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We discuss general incompressible inviscid models, including 
the Euler equations, the surface quasi-geostrophic equation, 
incompressible porous medium equation, and Boussinesq 
equations. All these models have classical unique solutions, 
at least for short time. We show that they have real analytic 
Lagrangian paths. More precisely, we show that as long as a 
solution of any of these equations is in a class of regularity 
that assures Hölder continuous gradients of velocity, the 
corresponding Lagrangian paths are real analytic functions 
of time. The method of proof is conceptually straightforward 
and general, and we address the combinatorial issues head-on.

© 2015 Published by Elsevier Inc.

1. Introduction

Analyticity of Lagrangian paths of solutions of incompressible Euler equations is a 
classical subject. Propagation of real analyticity in space and time, from analytic initial 
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data, and for as long as the solution exists, has been amply investigated [3,2,1,13,26,
27,24,25,37,31]. The smoothness or real analyticity of Lagrangian paths without having 
analytic Eulerian data is quite a different subject from propagation of analyticity. This 
subject has been addressed in the past [28,6,17,32,34,33,7,22], and has recently generated 
renewed interest [36,18,35,16,20,30,38,15]. The remarkable property of smoothness of 
the Lagrangian paths in this system holds even when the Eulerian variables (velocity, 
pressure) have a limited degree of smoothness. A relatively low degree of smoothness of 
the Eulerian variables is maintained through the evolution if it is initially present, because 
the equations, when well posed, are time-reversible. Consequently, the real analyticity 
of Lagrangian paths in such circumstances is all the more remarkable. An interesting 
example of the distinct degrees of smoothness of Eulerian and Lagrangian variables is 
provided in the recent works [19,4], which concern a rough enough Eulerian setting 
for non-uniqueness. The purpose of this paper is to show that the real analyticity of 
Lagrangian paths of solutions of hydrodynamic models is a general property which occurs 
naturally when the Eulerian velocities are slightly smoother than Lipschitz, and follows 
from a uniform chord-arc property of the paths using singular integral calculus.

The Lagrangian paths of any fluid model with velocities u(x, t), with x ∈ R
d and 

t ∈ R are defined by ordinary differential equations

dX

dt
= u(X, t), (1.1)

X(a, 0) = a. (1.2)

We refer to a ∈ R
d as a “label” because it marks the initial point on the path a �→

X(a, t). The gradient of the path obeys

d

dt
(∇X) = (∇u)(∇X) (1.3)

with initial data the identity matrix. As long as u is Lipschitz, we have

sup
a∈Rd

|∇X(a, t)| ≤ exp
t∫

0

‖∇u‖L∞dt (1.4)

where we denote by |·| the norm of the matrix. The maps X are C1,γ and invertible if u
is in L1(0, T ; C1,γ), and the inverse, the “back-to-labels” map A(x, t) = X−1(x, t) obeys

∂tA + u · ∇A = 0, (1.5)

with initial data A(x, 0) = x. Incompressibility is not needed for this to hold. The 
gradients obey

∂t(∇A) + u · ∇(∇A) + (∇A)(∇u) = 0, (1.6)

with initial data the identity matrix, and with (∇A)(∇u) the matrix product. Therefore
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sup
x∈Rd

|∇A(x, t)| ≤ exp
t∫

0

‖∇u‖L∞dt (1.7)

follows by integrating on characteristics. Because

a− b = A(X(a, t), t) −A(X(b, t), t)

it follows from (1.7) that

|a− b| ≤ |X(a, t) −X(b, t)| exp
t∫

0

‖∇u‖L∞dt,

and because

X(a, t) −X(b, t) =
1∫

0

d

ds
X((1 − s)a + sb, t)ds

it follows from (1.4) that

|X(a, t) −X(b, t)| ≤ |a− b| exp
t∫

0

‖∇u‖L∞dt.

We have thus the chord-arc condition

λ−1 ≤ |a− b|
|X(a, t) −X(b, t)| ≤ λ (1.8)

where

λ = exp
t∫

0

‖∇u‖L∞dt. (1.9)

This condition holds for any fluid system, as long as the velocities are Lipschitz, even 
if the fluid is compressible. Time analyticity of paths will be discussed here only in 
the incompressible case, for convenience, but the proofs are the same for compressible 
equations, modulo differentiating the Jacobian of the path map.

We consider here one of the following equations: the 2D surface quasi-geostrophic equa-
tion (cf. (2.1)–(2.2)), the 2D incompressible porous medium equation (cf. (2.5)–(2.6)), 
the 2D and the 3D incompressible Euler equations (cf. (2.9) and (2.8)), and the 2D 
Boussinesq equations (cf. (2.10)–(2.11)). These are by no means an exhaustive list of 
equations for which our method applies. They have been chosen because, with the sole 
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exception of the 2D Euler equations, all the above models are examples of equations 
where the question of global existence of smooth solutions remains open. Nevertheless, 
they all have real analytic particle paths. The main result of this manuscript is:

Theorem 1.1 (Lagrangian analyticity in hydrodynamic equations). Consider any of the 
above hydrodynamic systems on a time interval when the Eulerian velocities are C1,γ, 
for some γ ∈ (0, 1). Then, as the chord-arc parameter in (1.9) remains finite on the time 
interval, the Lagrangian particle trajectories are real analytic functions of time.

We note that the assumption of the theorem holds for short time if the initial data 
are such that the Eulerian velocities are C1,γ . The analyticity is a local property. It 
follows from the proof of the theorem that the radius of time analyticity of X(·, t) is 
a function of a suitable norm of the initial data and time, which enters only through 
the chord-arc parameter λ. This parameter dependence is consistent with that for the 
spatial analyticity radius in the case of real analytic initial datum [24,25].

The main idea of the proof starts with a representation of the velocity in Lagrangian 
variables in terms of conserved quantities. It is easiest to show this in the case of 2D 
active scalars. Two dimensional incompressible hydrodynamic velocities can be expressed 
in terms of a stream function ψ,

u = ∇⊥ψ (1.10)

where ∇⊥ = (−∂2, ∂1) is the gradient rotated counter-clockwise by 90 degrees. The active 
scalars solve transport equations

∂tθ + u · ∇θ = 0 (1.11)

with u given by (1.10) and ψ related to θ by some time independent linear constitutive 
law ψ = Lθ. In most cases this leads to a simple integral formula

u(x, t) = p.v.

∫
R2

K(x− y)θ(y, t)dy

with a kernel K that is singular at the origin, real analytic away from the origin, and 
integrates to zero on spheres. Note that (1.11) simply says that

θ(X(a, t), t) = θ0(a). (1.12)

Composing the representation of the velocity with the Lagrangian map we obtain

dX(a, t)
dt

= p̃.v.

∫
K(X(a, t) −X(b, t))θ0(b)db (1.13)
R2
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where the symbol p̃.v. denotes a principal value in the Eulerian variables. Throughout 
the manuscript, for notational convenience we drop the p.v. in front of the integrals, as 
they are always understood as principal values in the Eulerian sense. In Section 2 we 
give the precise versions of (1.13) for the hydrodynamic models under consideration.

The straightforward general idea is to use the chord-arc condition and analyticity of 
the kernel to prove inductively Cauchy inequalities for all high time derivatives of X
at fixed label. The implementation of this idea encounters two sets of difficulties: one 
due to combinatorial complexity, and the other due to the singularity of the kernels and 
unboundedness of space.

Combinatorial complexity is already present in a real variables proof of real analyticity 
of compositions of multivariate real analytic functions. We discuss this issue separately 
in Section 3. We use a multivariate Faà di Bruno formula (cf. [11] or Lemma 3.2 below), 
multivariate identities (we call them “magic identities”, because they seem so to us; 
cf. Lemma 3.3) and an induction with modified versions of Cauchy inequalities (cf. (3.4)
or (4.4), inspired by [23]) in order to control the growth of the combinatorial terms. 
This difficulty is universal, and because we addressed it head-on, the method is appli-
cable to even more examples, not only the ones described in this work, and not only to 
hydrodynamic ones.

The singular integral difficulties are familiar. In all these systems the gradient of 
velocity is also represented using singular integrals of Calderón–Zygmund type. The 
singular nature of the kernels is always compensated by the presence of polynomial 
terms in X(a, t) −X(b, t), which arise since the kernels have vanishing means on spheres 
centered at the origin. The fact that we integrate in the whole space necessitates the 
introduction of a real analytic cutoff, which for simplicity we take to be Gaussian.

The Euler equations have classical invariants [8,9,38], which yield completely local 
relations involving dX/dt in Lagrangian coordinates. This is remarkable, but special: 
in more general systems the corresponding relations are not local. Because of this, we 
pursue the same proof for the Euler equations as for the general case.

We give the fully detailed proof of Theorem 1.1 in the case of the 2D SQG equations. 
This is done in Section 4. The proofs for the 2D IPM and 2D and 3D Euler equations 
are the same. The 2D IPM and 3D Euler equations have of course different kernels; 2D 
Euler has a less singular kernel. The proof in the case of the 2D Boussinesq equations 
has an additional level of difficulty since the operator L in the constitutive law for θ is 
time-dependent. This issue will be addressed in a forthcoming work.

The paper is organized as follows. In Section 2 we provide the self-contained La-
grangian formulae of type (1.13) for each of the hydrodynamic models under consider-
ation. In Section 3 we introduce the combinatorial machinery used in the proof of the 
main theorem, which is centered around the multivariate Faà di Bruno formula. In Sec-
tion 4 we give the proof of Theorem 1.1 in the case of SQG. Lastly, in Appendix A, 
for the sake of completeness, we give the derivation of the natural Lagrangian formulae 
stated in Section 2. In Appendix B we recall from [23] the one-dimensional Faà di Bruno 
formula and its application to the composition of real analytic functions.
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2. Self-contained Lagrangian evolution

In this section we give self-contained formulae for the time derivatives of X and ∇X, 
for each of the hydrodynamic equations considered. In each case the initial datum enters 
these equations as a parameter. We use the usual Poisson bracket notation

{f, g} = (∂1f)(∂2g) − (∂2f)(∂1g) = (∇⊥f) · (∇g).

2.1. 2D surface quasi-geostrophic equation

The inviscid SQG equation is

∂tθ + (u · ∇)θ = 0, (2.1)

u = ∇⊥(−Δ)−1/2θ = R⊥θ (2.2)

where R = (R1, R2) is the vector of Riesz-transforms. Here x ∈ R
2 and t > 0. We recall 

cf. [10] that the SQG equation is locally well-posed if θ0 ∈ C1,γ , with γ ∈ (0, 1). It follows 
from (2.1)–(2.2) that the vector fields ∇⊥θ · ∇ and ∂t + u · ∇ commute. The ensuing 
self-contained formula for the Lagrangian trajectory X induced by the velocity field u
is

dX

dt
(a, t) =

∫
K(X(a, t) −X(b, t))θ0(b) db, (2.3)

while the gradient of the Lagrangian, ∇aX, obeys

d(∇aX)
dt

(a, t) = ∇aX(a, t)
∫

K(X(a, t) −X(b, t))
(
∇⊥

b X
⊥(b, t)

)
· ∇bθ0(b) db.

(2.4)

Here the kernel K associated to the rotated Riesz transform R⊥ is given by

K(y) = y⊥

2π|y|3 .

We refer to Appendix A.1 for details.

2.2. The 2D incompressible porous media equation

The inviscid IPM equation assumes the form

∂tθ + (u · ∇)θ = 0, (2.5)

u = P(0, θ) = −∇p− (0, θ). (2.6)
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We recall, cf. [12] that the IPM equation is locally well-posed if θ0 ∈ C1,γ , with γ ∈ (0, 1). 
For the particle trajectories X induced by the vector field u we have

dX

dt
(a, t) = − 1

2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2 {θ0(b), X2(b, t)} db

and

d(∇aX)
dt

(a, t) = ∇aX(a, t)
∫

K(X(a, t) −X(b, t)) {θ0(b), X2(b, t)} db

+ 1
2 {θ0(a), X2(a, t)}

[
0 −1
1 0

]
∇aX(a, t)

where K is given by

K(y) = K(y1, y2) = 1
2π|y|4

[
2y1 y2 y2

2 − y2
1

y2
2 − y2

1 −2y1 y2

]
. (2.7)

The details are given in Appendix A.2.

2.3. The 3D Euler equations

The three-dimensional Euler equations in vorticity form are given by

∂tω + u · ∇ω = ω · ∇u (2.8)

where the divergence free u can be recovered from ω via the Biot–Savart formula [29]

u(x, t) = 1
4π

∫
R3

x− y

|x− y|3 × ω(y, t)dy.

The geometric interpretation of (2.8) and incompressibility is that the vector fields ω ·∇
and ∂t + u · ∇ commute. The local existence and uniqueness of solutions to (2.8) with 
initial data u0 ∈ C1,γ , for γ ∈ (0, 1), goes back at least to [28] (see also [29] and references 
therein for a more modern perspective). Due to the Cauchy formula

ω(X(a, t), t) = ∇X(a, t)ω0(a),

the Lagrangian map X obeys the self-contained evolutions

dX

dt
(a, t) = 1

4π

∫
X(a, t) −X(b, t)

|X(a, t) −X(b, t)|3 × (∇bX(b, t)ω0(b))db

and
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d(∇aX)
dt

(a, t) = (∇aX)(a, t)
∫

K(X(a, t) −X(b, t)) (∇bX(b, t)ω0(b)) db

+ 1
2(∇aX(a, t)ω0(a)) × (∇aX)(a, t)

where for vectors x and y the matrix kernel K(x)y is defined in coordinates by

(K(x)y)ij = 3
8π

((x× y) ⊗ x + x⊗ (x× y))ij
|x|5 = 3

8π
(x× y)i xj + (x× y)j xi

|x|5 .

The details are given in Appendix A.3.

2.4. The 2D Euler equations

The two-dimensional Euler equations in vorticity form are

∂tω + u · ∇ω = 0 (2.9)

where the Biot–Savart law [29] in two dimensions reads

u(x) = 1
2π

∫ (x− y)⊥

|x− y|2 ω(y)dy.

The equations are locally in time well-posed if the initial velocity u0 ∈ C1,γ , for some γ ∈
(0, 1) (cf. [28]). In two dimensions solutions cannot develop finite time singularities [21], 
but this fact will not be used in our proof, since global existence is not known for any of 
the other hydrodynamic equations considered in this paper. The particle trajectory X
obeys the evolution

dX

dt
(a, t) = 1

2π

∫ (X(a, t) −X(b, t))⊥

|X(a, t) −X(b, t)|2 ω0(b)db,

while the time derivative of ∇aX obeys

d(∇aX)
dt

(a, t) =∇aX(a, t)
∫

K(X(a, t) −X(b, t))ω0(b) db

+ 1
2ω0(a)

[
0 −1
1 0

]
∇aX(a, t)

with K being the kernel in (2.7). These details are given in Appendix A.4.

2.5. The 2D Boussinesq equations

The two-dimensional Boussinesq equations for the velocity field u, scalar pressure p, 
and scalar density θ are
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∂tu + (u · ∇)u = −∇p + θe2, ∇ · u = 0, (2.10)

∂tθ + (u · ∇)θ = 0, (2.11)

where e2 = (0, 1), x ∈ R
2, and t > 0. The scalar vorticity ω = ∇⊥ · u = ∂x1u2 − ∂x2u1

satisfies

∂tω + (u · ∇)ω = ∂x1θ.

The local well-posedness for the 2D Boussinesq holds for initial data u0, θ0 ∈ C1,γ with 
γ ∈ (0, 1) (cf. [14,5]). The particle trajectories X induced by u then obey

dX

dt
(a, t) = 1

2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2 ω0(b) db

+ 1
2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2

⎛⎝ t∫
0

{θ0(b), X2(b, τ)} dτ

⎞⎠ db

and

d(∇aX)
dt

(a, t) =
(∫

K(X(a, t) −X(b, t))ω0(b) db
)
∇aX(a, t)

+

⎛⎝∫ K(X(a, t) −X(b, t))
t∫

0

{θ0(b), X2(b, τ)} dτ db

⎞⎠∇aX(a, t)

+ 1
2

⎛⎝ω0(a) +
t∫

0

{θ0(a), X2(a, τ)} dτ

⎞⎠ [ 0 −1
1 0

]
∇aX(a, t),

where the kernel K is given by (2.7). The derivation is given in Appendix A.5.

3. Analyticity and the composition of functions: combinatorial lemmas

Let X : R → R
d be a vector valued function which obeys the differential equation

d

dt
X(t) = K(X(t)) (3.1)

where K : Rd → R
d is a given real analytic function of several variables. In this section 

we show that if X is bounded, then it is in fact real analytic (see Theorem 3.1 below). 
This statement should be understood in the neighborhood of a point t0 ∈ R, and X0 =
X(t0) ∈ R

d.
The proof in the case d = 1 is taken from [23, Chapter 1.5], and serves as a guiding 

example (see Appendix B below). The case d ≥ 2 requires an extended combinatorial 
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machine, and for that we appeal to the multivariate Faà di Bruno formula in [11]. The 
precise result is:

Theorem 3.1. Let K = (K1, . . . , Kd) : Rd → R
d be a function which obeys

|∂αKi(X)| ≤ C
|α|!
R|α| (3.2)

for some C, R > 0, i ∈ {1, . . . , d}, and for all X in the neighborhood of some X0 =
X(t0), where X = (X1, . . . , Xd) : R → R

d is a function which obeys

|Xi(t)| ≤ C (3.3)

for all t in the neighborhood of t0, and i ∈ {1, . . . , d}. If X is a solution of (3.1), then 
we have that

|(∂n
t Xi)(t)| ≤ (−1)n−1

(
1/2
n

)
(2C)n

Rn−1 n! (3.4)

for all n ≥ 1, all coordinates i ∈ {1, . . . , d}, and all t in a neighborhood of t0. In 
particular, X is a real analytic function of t at t0, with radius of analyticity R/C.

3.1. Preliminaries

We denote by N0 the set of all integers strictly larger than −1, and by Nd
0 the set of 

all multi-indices α = (α1, · · · , αd) with αj ∈ N0. For a multi-index α, we write

|α| = α1 + . . . + αd

α! = (α1!) · . . . · (αd!)

∂α = ∂α1
x1

. . . ∂αd
xd

yα = (yα1
1 ) · . . . · (yαd

d )

where y ∈ R
d is a point. The following definition shall be needed below.

Definition. Let n ≥ 1, 1 ≤ s ≤ n, and α ∈ N
d
0 with 1 ≤ |α| ≤ n, define the set

Ps(n,α) =
{

(k1, . . . ,ks; �1, . . . , �s) ∈ N
d
0 × . . .Nd

0 × N× . . .N :

0 < |ki|, 0 < �1 < . . . < �s,
s∑

i=1
ki = α,

s∑
i=1

|ki|�i = n
}
. (3.5)

In particular, we note that �i 
= 0.
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Moreover, for an integer j ≥ 1 we define(
1/2
j

)
= (1/2)(1/2 − 1) . . . (1/2 − j + 1)

j!

and (
1/2
0

)
= −1.

We use the above non-standard convention for 
(1/2

0
)

so that we can ensure

(−1)j−1
(

1/2
j

)
≥ 0

for all j ≥ 0. Moreover, we will use that

j!(−1)j−1
(

1/2
j

)
= 1

2j
j−2∏
k=0

(2k + 1) = (2j − 3)!!
2j = (2j − 3)!

22j−2(j − 2)! ≤ C
j!
2j (3.6)

for some universal constant C, whenever j ≥ 2.
With this notation in hand, we recall [11, Theorem 2.1].

Lemma 3.2 (Multivariate Faà di Bruno formula). Let h : Rd → R be a scalar function, 
C∞ in the neighborhood of y0 = g(x0), and g : R → R

d be a vector function, C∞ in the 
neighborhood of x0. Define f(x) = h(g(x)) : R → R. Then

f (n)(x0) = n!
∑

1≤|α|≤n

(∂αh)(g(x0))
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(
(∂�jg)(x0)

)kj

(kj !)(�j !)|kj |

holds for any n ≥ 1, with the convention that 00 := 1.

3.2. Main combinatorial identity

The following lemma will be essential in the proof of Theorem 3.1.

Lemma 3.3 (Multivaried magic identity). For n ≥ 1, with the earlier notation we have 
that

∑
1≤|α|≤n

(−1)|α||α|!
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(1/2
�j

)|kj |

(kj !)
= 2(n + 1)

(
1/2
n + 1

)
.

Proof of Lemma 3.3. The proof mimics that of the proof of [23, Lemma 1.5.2], by using 
a diagonal argument.
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Let Z : R → R be defined as

Z(t) =
(
1 −

√
1 − 2t

)
=
(
1 − (1 + (−2t))1/2

)
.

This function has the property that

(∂�Z)(0) = −
(

1/2
�

)
(−2)��!

for any � ≥ 0. Also, Z(0) = 0.
Next, consider a function K : Rd → R, such that

(∂αK)(0, . . . , 0) = |α|!

for any multi-index α ∈ N
d
0. For example, take a real analytic function of several vari-

ables, which on the diagonal is given by

K(Z, . . . , Z) = 1
1 − Z

.

For example, consider

K(Z1, . . . , Zd) =
d∏

j=1

(
1

1 − Zj

)1/d

which is smooth in a neighborhood of the origin in Rd.
Let F : R → R be defined as

F (t) = K(Z(t), . . . , Z(t)) = 1√
1 − 2t

.

This function has the property that

F (n)(0) = −(n + 1)!
(

1/2
n + 1

)
(−2)n+1 (3.7)

for any n ≥ 1.
Using Lemma 3.2 we have on the other hand that

F (n)(0) = n!
∑

1≤|α|≤n

(∂αK)(0, . . . , 0)
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(
(∂�jZ)(0)

)|kj |

(kj !)(�j !)|kj |

= n!
∑

1≤|α|≤n

|α|!
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(
−
(1/2

�j

)
(−2)�j �j !

)|kj |

(kj !)(�j !)|kj |

= n!(−2)n
∑

1≤|α|≤n

|α|!(−1)|α|
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(1/2
�

)|kj |

(kj !)
.

The proof of the lemma is concluded by appealing to (3.7). �
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3.3. The proof of Theorem 3.1

Proof of Theorem 3.1. The proof is by induction. The case n = 1 is contained in as-
sumption (3.3).

We now show the induction step. Fix one coordinate i throughout the proof. Using 
the multivaried Faà di Bruno formula of Lemma 3.2 we obtain

(∂n+1
t Xi)(t) = ∂n

t (Ki(X(t))

= n!
∑

1≤|α|≤n

(∂αKi)(X(t))
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(
(∂�j

t X)(t)
)kj

(kj !)(�j !)|kj |
.

By appealing to (3.2) and the inductive hypothesis (3.4), we obtain

|∂n+1
t Xi| ≤ Cn!

∑
1≤|α|≤n

|α|!
R|α|

n∑
s=1

∑
Ps(n,α)

s∏
j=1

(
(−1)�j−1(1/2

�j

) (2C)�j
R�j−1 �j !

)|kj |

(kj !)(�j !)|kj |

≤ Cn!(−1)n (2C)n

Rn

∑
1≤|α|≤n

(−1)|α||α|!
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(1/2
�j

)|kj |

(kj !)

= Cn!(−1)n (2C)n

Rn
2(n + 1)

(
1/2
n + 1

)
= (−1)n(n + 1)!(2C)n+1

Rn

(
1/2
n + 1

)
n!.

In the second-to-last inequality we have essentially used Lemma 3.3. With (3.6), the 
proof is complete. �
4. Lagrangian analyticity for the SQG equation

In this section we give the proof of Theorem 1.1 in the case of the surface quasi-
geostrophic equations. The precise statement is:

Theorem 4.1 (Lagrangian analyticity for SQG). Consider initial data θ0 ∈ C1,γ ∩W 1,1, 
and let θ be the unique maximal solution of the initial value problem for (2.1)–(2.2), with 
θ ∈ L∞

loc([0, T∗); C1,γ ∩ W 1,1). Given any t ∈ [0, T∗), there exists T ∈ (0, T∗ − t), with 
T = T (‖∇u‖L∞(t,(t+T∗)/2;L∞)), and R > 0 with R = R(t, ‖θ0‖C1,γ∩W 1,1 , γ), such that

‖∂n
t X‖L∞(t,t+T ;C1,γ) ≤ Cn!R−n

holds for any n ≥ 0. Here C is a universal constant, and the norm ‖X‖C1,γ is defined 
in (4.3) below. In particular, the Lagrangian trajectory X is a real analytic function of 
time, with radius of analyticity R.
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Take any t ∈ (0, T∗). Analyticity is a local property of functions, so it is sufficient 
to follow the Lagrangian paths for a short interval of time [t, t + T ] past t. Note that 
from the local existence theory we have the bounds on the size of θ(·, t). Without loss of 
generality it is sufficient to give the proof for t = 0.

Fix a λ ∈ (1, 3/2] throughout this section. Let T ∈ (0, T∗) be such that

T∫
0

‖∇u(t)‖L∞dt ≤ log λ. (4.1)

The existence of this T is a consequence of the local existence theorem. It follows that 
the chord-arc condition

1
λ
≤ |a− b|

|X(a, t) −X(b, t)| ≤ λ (4.2)

holds for any a 
= b ∈ R
2 and any t ∈ [0, T ].

For γ ∈ (0, 1), define

‖X‖C1,γ := ‖X(a) − a‖L∞ + ‖∇aX(a)‖L∞ + [∇aX(a)]Cγ . (4.3)

Our goal is to use induction in order to show that there exists C0 = C0(‖θ0‖C1,γ∩W 1,1 ,

γ, λ) > 0 and C1 = C1(λ, CK) > 0 such that the Cauchy inequalities

‖∂n
t X‖L∞(0,T ;C1,γ) ≤ (−1)n−1 n!

(
1
2
n

)
Cn

0 C
n−1
1 (4.4)

hold for any n ≥ 0. Here λ is the chord-arc constant in (4.2), and CK is the kernel-
dependent constant from (4.6) below.

In order to have the induction base case n = 0 in (4.4) taken care of, we choose

C0 ≥ ‖X‖L∞(0,T ;C1,γ). (4.5)

The right side of (4.5) is finite in view of the local existence theorem. To prove the 
induction step, we need to estimate supt∈[0,T ] ‖∂n+1

t X(·, t)‖L∞ , supt∈[0,T ] ‖∂n+1
t (∇aX)

(·, t)‖L∞ , and lastly the Hölder semi norm supt∈[0,T ][∂n+1
t (∇aX)(·, t)]Cγ . This is achieved 

in the following three subsections.

4.1. The L∞ estimate

Recall that

dX

dt
(a, t) =

∫
K(X(a, t) −X(b, t))θ0(b) db,
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where K(y) = y⊥/(2π|y|3). We need to localize this kernel near the origin with a rapidly 
decaying real analytic function. For this purpose we use a Gaussian and define

Kin(y) = y⊥

2π|y|3 e
−|y|2 and Kout(y) = y⊥

2π|y|3 (1 − e−|y|2)

so that K = Kin + Kout. There exists a universal constant CK ≥ 1 such that

|∂αKin(y)| ≤ C
|α|
K |α|!

|y||α|+2 e
−|y|2/2 and |∂αKout(y)| ≤ C

|α|
K |α|!
|y||α| (4.6)

holds for any multi-index α and any y 
= 0. The proof of the above estimates is given in 
Section 4.5 below. Moreover, since 

∫
∂B1(0) Kin(y)dy = 0, we write

dX

dt
(a, t) =

∫
Kin(X(a, t) −X(b, t))(θ0(b) − θ0(a)) db

+
∫

Kout(X(a, t) −X(b, t))θ0(b) db. (4.7)

We apply n time derivatives to (2.3) and obtain

∂n+1
t X(a, t) =

∫
∂n
t Kin(X(a, t) −X(b, t)) (θ0(b) − θ0(a)) db

+
∫

∂n
t Kout(X(a, t) −X(b, t))θ0(b) db (4.8)

Fix an index i ∈ {1, 2} and let either K = Kin,i or K = Kout,i. Apply the Faà di Bruno 
formula in Lemma 3.2 to obtain

∂n
t (K(X(a, t) −X(b, t)))

= n!
∑

1≤|α|≤n

(∂αK)(X(a, t) −X(b, t))
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(∂�j
t (X(a, t) −X(b, t)))kj

(kj !)(�j !)|kj |

(4.9)

Combining formulas (4.8) and (4.9) with the inductive assumption (4.4) for the Lipschitz 
norm of X, and the bound (4.6), we arrive at

|∂n+1
t X(a, t)| ≤ n!

∑
1≤|α|≤n

∫ |α|!C |α|
K e−|X(a,t)−X(b,t)|2/2

|X(a, t) −X(b, t)|2+|α|

×
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(
(−1)�j−1�j !

(1/2
�j

)
C

�j
0 C

�j−1
1 |a− b|

)|kj |

(kj !)(�j !)|kj |

× |θ0(b) − θ0(a)| db
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+ n!
∑

1≤|α|≤n

∫ |α|!C |α|
K

|X(a, t) −X(b, t)||α|

×
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(
(−1)�j−1�j !

(1/2
�j

)
C

�j
0 C

�j−1
1 |a− b|

)|kj |

(kj !)(�j !)|kj |
|θ0(b)| db.

(4.10)

From the definition of Ps(n, α) in (3.5), we recall

s∑
j=1

�j |kj | = n,
s∑

j=1
|kj | = |α|,

and estimate (4.10) becomes

|∂n+1
t X(a, t)| ≤ n! (−1)n Cn

0 C
n
1
∑

1≤|α|≤n

(−1)|α||α|!C |α|
K C

−|α|
1

×
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(1/2
�j

)|kj |

kj !
(Iin + Iout) (4.11)

where

Iin =
∫ |a− b||α|e−|X(a,t)−X(b,t)|2/2

|X(a, t) −X(b, t)|2+|α| |θ0(b) − θ0(a)|db

and

Iout =
∫ |a− b||α|

|X(a, t) −X(b, t)||α| |θ0(b)|db.

Using the chord-arc condition (4.2), and

|θ0(b) − θ0(a)| ≤ [θ0]Cγ |a− b|γ ,

we estimate

Iin ≤ [θ0]Cγλ2+|α|
∫

|a− b|γ−2e−|a−b|2/(2λ2)db ≤ 8λ2(γ−1 + λ)[θ0]Cγλ|α|.

On the other hand, (4.2) also yields

Iout ≤ λ|α|‖θ0‖L1 ,

so that

Iin + Iout ≤ |λ||α| (8λ2(γ−1 + λ)[θ0]Cγ + ‖θ0‖L1
)

(4.12)
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Therefore, if we let

C1 ≥ CKλ (4.13)

and

C0

2 ≥ 8λ2(γ−1 + λ)[θ0]Cγ + ‖θ0‖L1 , (4.14)

from (4.11) and (4.12) we conclude

|∂n+1
t X(a, t)| ≤ 1

2n!(−1)n Cn+1
0 Cn

1
∑

1≤|α|≤n

(−1)|α||α|!
n∑

s=1

∑
Ps(n,α)

s∏
j=1

(1/2
�j

)|kj |

kj !

≤ (n + 1)! (−1)n
(

1/2
n + 1

)
Cn+1

0 Cn
1 (4.15)

where in the last inequality we have appealed to Lemma 3.3. Estimate (4.15) proves the 
L∞ portion of the induction step in (4.4).

4.2. The Lipschitz estimate

Similarly to (4.7), we decompose (2.4) as

d(∇aX)
dt

(a, t)

= ∇aX(a, t)
∫

Kin(X(a, t) −X(b, t))

×
(
∇⊥

b X
⊥(b, t)∇bθ0(b) −∇⊥

a X
⊥(a, t)∇aθ0(a)

)
db

+ ∇aX(a, t)
∫

Kout(X(a, t) −X(b, t))∇⊥
b X

⊥(b, t)∇bθ0(b) db. (4.16)

To estimate the L∞ norm of ∂n+1
t (∇aX), we apply ∂n

t to (4.16). By the Leibniz rule we 
obtain

∂n+1
t ∇aX(a, t)

=
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇aX(a, t)

×
∫

∂m
t Kin(X(a, t) −X(b, t))

× ∂r−m
t (∇⊥

b X
⊥(b, t)∇bθ0(b) −∇⊥

a X
⊥(a, t)∇aθ0(a)) db
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+
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇aX(a, t)

×
∫

∂m
t Kout(X(a, t) −X(b, t))∂r−m

t (∇⊥
b X

⊥(b, t))∇bθ0(b) db. (4.17)

Invoking the inductive assumption (4.4), we have

|∂n−r
t ∇aX(a, t)| ≤ (−1)n−r−1 (n− r)!

(
1/2
n− r

)
Cn−r

0 Cn−r−1
1 . (4.18)

Also, in view of (4.4) we estimate

|∂r−m
t (∇⊥

b X
⊥(b, t))∇bθ0(b) − ∂r−m

t (∇⊥
a X

⊥(a, t))∇aθ0(a)|

≤ (−1)r−m−1 (r −m)!
(

1/2
r −m

)
Cr−m

0 Cr−m−1
1 |a− b|γ‖∇θ0‖Cγ (4.19)

and

|∂r−m
t (∇⊥

b X
⊥(b, t))∇bθ0(b)|

≤ (−1)r−m−1 (r −m)!
(

1/2
r −m

)
Cr−m

0 Cr−m−1
1 |∇bθ0(b)|. (4.20)

Let i ∈ {1, 2}. Using (4.9) and (4.6) we bound

|∂m
t Kin,i(X(a, t) −X(b, t))|

≤ m!
∑

1≤|α|≤m

C
|α|
K |α|!e−|X(a,t)−X(b,t)|2/2

|X(a, t) −X(b, t)||α|+2

m∑
s=1

∑
Ps(m,α)

s∏
j=1

(‖∂�j
t ∇X(·, t)‖L∞ |a− b|)kj

(kj !)(�j !)|kj |

≤ m!
∑

1≤|α|≤m

C
|α|
K |α|!Tin

m∑
s=1

∑
Ps(m,α)

s∏
j=1

(
(−1)�j−1�j !

(1/2
�j

)
C

�j
0 C

�j−1
1

)|kj |

(kj !)(�j !)|kj |

≤ (−1)mm!Cm
0 Cm

1
∑

1≤|α|≤m

(−1)|α|C
|α|
K C

−|α|
1 |α|!Tin

m∑
s=1

∑
Ps(m,α)

s∏
j=1

(1/2
�j

)|kj |

kj !
(4.21)

where

Tin = |a− b||α|e−|X(a,t)−X(b,t)|2/2

|X(a, t) −X(b, t)||α|+2 .

Using the chord-arc condition (4.2) we arrive at

Tin ≤ |a− b|−2e−|a−b|2/(2λ2)λ|α|+2
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and recalling that C1 ≥ λCK , we obtain from (4.21) that

|∂m
t Kin,i(X(a, t) −X(b, t))|

≤ (−1)mm!Cm
0 Cm

1 |a− b|−2e−|a−b|2/(2λ2)λ2

×
∑

1≤|α|≤m

(−1)|α||α|!
m∑
s=1

∑
Ps(m,α)

s∑
j=1

(1/2
�j

)|kj |

kj !

≤ (−1)mm!Cm
0 Cm

1 |a− b|−2e−|a−b|2/(2λ2)λ22(m + 1)
(

1/2
m + 1

)
(4.22)

where in the last equality we have appealed to Lemma 3.3. Similarly, from (4.9) and 
(4.6) we have

|∂m
t Kout,i(X(a, t) −X(b, t))|

≤ (−1)mm!Cm
0 Cm

1
∑

1≤|α|≤m

(−1)|α|C
|α|
K C

−|α|
1 |α|!Tout

m∑
s=1

∑
Ps(m,α)

s∏
j=1

(1/2
�j

)|kj |

kj !
.

(4.23)

Using (4.2) we arrive at

Tout = |a− b||α|

|X(a, t) −X(b, t)||α| ≤ λ|α|.

Therefore, appealing to Lemma 3.3 we arrive at

|∂m
t Kout,i(X(a, t) −X(b, t))| ≤ (−1)mm!Cm

0 Cm
1 2(m + 1)

(
1/2

m + 1

)
. (4.24)

Combining (4.17)–(4.20), (4.22), and (4.24), we arrive at

|∂n+1
t ∇aX(a, t)|

≤ I
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
(−1)n−r−1 (n− r)!

(
1/2
n− r

)
Cn−r

0 Cn−r−1
1

× (−1)mm!Cm
0 Cm

1 2(m + 1)
(

1/2
m + 1

)
(−1)r−m−1 (r −m)!

(
1/2

r −m

)
Cr−m

0 Cr−m−1
1

(4.25)

where
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I = λ2‖∇θ0‖Cγ

∫
|a− b|γ−2e−|a−b|2/(2λ2)db +

∫
|∇bθ0(b)|db

≤ 8(γ−1 + λ)λ2‖∇θ0‖Cγ + ‖∇θ0‖L1

≤ 1
8C

2
1C0 (4.26)

by making C0 sufficiently large, depending on the initial data. The above and (4.25)
imply

|∂n+1
t ∇aX(a, t)|

≤ 1
4C

n+1
0 Cn

1 n!
∑

0≤m≤r≤n

(−1)n−r−1
(

1/2
n− r

)
(−1)m(m + 1)

(
1/2

m + 1

)

× (−1)r−m−1
(

1/2
r −m

)
(4.27)

At this stage we invoke another combinatorial identity.

Lemma 4.2. We have that∑
0≤m≤r≤n

(m + 1) (−1)m
(

1/2
m + 1

)
(−1)r−m−1

(
1/2

r −m

)
(−1)n−r−1

(
1/2
n− r

)

≤ 4(n + 1)(−1)n
(

1/2
n + 1

)
(4.28)

holds for any integer n ≥ 1.

The proof of Lemma 4.2 is given in Section 4.4 below. From (4.27) and (4.28) we 
conclude

|∂n+1
t ∇aX(a, t)| ≤ Cn+1

0 Cn
1
n!
2 (−1)n−1

(
1/2
n

)
≤ Cn+1

0 Cn
1 (−1)n(n + 1)!

(
1/2
n + 1

)
which concludes the proof of the Lipschitz estimate in the induction step for (4.4).

4.3. The Hölder estimate for ∇aX

In order to prove that [∂n+1
t ∇X(a, t)]Cγ obeys the bound (4.4), we consider the dif-

ference

∂n+1
t ∇X(a, t) − ∂n+1

t ∇X(b, t)

and estimate it in a similar fashion to |∂n+1
t ∇aX(a, t)|. However, before applying n time 

derivatives, we use (4.16) to re-write
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d

dt
(∇X(a, t) −∇X(b, t))

= (∇X(a, t) −∇X(b, t))
∫

Kin(X(a, t) −X(c, t))

× (∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(a, t)∇θ0(a))dc

+ (∇X(a, t) −∇X(b, t))
∫

Kout(X(a, t) −X(c, t))∇⊥X⊥(c, t)∇θ0(c)dc

+ ∇X(b, t)
∫ [

Kin(X(a, t) −X(c, t))
(
∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(a, t)∇θ0(a)

)
−Kin(X(b, t) −X(c, t))

(
∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(b, t)∇θ0(b)

)]
dc

+ ∇X(b, t)
∫ (

Kout(X(a, t) −X(c, t)) −Kout(X(b, t) −X(c, t))
)
∇⊥X⊥(c, t)

×∇θ0(c)dc. (4.29)

In view of (4.29), similarly to (4.17) we write

∂n+1
t ∇X(a, t) − ∂n+1

t ∇X(b, t) = L1 + L2 + L3 + L4,

where

L1 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)(
∂n−r
t ∇X(a, t) − ∂n−r

t ∇X(b, t)
)

×
∫

∂m
t Kin(X(a, t) −X(c, t))

× ∂r−m
t (∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(a, t)∇θ0(a)) dc (4.30)

L2 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)(
∂n−r
t ∇X(a, t) − ∂n−r

t ∇X(b, t)
)

×
∫

∂m
t Kout(X(a, t) −X(c, t))∂r−m

t (∇⊥X⊥(c, t))∇θ0(c) dc (4.31)

L3 = 1
2

∑
0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

×
∫ [

∂m
t Kin(X(a, t) −X(c, t))∂r−m

t

(
∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(a, t)∇θ0(a)

)
− ∂m

t Kin(X(b, t) −X(c, t))∂r−m
t

(
∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(b, t)∇θ0(b)

)]
dc

(4.32)
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L4 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

×
∫ (

∂m
t Kout(X(a, t) −X(c, t)) − ∂m

t Kout(X(b, t) −X(c, t))
)

× ∂r−m
t (∇⊥X⊥(c, t))∇θ0(c)dc. (4.33)

First we notice that by using the bound

|∂n−r
t ∇⊥X⊥(a, t) − ∂n−r

t ∇⊥X⊥(b, t)|

≤ |a− b|γ(−1)n−r−1(n− r)!
(

1/2
n− r

)
Cn−r

0 Cn−r−1
1

instead of (4.18), precisely as in Section 4.2 above we show that

L1 + L2 ≤ 1
2 |a− b|γCn+1

0 Cn
1 (−1)n(n + 1)!

(
1/2
n + 1

)
(4.34)

under precisely the same conditions on C0 and C1 as above.
In order to estimate L3, we decompose it as

L3 = L31 + L32 + L33 + L34,

where

L31 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

×
∫

|c−a+b
2 |≤4|a−b|

∂m
t Kin(X(a, t) −X(c, t))

× ∂r−m
t (∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(a, t)∇θ0(a))dc

L32 = −
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

×
∫

|c−a+b
2 |≤4|a−b|

∂m
t Kin(X(b, t) −X(c, t))

× ∂r−m
t (∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(b, t)∇θ0(b))dc

account for the singular pieces, and
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L33 = 1
2

∑
0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

(
X(a, t) −X(b, t)

)

×
∫

|c−a+b
2 |≥4|a−b|

1∫
0

∂m
t ∇Kin(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))dρ

× ∂r−m
t

(
2∇⊥X⊥(c, t)∇θ0(c) −∇⊥X⊥(a, t)∇θ0(a) −∇⊥X⊥(b, t)∇θ0(b)

)
dc

L34 = 1
2

∑
0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

× ∂r−m
t

(
∇⊥X⊥(b, t)∇θ0(b) −∇⊥X⊥(a, t)∇θ0(a)

)
×

∫
|c−a+b

2 |≥4|a−b|

(
∂m
t Kin(X(a, t) −X(c, t)) + ∂m

t Kin(X(b, t) −X(c, t))
)
dc

account for the pieces at infinity. Here, we have used the polarization identity L33+L34 =
x1y1 − x2y2 = (x1 − x2)(y1 + y2)/2 + (x1 + x2)(y1 − y2)/2. Moreover, for the term L33

in the above decomposition we have used the mean value theorem to write

∂m
t Kin(X(a, t) −X(c, t)) − ∂m

t Kin(X(b, t) −X(c, t))

= (X(a, t) −X(b, t)) ·
1∫

0

∂m
t ∇Kin(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))dρ.

We first bound L31 and L32. We appeal to (4.18), (4.19), (4.22), (4.25), and Lemma 4.2
to obtain

L31 + L32 ≤ Cn
0 C

n
1 (−1)n(n + 1)!

(
1/2
n + 1

)
I3,in (4.35)

where

I3,in = λ2C−2
1 ‖∇θ0‖Cγ

∫
|c−a+b

2 |≤4|a−b|

|b− c|γ−2e−|b−c|2/(2λ2)

+ |a− c|γ−2e−|a−c|2/(2λ2)dc

≤ 20πγ−1C−2
K ‖∇θ0‖Cγ |a− b|γ ,

Since C1 ≥ λCK . Letting

C0 ≥ 160πγ−1C−2
K ‖∇θ0‖Cγ (4.36)
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we obtain in combination with (4.35) that

L31 + L32 ≤ 1
8 |a− b|γCn+1

0 Cn
1 (−1)n(n + 1)!

(
1/2
n + 1

)
(4.37)

holds. In order to estimate L33, we notice that due to the chord-arc condition,

|X(b, t) −X(c, t) − b + c| ≤ λ|b− c|
t∫

0

‖∇u(s)‖L∞ds ≤ λ log λ|b− c|,

and similarly for a and c. Thus, we have that

|ρX(a, t) + (1 − ρ)X(b, t) −X(c, t)|

≥ |ρa + (1 − ρ)b− c| − ρ|X(a, t) − a−X(c, t) + c|

− (1 − ρ)|X(b, t) − b−X(c, t) + c|

≥ |c− (a + b)/2| − |a− b|/2 − λ log λ(ρ|a− c| + (1 − ρ)|b− c|)

≥ |c− (a + b)/2| − |a− b|/2 − λ log λ(|c− (a + b)/2| + |a− b|/2)

holds for any ρ ∈ (0, 1). Therefore, in view of the choice λ ∈ (1, 3/2] we have that 
λ log λ ≤ 2/3, and thus

|ρX(a, t) + (1 − ρ)X(b, t) −X(c, t)| ≥ |c− (a + b)/2|/3 − |a− b|

≥ |c− (a + b)/2|/12 (4.38)

holds whenever |c− (a + b)/2| ≥ 4|a− b|. Using (4.6) and (4.9) we thus bound

1∫
0

|∂m
t ∇Kin(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))|dρ

≤ m!
∑

1≤|α|≤m

|∂α∇Kin(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))|

×
m∑
s=1

∑
Ps(m,α)

s∑
j=1

(ρ|∂�j
t (X(a, t) −X(c, t))| + (1 − ρ)|∂�j

t (X(b, t) −X(c, t)|)kj

(kj !)(�j !)|kj |

≤ m!
∑

1≤|α|≤m

C
|α|+1
K (12)|α|+3(|α| + 1)!e−|c−(a+b)/2|2/(288)

|c− (a + b)/2||α|+3

×
m∑ ∑ s∑(

9λ|c−(a+b)/2|
8 (−1)�j−1(1/2

�j

)
C

�j
0 C

�j−1
1

)kj

kj !
(4.39)
s=1 Ps(m,α) j=1
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Therefore, once we notice that |α| + 1 ≤ 2|α|, if we let

C1 ≥ 27λCK , (4.40)

from (4.39) and Lemma 3.3 we deduce that

1∫
0

|∂m
t ∇Kin(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))|dρ

≤ 2Ck123m!(m + 1)(−1)m
(

1/2
m + 1

)
Cm

0 Cm
1
e−|c−(a+b)/2|2/(288)

|c− (a + b)/2|3 . (4.41)

Using (4.18), (4.19), (4.25), Lemma 4.2, and (4.41), we arrive at

L33 ≤ Cn
0 C

n
1 (−1)n(n + 1)!

(
1/2
n + 1

)
|a− b|I3,out (4.42)

where

I3,out = 2λCK123C−2
1 ‖∇θ0‖Cγ

×
∫

|c−(a+b)/2|≥4|a−b|

|a− c|γ + |b− c|γ
2

e−|c−(a+b)/2|2/(288)

|c− (a + b)/2|3 dc

≤ 144‖∇θ0‖Cγ

∫
|c−(a+b)/2|≥4|a−b|

|c− (a + b)/2|γ−3dc

≤ 288π/(1 − γ)‖∇θ0‖Cγ (4|a− b|)γ−1

≤ 1
16C0|a− b|γ−1 (4.43)

if we choose C0 sufficiently large. From (4.42) and (4.43) we conclude that

L33 ≤ 1
16C

n+1
0 Cn

1 (−1)n(n + 1)!
(

1/2
n + 1

)
|a− b|γ . (4.44)

In order to estimate L34 we need to appeal to one more cancellation property: each 
component of the kernel K is a derivative of a non-singular scalar kernel, i.e.

K(y) = y⊥

2π|y|3 = ∇⊥
y

(
−1

2π|y|

)
.

This is in fact the reason why K has zero mean on spheres. The kernels associated 
to each of the hydrodynamic systems considered in this paper obey this property. The 
upshot of the above identity is that we have
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Kin(y) = ∇⊥
y

(
K

(1)
in (y)

)
+ K

(2)
in (y) = {K(1)

in (y),y} + K
(2)
in (y) (4.45)

where {·, ·} denotes the Poisson bracket, and

K
(1)
in (y) = −1

2π|y|e
−|y|2

and

K
(2)
in (y) = −y⊥

π|y| e
−|y|2 .

Similarly to (4.6), there exits CK > 0 such that

|∂αK
(1)
in (y)| ≤ C

|α|
K |α|!

|y||α|+1 e
−|y|2/2 and |∂αK

(2)
in (y)| ≤ C

|α|
K |α|!
|y||α| e−|y|2/2 (4.46)

holds for any multi-index α and any y 
= 0.
The importance of the cancellation property hidden in (4.45) is seen as follows. When 

bounding the term L34 we need to estimate

Tm(a) :=
∫

|c−a+b
2 |≥4|a−b|

∂m
t Kin(X(a, t) −X(c, t))dc,

and a similarly defined Tm(b). Due to (4.45), and the change of variables

(∇⊥
j K

(1)
in )(X(a, t) −X(c, t))

= −∂Xj

∂c2
(c, t) ∂

∂c1
K

(1)
in (X(a, t) −X(c, t)) + ∂Xj

∂c1
(c, t) ∂

∂c2
K

(1)
in (X(a, t) −X(c, t))

= −{K(1)
in (X(a, t) −X(c, t)), Xj(c, t)}

which holds due to the Poisson bracket being invariant under composition with a 
divergence-free X, we rewrite

Tm(a) =
∫

|c−a+b
2 |≥4|a−b|

∂m
t K

(2)
in (X(a, t) −X(c, t))dc

−
∫

|c−a+b
2 |≥4|a−b|

∂m
t

{
K

(1)
in (X(a, t) −X(c, t)),X(c, t)

}
dc

=
∫

|c−a+b
2 |≥4|a−b|

∂m
t K

(2)
in (X(a, t) −X(c, t))dc

−
m∑
i=0

(
m

i

) ∫
|c−a+b

2 |≥4|a−b|

{
∂i
tK

(1)
in (X(a, t) −X(c, t)), ∂m−i

t X(c, t)
}
dc.
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In the second term in the above, we integrate by parts in the c variable (the variable 
in which the derivatives in the Poisson bracket are taken) and note that c-derivatives 
commute with t-derivatives, to obtain

Tm(a) =
∫

|c−a+b
2 |≥4|a−b|

∂m
t K

(2)
in (X(a, t) −X(c, t))dc

−
m∑
i=0

(
m

i

) ∫
|c−a+b

2 |=4|a−b|

∂i
tK

(1)
in (X(a, t) −X(c, t))n⊥

c

· ∂m−i
t (∇cX(c, t))dσ(c) (4.47)

where n is the outward unit normal to the circle {c : |c − a+b
2 | = 4|a − b|}. The cor-

responding formula also holds for Tm(b). Using (4.46) and the argument used to prove 
(4.22), it follows that

|∂i
tK

(1)
in (X(a, t) −X(c, t))| ≤ (−1)ii!Ci

0C
i
1
e−|a−c|2/(2λ2)

|a− c| λ22(i + 1)
(

1/2
i + 1

)
(4.48)

for all i ≥ 0 and

|∂m
t K

(2)
in (X(a, t) −X(c, t))| ≤ (−1)mm!Cm

0 Cm
1 e−|a−c|2/(2λ2)λ22(m + 1)

(
1/2

m + 1

)
(4.49)

for all m ≥ 0. Therefore, using (4.18) and (4.46)–(4.49) we conclude that

|Tm(a)| ≤ (−1)mm!Cm
0 Cm

1 λ22(m + 1)
(

1/2
m + 1

) ∫
|c−a+b

2 |≥4|a−b|

e−|a−c|2/(2λ2)dc

+
m∑
i=0

(
m

i

)
(−1)ii!Ci

0C
i
1λ

22(i + 1)
(

1/2
i + 1

)

× (−1)m−i−1(m− i)!
(

1/2
m− i

)
Cm−i

0 Cm−i−1
1

×
∫

|c−a+b
2 |=4|a−b|

e−|a−c|2/(2λ2)

|a− c| dσ(c)

≤ 1
128(−1)mm!Cm+1

0 Cm
1 2(m + 1)

(
1/2

m + 1

)
(4.50)

by choosing C0 sufficiently large, depending on λ. Here we have used that |a−c| ≥ 3|a−b|
and the combinatorial identity
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m∑
i=0

2(i + 1)(−1)i
(

1/2
i + 1

)
(−1)m−i−1

(
1/2
m− i

)
= 4(−1)m(m + 1)

(
1/2

m + 1

)

which is proven using the argument given in Section 4.4. To conclude the T34 bound, we 
combine (4.50) and the corresponding estimate for the b term, with (4.18), (4.19), and 
Lemma 4.2 to obtain

L34 ≤ 1
16C

n+1
0 Cn

1 (−1)n(n + 1)!
(

1/2
n + 1

)
|a− b|γ

for all n ≥ 0.
Thus, from (4.37), (4.44), and the above estimate for L34, we obtain the desired bound 

for L3, namely

L3 ≤ 1
4C

n+1
0 Cn

1 (−1)n(n + 1)!
(

1/2
n + 1

)
|a− b|γ . (4.51)

It is left to estimate L4, as defined in (4.33), which is achieved similarly to L3. First 
we decompose

L4 = L41 + L42 + L43,

where

L41 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

×
∫

|c−a+b
2 |≤4|a−b|

∂m
t Kout(X(a, t) −X(c, t))∂r−m

t (∇⊥X⊥(c, t))∇θ0(c)dc

L42 = −
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)

×
∫

|c−a+b
2 |≤4|a−b|

∂m
t Kout(X(b, t) −X(c, t))∂r−m

t (∇⊥X⊥(c, t))∇θ0(c)dc

and

L43 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−r
t ∇X(b, t)(X(a, t) −X(b, t))

×
∫

|c−a+b
2 |≥4|a−b|

1∫
0

∂m
t ∇Kout(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))dρ

× ∂r−m
t (∇⊥X⊥(c, t))∇θ0(c)dc
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We appeal to (4.18), (4.20), (4.24), and Lemma 4.2 to obtain

L41 + L42 ≤ Cn
0 C

n
1 (−1)n(n + 1)!

(
1/2
n + 1

)
I4,in (4.52)

under the standing assumptions on C0 and C1, where

I4,in =
∫

|c−a+b
2 |≤4|a−b|

|∇θ0(c)|dc ≤ (16π|a− b|2)γ/2‖∇θ0‖L2/(2−γ) ≤ C0|a− b|γ

by letting

C0 ≥ 8(16π)γ/2 (‖∇θ0‖L1 + ‖∇θ0‖L∞) . (4.53)

From (4.52) and (4.53) we obtain the desired bound

L41 + L42 ≤ 1
8C

n+1
0 Cn

1 (−1)n(n + 1)!
(

1/2
n + 1

)
|a− b|γ . (4.54)

Estimating L43 is similar to bounding L33. First, note that similarly to (4.41), under the 
standing assumptions on C0 and C1 we have

1∫
0

∂m
t ∇Kin(ρX(a, t) + (1 − ρ)X(b, t) −X(c, t))dρ

≤ 24Ckm!(m + 1)(−1)m
(

1/2
m + 1

)
Cm

0 Cm
1

1
|c− (a + b)/2| (4.55)

for |c− (a+b)/2| ≥ 4|a−b|. Combining (4.18), (4.20), Lemma 4.2, and (4.55) we obtain

L43 ≤ Cn
0 C

n
1 (−1)n(n + 1)!

(
1/2
n + 1

)
|a− b|I4,out (4.56)

where

I4,out = 24λCkC
−2
1

∫
|c−a+b

2 |≥4|a−b|

|∇θ0(c)|
|c− (a + b)/2|dc

≤ Cγ‖∇θ0‖L2/(2−γ) |a− b|γ−1 ≤ 1
8C0|a− b|γ−1 (4.57)

by choosing C0 sufficiently large. Finally, from (4.54)–(4.57) we obtain that

L4 ≤ 1
4C

n+1
0 Cn

1 (−1)n(n + 1)!
(

1/2
n + 1

)
|a− b|γ . (4.58)

The bounds (4.34), (4.51), and (4.58) combined show that
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[∇X(·, t)]Cγ ≤ Cn+1
0 Cn

1 (−1)n(n + 1)!
(

1/2
n + 1

)
for 0 ≤ t ≤ T , which concludes the proof of the Hölder estimate for ∇X.

4.4. Proof of Lemma 4.2

Proof of identity (4.28). In order to prove Lemma 4.2, we need to compute

Sn =
n∑

r=0

r∑
m=0

2(m + 1)(−1)m
(

1/2
m + 1

)
(−1)r−m−1

(
1/2

r −m

)
(−1)n−r−1

(
1/2
n− r

)

=
n∑

r=0

r∑
m=0

ambr−mbn−r (4.59)

where n ≥ 1, and we have defined the coefficients

am = 2(m + 1)(−1)m
(

1/2
m + 1

)
, bm = (−1)m−1

(
1/2
m

)
(4.60)

for all m ≥ 0. Note that both am and bm are non-negative, and thus it is clear that 
Sn ≥ 0 for all n ≥ 1.

We now find the generating function for the coefficients am and bm. We recall the 
following generalization of Newton’s Binomial formula: for α ∈ R and −1 < t < 1, we 
have

(1 − t)α = 1 +
∞∑
j=1

(
α

j

)
(−t)j . (4.61)

In particular, we have that

(1 − t)1/2 = 1 −
∞∑
j=1

(−1)j−1
(

1/2
j

)
tj = 2 −

∞∑
j=0

(−1)j−1
(

1/2
j

)
tj

= 2 −
∞∑
j=0

bjt
j (4.62)

Formally differentiating the identity (4.62) we arrive at

1
2(1 − t)−1/2 =

∞∑
j=1

j(−1)j−1
(

1/2
j

)
tj−1 =

∞∑
n=0

(n + 1)(−1)n
(

1/2
n + 1

)
tn (4.63)

and therefore

(1 − t)−1/2 =
∞∑
j=0

ajt
j . (4.64)
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Multiplying the power series formally, we now have that

∑
n≥0

tn

(
n∑

r=0

r∑
m=0

ambr−mbn−r

)
=

⎛⎝∑
j≥0

ajt
j

⎞⎠⎛⎝∑
j≥0

bjt
j

⎞⎠2

= (1 − t)−1/2
(
2 − (1 − t)1/2

)2

= 4(1 − t)−1/2 − 2 −
(
2 − (1 − t)1/2

)
= −2 +

∑
n≥0

tn (4an − bn) . (4.65)

Equating powers of tn, we thus obtain from the above that

Sn = 4an − bn = 8(n + 1)(−1)n
(

1/2
n + 1

)
− (−1)n−1

(
1/2
n

)
=
(

8 − 2
2n− 1

)
(n + 1)(−1)n

(
1/2
n + 1

)
= 16n− 10

2n− 1 (n + 1)(−1)n
(

1/2
n + 1

)
(4.66)

for all n ≥ 1.
As a consequence, we obtain that

Sn = (n + 1)(−1)n
(

1/2
n + 1

)
16n− 10
2n− 1 ≤ 8(n + 1)(−1)n

(
1/2
n + 1

)
(4.67)

which completes the proof. �
4.5. Proof of estimate (4.6)

The claim is that exists a universal constant CK ≥ 1 such that

|∂αKin(y)| ≤ C
|α|
K |α|!

|y||α|+2 e
−|y|2/2 and |∂αKout(y)| ≤ C

|α|
K |α|!
|y||α| (4.68)

holds for any multi-index α and any y 
= 0. We shall give here the proof of the inner 
kernel Kin, since the proof for the outer kernel Kout follows similarly, in view of the 
fact that (1 − e−|y|2)|y|−2 = O(1) as |y| → 0.

From the Leibniz rule we have

∂α

(
y⊥

|y|3 e
−|y|2

)
=

∑ (
α

β

)
∂β

(
y⊥

|y|3
)
∂γ(e−|y|2)
β+γ=α
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It is easy to check that the number of terms in ∂β
(

y⊥

|y|3
)

is at most 2|β|, and that the 

coefficient of each one of these terms is bounded from above by (2|β| + 1)!!. Therefore, 
we obtain ∣∣∣∣∂β

(
y⊥

|y|3
)∣∣∣∣ ≤ 2|β| (2|β| + 1)!! 1

|y||β|+2 .

The total number of terms in ∂γ(e−|y|2) is at most 2|γ|−1 and the coefficient of each 
term is bounded by 2|γ|. Therefore,

|∂γ(e−|y|2)| ≤ 22|γ|−1 e−|y|2 max{1, |y||γ|}

Therefore, it follows that

∣∣∣∣∂α

(
y⊥

|y|3 e
−|y|2

)∣∣∣∣
≤

∑
β+γ=α

(
α

β

)
2|β| (2|β| + 1)!! 1

|y||β|+2 22|γ|−1 e−|y|2 max{1, |y||γ|}

≤ e−|y|2/2

|y||α|+2

∑
β+γ=α

(
α

β

)
2|β| (2|β| + 1)!! 22|γ|−1 e−|y|2/2 |y||γ| max{1, |y||γ|}.

Now for any y 
= 0, we have the bound

e−|y|2/2 |y||γ| max{1, |y||γ|} ≤ (2|γ|/e)|γ|,

and using Stirling’s formula

n! ≈
√

2πn (n/e)n,
√

2πn (n/e)n ≤ n!

we arrive at

e−|y|2/2 |y||γ| max{1, |y||γ|} ≤ 2|γ|√
2π|γ|

|γ|!

Therefore,∣∣∣∣∂α

(
y⊥

|y|3 e
−|y|2

)∣∣∣∣ ≤ 1
|y||α|+2 e

−|y|2/2
∑

β+γ=α

(
α

β

)
2|β| (2|β| + 1)!! 22|γ|−1 2|γ|√

2π|γ|
|γ|!

≤ 24|α| |α|!
|y||α|+2 e−|y|2/2

∑
β+γ=α

α!
β!γ!

|β|! |γ|!
|α|!
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where we have used

2|β| (2|β| + 1)!! 22|γ|−1 ≤ 22|α| (|β| + 1)! ≤ 22|α| (|α| + 1)! ≤ 23|α| |α|!

Since |β|! |γ|! ≤ |α|!, the rough estimate

∑
β+γ=α

α!
β!γ!

|β|! |γ|!
|α|! ≤

∑
β+γ=α

α!
β!γ! = 2|α|

holds. In summary, we have shown that,∣∣∣∣∂α

(
y⊥

|y|3 e
−|y|2

)∣∣∣∣ ≤ 25|α| |α|!
|y||α|+2 e−|y|2/2.

The constant CK in (4.6) is thus less than 25.
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Appendix A. Derivation of Lagrangian formulae

In this Appendix we provide the derivation of the self-contained formulae for dX/dt

and d∇X/dt stated in Section 2. Let A denote back-to-labels map, which is the inverse 
particle trajectory map, i.e.

A(X(a, t), t) = a.

We will frequently use that

(∇xA)(X(a, t), t)(∇aX)(a, t) = I

or equivalently

(∇xA)(X(a, t), t) = ((∇aX)(a, t))−1 = (∇aX)⊥(a, t). (A.1)

Coordinate-wise the above identity is equivalent to

∂A1

∂x1
(X(a, t), t) = ∂X2

∂a2
(a, t), ∂A2

∂x1
(X(a, t), t) = −∂X2

∂a1
(a, t),

∂A1

∂x2
(X(a, t), t) = −∂X1

∂a2
(a, t), ∂A2

∂x2
(X(a, t), t) = ∂X1

∂a1
(a, t).
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The upshot of the above formulae is that if we define

θ0(A(x, t)) = θ(x, t)

then we have

∂xk
θ(x, t) = ∂θ0

∂aj
(A(x, t))∂Aj

∂xk
(x, t) = ∂θ0

∂aj
(a)∂X

⊥
k

∂a⊥j
(a, t) (A.2)

where in the last equality we have used (A.1).

A.1. 2D SQG

The constitutive law of SQG yields

u(x) = R⊥θ(x) =
∫ (x− y)⊥

2π|x− y|3 θ(y)dy =
∫

K(x− y)θ(y)dy

and the evolution gives

θ(X(b, t), t) = θ0(b)

Combining the above we arrive at

dX

dt
(a, t) =

∫
K(X(a, t) − y)θ(y, t)dy =

∫
K(X(a, t) −X(b, t))θ0(b)db

since by incompressibility the determinant of the Jacobian is equal to 1. To derive the 
formula for d(∇X)/dt, we switch back to Eulerian coordinates where

∂xk
ui(x) =

∫
K(x− y)∂yk

θ(y, t)dy

and then appeal to (A.2) in order to obtain

d

dt

∂Xi

∂aj
(a, t) = ∂Xk

∂aj

∫
Ki(X(a, t) −X(b, t))∂θ0

∂bj
(b)∂Aj

∂yk
(X(b, t), t)db.

Using (A.1) we arrive at

d(∇aX)
dt

(a, t) = ∇aX(a, t)
∫

K(X(a, t) −X(b, t))(∇⊥
b X

⊥)(b, t)(∇bθ0)(b)db,

which proves (2.4).
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A.2. 2D IPM

In Eulerian coordinates the scalar vorticity ω satisfies

ω = ∇⊥ · u = −∂x1θ.

Therefore, along particle trajectories we have

ω(X(a, t), t) = −(∂x1θ)(X(a, t), t) = −{θ0(a), X2(a, t)} .

Therefore, since the kernel of the two dimensional Biot–Savart law in Eulerian coordi-
nates is given by

u(x) = 1
2π

∫ (x− y)⊥

|x− y|2 ω(y)dy,

upon letting y = X(b, t) we obtain

dX

dt
(a, t) = 1

2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2 ω(X(b, t), t) db

= − 1
2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2 {θ0(b), X2(b, t)} db.

To derive the formula for ∂t∇X, we differentiate the kernel and arrive at

d(∇aX)
dt

(a, t) = −∇aX(a, t)
∫

K(X(a, t) −X(b, t)) {θ0(b), X2(b, t)} db

+ 1
2 {θ0(a), X2(a, t)}

[
0 −1
1 0

]
∇aX(a, t) (A.3)

where K is the same as in (2.7), namely

K(y) = K(y1, y2) = 1
2π|y|4

[
2y1 y2 y2

2 − y2
1

y2
2 − y2

1 −2y1 y2

]
. (A.4)

A.3. 3D Euler

From the Biot–Savart in three dimensions

u(x, t) = 1
4π

∫
R3

x− y

|x− y|3 × ω(y, t)dy,

composition with the Lagrangian path y = X(b, t), and the Cauchy formula
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ω(X(a, t), t) = ∇X(a, t)ω0(a)

we arrive at a self-contained formula for the evolution of X(a, t)

dX

dt
(a, t) = 1

4π

∫
X(a, t) −X(b, t)
|X(a, t) −X(b, t)|3 × (∇bX(b, t)ω0(b))db.

The evolution equation for ∇X is obtained by first switching to Eulerian coordinates, 
which allows us to compute ∇xu from ω via Calderón–Zygmund singular integrals. For 
this purpose one considers the rate of strain matrix

Sij = 1
2 (∂iuj + ∂jui)

and uses the Biot–Savart law to compute

Sij = 3
8π

∫
R3

((x− y) × ω(y))i (x− y)j + ((x− y) × ω(y))j (x− y)i
|x− y|5 dy

=:
∫

(K(x− y)ω(y))ijdy

where we have defined

(K(x)y)ij = 3
8π

(x× y)i xj + (x× y)j xi

|x|5 . (A.5)

Of course, the full gradient is then obtain using

(∇u)v = Sv + 1
2ω × v.

To obtain the evolution of ∇X we then compute

d

dt

∂Xi

∂aj
(a, t) = ∂ui

∂xk
(X(a, t), t)∂Xk

∂aj
(a, t)

= Sik(X(a, t), t)∂Xk

∂aj
(a, t) + 1

2(ω(X(a, t), t) × (∇aj
X)(a, t))i

=
∫

[K(X(a, t) −X(b, t)) (∇bX(b, t)ω0(b))]ik dy
∂Xk

∂aj
(a, t)

+ 1
2
(
(∇aX(a, t)ω0(a)) × (∇aj

X)(a, t)
)
i

where we have used the notation in (A.5) for the ik-component of K(·)(∇aXω0).
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A.4. 2D Euler

From the Lagrangian conservation

ω(X(a, t), t) = ω0(a)

and the Eulerian two dimensional Biot–Savart law [29] we directly arrive at

dX

dt
(a, t) = 1

2π

∫ (X(a, t) −X(b, t))⊥

|X(a, t) −X(b, t)|2 ω0(b)db.

Estimates for the time derivative of ∇aX are obtained from the above by differentiating 
the kernel, similarly to (A.3). We obtain

d(∇aX)
dt

(a, t) =∇aX(a, t)
∫

K(X(a, t) −X(b, t))ω0(b) db

+ 1
2ω0(a)

[
0 −1
1 0

]
∇aX(a, t)

where the kernel K is given in (A.4).

A.5. 2D Boussinesq

Along the particle trajectory x = X(a, t), the vorticity obeys

∂tω(X(a, t), t) = (∂x1θ)(X(a, t), t).

Integrating in time yields

ω(X(a, t), t) = ω0(a) +
t∫

0

(∂x1θ)(X(a, τ), τ) dτ.

Next, we rewrite (∂x1θ)(X(a, τ), τ) in terms of the Lagrangian coordinates. The equation 
for θ yields

θ(x, t) = θ0(A(x, t)).

Therefore, we have

(∂x1θ)(x, t) = ∂θ0

∂a1
(A(x, t))∂A1

∂x1
(x, t) + ∂θ0

∂a2
(A(x, t))∂A2

∂x1
(x, t),

and letting x = X(a, t) yields
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(∂x1θ)(X(a, t), t) = ∂θ0

∂a1
(a)∂A1

∂x1
(X(a, t), t) + ∂θ0

∂a2
(a)∂A2

∂x1
(X(a, t), t).

Upon using (A.1) we arrive at

(∂x1θ)(X(a, t), t) = ∂a1θ0(a)∂a2X2(a, t) − ∂a2θ0(a)∂a1X2(a, t) = {θ0(a), X2(a, t)} ,

and therefore

ω(X(a, t), t) = ω0(a) +
t∫

0

{θ0(a), X2(a, τ)} dτ.

To obtain and equation just in terms of X, we recall

dX

dt
(a, t) = u(X(a, t), t) = 1

2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2 ω(X(b, t), t) db

Therefore,

dX

dt
(a, t) = 1

2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2 ω0(b) db

+ 1
2π

∫ (X(a, t) −X(b, t))⊥

|(X(a, t) −X(b, t)|2

⎛⎝ t∫
0

{θ0(b), X2(b, τ)} dτ

⎞⎠ db.

To derive the formula for ∂t∇X, we differentiate the kernel and obtain

d(∇aX)
dt

(a, t) =
(∫

K(X(a, t) −X(b, t))ω0(b) db
)
∇aX(a, t)

+

⎛⎝∫ K(X(a, t) −X(b, t))
t∫

0

{θ0(b), X2(b, τ)} dτ db

⎞⎠∇aX(a, t)

+ 1
2

⎛⎝ω0(a) +
t∫

0

{θ0(a), X2(a, τ)} dτ

⎞⎠ [ 0 −1
1 0

]
∇aX(a, t),

where K is given in (A.4) above.

Appendix B. The composition of analytic functions: the one dimensional case

The contents of this section is adapted from [23, Theorem 1.3.2], and is presented 
here for the sake of completeness. This serves as the motivation for the combinatorial 
machinery given in Section 3 above.
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Proposition B.1. If g : R → R is bounded h : R → R is real analytic, and g obeys the 
ODE

g′(x) = h(g(x)), (B.1)

then g is in fact real analytic.

Lemma B.2 (One-dimensional Faà di Bruno formula). Let I ⊂ R be an open interval, 
g ∈ C∞(I), and h ∈ C∞(J), where J = f(I). Let f = h ◦ g. Then for all n ≥ 1 we have

f (n)(x) =
n∑

k=1

h(k)(g(x))
∑

k∈P (n;k)

n!
k!

n∏
j=1

(
g(j)(x)

j!

)kj

where k = (k1, . . . , kn) is a multi-index,

P (n, k) =

⎧⎨⎩k = (k1, . . . , kn) :
n∑

j=1
jkj = n,

n∑
j=1

kj = k

⎫⎬⎭
and we use the notation

k! = k1! . . . kn!

A consequence of the Faà di Bruno formula is the following identity, as given in [23, 
Lemma 1.5.2].

Lemma B.3 (One-dimensional magic identity). For each integer n ≥ 1 we have

n∑
k=1

∑
k∈P (n,k)

(−1)kk!
k!

n∏
j=1

(
1/2
j

)kj

= 2(n + 1)
(

1/2
n + 1

)
.

Proof of Proposition B.1. The assumption that h is real analytic translates into the fact 
that there exists C, R > 0 such that

|h(k)(y)| ≤ C
k!
Rk

(B.2)

for all k ≥ 0, and all y close to some y0.
We make the following inductive assumption on the function g: that for all 1 ≤ j ≤ n

it holds that

|g(j)(x)| ≤ 1
R
j!(−1)j−1

(
1/2
j

)(
2C
R

)j

(B.3)

at all points x sufficiently close to some x0.
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Let n ≥ 0. We apply n derivatives to equation (3.1) and use Lemma B.2 to obtain

g(n+1)(x) =
∑

k∈P (n;k)

n!
k!h

(k)(g(x))
n∏

j=1

(
g(j)(x)

j!

)kj

We appeal to (B.2) and the inductive assumption (B.3) to estimate

|g(n+1)| ≤ C
∑

k∈P (n;k)

n!
k!

k!
Rk

n∏
j=1

(
(−1)j−1

(
1/2
j

)
(2C)j

Rj−1

)kj

.

Using that 
∑

j kj = k and 
∑

jjkj = n we obtain that

|g(n+1)| ≤ Cn!(−1)n (2C)n

Rn

∑
k∈P (n;k)

(−1)kk!
k!

n∏
j=1

(
1/2
j

)kj

.

Using the identity given in Lemma B.3 we thus obtain

|g(n+1)| ≤ Cn!(−1)n (2C)n

Rn
2(n + 1)

(
1/2
n + 1

)
= (n + 1)!(−1)n (2C)n+1

Rn

(
1/2
n + 1

)
which is exactly (B.3) at level n + 1. This completes the proof since in view of (3.6), the 
bound (B.3) gives

|g(j)(x)| ≤ C

R

j!
(R/C)j

which shows that g is real analytic with radius of convergence R/C. �
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