
BEHAVIOR OF SOLUTIONS OF 2D
QUASI-GEOSTROPHIC EQUATIONS∗

PETER CONSTANTIN† AND JIAHONG WU‡

SIAM J. MATH. ANAL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 30, No. 5, pp. 937–948

Abstract. We study solutions to the 2D quasi-geostrophic (QGS) equation

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = f

and prove global existence and uniqueness of smooth solutions if α ∈ ( 1
2
, 1]; weak solutions also exist

globally but are proven to be unique only in the class of strong solutions. Detailed aspects of large
time approximation by the linear QGS equation are obtained.
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1. Introduction. This paper is concerned with the 2D surface quasi-geostrophic
(QGS) equation

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = f,

where α ∈ [0, 1], κ > 0, and θ = θ(x, t) is a real scalar function of two space variables
x and a time variable t. The velocity u = (u1, u2) is incompressible and determined
from θ by a stream function ψ:

(u1, u2) =

(
− ∂ψ

∂x2
,
∂ψ

∂x1

)
,(1.1)

and the stream function ψ satisfies

(−∆)
1
2ψ = −θ.(1.2)

The nonlocal operator (−∆)β (β ≥ 0) is defined through the Fourier transform

̂(−∆)βf(ξ) = |ξ|2β f̂(ξ),

where f̂ is the Fourier transform of f [11]. For notational convenience, we write Λ for

(−∆)
1
2 .

The variable θ in the 2D QGS equation represents the potential temperature, u is
the fluid velocity, and the stream function ψ can be identified with the pressure. When
the fractional power α = 1/2, the equation, derived from the more general quasi-
geostrophic models (see pages 345–368 and 653–670 of [7]), describes the evolution
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938 PETER CONSTANTIN AND JIAHONG WU

of the temperature on the 2D boundary of a rapidly rotating half-space with small
Rossby and Ekman numbers. Dimensionally, the 2D QGS equation with α = 1/2 is
the analogue of the 3D Navier–Stokes equations. The general fractional power α is
considered here in order to observe the minimal power of Laplacian necessary in the
analysis and thus make a comparison with the 3D Navier–Stokes equations [3], [6].

Recently, this equation has been intensively investigated because of both its math-
ematical importance and its potential for applications in meteorology and oceanogra-
phy [4], [7], [5]. Mathematically, the behavior of solutions to the 2D QGS equation is
strikingly similar to that of the potentially singular solutions to the 3D hydrodynam-
ics equations. Despite exhibiting a number of similar features, the 2D QGS equation
is considerably simpler than the 3D Euler or Navier–Stokes equations.

The smooth solution of the QGS equation is unique but, if κ = 0, it is known
to exist only for a finite time [4]. On the other hand, weak solutions are global but
their uniqueness is unknown [8]. Whether the smooth solution develops singularity
in finite time and whether weak solutions are unique are fundamental mathematical
issues related to the QGS equation. We show in section 2 that the solution remains
smooth for all time for α ∈ (1

2 , 1] and any weak solution must coincide with a more
regular solution as long as such a strong solution exists.

Large time behavior of weak solutions is investigated in sections 3 and 4. In
section 3, the L2 decay rate of order t−

1
2α is obtained. For generic initial data, this

rate is optimal. The solution θ of the nonlinear equation may be approximated by
the solution Θ of the linear equation with a higher-order correction. An explicit form
for the higher-order correction is attempted in section 4. A rate of order t

1
2− 1

α is first
obtained without any smoothness assumption. With the assumption that

‖Λ2−2α+δθ(·, t)‖L2 ∼ t−ε,

the ratio and the difference are shown to behave as follows:

‖θ(·, t)‖L2

‖Θ(·, t)‖L2

∼ 1 +O(t−min{ 1
2α ,ε}), ‖θ(·, t)−Θ(·, t)‖L2 ∼ t− 1

2α−min{ 1
2α ,ε},

which imply that the effect of the nonlinearity is felt only in the higher-order correc-
tion.

We conclude this introduction by mentioning the global existence result of weak
solutions obtained in [8]. When not specified, the spatial domain can be either the
whole R2 or the 2D torus T2.

Proposition 1.1. Let T > 0 be arbitrary. Then for every θ0 ∈ L2 and f ∈
L2([0, T ];H−α), there exists a weak solution of

∂tθ + u · ∇θ + κΛ2αθ = f,(1.3)

θ |t=0 = θ0(1.4)

which satisfies

θ ∈ L∞([0, T ];L2) ∩ L2([0, T ];Hα).

2. Global smooth solution and uniqueness. It is shown here that weak
solutions of the QGS equation are globally smooth for α ∈ ( 1

2 , 1] and “strong” solutions
are unique. The spatial domain here is the 2D torus T2.
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BEHAVIOR OF SOLUTIONS OF 2D QUASI-GEOSTROPHIC EQUATIONS 939

Theorem 2.1. Let α ∈ ( 1
2 , 1], β ≥ 0, and β+ 2α > 2. If θ0 ∈ Hβ(T2) and if, for

T > 0,

f ∈ L2([0, T ];Hβ−α),

∫ T

0

‖f(τ)‖Lqdτ <∞,

where q =∞ for β ≥ 1 and q = 2/(1− β) for β < 1, then the solution θ of (1.3) and
(1.4) obeys for all t ≤ T

‖Λβθ(t)‖L2 ≤ C,(2.1)

where C is constant depending only on T , ‖θ0‖Hβ , ‖f‖L2([0,T ];Hβ−α), and
∫ T

0
‖f(τ)‖Lqdτ .

Proof. We sketch the proof. Taking the scalar product of (1.3) with Λ2βθ

1

2

d

dt

∫
|Λβθ|2 + κ

∫
|Λα+βθ|2 = −

∫
(u · ∇θ)Λ2βθ +

∫
Λ2βθf

and using the estimates∣∣∣∣∫ Λ2βθf

∣∣∣∣ ≤ κ

4
‖Λα+βθ‖2L2 +

1

κ
‖Λβ−αf‖2L2 ,(2.2)

∣∣∣∣∫ (u · ∇θ)Λ2βθ

∣∣∣∣ ≤ κ

4
‖θ‖2Hα+β + C(κ, θ0, f)‖θ‖2Hβ ,(2.3)

where C(κ, θ0, f) is constant, we obtain (2.1) after applying Gronwall’s inequality.
The estimate (2.3) is obtained by using the calculus inequality (see page 61 of [8] and
inequality (3.1.59) on page 74 of [12])

‖Λs(gh)‖L2 ≤ C(‖g‖Lq‖Λsh‖Lp + ‖h‖Lq‖Λsg‖Lp)

with 1/p+ 1/q = 1/2, g = u, h = θ, s = β + 1− α, and the maximum principle

‖θ‖Lq ≤ ‖θ0‖Lq +

∫ t

0

‖f(τ)‖Lqdτ.

Although weak solutions may not be unique, there is at most one solution in the
class of “strong” solutions.

Theorem 2.2. Assume that α ∈ ( 1
2 , 1], T > 0, p and q satisfy

p ≥ 1, q > 0,
1

p
+
α

q
= α− 1

2
;(2.4)

then there is at most one solution θ of the QGS equation with initial data θ0 ∈ L2

such that

θ ∈ L∞([0, T ];L2) ∩ L2([0, T ];Hα),(2.5)

θ ∈ Lq([0, T ];Lp).(2.6)D
ow
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940 PETER CONSTANTIN AND JIAHONG WU

We make two remarks.
Remark 2.3. It is clear from the proof given below that we can assume that only

one of the two solutions is “strong,” i.e., in the class (2.5), (2.6), the other being only
a weak solution.

Remark 2.4. By taking α = 1, (2.6) with (2.4) reduces exactly to the regular-
ity assumptions in obtaining uniqueness for weak solutions to the 3D Navier–Stokes
equations (cf. Temam [13, p. 299]). Theorem 2.2 is a sort of generalization in the
sense that it holds for a range of α ∈ ( 1

2 , 1].
Proof of Theorem 2.2. The difference θ = θA − θB of two solutions θA and θB

satisfies

∂tθ + u · ∇θA + uB · ∇θ + κΛ2αθ = 0(2.7)

in which u = uA − uB with uA and uB being the velocities corresponding to θA and
θB . We take the scalar product of (2.7) with ψ = −Λ−1θ and use∫

T2

ψu · ∇θA = 0,

∣∣∣∣∫
T2

θuB · ∇ψ
∣∣∣∣ ≤ κ‖ψ‖2Hα+ 1

2
+ C(κ)‖θB‖

1
1−β
Lp ‖ψ‖2H 1

2
,

where β = 1
α

(
1
2 + 1

p

)
and C(κ) = Cκ−

β
1−β (see page 32 of [8]). It then follows that

d

dt
‖ψ‖2

H
1
2
≤ C(κ)‖θB‖

1
1−β
Lp ‖ψ‖2H 1

2
,

which implies that ψ = 0 and thus θ = 0.

3. Large time behavior. The large time behavior of weak solutions is investi-
gated in this section. We adapt well-known ideas of Amick, Bona, and Schonbek [1]
and Schonbek [9], [10].

We first analyze the case when the force f = 0 and the result can be stated as
follows.

Theorem 3.1. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2). Then there exists a
weak solution θ of the 2D QGS equation

∂tθ + u · ∇θ + Λ2αθ = 0, θ |t=0 = θ0(3.1)

such that

‖θ(·, t)‖L2(R2) ≤ C(1 + t)−
1

2α ,(3.2)

where C is a constant depending on L1 and L2 norms of θ0.
Remark 3.2. For generic initial data, the rate obtained in Theorem 3.1 is optimal,

as implied by Theorem 4.6 of section 4.
The proof of Theorem 3.1 consists of two major steps. The first step is a formal

argument to show that (3.2) holds for smooth solutions. In the second step the
formal argument is applied to a sequence of “retarded mollifications” [2] and we
obtain Theorem 3.1 after passing to the limit. We will need a simple estimate.
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BEHAVIOR OF SOLUTIONS OF 2D QUASI-GEOSTROPHIC EQUATIONS 941

Lemma 3.3. Assume that θ0 ∈ L1(R2) ∩ L2(R2). Then θ satisfies the a priori
estimate

|θ̂(ξ, t)| ≤ ‖θ0‖L1 + |ξ|
∫ t

0

‖θ(τ)‖2L2dτ.

Proof. We have from (3.1)

(∗) ∂tθ̂ + |ξ|2αθ̂ = −û · ∇θ.

Since ∇ · u = 0,

|û · ∇θ| ≤ |ξ|‖θ(t)‖2L2 .

After integrating (∗), we obtain

|θ̂(ξ, t)| ≤ |θ̂0(ξ)|+ |ξ|
∫ t

0

‖θ(τ)‖2L2dτ ≤ ‖θ0‖L1 + |ξ|‖θ0‖2L2t.

Proof of Theorem 3.1. Taking the scalar product of (3.1) with θ we obtain

1

2

d

dt

∫
Rn
|θ|2 +

∫
Rn

(Λαθ)
2

= 0.

Using Plancherel’s theorem,

d

dt

∫
R2

|θ̂|2 + 2

∫
R2

|ξ|2α|θ̂|2 = 0.

For the second term∫
R2

|ξ|2α|θ̂|2 ≥
∫
B(t)c

|ξ|2α|θ̂|2 ≥ g2α(t)

∫
B(t)c

|θ̂|2

= g2α(t)

∫
R2

|θ̂|2 − g2α(t)

∫
B(t)

|θ̂|2,

where g ∈ C([0,∞);R+) remains to be determined and B(t)c is the complement of
B(t) with

B(t) =
{
ξ ∈ R2 : |ξ| < g(t)

}
.

By Lemma 3.3, we obtain

d

dt

∫
R2

|θ̂|2 + 2g2α(t)

∫
R2

|θ̂|2

≤ 2πg2α(t)

∫ g(t)

0

[
‖θ0‖L1 + r

∫ t

0

‖θ(τ)‖2L2dτ

]2

rdr.(3.3)D
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942 PETER CONSTANTIN AND JIAHONG WU

By integrating (3.3), we have

e
2
∫ t

0
g2α(τ)dτ

∫
R2

|θ̂|2 ≤ ‖θ0‖2L2

+

∫ t

0

e
2
∫ s

0
g2α(τ)dτ

[
C1g

2α+2(s) + C2sg
2α+4(s)

∫ s

0

‖θ(τ)‖4L2dτ

]
ds,(3.4)

where C1 = 2π‖θ0‖2L1 and C2 = π.
To obtain a basic estimate, we take g2α(t) =

(
1
2 + 1

2α

)
[(e + t) ln(e + t)]−1 and

thus e
2
∫ t

0
g2α(τ)dτ

= [ln(e+ t)](1+ 1
α ). We then obtain from (3.4)

‖θ‖2L2 ≤ C[ln(e+ t)]−1− 1
α .

To obtain the sharp decay result, we take g2α(t) = 1
2α(t+1) and thus e

2
∫ t

0
g2α(τ)dτ

=

(1 + t)
1
α . From (3.4),

‖θ(t)‖2L2 ≤ C(t+ 1)−
1
α + C(t+ 1)(1− 2

α )

∫ t

0

‖θ(s)‖2L2 [ln(e+ s)]−1− 1
α ds.

Using Gronwall’s inequality and the fact that α ≤ 1,

‖θ(t)‖2L2 ≤ C(1 + t)−
1
α ,(3.5)

where the constant C depends on the L1 and L2 norms of θ0. We note here that
(3.5) is actually obtained by first taking g2α(t) =

(
1

2α − ε
)

1
1+t and then passing to

the limit as ε→ 0. This completes the formal argument step.
Next we construct a sequence of retarded mollifications θn and carry over the

formal arguments to θn. We will present here only the main ideas. We approximate
the QGS equation by a sequence of equations

∂tθn + un · ∇θn + Λ2αθn = 0,(3.6)

where δn → 0 and un = Sδn(θn) is obtained from θn by

Sδn(θn) =

∫ ∞
0

φ(τ)R⊥θn(t− δnτ)dτ.

We denote here R⊥ = (−∂x2
Λ, ∂x1

Λ) as the Riesz transform. The smooth function
φ is nonnegative with compact support in [1, 2] and

∫∞
0
φ(t)dt = 1. For each n,

(3.6) is a linear equation since the values of un(t) depend only on the values of θn in
[t− 2δn, t− δn].

Without giving details, we point out that θn converges to a weak solution θ
strongly in L2 for almost every t. Hence

‖θ(t)‖L2 ≤ ‖θn(t)− θ(t)‖L2 + ‖θn(t)‖L2 ≤ C(1 + t)−
1

2α ,

where C is a constant depending only on the L1 and L2 norms of θ0. This completes
the proof of Theorem 3.1.

We now consider the case when the force f is not zero.
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BEHAVIOR OF SOLUTIONS OF 2D QUASI-GEOSTROPHIC EQUATIONS 943

Theorem 3.4. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2). Assume that f ∈
L1([0,∞);L2), satisfying

‖f(·, t)‖L2 ≤ C(1 + t)−
1
α−1, |f̂(ξ, t)| ≤ C|ξ|α(3.7)

for some constant C. Then there is a weak solution of the QGS equation

∂tθ + u · θ + Λ2αθ = f

such that

‖θ(·, t)‖L2 ≤ C(1 + t)−
1

2α .(3.8)

Proof. The arguments of Theorem 3.1 work here and we will point out only the
difference. It is easy to see that

‖θ(t)‖L2 ≤ ‖θ0‖L2 +

∫ t

0

‖f(τ)‖L2dτ ≤ C

by energy estimates. When the force f is present, the estimate for θ̂ is given by

|θ̂(ξ, t)| ≤ e−|ξ|2αt|θ̂0|+
∫ t

0

e−|ξ|
2α(t−τ)

[
f̂ + |ξ|‖θ‖2L2

]
dτ.

Then the procedures of the proof of Theorem 3.1 can be repeated and the assumptions
(3.7) are sufficient in establishing (3.8).

4. Large time approximation. In this section we intend to understand the
higher-order correction in the large time approximation of the solution θ to the non-
linear equation by the solution Θ to the linear equation. The approach is to study
the difference and the ratio

‖θ(·, t)−Θ(·, t)‖L2 ,
‖θ(·, t)‖L2

‖Θ(·, t)‖L2

.

We start with some estimates for the linear equation. The solution of the linear
equation on Rn

∂tθ + Λ2αθ = 0, θ |t=0 = θ0(4.1)

is given by

Θ(t) = kαt ∗ θ0,(4.2)

where the kernel kαt is defined by its Fourier transform

k̂αt (ξ) = e−|ξ|
2αt.(4.3)

Proposition 4.1. Assume that α > 0 and the initial data θ0 ∈ L1(Rn). Then
we have

lim
t→∞ t

n
2α ‖Θ(·, t)‖2L2 = A(n, α)

[∫
Rn
θ0(x)dx

]2

,(4.4)

lim
t→∞ t

n+2
2α ‖∇Θ(·, t)‖2L2 = B(n, α)

[∫
Rn
θ0(x)dx

]2

,(4.5)
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944 PETER CONSTANTIN AND JIAHONG WU

where the constants A(n, α) =
∫
Rn e

−2|η|2dη and B(n, α) =
∫
Rn |η|2e−2|η|2dη.

Especially for n = 2, the L2 decay rates of Θ and ∇Θ are t−
1

2α and t−
1
α , respec-

tively.
Proof. We first prove (4.4). By Plancherel’s theorem,

lim
t→∞ t

n
2α ‖Θ(·, t)‖2L2 = lim

t→∞ t
n
2α ‖Θ̂(·, t)‖2L2

= lim
t→∞ t

n
2α

∫
Rn
e−2|ξ|2αt|θ̂0|2(ξ)dξ = lim

t→∞

∫
Rn
e−2|η|2 |θ̂0|2(ηt−

1
2α )dη.

Since for any t ∈ [0,∞) ∫
Rn
e−2|η|2 |θ̂0|2(ηt−

1
2α )dη

≤ ‖θ̂0‖2L∞
∫
Rn
e−2|η|2dη ≤ A(n, α)‖θ0‖2L1 ,

we can apply the dominated convergence theorem, which leads to (4.4).
The proof of (4.5) is similar to that of (4.4). We have

lim
t→∞ t

n+2
α ‖∇Θ(·, t)‖2L2 = lim

t→∞ t
n+2
α

∫
Rn
|ξ|2e−2|ξ|2αt|θ̂0|2(ξ)dξ

= lim
t→∞

∫
Rn
|η|2e−2|η|2 |θ̂0|2(ηt−

1
2α )dη = B(n, α)

[∫
Rn
θ0(x)dx

]2

.

Proposition 4.2. Let α ∈ (0, 1] and θ0 ∈ L2(R2). Then the solution Θ of (4.1)
satisfies

‖∇Θ(t)‖L∞(R2) ≤ Ct− 1
α ,

where the constant C depends only on the L2 norm of θ0.
Proof. We have by (4.2) and (4.3)

‖∇Θ‖L∞ ≤
∫
R2

|ξ||Θ̂(ξ)|dξ =

∫
R2

|ξ|e−|ξ|2αt|θ̂0(ξ)|dξ

≤ ‖θ0‖L2

(∫
R2

|ξ|2e−2|ξ|2αtdξ
) 1

2

≤ C
(∫ ∞

0

r3e−2r2αtdr

) 1
2

≤ Ct− 1
α ,

where the constant C depends only on the L2 norm of θ0.
Theorem 4.3. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2). Then the difference

θ−Θ between a weak solution θ of the QGS equation and the solution Θ of the linear
QGS equation with the data θ0 satisfies

‖θ(t)−Θ(t)‖L2(R2) ≤ C(1 + t)
1
2− 1

α ,

where the constant C depends only on the L1 and L2 norms of θ0.
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BEHAVIOR OF SOLUTIONS OF 2D QUASI-GEOSTROPHIC EQUATIONS 945

Remark 4.4. By comparing the rates in Theorems 3.1 and 4.3, we see that θ−Θ
decays faster than θ does for large time for α < 1.

Proof. We will present only a formal argument. The justification process can be
done similarly as in the proof of Theorem 3.1. The difference w = θ −Θ satisfies

∂tw + Λ2αw = −u · ∇θ.(4.6)

Taking the scalar product of (4.6) with w and using the fact that∫
R2

(u · ∇θ)θdx = 0,

we obtain

d

dt

∫
R2

|w|2 + 2

∫
R2

|Λαw|2 =

∫
R2

Θ(u · ∇θ)dx.

Using the results of Proposition 4.2 and Theorem 3.1, we bound the right-hand term
by ∣∣∣∣∫

R2

Θ(u · ∇θ)dx
∣∣∣∣ ≤ ‖∇Θ‖L∞‖θ‖2L2 ≤ C(1 + t)−

2
α .

As in the proof of Theorem 3.1,

d

dt

∫
R2

|ŵ|2 + 2g2α(t)

∫
R2

|ŵ|2 ≤ 2g2α(t)

∫
|ξ|≤g(t)

|ŵ|2 + C(1 + t)−
2
α ,(4.7)

where g(t) remains to be decided.
We need an estimate of ŵ, which can be obtained by taking the Fourier transform

of (4.6) and proceeding as in Lemma 3.3. By Theorem 3.1 and noticing α ≤ 1,

|w(ξ, t)| ≤ |ξ|
∫ t

0

‖θ(τ)‖2L2dτ ≤ |ξ|
∫ t

0

(1 + τ)−
1
α dτ ≤ C|ξ|.

Taking g2α = β
2(1+t) , we obtain, by integrating (4.7),

(1 + t)β
∫
R2

|ŵ|2 ≤ C
[∫ t

0

(1 + τ)β−
2
α dτ +

∫ t

0

(1 + τ)βg4(τ)dτ

]
.

Therefore,

‖w‖2L2 ≤ C(1 + t)1− 2
α .

This completes the proof of Theorem 4.3.
We can consider lower bounds for the decay of θ with the aid of Theorem 4.3. It

is easy to see that Θ can decay exponentially fast. For example, if θ̂0 = 0 for |ξ| ≤ γ,
then

‖Θ(t)‖2L2 =

∫
e−2|ξ|2αt|θ̂0(ξ)|2 ≤ ‖θ0‖2L2e−2γ2t.

However, for those θ0 satisfying

|θ̂0(ξ)| ≥ λ for |ξ| ≤ γ,(4.8)

we have the following.
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946 PETER CONSTANTIN AND JIAHONG WU

Proposition 4.5. Let α ∈ (0, 1] and θ0 ∈ L2(R2) satisfy (4.8). Then if Θ is a
solution of the linear QGS equation,

‖Θ(t)‖L2(R2) ≥ C(1 + t)−
1

2α ,

where C is a constant depending only on λ, γ, and the L2 norm of θ0.
As a corollary of Theorem 4.3 and Proposition 4.5, we have the following.
Theorem 4.6. Let α ∈ (0, 1] and θ0 ∈ L1(R2) ∩ L2(R2) satisfy (4.8). Then for

a weak solution θ of the QGS equation with data θ0,

‖θ(·, t)‖L2(R2) ≥ C(1 + t)−
1

2α ,

where C depends on λ, γ, and the L1 and L2 norms of θ0.
The following theorem reveals more detailed aspects of the higher-order correc-

tion.
Theorem 4.7. Let α ∈ ( 1

2 , 1] and δ > 0 such that 2α − 1− δ ≥ 0. Assume that
θ is a weak solution of the 2D QGS equation

∂tθ + u · ∇θ + Λ2αθ = 0

with initial data θ0 ∈ L1(R2) ∩ L2(R2) and that satisfies

‖Λ2−2α+δθ(·, t)‖L2 ≤ Ct−ε(4.9)

for some constant C and ε > 0. Let Θ be the solution of the linear equation with the
same initial data θ0. Then

‖θ(·, t)‖L2

‖Θ(·, t)‖L2

= 1 +O(t−min{ 1
2α ,ε}),(4.10)

t
1

2α+min{ 1
2α ,ε}‖θ(·, t)−Θ(·, t)‖L2 = O(1).(4.11)

Proof. By taking the Fourier transform of the equation for θ

∂tθ + Λ2αθ = −u · ∇θ,
we obtain

θ̂(ξ, t) = e−|ξ|
2αtθ̂0(ξ)−

∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds.

Then the ratio

‖θ(·, t)‖2L2

‖Θ(·, t)‖2L2

=
‖θ̂(·, t)‖2L2

‖Θ̂(·, t)‖2L2

= 1 + 2J (t) + J 2(t),

where J is given by

J (t) =

∫
R2

∣∣∣∫ t0 e−|ξ|2α(t−s)û · ∇θ(ξ, s)ds
∣∣∣2 dξ

‖Θ‖2L2

.

To prove (4.10), it suffices to show that

J (t) = O(t−min{ 1
2α ,ε}).
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BEHAVIOR OF SOLUTIONS OF 2D QUASI-GEOSTROPHIC EQUATIONS 947

The difference w = θ −Θ satisfies

∂tw + Λ2αw = −u · ∇θ.

Since w(x, 0) = θ(x, 0)−Θ(x, 0) = 0,

ŵ(ξ, t) = −
∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds,

‖w(·, t)‖2L2 = ‖ŵ(·, t)‖2L2 =

∫
R2

∣∣∣∣∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣2 dξ.
Thus, to prove (4.10) and (4.11), we need only to estimate the integral

I ≡
∫
R2

∣∣∣∣∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣2 dξ.
To this end, we divide the integral I into the following two parts:

II =

∫
R2

∣∣∣∣∣
∫ t/2

0

· · ·
∣∣∣∣∣
2

dξ and III =

∫
R2

∣∣∣∣∣
∫ t

t/2

· · ·
∣∣∣∣∣
2

dξ.

Since ∇ · u = 0, û · ∇θ = iξ · ûθ and we obtain, by setting η = t
1

2α ξ,

II = t−
2
α

∫
R2

e−2|η|2α
∣∣∣∣∣
∫ t/2

0

e
s
t |η|2η · ûθ(ηt− 1

2α , s)ds

∣∣∣∣∣
2

dη.

Since

‖ûθ(·, s)‖L∞ ≤ ‖uθ(·, s)‖L1 ≤ ‖u(·, s)‖L2‖θ(·, s)‖L2 ≤ C‖θ(·, s)‖2L2 ,

we have the bound

II ≤ Ct− 2
α

∫
R2

|η|2e− 7
4 |η|2

[∫ ∞
0

‖θ(·, s)‖2L2ds

]2

dη

≤ Ct− 2
α

(∫
R2

|η|2e− 7
4 |η|2dη

)
‖θ‖4L2([0,∞);L2).

The estimate of III seems tricky. Intuitively, the idea is to split the whole deriva-
tive ∇ into two fractional parts Λ2α−1−δ and Λ2−2α+δ:

III =

∫
R2

∣∣∣∣∣
∫ t

t/2

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣∣
2

dξ

≤
∫
R2

e−2|ξ|2αt|ξ|2(2α−1−δ) sup
t/2≤s≤t

| ̂u · Λ2−2α+δθ|2(ξ, s)

[∫ t

t/2

es|ξ|
2α

ds

]2

dξ.
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948 PETER CONSTANTIN AND JIAHONG WU

Using the assumption (4.9), we obtain

| ̂u · Λ2−2α+δθ|(ξ, s) ≤ ‖ ̂u · Λ2−2α+δθ(·, s)‖L∞

≤ ‖(u · Λ2−2α+δθ)(·, s)‖L1 ≤ C‖u(·, s)‖L2‖Λ2−2α+δθ(·, s)‖L2 ≤ Cs− 1
2α−ε,

where C is a constant. Therefore

III ≤ Ct− 1
α−2ε

∫
R2

|ξ|−2−δ(1− e− 1
2 |ξ|2αt)2dξ ≤ Ct− 1

α−2ε.

Combining the estimates for II and III, we conclude that

I ≡
∫
R2

∣∣∣∣∫ t

0

e−|ξ|
2α(t−s)û · ∇θ(ξ, s)ds

∣∣∣∣2 dξ ≤ Ct− 1
α−min{ 1

α ,2ε},

and (4.10), (4.11) are therefore established.
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