized surface quasi-geostrophic equation
with supercritical dissipation. Commun. Math. Phys. 286, 111–124 (2009)

60. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Cou-
rant Lecture Notes, Vol. 9. Courant Institute of Mathematical Sciences and American
Mathematical Society, 2003

61. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University
Press, Cambridge, 2002

62. Majda, A., Tabak, E.: A two-dimensional model for quasigeostrophic flow: compar-
ison with the two-dimensional Euler flow. Phys. D 98, 515–522 (1996)

63. Marchand, F.: Propagation of Sobolev regularity for the critical dissipative quasi-
geostrophic equation. Asymptot. Anal. 49 , 275–293 (2006)

64. Marchand, F.: Existence and regularity of weak solutions to the quasi-geostrophic
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