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Abstract. This paper focuses on the two-dimensional Benjamin-Bona-Mah-

ony and Benjamin-Bona-Mahony-Burgers equations with a general flux func-
tion. The aim is at the global (in time) well-posedness of the initial-and

boundary-value problem for these equations defined in the upper half-plane.

Under suitable growth conditions on the flux function, we are able to establish
the global well-posedness in a Sobolev class. When the initial- and boundary-

data become more regular, the corresponding solutions are shown to be classi-

cal. In addition, the continuous dependence on the data is also obtained.

1. Introduction. This paper is concerned with the two-dimensional (2D) Benja-
min-Bona-Mahony-Burgers equation of the form

ut + div (φ(u)) = ν1∆u+ ν2∆ut in Ω× (0, T ) , (1a)

u = g on Ω× {t = 0} , (1b)

u = h on ∂Ω× (0, T ) , (1c)
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where Ω ⊆ R2 denotes a smooth domain, u = u(x, t) is a scalar function, φ(u) is a
vector-valued flux function, and ν1 ≥ 0 and ν2 > 0 are real parameters. (1a) is a
natural generalization of the 1D Benjamin-Bona-Mahony equation

ut + ux + uux − uxxt = 0, (2)

which governs the unidirectional propagation of 1D long waves with small ampli-
tudes. Therefore (1a) with ν1 = 0 is sometimes called the generalized Benjamin-
Bona-Mahony (GBBM) equation while (1a) with ν1 > 0 the Benjamin-Bona-Mahon-
y-Burgers (GBBM-B) equation. (1a) is also a regularization of the scalar conserva-
tion law

ut + div(φ(u)) = 0 . (3)

In addition, (1a) has also been derived to model the two-phase fluid flow in a porous
medium, as in the oil recovery. In fact, (1a) is a special case of the well-known
Buckley-Leverett equation

ut + div(φ(u)) = −div{H(u)∇(J(u)− τut)}, (4)

where u denotes the saturation of water, the functions φ, H and J are related to
the capillary pressure and the permeability of water and oil [14]. (1a) follows from
(4) by linearizing the static capillary pressure J(u) and H around a constant state.

Attention here will be focused on the case when Ω = R2
+, the upper half-plane.

The aim is at the global well-posedness of (1) with inhomogeneous boundary data,
namely h 6≡ 0. One motivation behind this study is to rigorously validate the
laboratory experiments involving water waves generated by a wavemaker mounted
at the end of a water channel. We are able to prove the global existence and
uniqueness of the mild and classical solutions to (1). In addition, a continuous
dependence result is also obtained. Our main theorems can be stated as follows.

Theorem 1.1 (Existence and uniqueness). Let ν1 ≥ 0, ν2 > 0, and Ω = R2
+.

Let T > 0. Suppose that (g, h) ∈ H2(R2
+) × C1([0, T ];H2(R)), and the flux φ ∈

C2(R,R2) satisfies the conditions

φ(0) = 0 and ‖φ′′‖L∞(R) ≤ C. (5)

Then (1) admits a unique mild solution u ∈ C([0, T ];H2(R2
+)). If we further assume

that (g, h) ∈ C2,α
loc (R2

+) × C1([0, T ];C2,α
loc (R)) for some 0 < α < 1, then the mild

solution is in fact a classical solution.

We remark that the condition φ(0) = 0 in (5) can be removed. In the case of

φ(0) 6= 0, we define the new function φ̃(s) = φ(s)−φ(0) for all s ∈ R, then φ̃(0) = 0

and div(φ̃(v)) = div(φ(v)). We can consider the new equation by replacing the

function φ with φ̃ in (1a).

Theorem 1.2 (Continuous dependence on data). Let ν1 ≥ 0, ν2 > 0, and Ω = R2
+.

Suppose that φ ∈ C2(R,R2) satisfies the condition (5). Then the mild solution
obtained in Theorem 1.1 depends continuously on the initial datum g and boundary
datum h. If we further assume that φ ∈ C3(R,R2) satisfies

‖φ′′′‖L∞(R) ≤ C , (6)

then the same result also holds for the classical solution.

It is worth remarking that Theorems 1.1 and 1.2 hold with either ν1 = 0 or with
ν1 > 0 and do not rely on the regularization due to the Burgers dissipation. We
briefly review related well-posedness results and then explain the main difficulties
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in proving Theorems 1.1 and 1.2. There is a very large literature on the global
well-posedness and asymptotic behavior of solutions for the 1D BBM equation on
the whole line (see, e.g. [1, 4, 5, 20]). Extensive results have also been obtained on
the global well-posedness for the initial- and boundary-value problem of the BBM
equation posed on the half-line (see, e.g. [3, 6, 7, 8, 9, 10, 11, 12, 13, 18, 21]).
In particular, in the well-known articles [3, 4], the existence of classical solutions
and their continuous dependence on the specified data were investigated. While
current analytic results for the multi-dimensional BBM or BBM-Burgers equations
only dealt with the existence of mild solutions on either the whole space or bounded
domains with homogeneous boundary data (see, e.g. [2, 15, 17, 19]). The results
presented here allow inhomogeneous boundary data, which correspond to the setup
of a wavemaker mounted at the end of a channel in laboratory experiments. We
emphasize that, our methods are also suitable for the corresponding initial value
problem. Therefore, Theorems 1.1 and 1.2 are the complete extensions of the results
in [3, 4] to the multi-dimensional case.

The main difficulty in proving Theorem 1.1 is from two sources. First, the Green
function for operator I−∆ in 2D is much more singular than the 1D case; and second,
the inhomogeneous boundary data prevents us from obtaining a time-independent
H1 upper bound, which very much simplifies the process of global-in-time esti-
mates. To overcome the difficulties, we introduce a new function that assumes the
homogeneous boundary data and rewrite the equation in an integral form through
the Green function of the elliptic operator. In addition, we use the bootstrapping
technique to obtain the classical solution of (1) instead of looking for the solution
in classical spaces directly.

The rest of this paper is divided into six sections. The first five sections deal
with the case when ν1 = 0 while the last section explains why the results for ν1 = 0
can be extended to the case when ν1 > 0. Section 2 introduces a new function that
assumes homogenous boundary data and converts (1) into an integral formulation
in terms of this new function. Section 3 presents preliminary regularity estimates
for the operator (I −∆)−1 in the Sobolev space H2 and in Hölder spaces. Section
4 proves that (1) has a unique local (in time) classical solution. We make use
of the integral representation (11). Section 5 establishes the global existence and
uniqueness of the local solution obtained in Section 4 by showing global bounds
for the solution in H2 and in Hölder spaces. Section 6 contains the continuous
dependence results. The continuous dependence of the solution on the initial data
and the boundary data is proven in two functional settings and the proof is lengthy.
As aforementioned, Section 7 is devoted to the case when ν1 > 0.

2. An alternative formulation. In this section we set ν1 = 0. The case when
ν1 > 0 is handled in Section 7. This section provides an integral formulation of (1).

In order to apply the standard elliptic theory in the functional framework of
Sobolev spaces, we shall rewrite equation (1) with homogeneous boundary data.
This is achieved by setting v(x, t) = u(x, t)− h(x1, t)e

−x2 , which satisfies

(I−∆)vt + div
(
φ(v + he−x2)

)
= hx1x1te

−x2 in R2
+ × (0, T ), (7a)

v = g̃ on R2
+ × {t = 0}, (7b)

v = 0 on ∂R2
+ × (0, T ). (7c)

where

g̃(x) = g(x)− h(x1, 0)e−x2 . (8)
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Denoting (I−∆)−1f as the unique solution to the elliptic equation

(I−∆)u = f in Ω, (9a)

u = 0 on ∂Ω, (9b)

we can formally write the solution v of (7) via the integral representation

v(x, t) = g̃(x) + (I−∆)−1
(
{hx1x1

(x1, t)− hx1x1
(x1, 0)}e−x2

)
−
∫ t

0

(I−∆)−1
{

div
(
φ(v + he−x2)

)}
dτ .

(10)

For short, we rewrite (10) as the form

v = Av = g̃ + Bh+ Cv, (11)

where, for x ∈ R2
+ and t ≥ 0,

Bh(x, t) := (I−∆)−1
(
{hx1x1(x1, t)− hx1x1(x1, 0)}e−x2

)
,

Cv(x, t) := −
∫ t

0

(I−∆)−1
{

div
(
φ(v + he−x2)

)}
dτ.

3. Preliminary results. This section specifies the functional spaces and provides
two preliminary estimates on the solutions to the elliptic equation (9). In the rest
of this paper, we write Ck([0, T ];H`(R2

+)) for the space

{
u : [0, T ]→ H`(R2

+)
∣∣∣ lim
t→t0

k∑
j=0

∥∥∥∂ku
∂tk

(t)− ∂ku

∂tk
(t0)

∥∥∥
H`(R2

+)
= 0 ∀ t0 ∈ [0, T ]

}
equipped with norm

‖u‖Ckt H`x := max
t∈[0,T ]

k∑
j=0

∥∥∥∂ku
∂tk

(t)
∥∥∥
H`(R2

+)
.

The spaces with the particular indices k = 0, 1 and ` = 1, 2 will be frequently used.
For the simplicity of notation, when k = 0, we omit the super-index 0, that is,
C([0, T ];H`(R2

+)) ≡ C0([0, T ];H`(R2
+)) and ‖ ·‖CtH`x ≡ ‖·‖C0

tH
`
x
. We will also need

the space

C([0, T ];Lp(R2
+)) ≡

{
u : [0, T ]→ Lp(R2

+)
∣∣∣ lim
t→t0
‖u(t)− u(t0)‖Lp(R2

+) = 0
}

equipped with norm

‖u‖CtLpx = max
t∈[0,T ]

‖u(t)‖Lp(R2
+) .

Similar notation is used to define the space of the boundary data which is only
defined on the real line R. We introduce

C([0, T ];H2(R)) ≡
{
h : [0, T ]→ H2(R)

∣∣∣ lim
t→t0
‖h(t)− h(t0)‖H2(R) = 0

}
equipped with norm

‖h‖CtH2
x1

= max
t∈[0,T ]

‖h(t)‖H2(R) .
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To study the classical solutions, we let Ck,α(Ω) denote the space of k-times
classically differentiable functions whose k-th derivatives are Hölder continuous with
exponent α. The norm on Ck,α(Ω) is given by

‖u‖Ck,α(Ω) =

k∑
j=0

sup
x∈Ω
|Dju(x)|+ sup

x,y∈Ω

|Dku(x)−Dku(y)|
|x− y|α

,

where Dju denotes the j-th classical derivative of u.
To deal with the integral representation (10), we need some crucial estimates on

the operator (I−∆)−1. In particular, the bounds in the following propositions will
be employed in the subsequent sections.

Proposition 1. Assume f ∈ L2(Ω). Then the Dirichlet problem (9) admits a
unique solution u ∈ H2(Ω). Furthermore,

‖u‖H2(Ω) ≤ C‖f‖L2(Ω) .

If f is instead in a Hölder space, then we have the following Hölder’s estimates
for the solution of (9).

Proposition 2. Assume that Ω ⊂ R2 is a smooth domain. Assume that f is in
C0,α

loc (Ω) ∩ L2(Ω) for some 0 < α < 1. Then the solution u of the Dirichlet problem

(9) lies in C2,α
loc (Ω)∩H2(Ω). Furthermore, for any compact subsets Ω1 and Ω2 of Ω

with Ω2 ⊂⊂ Ω1,

‖u‖C2,α(Ω2) ≤ C(‖f‖C0,α(Ω1) + ‖f‖L2(Ω1)),

where C > 0 depends only on the distance between Ω2 and ∂Ω1.

Proof. By Proposition 1, we have u ∈ H2(Ω) and ‖u‖H2(Ω) ≤ C‖f‖L2(Ω). Sobolev

embedding theorem says that u ∈ C0,α
loc (Ω) and ‖u‖C0,α(Ω′) ≤ C‖u‖H2(Ω′) for any

compact subset Ω′. Thus, we get that ∆u = u − f ∈ C0,α
loc (Ω). It follows from

Lemma 4.2 and Theorem 4.6 in [16] that u ∈ C2,α
loc (Ω) and, for any compact subsets

Ω1 and Ω2 of Ω with Ω2 ⊂⊂ Ω1, we have

‖u‖C2,α(Ω2) ≤ C(‖f‖C0,α(Ω1) + ‖u‖C0,α(Ω1)) ≤ C(‖f‖C0,α(Ω1) + ‖u‖H2(Ω1))

≤ C(‖f‖C0,α(Ω1) + ‖f‖L2(Ω1)),

where C > 0 depends only on the distance between Ω2 and ∂Ω1. �

4. Local-in-time existence. This section proves that (1) has a unique local (in
time) classical solution. We make use of the integral representation (11). Due to
the difficulty of applying the contraction mapping principle in the setting of Hölder
spaces, the proof is divided into two steps. The first step applies the contraction
mapping principle to (11) in the setting of Sobolev spaces to obtain a unique local
solution. The second step obtains the desired regularity of the local solution through
a bootstrapping procedure.

Lemma 4.1. Let (g, h) ∈ H2(R2
+) × C([0, T ];H2(R)), and φ satisfy the condition

(5). Then there is S with 0 < S ≤ T , depending only on g and h, such that (11)
has a unique solution v ∈ C([0, S];H2(R2

+)).

Proof. This local existence and uniqueness result is proven through the contraction
mapping principle. More precisely, we show that A defined in (11) is a contraction
map from B(0, R) ⊂ C([0, S];H2(R2

+)) to itself, where B(0, R) denotes the closed
ball centered at 0 with radius R in C([0, S];H2(R2

+)). S and R will be specified later
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in the proof. It follows from (5), (11), Proposition 1 and the mean value theorem
that, for v, w ∈ B(0, R),

‖Av‖CtH2
x
≤ ‖g‖H2 + C‖h‖CtH2

x1
+ CS‖div(φ(v + he−x2))‖CtL2

x

≤ ‖g‖H2 + C‖h‖CtH2
x1

+ CS‖φ′(v + he−x2)‖CtL∞
x
‖∇(v + he−x2)‖CtL2

x

≤ C1 + C2S(1 +R)R

(12)

and

‖Av −Aw‖2CtH2
x
≤ CS2‖div(φ(v + he−x2))− div(φ(w + he−x2))‖2CtL2

x

≤ CS2
2∑
j=1

∫
R2

+

(∣∣φ′j(v + he−x2)(v − w)xj
∣∣2

+
∣∣(φ′j(v + he−x2)− φ′j(w + he−x2)

)
(w + he−x2)xj

∣∣2) dx
≤ CS2

{
‖φ′(v + he−x2)‖2CtL∞

x
‖v − w‖2CtH1

x

+ ‖φ′′(v + he−x2)‖2CtL∞
x
‖∇(w + he−x2)‖2CtL4

x
‖v − w‖2CtL4

x

}
≤ C2S

2(1 +R)2‖v − w‖2CtH2
x
,

(13)

where v lies between the line segment joining v and w, C1 is a constant depending
on ‖g‖H2 and ‖h‖CtH2

x1
, and C2 is a constant depending on ‖h‖CtH2

x1
. Note that

(13) implies A is a continuous map of C([0, S];H2(R2
+)) to itself. According to (12),

A maps B(0, R) onto itself if

R ≥ C1 + C2S(1 +R)R. (14)

Hence, by (13), A is a contraction mapping of this ball if C2S(1 + R) < 1. These
conditions will be met if we take R = 2C1 and find a positive value S > 0 small
enough such that

C2S(1 + 2C1) ≤ 1

2
. (15)

Now, let

v0(x, t) = g̃(x) + Bh(x, t)

and

vn(x, t) = Avn−1(x, t) = v0(x, t) + Cvn−1(x, t) for n ≥ 1.

The contraction mapping principle gives that the sequence vn(x, t) converges in
C([0, S];H2(R2

+)) to the unique solution v of (11) in the ball ‖v‖CtH2
x
≤ R. �

If the initial data g and the boundary data h are also Hölder, then the corre-
sponding solution can also be shown to be Hölder. This is achieved through the
Sobolev embeddings and a bootstrapping procedure.

Lemma 4.2. Assume g ∈ C2,α
loc (R2

+) ∩ H2(R2
+) and h ∈ C1([0, T ];C2,α

loc (R) ∩
H2(R)) for some 0 < α < 1. Let φ satisfy the condition (5). Then any solution
v ∈ C([0, T ];H2(R2

+)) of (11) actually belongs to C([0, T ];H2(R2
+)) ∩ C1([0, T ];

C2,α
loc (R2

+)).
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Proof. Since v ∈ C([0, T ];H2(R2
+)) and h ∈ C1([0, T ];H2(R)), we have

div(φ(v + he−x2)) ∈ C([0, T ];H1(R2
+)).

Proposition 1 gives

(I−∆)−1{div(φ(v + he−x2))} ∈ C([0, T ];H3(R2
+))

↪→ C([0, T ];C1,α(R2
+)).

(16)

On the other hand, h ∈ C1([0, T ];C2,α
loc (R)) implies

hx1x1te
−x2 ∈ C([0, T ];C0,α

loc (R2
+)).

Proposition 2 then yields

(I−∆)−1{hx1x1te
−x2} ∈ C([0, T ];C2,α

loc (R2
+)). (17)

In view of (16) and (17), we obtain

vt = (I−∆)−1{hx1x1te
−x2 − div(φ(v + he−x2))} ∈ C([0, T ];C1,α

loc (R2
+)),

which implies that

v(x, t) = g̃(x) +

∫ t

0

vτ (x, τ)dτ

= g(x)− h(x1, 0)e−x2 +

∫ t

0

vτ (x, τ)dτ ∈ C1([0, T ];C1,α
loc (R2

+)).

(18)

Using (18) and Proposition 2, we have

vt = (I−∆)−1{hx1x1te
−x2 − div(φ(v + he−x2))} ∈ C([0, T ];C2,α

loc (R2
+)),

and hence v ∈ C1([0, T ];C2,α
loc (R2

+)). �

5. Global-in-time existence. This section shows that the local (in time) solution
obtained in the previous section can be extended into a global one. This is achieved
by establishing a global bound for ‖v(t)‖H2 under the condition that the flux φ
obeys suitable growth condition. We start with a global H1-bound.

Lemma 5.1. Suppose (g, h) ∈ H2(R2
+)×C1([0, S];H2(R)), and φ satisfy the condi-

tion (5). Then the solution v of (11) obtained in Lemma 4.1 satisfies the estimates

‖v‖2H1 ≤ ‖g‖2H1 + CS‖h‖2C1
tH

2
x1

(1 + ‖h‖C1
tH

2
x1

)

+ C(1 + ‖h‖C1
tH

2
x1

)

∫ t

0

‖v‖2H1ds
(19)

and

‖v‖H1 ≤
[
‖g‖2H1 + CS‖h‖2C1

tH
2
x1

(1 + ‖h‖C1
tH

2
x1

)
]1/2

e
CS(1+‖h‖

C1
t H

2
x1

)
, (20)

where C > 0 is a constant depending only on φ.

Proof. Multiplying (7a) by v and integrating over R2
+, we get

1

2

d

dt

∫
R2

+

(v2 + |∇v|2) dx =

∫
R2

+

{hx1x1te
−x2 − div(φ(v + he−x2))}v dx

=

∫
R2

+

hx1x1te
−x2v dx−

∫
R2

+

div(vφ(v + he−x2)) dx

+

∫
R2

+

φ(v + he−x2) · ∇v dx.

(21)
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Since v = 0 on ∂R2
+,∫

R2
+

div(vφ(v + he−x2)) dx =

∫
∂R2

+

vφ(v + he−x2) · ndS = 0. (22)

Now let Φ ∈ C1(R;R2) satisfy Φ′ = φ and Φ(0) = 0. Then∫
R2

+

φ(v + he−x2) · ∇v dx

=

∫
R2

+

φ(v + he−x2) · ∇(v + he−x2) dx−
∫
R2

+

φ(v + he−x2) · ∇(he−x2) dx

=

∫
R2

+

div(Φ(v + he−x2)) dx−
∫
R2

+

φ(v + he−x2) · ∇(he−x2) dx

=

∫
∂R2

+

Φ(h) · ndS −
∫
R2

+

φ(v + he−x2) · ∇(he−x2) dx.

(23)
By the Sobolev embedding H2(R) ↪→ Lq(R) for all q ≥ 2,

h ∈ C1([0, S];H2(R)) ⊂ C1([0, S];Lq(R)).

Employing the mean value theorem together with (5) and the properties of Φ, we
obtain

|Φ(h)− Φ(0)| ≤ C(|h|2 + |h|3).

Hence ∣∣∣∣ ∫
∂R2

+

Φ(h) · ndS
∣∣∣∣ =

∫
∂R2

+

|Φ(h)− Φ(0)| dS

≤ C(‖h‖2CtL2
x1

+ ‖h‖3CtL3
x1

)

≤ C(‖h‖2C1
tH

2
x1

+ ‖h‖3C1
tH

2
x1

).

(24)

Applying the mean value theorem and (5) again, we have

|φ(v + he−x2)| ≤ C(|v + he−x2 |+ |v + he−x2 |2) .

As a consequence,∣∣∣∣ ∫
R2

+

φ(v + he−x2) · ∇(he−x2) dx

∣∣∣∣
≤ C(‖v + he−x2‖L2 + ‖v + he−x2‖2L4)‖h‖H1

x1

≤ C(‖v‖L2 + ‖h‖L2
x1

+ ‖v‖2L4 + ‖h‖2L4
x1

)‖h‖H1
x1

≤ C(‖v‖H1 + ‖v‖2H1 + ‖h‖C1
tH

2
x1

+ ‖h‖2C1
tH

2
x1

)‖h‖C1
tH

2
x1
.

(25)

From (21)-(25), we can conclude that

d

dt
‖v‖2H1 ≤ 2

∣∣∣∣ ∫
R2

+

hx1x1te
−x2v dx

∣∣∣∣+ C(‖v‖2H1 + ‖h‖2C1
tH

2
x1

)‖h‖C1
tH

2
x1

≤ C(‖v‖H1 + ‖v‖2H1 + ‖h‖C1
tH

2
x1

+ ‖h‖2C1
tH

2
x1

)‖h‖C1
tH

2
x1

≤ C(‖v‖2H1 + ‖h‖2C1
tH

2
x1

)(1 + ‖h‖C1
tH

2
x1

),



2D GBBM EQUATION 771

that is,

‖v‖2H1 ≤ ‖g‖2H1 + CS‖h‖2C1
tH

2
x1

(1 + ‖h‖C1
tH

2
x1

) + C(1 + ‖h‖C1
tH

2
x1

)

∫ t

0

‖v‖2H1ds,

where C depends only on φ. Gronwall’s inequality gives

‖v‖H1 ≤ {‖g‖2H1 + CS‖h‖2C1
tH

2
x1

(1 + ‖h‖C1
tH

2
x1

)}1/2e
CS(1+‖h‖

C1
t H

2
x1

)
. �

Now we derive the H2-estimates based on the H1-estimates we just obtained.

Lemma 5.2. Suppose (g, h) ∈ H2(R2
+) × h ∈ C1([0, S];H2(R)), and φ satisfy the

condition (5). Then the solution v of (11) obtained in Lemma 4.1 satisfies the
estimate

‖v‖H2 ≤ C(1 + S)1/2 exp
{
CS(1 + S)1/2eCS

}
,

where C > 0 is a constant depending only on g, h and φ.

Proof. Multiplying (7a) by ∆u and then integrating on R2
+, we have

1

2

d

dt

∫
R2

+

(|∇v|2 + |∆v|2)dx

=

∫
R2

+

hx1x1te
−x2∆v dx−

∫
R2

+

div(φ(v + he−x2))∆v dx.

(26)

By the mean value theorem and (5),

|div(φ(v + hex2))| ≤ |φ′(v + he−x2)| |∇(v + he−x2)|
≤ C(1 + |v + he−x2 |) |∇(v + he−x2)|.

(27)

Thus, Hölder’s inequality gives

d

dt

∫
R2

+

(|∇v|2 + |∆v|2)dx ≤ 2‖hx1x1t‖L2
x1
‖∆v‖L2 + C‖∇(v + he−x2)‖L2‖∆v‖L2

+ C‖v + he−x2‖L4‖∇(v + he−x2)‖L4‖∆v‖L2 .

By the Sobolev embedding H1(R2
+) ↪→ L4(R2

+) and Young’s inequality,

d

dt
(‖∇v‖2L2 + ‖∆v‖2L2) ≤ C(‖h‖2C1

tH
2
x1

+ ‖h‖4C1
tH

2
x1

)

+ C(1 + ‖v‖CtH1
x

+ ‖h‖C1
tH

2
x1

)‖v‖2H2 ,

where C > 0 depends only on φ; that is,

‖∇v‖2L2 + ‖∆v‖2L2 ≤ C{‖g‖2H2 + S(‖h‖2C1
tH

2
x1

+ ‖h‖4C1
tH

2
x1

)}

+ C(1 + ‖v‖CtH1
x

+ ‖h‖C1
tH

2
x1

)

∫ t

0

‖v‖2H2ds.
(28)

Combining (19) and (28), we obtain

‖v‖2H2 ≤ C{‖g‖2H2 + S‖h‖2C1
tH

2
x1

(1 + ‖h‖C1
tH

2
x1

)2}

+ C(1 + ‖v‖CtH1
x

+ ‖h‖C1
tH

2
x1

)

∫ t

0

‖v‖2H2ds.
(29)

Applying (20) to (29), we have

‖v‖2H2 ≤ C(1 + S) + C(1 + S)1/2eCS
∫ t

0

‖v‖2H2ds,
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where C depends only on g, h, and φ. Therefore, by Gronwall’s inequality,

‖v‖H2 ≤ C(1 + S)1/2 exp
{
CS(1 + S)1/2eCS

}
which concludes the proof of the lemma. �

6. Continuous dependence of the solution on data. This section is devoted
to proving Theorem 1.2. That is, we establish the desired continuous dependence.
For the sake of clarity, we will divide the rest of this section into two subsections.
The first subsection proves the continuous dependence in the regularity setting
of H2 while the second subsection focuses on the continuous dependence in the
intersection space of H2 and a Hölder class. The precise statements can be found
in the lemmas below.

6.1. Continuous dependence in H2. Let Lm denote the mapping that takes the
data g and h to the corresponding solutions of (1). By Theorem 1.1 we have

Lm : Xm = H2(R2
+)× C1([0, T ];H2(R)) −→ C([0, T ];H2(R2

+)).

Since H2(R2
+) and C1([0, T ];H2(R)) are Banach spaces, the space Xm equipped

with the usual product topology is also a Banach space.

Lemma 6.1. Suppose that φ ∈ C2(R,R2) satisfies the condition (5). Then Lm is
continuous.

Proof. Let (gi, hi) ∈ Xm and ui = Lm(gi, hi) be the mild solution of (1) correspond-
ing to the initial data gi and the boundary data hi, i = 1, 2. Set vi = ui − hie−x2 ,
i = 1, 2. Then vi satisfies the following initial-boundary value problem:

(vi)t −∆(vi)t − (hi)x1x1te
−x2 + div (φ(vi + hie

−x2)) = 0,

vi(x, 0) = gi(x)− hi(x1, 0)e−x2 := g̃i(x),

vi
(
(x1, 0), t

)
= 0.

Define w = v1 − v2. Then w satisfies:{
wt −∆wt − hx1x1te

−x2 + div (φ(v1 + h1e
−x2))− div (φ(v2 + h2e

−x2)) = 0,

w(x, 0) = g̃(x), w
(
(x1, 0), t

)
= 0,

(30)
where g̃ = g̃1 − g̃2 and h = h1 − h2. In addition, we derive that w satisfies the
following integral equation:

w(x, t) = g̃(x)+(I−∆)−1
(
{hx1x1(x1, t)−hx1x1(x1, 0)}e−x2

)
−
∫ t

0

(I−∆)−1
{

div(φ(v1 +h1e
−x2))−div(φ(v2 +h2e

−x2))
}
dτ.

(31)

Given ε > 0. Suppose that the distance between (g1, h1) and (g2, h2) in Xm is small
enough such that

(a) ‖g̃‖H2 ≤ ε, (b) ‖h‖C1
tH

2
x1
≤ ε.

Taking H2 norm on both sides of (31) and using Proposition 1, we derive

‖w‖H2 ≤ ‖g̃‖H2 + ‖h‖C1
tH

2
x1

+ C

∫ t

0

‖div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))‖L2 dτ.
(32)
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Since

div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))

= φ′(v1 + h1e
−x2) · ∇(v1 + h1e

−x2)− φ′(v2 + h2e
−x2) · ∇(v2 + h2e

−x2)

= {φ′(v1 + h1e
−x2)− φ′(v2 + h2e

−x2)} · ∇(v1 + h1e
−x2) (33)

+ φ′(v2 + h2e
−x2) · ∇(w + he−x2),

the mean value theorem and condition (5) yield∣∣div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))
∣∣

≤ C{|w+he−x2 | · |∇(v1 +h1e
−x2)|+(1 + |v2 +h2e

−x2 |) · |∇(w + he−x2)|}.
(34)

Applying (34) and Hölder’s inequality to (32), we obtain

‖w‖H2 ≤ ‖g̃‖H2 + ‖h‖C1
tH

2
x1

+ C

∫ t

0

‖∇(w + he−x2)‖L2dτ

+ C

∫ t

0

‖w + he−x2‖L4‖∇(v1 + h1e
−x2)‖L4dτ

+ C

∫ t

0

‖v2 + h2e
−x2‖L4‖∇(w + he−x2)‖L4dτ.

By Sobolev’s inequality,

‖w‖H2 ≤ ‖g̃‖H2 + ‖h‖C1
tH

2
x1

+ C

∫ t

0

‖w + he−x2‖H2dτ

≤ ‖g̃‖H2 + C(1 + T )‖h‖C1
tH

2
x1

+ C

∫ t

0

‖w‖H2dτ,

(35)

where C depends only on v1, v2, h1, h2, and φ. Then Gronwall’s inequality gives

‖w‖CtH2
x
≤ {‖g̃‖H2 + ‖h‖C1

tH
2
x1
}eCT . (36)

Note that

w = v1 − v2 = u1 − u2 − (h1 − h2)e−x2 = Lm(g1, h1)− Lm(g2, h2)− he−x2 .

Therefore, by (36),

‖Lm(g1, h1)− Lm(g2, h2)‖CtH2
x
≤ ‖w‖CtH2

x
+ ‖h‖CtH2

x1

≤ {‖g̃‖H2 + ‖h‖C1
tH

2
x1
}eCT ≤ eCT ε. �

6.2. Continuous dependence in the intersection of H2 and a Hölder space.
This subsection proves the continuous dependence in the setting of the intersection
of H2 and a Höler space. First, we introduce the metrics on the spaces C2,α

loc (Ω)

and C1([0, T ];C2,α
loc (Ω)), where Ω can be R2

+ or R. Let {Ωi}∞i=1 be an increasing
sequence of compact subsets of Ω satisfy

(i) Ωi ⊂⊂ Ωi+1 for all i ∈ N,

(ii)

∞⋃
i=1

Ωi = Ω.

For a function f ∈ C1([0, T ];C2,α
loc (Ω)), we define

ρi(f) = ‖f‖C1([0,T ];C2,α(Ωi)) for i ∈ N.
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Then {ρi} forms a family of seminorms on C2,α
loc (Ω). For f1, f2 ∈ C1([0, T ];C2,α

loc (Ω)),
we define

d(f1, f2) =

∞∑
i=1

2−i
ρi(f1 − f2)

1 + ρi(f1 − f2)
.

Then d is a metric on C1([0, T ];C2,α
loc (Ω)). It is clear that fk → f with respect to

d if and only if ρi(fk − f) → 0 for all i. The topology induced by the metric d is

independent of the choice of the sequence {Ωi}∞i=1. A metric on the space C2,α
loc (Ω)

can be defined similarly if we replace the seminorm above by

ρi(f) = ‖f‖C2,α(Ωi)

for f ∈ C2,α
loc (Ω) and i ∈ N.

Now we fix a sequence {Ωi}∞i=1 of compact convex sets in R2
+ such that the

conditions (i) and (ii) hold. Let Ii denote the projection of Ωi to x1-axis. Then
{Ii}∞i=1 forms a sequence of compact sets in R satisfying (i) and (ii). As stated

above, the sequences {Ωi}∞i=1 and {Ii}∞i=1 induce metrics d1 on C2,α
loc (R2

+), d2 on

C1([0, T ];C2,α
loc (R)), and d3 on C1([0, T ];C2,α

loc (R2
+)) respectively. In Theorem 1.1,

we get that for a given pair

(g, h) ∈ Xc := [H2(R2
+) ∩ C2,α

loc (R2
+)]× C1([0, T ];H2(R) ∩ C2,α

loc (R))

of initial and a boundary data, then (1) admits a unique classical solution

u ∈ Y := C([0, T ];H2(R2
+)) ∩ C1([0, T ];C2,α

loc (R2
+)).

If we let Lc denote the mapping that takes the pair (g, h) into the corresponding
classical solution u, then

Lc : Xc → Y. (37)

We remark that if (M,dM ) and (N, dN ) are two metric spaces, then the product
space M × N is a metric space with metric dM×N (x, y) = dM (x, y) + dN (x, y)
for x, y ∈ M × N , and their intersection M ∩ N is a metric space with metric
dM∩N (x, y) = dM (x, y) + dN (x, y) for x, y ∈M ∩N .

We can immediately conclude that Lc is a continuous mapping in (37) if we prove
that i ◦ Lc and j ◦ Lc are both continuous where i and j are the natural inclusions
of Y into C([0, T ];H2(R2

+)) and C1([0, T ];C2,α
loc (R2

+)) respectively.

Lemma 6.2. Suppose that φ ∈ C3(R,R2) satisfies the conditions (5)-(6). Then Lc

is continuous.

Proof. By the discussions before the statement of this lemma, it suffices to prove

Lc : Xc → C([0, T ];H2(R2
+)) and Lc : Xc → C1([0, T ];C2,α

loc (R2
+)) (38)

are both continuous. Comparing the metrics of the spaces Xm and Xc, we can easily
get the continuity of the mapping Lc : Xc → C([0, T ];H2(R2

+)) from Lemma 6.1.
In this proof, we focus on showing that the second mapping of (38) is sequentially
continuous.

Let (gi, hi) ∈ Xc and ui = Lc(gi, hi) be the classical solution of (1) corresponding
to the initial data gi and the boundary data hi, i = 1, 2. Let w, g̃, and h be defined
as in the proof of Lemma 6.1. Then w satisfies the initial-boundary value problem
(30), the integral equation (31), and the estimate (36). Let Ω, Ω′, and Ω′′ be any
given three compact convex sets in R2

+ with Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω and let I and I ′ be the
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projections of Ω and Ω′ to the x1-axis respectively. First, we take C1,α(Ω′) norm
on both sides of (31) and use Sobolev’s inequality to obtain

‖w‖C1,α(Ω′)

≤ ‖g̃‖C1,α(Ω′) +
∥∥(I−∆)−1

(
{hx1x1(x1, t)− hx1x1(x1, 0)}e−x2

)∥∥
C2,α(Ω′)

+

∫ t

0

∥∥(I−∆)−1
{

div(φ(v1 +h1e
−x2))− div(φ(v2 +h2e

−x2))
}∥∥

C1,α(R2
+)
dτ

≤ ‖g̃‖C1,α(Ω′) +
∥∥(I−∆)−1

(
{hx1x1

(x1, t)− hx1x1
(x1, 0)}e−x2

)∥∥
C2,α(Ω′)

(39)

+

∫ t

0

∥∥(I−∆)−1
{

div(φ(v1 +h1e
−x2))− div(φ(v2 +h2e

−x2))
}∥∥

H3(R2
+)
dτ.

Lemma (2) implies∥∥(I−∆)−1
(
{hx1x1

(x1, t)− hx1x1
(x1, 0)}e−x2

)∥∥
C2,α(Ω′)

≤ C
{∥∥{hx1x1

(x1, t)− hx1x1
(x1, 0)}e−x2

∥∥
C0,α(Ω)

+
∥∥{hx1x1

(x1, t)− hx1x1
(x1, 0)}e−x2

∥∥
L2(Ω)

}
≤ C

(
‖h‖C2,α(I) + ‖h‖H2(I)

)
,

(40)

where C depends only on the distance between Ω′ and ∂Ω. Employing Proposition
1 and applying mean value theorem together with (5) to (33), we derive that∥∥(I−∆)−1

{
div(φ(v1 + h1e

−x2))− div(φ(v2 + h2e
−x2))

}∥∥
H3(R2

+)

≤ C
∥∥div(φ(v1 + h1e

−x2))− div(φ(v2 + h2e
−x2))

∥∥
H1(R2

+)

≤ C
{
‖w + he−x2‖W 1,4(R2

+)‖∇(v1 + h1e
−x2)‖L4(R2

+)

+ ‖w + he−x2‖L∞(R2
+)‖∇(v1 + h1e

−x2)‖H1(R2
+)

+ ‖v2 + h2e
−x2‖W 1,4(R2

+)‖∇(w + he−x2)‖L4(R2
+)

+ (1 + ‖v2 + h2e
−x2‖L∞(R2

+))‖∇(w + he−x2)‖H1(R2
+)

}
.

Thus, Sobolev’s inequality gives∥∥(I−∆)−1
{

div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))
}∥∥

H3(R2
+)

≤ C
(
‖w‖H2(R2

+) + ‖h‖H2(R)

)
,

(41)

where C depends only on v1, v2, h1, h2, and φ. Combining the estimates (39)-(41),
we get

‖w‖C1,α(Ω′) ≤ ‖g̃‖C1,α(Ω′) + C
(
‖h‖C1([0,T ];C2,α(I)) + ‖h‖C([0,T ];H2(I))

)
+ CT

(
‖w‖C([0,T ];H2(R2

+)) + ‖h‖C([0,T ];H2(R))

)
≤ ‖g̃‖C1,α(Ω′) + C‖h‖C1([0,T ];C2,α(I))

+ C(1 + T )‖h‖C([0,T ];H2(R)) + CT‖w‖C([0,T ];H2(R2
+)).

(42)

Next, by taking C2,α(Ω′′) norm on both sides of (31), we have

‖w‖C2,α(Ω′′) ≤ ‖g̃‖C2,α(Ω′′)

+
∥∥(I−∆)−1

(
{hx1x1

(x1, t)− hx1x1
(x1, 0)}e−x2

)∥∥
C2,α(Ω′′)

(43)
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+

∫ t

0

∥∥(I−∆)−1
{

div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))
}∥∥

C2,α(Ω′′)
dτ.

We use Proposition 2 to deduce that∥∥(I−∆)−1
{

div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))
}∥∥

C2,α(Ω′′)

≤ C
(∥∥div(φ(v1 + h1e

−x2))− div(φ(v2 + h2e
−x2))

∥∥
C0,α(Ω′)

+
∥∥div(φ(v1 + h1e

−x2))− div(φ(v2 + h2e
−x2))

∥∥
L2(Ω′)

)
.

(44)

For the estimate of the last term in the right hand side of (44), we use the proof of
Lemma 6.1 to obtain∥∥div(φ(v1 +h1e

−x2))− div(φ(v2 +h2e
−x2))

∥∥
L2(Ω′)

≤C‖w+he−x2‖H2(R2
+). (45)

In view of (33) and the convexity of Ω′,∥∥div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))
∥∥
C0,α(Ω′)

≤
∥∥φ′(v1 + h1e

−x2)− φ′(v2 + h2e
−x2)

∥∥
C1(Ω′)

∥∥∇(v1 + h1e
−x2)

∥∥
C0,α(Ω′)

+
∥∥φ′(v2 + h2e

−x2)
∥∥
C1(Ω′)

∥∥∇(w + he−x2)
∥∥
C0,α(Ω′)

.

Since φ ∈ C3(R,R2) satisfies the conditions (5)-(6),∥∥φ′(v2 + h2e
−x2)

∥∥
C1(Ω′)

≤ C(1 + ‖v2 + h2e
−x2‖C1(Ω′)) ≤ C

and ∥∥φ′(v1 + h1e
−x2)− φ′(v2 + h2e

−x2)
∥∥
C1(Ω′)

≤
∥∥φ′′(v1 + h1e

−x2)− φ′′(v2 + h2e
−x2)

∥∥
C(Ω′)

∥∥∇(v1 + h1e
−x2)

∥∥
C(Ω′)

+
∥∥φ′′(v2 + h2e

−x2)
∥∥
C(Ω′)

∥∥∇(w + he−x2)
∥∥
C(Ω′)

≤ C
∥∥w + he−x2

∥∥
C1,α(Ω′)

,

where C depends only on v1, v2, h1, h2, and φ. Thus, we have∥∥div(φ(v1 + h1e
−x2))− div(φ(v2 + h2e

−x2))
∥∥
C0,α(Ω′)

≤ C
∥∥w + he−x2

∥∥
C1,α(Ω′)

≤ C‖g̃‖C1,α(Ω′) + C‖h‖C1([0,T ];C2,α(I)) (46)

+ C(1 + T )‖h‖C([0,T ];H2(R)) + CT‖w‖C([0,T ];H2(R2
+)),

where we used (42) in the last inequality. The estimates (40), (43)-(46) yield

‖w‖C1([0,T ];C2,α(Ω′′)) ≤ C(1 + T )‖g̃‖C2,α(Ω′) + C(1 + T )‖h‖C1([0,T ];C2,α(I))

+ C(1 + T )2‖h‖C([0,T ];H2(R)) + CT (1 + T )‖w‖C([0,T ];H2(R2
+)).

It follows from (36) that

‖w‖C1([0,T ];C2,α(Ω′′)) ≤ eCT
{
‖g̃‖C2,α(Ω′) + ‖g̃‖H2(R2

+)

+ ‖h‖C1([0,T ];C2,α(I)) + ‖h‖C([0,T ];H2(R))

}
.

(47)

Finally, let {(gk, hk)}∞k=1 be a sequence of Xc that converges to (g0, h0) in Xc.
Suppose that uk = Lc(gk, hk), k ∈ N∪{0} be the corresponding classical solutions of
(1) with respect to the initial data gk and the boundary data hk. Set, for k ∈ N∪{0},{

vk = uk − hke
−x2 ,

g̃k = gk − hke
−x2 .
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We define, for k ∈ N, 
wk = vk − v0,

g̃k,0 = g̃k − g̃0,

hk,0 = hk − h0.

Since {(gk, hk)}∞k=1 converges to (g0, h0) in Xc, we have

(a) d1(g̃k, g̃0)→ 0,
(b) ‖g̃k − g̃0‖H2(R2

+) → 0,

(c) d2(hk, h0)→ 0,
(d) ‖hk − h0‖C([0,T ];H2(R)) → 0;

or equivalently,

(a′) ‖g̃k,0‖C2,α(Ωi) → 0 for all i ∈ N,
(b′) ‖g̃k,0‖H2(R2

+) → 0,

(c′) ‖hk,0‖C1([0,T ];C2,α(Ii)) → 0 for all i ∈ N,
(d′) ‖hk,0‖C([0,T ];H2(R)) → 0.

For any fixed i ∈ N, applying the estimate (47), we get

‖wk‖C1([0,T ];C2,α(Ωi)) ≤ e
CT
{
‖g̃k,0‖C2,α(Ωi+1) + ‖g̃k,0‖H2(R2

+)

+ ‖hk,0‖C1([0,T ];C2,α(Ii+1)) + ‖hk,0‖C([0,T ];H2(R))

}
→ 0,

and hence

‖Lc(gk, hk)− Lc(g0, h0)‖C1([0,T ];C2,α(Ωi))

≤ ‖wk‖C1([0,T ];C2,α(Ωi)) + ‖hk,0‖C1([0,T ];C2,α(Ωi))

≤ eCT
{
‖g̃k,0‖C2,α(Ωi+1) + ‖g̃k,0‖H2(R2

+)

+ ‖hk,0‖C1([0,T ];C2,α(Ii+1)) + ‖hk,0‖C([0,T ];H2(R))

}
→ 0,

which implies that

d3 (Lc(gk, hk),Lc(g0, h0))→ 0

which is equivalent to that the mapping Lc : Xc → C1([0, T ];C2,α
loc (R2

+)) is sequen-
tially continuous. �

7. Results for the GBBM-Burgers equation. The purpose of this section is to
generalize the above results to the 2D GBBM-Burgers equation, that is, equation
(1) with ν1 = 1. The results established in previous sections also hold for the
GBBM-Burgers equation.

The proofs of Theorems 1.1 and 1.2 for the case when ν1 = 1 are essentially the
same as those for the case when ν1 = 0. In fact, as in the case when ν1 = 0, we
rewrite equation (1) as

(I−∆)vt + ∆v + div
(
φ(v + he−x2)

)
= h̃e−x2 in R2

+ × (0, T ), (48a)

v = g̃ on R2
+ × {t = 0}, (48b)

v = 0 on ∂R2
+ × (0, T ), (48c)

where g̃ is again given by (8) and h̃ is defined by

h̃(x, t) = hx1x1t(x, t)− hx1x1(x, t)− h(x, t).
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(48a) can be modified as

v + vt = (I−∆)−1{v + h̃e−x2 − div(φ(v + he−x2))} (49)

which suggest that

v(x, t) = e−tg̃(x) +

∫ t

0

e−(t−s)(I−∆)−1{v + h̃e−x2 − div(φ(v + he−x2))}ds

= e−tg̃(x) +

∫ t

0

e−(t−s)(I−∆)−1
{

(hx1x1s − hx1x1
− h)e−x2

}
ds (50)

+

∫ t

0

e−(t−s)(I−∆)−1{v − div(φ(v + he−x2))}ds .

Based on the fact that e−(t−s) is bounded by 1 for s ∈ [0, t], exactly the same pro-
cedure of proving the existence of a unique solution (using the contraction mapping
principle) for the case ν1 = 0 can be applied to yield the results corresponding to
Theorems 1.1 and 1.2.
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