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Abstract

This paper establishes the global in time existence of classical solutions to the
two-dimensional anisotropic Boussinesq equations with vertical dissipation. When
only vertical dissipation is present, there is no direct control on the horizontal deriv-
atives and the global regularity problem is very challenging. To solve this problem,
we bound the derivatives in terms of the L∞-norm of the vertical velocity v and
prove that ‖v‖Lr with 2 � r < ∞ does not grow faster than

√
r log r at any time as

r increases. A delicate interpolation inequality connecting ‖v‖L∞ and ‖v‖Lr then
yields the desired global regularity.

1. Introduction

The Boussinseq equations model many geophysical flows, such as atmospheric
fronts and ocean circulations (see, for example, [22,27]). Mathematically the two-
dimensional Boussinesq equations serve as a lower-dimensional model of the three-
dimensional hydrodynamics equations. In fact, the two-dimensional Boussinesq
equations retain some key features of the three-dimensional Euler and Navier–
Stokes equations such as the vortex stretching mechanism and, as pointed out in
[23], the inviscid two-dimensional Boussinesq equations are identical to the Euler
equations for three-dimensional axisymmetric swirling flows. The fundamental
issue of whether classical solutions to the three-dimensional Euler and Navier–
Stokes equations can develop finite time singularities remains outstandingly open;
the study of the two-dimensional Boussinesq equations may shed light on this
extremely challenging problem.
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This paper addresses the global regularity problem concerning the two-dimen-
sional anisotropic Boussinesq equations with vertical dissipation,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uux + vuy = −px + ν uyy,

vt + uvx + vvy = −py + ν vyy + θ,

ux + vy = 0,
θt + uθx + vθy = κ θyy,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), θ(x, y, 0) = θ0(x, y),

(1.1)

where u, v, p and θ are scalar functions of (x, y) ∈ R
2 and t � 0. Physically,

(u, v) denotes the two-dimensional velocity field, p the pressure, θ the temperature
in the content of thermal convection and the density in the modeling of geophysical
fluids, ν > 0 the viscosity and κ > 0 the thermal diffusivity. Equation (1.1) is
useful in modeling dynamics of geophysical flows in which the vertical dissipation
dominates, such as in the large-time dynamics of certain strongly stratified flows
(see [24] and the references therein).

The two-dimensional anisotropic Boussinesq system with vertical diffusion is
a special case of the general two-dimensional Boussinesq equations

⎧
⎪⎪⎨

⎪⎪⎩

ut + uux + vuy = −px + ν1 uxx + ν2 uyy,

vt + uvx + vvy = −py + ν1 vxx + ν2 vyy + θ,

ux + vy = 0,
θt + uθx + vθy = κ1 θxx + κ2 θyy,

(1.2)

where ν1, ν2, κ1 and κ2 are real parameters. Equation (1.2) with ν1 = κ1 = 0
reduces to (1.1). When all four parameters are positive, (1.2) is fully dissipative
and the global regularity has been obtained (see, for example, [5]). On the other
hand, if all parameters are zero, (1.2) reduces to the inviscid Boussinesq equations.
As mentioned before, the inviscid Boussinesq equations can be identified with the
three-dimensional axisymmetric Euler equations, and whether or not their solu-
tions can develop any finite-time singularity remains elusive. Several analytic and
numerical results on the inviscid Boussinesq equations are available in [8,15]. The
intermediate cases that occur when at least one of four parameters in (1.2) is zero
have attracted considerable attention in the last few years, and important progress
has been made (see, for example, [1–3,7,11–13,16–21,25]). The global regularity
for the case when ν1 = ν2 > 0 and κ1 = κ2 = 0 was proven by Chae [7] and
by Hou and Li [20]. The case when ν1 = ν2 = 0 and κ1 = κ2 > 0 was dealt
with by Chae [7]. Their results successfully resolved one of the open problems
proposed by Moffatt [26]. Further progress on these two cases was recently made
by Hmidi, Keraani and Rousset, who were able to establish the global regularity
even when the full Laplacian dissipation is replaced by the critical dissipation repre-
sented in terms of the operator

√−� [18,19]. In addition, Miao and Xue obtained
the global regularity of the two-dimensional Boussinesq equations with fractional
dissipation and thermal diffusion when the fractional powers obey certain con-
ditions [25]. The global well-posedness for the anisotropic Boussinesq equations
with horizontal dissipation or thermal diffusion, namely (1.2) with only ν1 > 0
or κ1 > 0, was first studied by Danchin and Paicu [13]. Recently Larios et al.
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[21] further investigated the Boussinesq equations with horizontal dissipation via
more elementary approaches and re-established the results of Danchin and Paicu
under milder assumptions. Other interesting recent results on the two-dimensional
Boussinesq equations can be found in [1–3,11,12,16,17,25].

This paper singles out the anisotropic Boussinesq equations with vertical dissi-
pation (1.1) for study. Why is the global regularity problem for this case difficult?
Although the global (in time) L2-bound follows from an easy energy estimate, it
appears impossible to directly obtain a global H1-bound. There is a simple expla-
nation. The equation satisfied by the vorticity ω = vx − uy is given by

ωt + uωx + vωy = ν1ωyy + θx ,

and the mismatch between the vertical dissipationωyy and the x-derivative θx essen-
tially makes the vertical dissipation useless. In two recent papers in collaboration
with Adhikari [2,3], we attempted to overcome this difficulty and obtained partial
results. This paper completely solves the global regularity problem for (1.1). Our
major result can be stated as follows.

Theorem 1.1. Consider the initial-value problem for the anisotropic Boussinesq
equations with vertical dissipation (1.1). Let ν > 0 and κ > 0. Let (u0, v0, θ0) ∈
H2(R2). Then, for any T > 0, (1.1) has a unique classical solution (u, v, θ) on
[0, T ] satisfying

(u, v, θ) ∈ C([0, T ]; H2(R2)).

This global regularity result may be a little bit surprising. Equation (1.1) and
the Prandtl boundary layer equation bear some similarities, but there are smooth
initial data such that the corresponding solution of the Prandtl equation does not
exist globally [14].

In order to prove this theorem, we first discover that the norms of the vertical
velocity v in Lebesgue spaces play a crucial role in controlling the Sobolev-norms
of the solutions. In fact, it is shown in [3] that

‖(u, v, θ)‖2
H2 + ‖ω2 + |∇θ |2‖2

L2 � C(ν, κ, T, u0, v0, θ0)

× exp

(∫ t

0
‖v(·, τ )‖2

L∞ dτ

)

. (1.3)

We remark that (1.3) involves the estimates of (u, v, θ) in L4 and W 1,4, which
serves as a bridge to the H2-estimate. It does not appear to be plausible to directly
show that

∫ t

0
‖v(·, τ )‖2

L∞ dτ < ∞.

A natural idea is then to estimate ‖v‖Lq for q < ∞ and obtain upper bounds
that are as sharp as possible for large q. It was shown in [2] that ‖v‖Lq remains
finite for all time with an upper bound depending exponentially on q. This upper
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bound was improved to a linear function of q in [3]. We are able to obtain a further
improvement in this paper and prove that, for any 2 � q < ∞,

‖v(·, t)‖Lq � B(t)
√

q log q, (1.4)

where B(t) is an explicit integrable function independent of q. In order to bound
‖v‖L∞ in terms of the Lq -bound in (1.4), we prove the following interpolation
inequality:

‖ f ‖L∞(R2) � C sup
r�2

‖ f ‖r√
r log r

(
log(e + ‖ f ‖H2(R2)) log log(e + ‖ f ‖H2(R2))

) 1
2 .

(1.5)

This delicate inequality, together with (1.3) and (1.4), yields the desired global
bound for ‖(u, v, θ)‖H2 . The global bound combined with local existence theory
(see, for example, [9]) leads to the global regularity result stated in Theorem 1.1.

Our major effort is devoted to proving the upper bound (1.4). Key ingredients
of the proof are the global bounds on the pressure p,

‖p(·, t)‖L2 � C, ‖p(·, t)‖L4 � C,
∫ t

0
‖∇ p(·, τ )‖2

L2 dτ � C,

where C = C(ν, κ, t, u0, v0, θ0) is a smooth function of t that depends on the
parameters ν,κ and the initial norm‖(u0, v0, θ0)‖H2 . These bounds for the pressure,
in turn, require suitable estimates for (u, v, θ) in L4 and L8. Another crucial tech-
nique is the decomposition of the pressure into low frequency and high frequency
parts, which are bounded differently. The separation of the low and high frequen-
cies appears to be necessary in securing a bound of the form in (1.4). The proof
of the interpolation inequality (1.5) involves the Littlewood–Paley decomposition
and Besov space tools.

The rest of the paper is divided into three sections and two appendices. The
second section proves the interpolation inequality (1.5), an inequality for a tri-
ple product and several estimates for the low and high frequency parts of an
H1-function. The third section establishes several global bounds for the pressure.
They rely on the L4 and L8 bounds of the solution. The last section presents the
proof of Theorem 1.1. The key is the global a priori bound (1.4), whose detailed
proof is also provided in this section. Appendix A contains the description of the
Littlewood–Paley decomposition, the Besov spaces, the Triebel-Lizorkin spaces
and related facts used in the previous sections. Appendix B provides the technical
proof for an inequality presented in the second section. Throughout the rest of this
paper, ‖ f ‖Lr , or simply ‖ f ‖r , denotes the norm in the Lebesgue space Lr , while
‖ f ‖Hs and ‖ f ‖H̊ s denote the norms in the Sobolev space Hs and the homogeneous

Sobolev space H̊ s , respectively.
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2. Interpolation Inequality and Other Tools

This section presents several inequalities to be used in the subsequent sec-
tions. They include the interpolation inequality stated in (1.5), an inequality for
a triple product and suitable bounds for the low and high frequency parts of an
H1-function. Some of the proofs involve the Littlewood–Paley decomposition,
Besov spaces, Triebel-Lizorkin spaces and related techniques, which are described
in Appendix A.

Lemma 2.1. Let s > 1 and f ∈ Hs(R2). Assume that

sup
r�2

‖ f ‖r√
r log r

< ∞.

Then there exists a constant C depending only on s such that

‖ f ‖L∞(R2) � max

{

C, C sup
r�2

‖ f ‖r√
r log r

(
log(e + ‖ f ‖Hs (R2)) log log(e + ‖ f ‖Hs (R2))

) 1
2

}

.

(2.1)

When s = 2, Eqn. (2.1) reduces to (1.5). The proof of this lemma involves the
Littlewood–Paley decomposition, Bernstein’s inequality and the identification of
the inhomogeneous Besov space Bs

2,2 with Hs .

Proof of Lemma 2.1. By the Littlewood–Paley decomposition, we can write

f = SN+1 f +
∞∑

j=N+1

� j f,

where � j denotes the Fourier localization operator and

SN+1 =
N∑

j=−1

� j .

The definitions of � j and SN are now standard and can be found in several books
and many papers (see, for example, [4,10,28,29]). For the reader’s convenience,
they are provided in Appendix A. Therefore,

‖ f ‖∞ � ‖SN+1 f ‖∞ +
∞∑

j=N+1

‖� j f ‖∞.

We denote the terms on the right by I and I I . By Bernstein’s inequality (see
Appendix A), for any q � 2,

|I | � 2
2N
q ‖SN+1 f ‖q � 2

2N
q ‖ f ‖q .
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Taking q = N , we have

|I | � 4‖ f ‖N � 4
√

N log N sup
r�2

‖ f ‖r√
r log r

.

By Bernstein’s inequality again, for any s > 1,

|I I | �
∞∑

j=N+1

2 j‖� j f ‖2 =
∞∑

j=N+1

2− j (s−1) 2s j‖� j f ‖2

= C 2−(N+1)(s−1) ‖ f ‖Bs
2,2
,

where C is a constant depending only on s. By identifying Bs
2,2 with Hs , we obtain

‖ f ‖∞ � 4
√

N log N sup
r�2

‖ f ‖r√
r log r

+ C 2−(N+1)(s−1) ‖ f ‖Hs .

We obtain the desired inequality (2.1) by taking

N =
[

1

s − 1
log2(e + ‖ f ‖Hs )

]

,

where [a] denotes the largest integer less than or equal to a. Indeed, the first term
gives the desired bound while the second term is bounded by a constant. ��

The next lemma bounds the triple product in terms of the Lebesgue norms of
the functions and their directional derivatives.

Lemma 2.2. Let q ∈ [2,∞). Assume that f, g, gy, hx ∈ L2(R2) and h ∈
L2(q−1)(R2). Then

∫∫

R2
| f g h| dx dy � C ‖ f ‖2 ‖g‖1− 1

q
2 ‖gy‖

1
q
2 ‖h‖1− 1

q

2(q−1)‖hx‖
1
q
2 , (2.2)

where C is a constant depending only on q. Two special cases of (2.2) are
∫∫

| f g h| dx dy � C ‖ f ‖2 ‖g‖
2
3
2 ‖gy‖

1
3
2 ‖h‖

2
3
4 ‖hx‖

1
3
2 (2.3)

and
∫∫

| f g h| dx dy � C ‖ f ‖2 ‖g‖
1
2
2 ‖gy‖

1
2
2 ‖h‖

1
2
2 ‖hx‖

1
2
2 . (2.4)

This lemma generalizes an inequality in [6]. It is clear from (2.2) that, as q
increases, ‖h‖2(q−1) absorbs a higher power while the power of ‖hx‖2 decreases.
This generalization allows us to select suitable q values to obtain our desired esti-
mates. The two particular special cases in (2.3) and (2.4) will be very useful in the
proof of Theorem 1.1 in Section 4. The proof of Lemma 2.2 will be provided in
Appendix B.
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The next two lemmas bound the norms of the low and high frequency parts of
an H1 function in Lebesgue spaces. We recall the definition of the Fourier and the
inverse Fourier transforms:

F f (ξ) = f̂ (ξ) = (2π)−
d
2

∫

Rd
e−i x ·ξ f (x) dx,

F−1 f (x) = f̆ (x) = (2π)−
d
2

∫

Rd
ei x ·ξ f (ξ) dξ.

Lemma 2.3. Let f ∈ H1(R2). Let R > 0. Denote by B(0, R) the ball centered at
zero with radius R and by χB(0,R) the characteristic function on B(0, R). Write

f = f + f̃ with f = F−1(χB(0,R)F f ) and f̃ = F−1((1 − χB(0,R))F f ).

(2.5)

Then we have the following estimates for f and f̃ .

1. There exists a pure constant C independent of f and R such that

‖ f ‖L∞(R2) � C
√

log R ‖ f ‖H1(R2). (2.6)

2. For any 2 � q < ∞, there is a constant independent of q, R and f such that

‖ f̃ ‖Lq (R2) � Cq

R
2
q

‖ f̃ ‖H1(R2) � Cq

R
2
q

‖ f ‖H1(R2). (2.7)

In particular, for q = 4,

‖ f̃ ‖L4(R2) � C√
R

‖ f ‖H1(R2).

Proof. The proof of (2.6) is very easy.

‖ f ‖L∞ � ‖ f̂ ‖L1 =
∫

|ξ |�R
| f̂ (ξ)| dξ

=
∫

|ξ |�R
(1 + |ξ |2)− 1

2 (1 + |ξ |2) 1
2 | f̂ (ξ)| dξ

� C
√

log R ‖ f ‖H1 .

To prove (2.7), we first recall the embedding relations: for any 1 � q < ∞,

B̊0
q,min{q,2} ↪→ Lq ↪→ B̊0

q,max{q,2},

where B̊s
q,r denotes the homogenous Besov space (see Appendix A). In particular,

for 2 � q < ∞,

‖ f̃ ‖Lq � Cq ‖ f̃ ‖B̊0
q,2

= Cq

⎡

⎣
∞∑

j=−∞
‖� j f̃ ‖2

Lq

⎤

⎦

1
2

,
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where C is a constant independent of q. By definition,

̂� j f̃ (ξ) = �̂ j (ξ)
̂̃f (ξ), supp�̂ j ⊂ {ξ : 2 j−1 < |ξ | � 2 j+1}.

Since supp̂̃f ⊂ {ξ : |ξ | � R},� j f̃ ≡ 0 for j � j0 ≡ [log2 R]−1. By Bernstein’s
inequality,

‖ f̃ ‖Lq � Cq

⎡

⎣
∞∑

j= j0

‖� j f̃ ‖2
Lq

⎤

⎦

1
2

� Cq

⎡

⎣
∞∑

j= j0

24 j ( 1
2 − 1

q )‖� j f̃ ‖2
L2

⎤

⎦

1
2

� Cq 2− 2 j0
q ‖ f̃ ‖H1 � Cq

R
2
q

‖ f̃ ‖H1 .

This completes the proof of Lemma 2.3. ��
Lemma 2.4. Let 1 < q < ∞. Let f ∈ Lq(Rd) and let f̃ be defined as in (2.5).
Then, for a constant C depending only on q,

‖ f̃ ‖Lq (Rd ) � C ‖ f ‖Lq (Rd ).

Proof. For any 1 < q < ∞, we have the equivalence relation Lq ∼ F0
q,2, where

Fs
q,r denotes the Triebel-Lizorkin space containing tempered distributions f such

that

‖ f ‖Fs
q,r

≡ ‖2s j |� j f |‖Lq (lr ) =

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∞∑

j=−1

2s jr |� j f |r
⎤

⎦

1
r

∥
∥
∥
∥
∥
∥
∥

Lq

< ∞.

More information on Triebel-Lizorkin spaces can be found in Appendix A and
some books (see, for example, [28,29]). Therefore, for two constants C1 and C2
depending only on q,

C1‖ f ‖F0
p,2

� ‖ f ‖L p � C2‖ f ‖F0
p,2
. (2.8)

By the definition of f̃ , � j f̃ = 0 for j � j0 = [log R] − 1. Applying (2.8), we
have

‖ f̃ ‖L p � C2‖ f̃ ‖F0
p,2

=C2

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∞∑

j=−1

22s j |� j f̃ |2
⎤

⎦

1
2
∥
∥
∥
∥
∥
∥
∥

L p

�C2

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∞∑

j= j0

22s j |� j f |2
⎤

⎦

1
2
∥
∥
∥
∥
∥
∥
∥

L p

� C2

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∞∑

j=−1

22s j |� j f |2
⎤

⎦

1
2
∥
∥
∥
∥
∥
∥
∥

L p

�C1C2‖ f ‖L p .

This completes the proof of Lemma 2.4. ��
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3. Global Bounds for the Pressure

This section establishes several global a priori bounds for the pressure. These
bounds are crucial in the proof of the global bound (1.4), which, in turn, is one of
the major components in the proof of Theorem 1.1. These bounds for the pressure
are simultaneously obtained with the L4 and L8 bounds of (u, v, θ). We state these
bounds in two propositions.

Proposition 3.1. Let (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding
classical solution of (1.1). Then

‖(u(t), v(t))‖4
4 + ν

∫ t

0
‖|(uy(τ ), vy(τ ))| |(u(τ ), v(τ ))|‖2

2 dτ � M1(t), (3.1)

‖p(·, t)‖2 � M2(t),
∫ t

0
‖∇ p(·, τ )‖2

2 dτ � M3(t), (3.2)

where M1,M2 and M3 are explicit smooth functions of t ∈ [0,∞) that depend on
ν, κ and the initial norm ‖(u0, v0, θ0)‖H2 .

The estimates in Proposition 3.1 have been partially obtained in [3]. To be
self-contained, we include these estimates with a simplified proof.

Proposition 3.2. Let (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding
classical solution of (1.1). Then

‖v(t)‖8 � M4(t), (3.3)

‖uy(t)‖2
2 + ν

∫ t

0
‖uyy(τ )‖2

2 dτ � M5(t), (3.4)

‖p(t)‖4 � M6(t), (3.5)

where M4,M5 and M6 are explicit smooth functions of t ∈ [0,∞) that depend on
ν, κ and the initial norm ‖(u0, v0, θ0)‖H2 .

To prove the propositions, we first recall the following lemma.

Lemma 3.3. Let (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding
classical solution of (1.1). Then

‖(u(t), v(t))‖2
2 + 2ν

∫ t

0
‖(uy(τ ), vy(τ ))‖2

2 dτ = (‖(u0, v0)‖2 + t ‖θ0‖2)
2

(3.6)

and, for any q > 1,

‖θ(t)‖q
q + κ q (q − 1)

∫ t

0
‖θy |θ | q−2

2 (τ )‖2
2 dτ = ‖θ0‖q

q . (3.7)

In particular, for 1 � q � ∞,

‖θ(t)‖q � ‖θ0‖q . (3.8)
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Proof of Proposition 3.1. Taking the inner product of the first equation in (1.1) with
u (|u|2 + |v|2) and the second equation in (1.1) with v (|u|2 + |v|2) and integrating
by parts, we obtain

1

4

d

dt

∫

(|u|2 + |v|2)2 + ν

∫

(|u|2 + |v|2)(|uy |2 + |vy |2)+ 2ν
∫

(u uy + v vy)
2

= −
∫

px u (|u|2 + |v|2)−
∫

py v (|u|2 + |v|2)+
∫

θ v (|u|2 + |v|2).

By Hölder’s inequality,
∣
∣
∣
∣

∫

θ v (|u|2 + |v|2)
∣
∣
∣
∣ � C‖θ‖4 ‖|u|2 + |v|2‖3/2

2 .

By Lemma 2.2,
∣
∣
∣
∣

∫

px u (|u|2+|v|2)
∣
∣
∣
∣�C‖px‖2 ‖u‖1/2

2 ‖ux‖1/2
2

∥
∥
∥|u|2+|v|2

∥
∥
∥

1/2

2

∥
∥uuy +vvy

∥
∥1/2

2 .

Taking the divergence of the first two equations in (1.1), we get

�p = −(uux + vuy)x − (uvx + vvy)y + θy

= −2(vuy)x − 2(v vy)y + θy .

In addition, we write p = p1 + p2 with

�p1 = −(uux + vuy)x − (uvx + vvy)y, �p2 = θy .

By standard bounds for the Riesz transforms, we have

‖p1‖2 � C
(∥
∥
∥|u|2 + |v|2

∥
∥
∥

2

)
, ‖∇ p2‖4 � C‖θ‖4, (3.9)

‖∇ p‖2 � C
(∥
∥v uy

∥
∥

2 + ∥
∥v vy

∥
∥

2 + ‖θ‖2
)
. (3.10)

By integration by parts,

−
∫

py v (|u|2 + |v|2) =
∫

p1vy (|u|2 + |v|2)+ 2
∫

p1 v (u uy + v vy)

−
∫

p2y v (|u|2 + |v|2).

By Hölder’s inequality,

∣
∣
∣
∣

∫

p1 vy (|u|2+|v|2)
∣
∣
∣
∣ � C‖p1‖1/2

2 ‖p1x‖1/2
2 ‖vy‖2 ‖|u|2+|v|2‖1/2

2

∥
∥uuy +vvy

∥
∥1/2

2 ,

2

∣
∣
∣
∣

∫

p1 v (u uy +v vy)

∣
∣
∣
∣�C‖p1‖1/2

2 ‖p1x‖1/2
2 ‖v‖1/2

2 ‖vy‖1/2
2

∥
∥uuy +vvy

∥
∥

2 ,

∣
∣
∣
∣

∫

p2y v (|u|2 + |v|2)
∣
∣
∣
∣ � C‖θ‖4 ‖|u|2 + |v|2‖3/2

2 .
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Thus, we obtain

1

4

d

dt

∫

(|u|2+|v|2)2 + ν

∫

(|u|2+|v|2)(|uy |2+|vy |2)+2ν
∫

(u uy +v vy)
2

� C
(∥
∥v uy

∥
∥

2+∥∥v vy
∥
∥

2+‖θ‖2
) ‖u‖1/2

2 ‖vy‖1/2
2 ‖u2+v2‖1/2

2

∥
∥uuy +vvy

∥
∥1/2

2

+ C
(
‖u2 + v2‖2

)1/2 (∥
∥v uy

∥
∥

2 + ∥
∥v vy

∥
∥

2 + ‖θ‖2
)1/2 ‖vy‖2

×‖|u|2 + |v|2‖1/2
2

∥
∥uuy + vvy

∥
∥1/2

2

+ C
(
‖u2 + v2‖2

)1/2 (∥
∥v uy

∥
∥

2 + ∥
∥v vy

∥
∥

2 + ‖θ‖2
)1/2 ‖v‖1/2

2

×‖vy‖1/2
2

∥
∥uuy + vvy

∥
∥

2 + C‖θ‖4 ‖|u|2 + |v|2‖3/2
2 .

By Young’s inequality,

d

dt

∫

(|u|2 + |v|2)2 + ν

∫

(|u|2 + |v|2)(|uy |2 + |vy |2)+ ν

∫

(u uy + v vy)
2

� C(1+‖u‖2
2+‖v‖2

2)(1 + ‖u‖2
H1) ‖(u2 + v)2‖2

2+C‖θ‖2
2 ‖u‖2

H1

+ C‖θ‖4
4 + C‖θ‖4

2.

By Gronwall’s inequality and applying Lemma 3.3, we reach

∫

(|u|2 + |v|2)2 + ν

∫ t

0

∫

(|u|2 + |v|2)(|uy |2 + |vy |2)+ ν

∫ t

0

∫

(u uy + v vy)
2

�e
C
(

t+∫ t
0 ‖u‖2

H1 dτ
) (

‖|u0|2+|v0|2‖2
2+C‖θ0‖2

2

∫ t

0
‖u‖2

H1 dτ + C‖θ0‖4
4 t

)

.

Using the fact that ux = −vy and Lemma 3.3, we see that ‖u‖2
H1 is time integrable

and the inequality above verifies (3.1). In particular, by (3.9) and (3.10), we obtain
(3.2). This completes the proof of Proposition 3.1. ��
Proof of Proposition 3.2. Taking the inner product of the second equation in (1.1)
with v |v|6 and integrating by parts, we obtain

1

8

d

dt

∫

|v|8 + 7ν
∫

|v|6 |vy |2 = 7
∫

p vy |v|6 +
∫

θv|v|6.

The terms on the right can be bounded by

7
∫

p |vy | |v|6 +
∫

θ |v|7 � C‖p‖8‖v‖3
8‖v3vy‖2 + ‖θ‖8‖v‖7

8

� C‖p‖1/4‖p‖3/4
H1 ‖v‖3

8‖v3vy‖2 + ‖θ‖8‖v‖7
8.

By Young’s inequality, we get

d

dt
‖v‖8

8 + ν

∫

|v|6 |vy |2 � C‖p‖1/2
2 ‖p‖3/2

H1 ‖v‖6
8 + ‖θ‖8‖v‖7

8.
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Thus,

d

dt
‖v‖2

8 � C‖p‖1/2‖p‖3/2
H1 + ‖θ‖2

8 + ‖v‖2
8.

Applying Gronwall’s inequality then yields (3.3). We now prove (3.4). Taking the
inner product of the first equation in (1.1) with −uyy and integrating by parts, we
obtain

1

2

d

dt
‖uy‖2

2 + ν‖uyy‖2
2 = −

∫

px uyy .

Applying Hölder’s and Young’s inequalities, we get

d

dt
‖uy‖2

2 + ν‖uyy‖2
2 � 2‖px‖2

2.

Therefore,

‖uy‖2
2 + ν

∫ t

0
‖uyy‖2

2dτ � C
∫ t

0
‖p‖2

H1 dτ + ‖u0y‖2
2. (3.11)

To prove (3.5), we recall that

�p = −2(vuy)x − (v2)yy + θy .

By the Hardy–Littlewood–Sobolev inequality and standard bounds for the Riesz
transforms, we have

‖p(t)‖4 � C
(
‖(−�)−1(vuy)x‖4 + ‖(−�)−1(v2)yy‖4 + ‖(−�)−1θy‖4

)

� C
(
‖vuy‖4/3 + ‖v‖2

8 + ‖θ‖4/3

)

� C
(
‖v‖4 ‖uy‖2 + ‖v‖2

8 + ‖θ0‖4/3

)
.

Therefore, (3.5) holds. This completes the proof of Proposition 3.2. ��

4. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. A major component of the
proof is the global bound (1.4). A precise statement of this inequality is contained
in the following proposition.

Proposition 4.1. Let (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding
classical solution of (1.1). Then,

sup
r�2

‖v(t)‖L2r√
r log r

� sup
r�2

‖v0‖L2r√
r log r

+ B(t), (4.1)

where B(t) is an explicit integrable function of t ∈ [0,∞) that depends on ν, κ
and the initial norm ‖(u0, v0, θ0)‖H2 .
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With this global bound at our disposal, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It follows from Proposition 5.3 of [3] that the quantity

Y (t) = ‖ω‖2
H1 + ‖θ‖2

H2 + ‖ω2 + |∇θ |2‖2
2

satisfies

d

dt
Y (t)+‖ωy‖2

H1 +‖θy‖2
H2 +

∫

(ω2+|∇θ |2)
(
ω2

y +|∇θy |2
)
+
∫

(ωωy +∇θ · ∇θy)
2

� C
(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖uy‖2

2 + (1 + ‖u‖2
2)‖vy‖2

2

)
Y (t).

By Lemma 2.1,

‖v‖∞ �
{

C, C sup
r�2

‖v‖r√
r log r

(
log(e + ‖v‖H2) log log(e + ‖v‖H2)

) 1
2

}

.

Applying Proposition 4.1 and using the simple fact that ‖v‖2
H2 � ‖ω‖2

H1 � Y (t),
we obtain

d

dt
Y (t) � A(t)Y (t)+ C B2(t) Y (t) log(e + Y (t)) log log(e + Y (t)),

where A(t) = C
(
1 + ‖θ0‖2∞ + ‖uy‖2

2 + (1 + ‖u‖2
2)‖vy‖2

2

)
. An application of

Gronwall’s inequality then concludes the proof of Theorem 1.1. ��
Finally, we prove Proposition 4.1.

Proof of Proposition 4.1. Taking the inner product of the second equation in (1.1)
with v |v|2r−2 and integrating by parts, we obtain

1

2r

d

dt

∫

|v|2r + ν(2r − 1)
∫

v2
y |v|2r−2

= (2r − 1)
∫

p vy |v|2r−2 +
∫

θ v |v|2r−2

= (2r − 1)
∫

p vy |v|2r−2 + (2r − 1)
∫

p̃ vy |v|2r−2 +
∫

θ v |v|2r−2.

(4.2)

By Hölder’s inequality,
∫

θ v |v|2r−2 � ‖θ‖2r ‖v‖2r−1
2r ,

∫

p vy |v|2r−2 � ‖p‖∞ ‖vr−1‖2 ‖vyv
r−1‖2.

(4.3)

Applying Lemma 2.2, we have
∫

p̃ vy |v|2r−2 � C‖ p̃‖
2
3
4 ‖ p̃x‖

1
3
2 ‖vr−1‖

2
3
2 ‖(r − 1)vyv

r−2‖
1
3
2 ‖vyv

r−1‖2.
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Furthermore, by Hölder’s inequality,

∥
∥|v|r−1

∥
∥

2 = ‖v‖r−1
2(r−1) � ‖v‖

1
r−1
2 ‖v‖

r(r−2)
r−1

2r ,

∥
∥|v|r−2vy

∥
∥2

2 =
∫

|v|2(r−2)v2
y =

∫

|v|2(r−2)v
2(r−2)

r−1
y v

2
r−1
y � ‖vy‖

2
r−1
2

∥
∥vy |v|r−1

∥
∥

2(r−2)
r−1

2 .

Therefore,

∫

p vy |v|2r−2 � C ‖p‖∞ ‖v‖
1

r−1
2 ‖v‖

r(r−2)
r−1

2r ‖vyv
r−1‖2,

∫

p̃ vy |v|2r−2 � C (r − 1)
1
3 ‖ p̃‖

2
3
4 ‖ p̃x‖

1
3
2 ‖v‖

2
3(r−1)
2 ‖v‖

2r(r−2)
3(r−1)

2r

×‖vy‖
1

3(r−1)
2

∥
∥
∥vy |v|r−1

∥
∥
∥

1+ (r−2)
3(r−1)

2
.

By Young’s inequality and Lemma 2.3,

(2r − 1)
∫

p vy |v|2r−2 � ν

4
(2r − 1)‖vyv

r−1‖2
2

+ C(2r − 1)(log R) ‖p‖2
H1‖v‖

2
r−1
2 ‖v‖2r−2− 2

r−1
2r .

(4.4)

By Young’s inequality and Lemmas 2.3 and 2.4,

(2r−1)
∫

p̃ vy |v|2r−2 � ν

4
(2r − 1)‖vyv

r−1‖2
2 + C (2r − 1)(r − 1)

2r−2
2r−1

×‖ p̃‖
4(r−1)
2r−1

4 ‖ p̃x‖
2(r−1)
2r−1

2 ‖vy‖
2

2r−1
2 ‖v‖

4
2r−1
2 ‖v‖2r−2− 2(r+1)

2r−1
2r

� ν

4
(2r − 1)‖vyv

r−1‖2
2 + C (2r − 1)(r − 1)

2r−2
2r−1 R− r−1

2r−1

×‖p‖
2r−2
2r−1

L4 ‖p‖
4r−4
2r−1

H1 ‖vy‖
2

2r−1
2 ‖v‖

4
2r−1
2 ‖v‖2r−3− 3

2r−1
2r .

(4.5)

Without loss of generality, we assume ‖v‖2r � 1. Inserting (4.3), (4.4) and (4.5)
in (4.2), we have

1

2r

d

dt
‖v‖2r

L2r + ν

2
(2r − 1)

∫

v2
y |v|2r−2 dx

� C(2r − 1)(log R) ‖p‖2
H1‖v‖

2
r−1
2 ‖v‖2r−2

2r

+C (2r − 1)(r − 1)
2r−2
2r−1 R− r−1

2r−1 ‖p‖
2r−2
2r−1

L4 ‖p‖
4r−4
2r−1

H1 ‖vy‖
2

2r−1
2 ‖v‖

4
2r−1
2 ‖v‖2r−2

2r

+‖θ‖L2r ‖v‖2r−1
L2r .
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Especially,

d

dt
‖v‖2

L2r � C(2r − 1)(log R) ‖p‖2
H1‖v‖

2
r−1
2

+ C (2r − 1)(r − 1)
2r−2
2r−1 R− r−1

2r−1 ‖p‖
2r−2
2r−1

L4

(
‖p‖2

H1 + ‖vy‖2
2

)
‖v‖

4
2r−1
2

+‖θ‖2
L2r + ‖v‖2

L2r .

Taking R = (2r − 1)
2r−1
2r−2 (r − 1)2, integrating in time and applying Propositions

3.1 and 3.2, we obtain

‖v(t)‖2
L2r � ‖v0‖2

L2r + B1(t)r log r + B2(t),

where B1 and B2 are explicit integrable functions. Therefore,

sup
r�2

‖v(t)‖2
L2r

r log r
� sup

r�2

‖v0‖2
L2r

r log r
+ (B1(t)+ B2(t)).

This completes the proof of Proposition 4.1. ��
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Appendix A. Besov and Triebel-Lizorkin Spaces

This appendix provides the definitions of Besov and Triebel-Lizorkin spaces and
some related facts used in the previous sections. Materials presented in this appen-
dix can be found in several books and papers (see, for example, [4,10,28,29]).
We start with some notation. S denotes the usual Schwarz class and S ′ its dual, the
space of tempered distributions. S0 denotes a subspace of S defined by

S0 =
{

φ ∈ S :
∫

Rd
φ(x) xγ dx = 0, |γ | = 0, 1, 2, . . .

}

and S ′
0 denotes its dual. S ′

0 can be identified as

S ′
0 = S ′/S⊥

0 = S ′/P,
where P denotes the space of multinomials.
To introduce the Littlewood–Paley decomposition, we write for each j ∈ Z

A j =
{
ξ ∈ R

d : 2 j−1 � |ξ | < 2 j+1
}
. (A.1)

The Littlewood–Paley decomposition asserts the existence of a sequence of func-
tions {� j } j∈Z ∈ S such that

supp�̂ j ⊂ A j , �̂ j (ξ) = �̂0(2
− jξ) or � j (x) = 2 jd�0(2

j x),
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and
∞∑

j=−∞
�̂ j (ξ) =

{
1 , if ξ ∈ R

d \ {0},
0 , if ξ = 0.

Therefore, for a general function ψ ∈ S, we have

∞∑

j=−∞
�̂ j (ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ R

d \ {0}.

In addition, if ψ ∈ S0, then

∞∑

j=−∞
�̂ j (ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ R

d .

That is, for ψ ∈ S0,

∞∑

j=−∞
� j ∗ ψ = ψ

and hence
∞∑

j=−∞
� j ∗ f = f, f ∈ S ′

0,

in the sense of weak-∗ topology of S ′
0. For notational convenience, we define

� j f = � j ∗ f, j ∈ Z. (A.2)

Definition A.1. For s ∈ R and 1 � p, q � ∞, the homogeneous Besov space B̊s
p,q

consists of f ∈ S ′
0 satisfying

‖ f ‖B̊s
p,q

≡ ‖2 js‖� j f ‖L p‖lq < ∞.

We now choose � ∈ S such that

�̂(ξ) = 1 −
∞∑

j=0

�̂ j (ξ), ξ ∈ R
d .

Then, for any ψ ∈ S,

� ∗ ψ +
∞∑

j=0

� j ∗ ψ = ψ,

and hence

� ∗ f +
∞∑

j=0

� j ∗ f = f (A.3)
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in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

�′
j f =

⎧
⎨

⎩

0, if j � −2,
� ∗ f, if j = −1,
� j ∗ f, if j = 0, 1, 2, . . . .

(A.4)

Definition A.2. The inhomogeneous Besov space Bs
p,q with 1 � p, q � ∞ and

s ∈ R consists of functions f ∈ S ′ satisfying

‖ f ‖Bs
p,q

≡ ‖2 js‖�′
j f ‖L p‖lq < ∞.

Many frequently used function spaces are special cases of Besov spaces. The fol-
lowing proposition lists some useful equivalence and embedding relations.

Proposition A.3. For any s ∈ R,

H̊ s ∼ B̊s
2,2, Hs ∼ Bs

2,2.

For any s ∈ R and 1 < q < ∞,

B̊s
q,min{q,2} ↪→ W̊ s

q ↪→ B̊s
q,max{q,2}.

In particular, B̊0
q,min{q,2} ↪→ Lq ↪→ B̊0

q,max{q,2}.

For notational convenience, we write � j for �′
j . There will be no confusion if we

keep in mind that� j ’s associated with the homogeneous Besov spaces are defined
in (A.2), while those associated with the inhomogeneous Besov spaces are defined
in (A.4). Besides the Fourier localization operators� j , the partial sum S j is also a
useful notation. For an integer j ,

S j ≡
j−1∑

k=−1

�k,

where �k is given by (A.4). For any f ∈ S ′, the Fourier transform of S j f is
supported on the ball of radius 2 j .
Bernstein’s inequalities are useful tools on Fourier localized functions, as these
inequalities trade integrability for derivatives. The following proposition provides
Bernstein type inequalities for fractional derivatives.

Proposition A.4. Let α � 0. Let 1 � p � q � ∞.

1. If f satisfies

supp f̂ ⊂ {ξ ∈ R
d : |ξ | � K 2 j },

for some integer j and a constant K > 0, then

‖(−�)α f ‖Lq (Rd ) � C1 22α j+ jd( 1
p − 1

q )‖ f ‖L p(Rd ).



1002 Chongsheng Cao & Jiahong Wu

2. If f satisfies

supp f̂ ⊂ {ξ ∈ R
d : K12 j � |ξ | � K22 j }

for some integer j and constants 0 < K1 � K2, then

C1 22α j‖ f ‖Lq (Rd ) � ‖(−�)α f ‖Lq (Rd ) � C2 22α j+ jd( 1
p − 1

q )‖ f ‖L p(Rd ),

where C1 and C2 are constants depending only on α, p and q.

Triebel-Lizorkin space is a direct generalization of Lebesgue spaces and Sobolev
spaces.

Definition A.5. For any s ∈ R, 0 < p < ∞ and 0 < q � ∞, the Triebel-Lizorkin
space Fs

p,q is defined by

Fs
p,q =

{
f ∈ S ′ : ‖ f ‖Fs

p,q
≡
∥
∥
∥‖2s j� j f ‖lq

∥
∥
∥

L p
< ∞

}
.

Some “classical” function spaces are special cases of the Triebel-Lizorkin spaces.

Proposition A.6. We have the following equivalence relations.

1. For any 1 < p < ∞, L p ∼ F0
p,2;

2. For any 1 < p < ∞ and m = 1, 2, . . ., W m
p ∼ Fm

p,2;
3. For any 1 � p < ∞ and s �= integers, W s

p ∼ Fs
p,p.

Appendix B. Proof of Lemma 2.2

This appendix provides the proof of Lemma 2.2.

Proof of Lemma 2.2. We first recall that, for any q � 2,

‖ f ‖L∞(R) � q
√

q ‖ f ‖1− 1
q

L2(q−1)(R)
‖ fx‖

1
q

L2(R)
.

Therefore, by Hölder’s inequality,

∫∫

R2
| f g h| dx dy

� C
∫ [(∫

| f |2 dx

) 1
2
(∫

|g|2 dx

) 1
2
(

sup
−∞<x<∞

h

)]

dy

� C
∫ [(∫

| f |2 dx

) 1
2
(∫

|g|2 dx

) 1
2
(∫

|h|2(q−1) dx

) 1
2q
(∫

|hx |2 dx

) 1
2q
]

dy

� C ‖ f ‖2

(∫ (∫

|g|2 dx

) q
q−2

dy

) q−2
2q

‖h‖1− 1
q

2(q−1) ‖hx‖
1
q
2 . (B.1)
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By Minkowski’s inequality,

(∫ (∫

|g|2 dx

) q
q−2

dy

) q−2
2q

�

⎛

⎝

∫ (∫

|g| 2q
q−2 dy

) q−2
q

dx

⎞

⎠

1
2

�
(∫ (∫

g2dy

)1− 1
q
(∫

g2
ydy

) 1
q

dx

) 1
2

� ‖g‖1− 1
q

2 ‖gy‖
1
q
2 . (B.2)

Inserting (B.2) in (B.1) yields the desired inequality. This completes the proof of
Proposition 2.2. ��
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