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This paper examines the existence and uniqueness of weak solutions to the 𝑑-

dimensional magnetohydrodynamic (MHD) equations with fractional dissipation

(−Δ)𝛼𝑢 and fractional magnetic diffusion (−Δ)𝛽𝑏. The aim is at the uniqueness of

weak solutions in the weakest possible inhomogeneous Besov spaces. We establish the

local existence and uniqueness in the functional setting 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝐵𝑑∕2−2𝛼+1
2,1 (ℝ𝑑))

and 𝑏 ∈ 𝐿∞(0, 𝑇 ;𝐵𝑑∕2
2,1 ℝ𝑑)) when 𝛼 > 1∕2, 𝛽 ≥ 0 and 𝛼 + 𝛽 ≥ 1. The case when

𝛼 = 1 with 𝜈 > 0 and 𝜂 = 0 has previously been studied in [7, 19]. However, their

approaches can not be directly extended to the fractional case when 𝛼 < 1 due to the

breakdown of a bilinear estimate. By decomposing the bilinear term into different fre-

quencies, we are able to obtain a suitable upper bound on the bilinear term for 𝛼 < 1,

which allows us to close the estimates in the aforementioned Besov spaces.
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1 INTRODUCTION

This paper examines the existence and uniqueness of weak solutions to the d-dimensional incompressible magnetohydrodynamic

(MHD) equations with fractional dissipation,

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑢 + 𝑢 ⋅ ∇𝑢 + 𝜈(−Δ)𝛼𝑢 = −∇𝑃 + 𝑏 ⋅ ∇𝑏, 𝑥 ∈ ℝ𝑑, 𝑡 > 0,
𝜕𝑡𝑏 + 𝑢 ⋅ ∇𝑏 + 𝜂(−Δ)𝛽𝑏 = 𝑏 ⋅ ∇𝑢, 𝑥 ∈ ℝ𝑑, 𝑡 > 0,
∇ ⋅ 𝑢 = ∇ ⋅ 𝑏 = 0, 𝑥 ∈ ℝ𝑑, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑏(𝑥, 0) = 𝑏0(𝑥),

(1.1)

where 𝑢, 𝑃 and 𝑏 represent the velocity, the pressure and the magnetic field, respectively, and 𝜈 > 0, 𝜂 > 0, 𝛼 ≥ 0 and 𝛽 ≥ 0 are

real parameters. The fractional Laplacian operator (−Δ)𝛼 is defined via the Fourier transform,

̂(−Δ)𝛼𝑓 (𝜉) = |𝜉|2𝛼 𝑓 (𝜉),
where

𝑓 (𝜉) = 1
(2𝜋)𝑑∕2 ∫ℝ𝑑

𝑒−𝑖𝑥⋅𝜉 𝑓 (𝑥) 𝑑𝑥.
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The standard MHD equations govern the motion of electrically conducting fluids such as plasmas, liquid metals, and electrolytes.

The justification for the study of this fractionally dissipated system can be made from several different perspectives. First, (1.1)

represents a two-parameter family of systems and contains the MHD systems with standard Laplacian dissipation as special

cases. (1.1) allows us to simultaneously examine a whole family of equations and potentially reveals how the properties of

its solutions are related to the sizes of 𝛼 and 𝛽. Second, the fractional diffusion operators can model the so-called anomalous

diffusion, a much studied topic in physics, probability and finance (see, e.g., [1, 15]). In particular, (1.1) can model long-range

diffusive interactions. Third, fractional dissipation has been used in turbulence modeling to control the effective range of the

non-local dissipation and to make numerical resolutions more efficient (see, e.g., [14]).

The MHD equations have always been of great interest in mathematics. Mathematically rigorous foundational work has been

laid in [10] and [22]. Recently, the MHD equations have gained renewed interests and there have been substantial developments

on the well-posedness problem, especially when the MHD equations involve only partial or fractional dissipation. A summary

on some of the recent results can be found in a review paper [27]. Roughly speaking, there are two different focuses on the

well-posedness problem. One is the global existence and regularity of classical solutions while the other is the uniqueness of

solutions in a weak functional setting. The first focus intends to establish the global existence of classical solutions with the

smallest fractional indices. A general result on the global existence and uniqueness of classical solutions to the 𝑑-dimensional

MHD equations with fractional dissipation can be found in [25] and [26]. A special consequence of this result asserts the global

well-posedness of (1.1) when

𝛼 ≥ 1
2
+ 𝑑

4
, 𝛽 > 0, 𝛼 + 𝛽 ≥ 1 + 𝑑

2
.

The case when 𝛼 ≥ 1 + 𝑑

2 with 𝜈 > 0 and 𝜂 = 0 is obtained by K. Yamazaki [31]. Logarithmic improvements of these fractional

powers are also contained in [26] and [31]. A very recent work establishes the global well-posedness with only directional

hyperviscosity [32]. Many more exciting results on the global regularity problem are available for the 2D case (see, e.g., [4–6,

8, 9, 11, 17, 18, 28–31, 33]).

The other focus on (1.1) is to establish the existence and uniqueness of local solutions in a weakest possible functional setting.

There is a stream of progress in this direction on (1.1) with 𝛼 = 1, 𝜈 > 0 and 𝜂 = 0. Q. Jiu and D. Niu [16] proved the local

well-poseness of (1.1) in the Sobolev space 𝐻𝑠 with 𝑠 ≥ 3. Fefferman, McCormick, Robinson and Rodrigo were able to weaken

the regularity assumption to (𝑢0, 𝑏0) ∈ 𝐻𝑠 with 𝑠 > 𝑑

2 in [12] and then to 𝑢0 ∈ 𝐻𝑠−1−𝜖 and 𝑏0 ∈ 𝐻𝑠 with 𝑠 > 𝑑

2 in [13]. Chemin,

McCormick, Robinson and Rodrigo [7] made further improvement by assuming only 𝑢0 ∈ 𝐵
𝑑
2 −1
2,1 and 𝑏0 ∈ 𝐵

𝑑
2
2,1. They obtained

the local existence for 𝑑 = 2 and 3, and the uniqueness for 𝑑 = 3. R. Wan [24] obtained the uniqueness for 𝑑 = 2. J. Li, W. Tan

and Z. Yin [19] recently made an important progress by reducing the functional setting to homogeneous Besov space 𝑢0 ∈ �̇�
𝑑
𝑝
−1

𝑝,1

and 𝑏0 ∈ �̇�
𝑑
𝑝

𝑝,1 with 𝑝 ∈ [1, 2𝑑].

The aim of this paper is to establish the local existence and uniqueness when the initial data 𝑢0 ∈ 𝐵
𝑑
2 +1−2𝛼
2,1 (ℝ𝑑) and 𝑏0 ∈

𝐵
𝑑
2
2,1(ℝ

𝑑) for the largest possible ranges of 𝛼 and 𝛽. We remark that our result will not be just a parallel extension of the results

for the case when 𝛼 = 1. As we shall explain in detail later, the proofs in [7] and [19] can not be directly extended to the case

when 𝛼 < 1. Our main result can be stated as follows.

Theorem 1.1. Let 𝑑 ≥ 2. Consider (1.1) with 𝛼 and 𝛽 satisfying

𝛼 >
1
2
, 𝛽 ≥ 0, 𝛼 + 𝛽 ≥ 1.

Assume the initial data (𝑢0, 𝑏0) obeys ∇ ⋅ 𝑢0 = ∇ ⋅ 𝑏0 = 0 and

𝑢0 ∈ 𝐵
𝑑
2 +1−2𝛼
2,1 (ℝ𝑑), 𝑏0 ∈ 𝐵

𝑑
2
2,1(ℝ

𝑑). (1.2)

Then, there exist 𝑇 > 0 and a unique weak solution (𝑢, 𝑏) of (1.1) on [0, 𝑇 ] satisfying

𝑢 ∈ 𝐶([0, 𝑇 ];𝐵
𝑑
2 +1−2𝛼
2,1 (ℝ𝑑)) ∩ 𝐿1(0, 𝑇 ;𝐵

𝑑
2 +1
2,1 (ℝ𝑑)), (1.3)

𝑏 ∈ 𝐶([0, 𝑇 ];𝐵
𝑑
2
2,1(ℝ

𝑑)) ∩ 𝐿1(0, 𝑇 ;𝐵
𝑑
2 +2𝛽
2,1 (ℝ𝑑)). (1.4)
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The Besov spaces in Theorem 1.1 are defined in Section 2. Theorem 1.1 with 𝛼 = 1, 𝜈 > 0 and 𝜂 = 0 recovers the results in

some of the previous work. We describe the framework in the proof of Theorem 1.1 and explain why the approaches for the

case 𝛼 = 1, 𝜈 > 0 and 𝜂 = 0 in [7] and [19] can not be directly extended to the case 𝛼 < 1. The existence of weak solutions

stated in Theorem 1.1 is proven through a successive approximation process, which starts with the construction of a successive

approximation sequence (𝑢(𝑛), 𝑏(𝑛)) satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢(1) = 𝑆2𝑢0, 𝑏(1) = 𝑆2𝑏0,

𝜕𝑡𝑢
(𝑛+1) + 𝜈(−Δ)𝛼𝑢(𝑛+1) = ℙ(−𝑢(𝑛) ⋅ ∇𝑢(𝑛+1) + 𝑏(𝑛) ⋅ ∇𝑏(𝑛)),

𝜕𝑡𝑏
(𝑛+1) + 𝜂(−Δ)𝛽𝑏(𝑛+1) = −𝑢(𝑛) ⋅ ∇𝑏(𝑛+1) + 𝑏(𝑛) ⋅ ∇𝑢(𝑛),

∇ ⋅ 𝑢(𝑛+1) = 0, ∇ ⋅ 𝑏(𝑛+1) = 0,

𝑢(𝑛+1)(𝑥, 0) = 𝑆𝑛+1𝑢0, 𝑏(𝑛+1)(𝑥, 0) = 𝑆𝑛+1𝑏0,

where ℙ is the standard Leray projection and 𝑆𝑗 is the standard inhomogeneous low frequency cutoff function (see Section 2 for

its definition). The next step is to define a suitable functional setting 𝑌 and show that, if (𝑢0, 𝑏0) satisfies (1.2), then the sequence

(𝑢(𝑛), 𝑏(𝑛)) is bounded uniformly in 𝑌 . The precise definition of 𝑌 is given in (3.2) in Section 3. The uniform boundedness is

shown via an iterative process. We assume (𝑢(𝑛), 𝑏(𝑛)) ∈ 𝑌 and show (𝑢(𝑛+1), 𝑏(𝑛+1)) ∈ 𝑌 . To do so, we need to evaluate

‖𝑏(𝑛) ⋅ ∇𝑏(𝑛)‖
𝐵

𝑑
2 −2𝛼+1
2,1 (ℝ𝑑 )

. (1.5)

In the case when 𝛼 = 1, this term can be bounded suitably through the product estimate

‖𝑏(𝑛) ⋅ ∇𝑏(𝑛)‖
𝐵

𝑑
2 −1
2,1 (ℝ𝑑 )

≤ ‖𝑏(𝑛) ⊗ 𝑏(𝑛)‖
𝐵

𝑑
2
2,1(ℝ

𝑑 )
≤ 𝐶 ‖𝑏(𝑛)‖2

𝐵
𝑑
2
2,1(ℝ

𝑑 )

based on the following lemma (see, e.g., [2, p.90] or Lemma 2.6 in [19]).

Lemma 1.2. Let 1 ≤ 𝑝 ≤ ∞, 𝑠1, 𝑠2 ≤ 𝑑

𝑝
and 𝑠1 + 𝑠2 > 𝑑 max{0, 2

𝑝
− 1}. Then

‖𝑓 𝑔‖
�̇�
𝑠1+𝑠2−

𝑑
𝑝

𝑝,1 (ℝ𝑑 )
≤ 𝐶 ‖𝑓‖�̇�𝑠1

𝑝,1(ℝ
𝑑 ) ‖𝑔‖�̇�𝑠2

𝑝,1(ℝ
𝑑 ).

However, when 𝛼 < 1, Lemma 1.2 does not appear to be applicable. We can still write (1.5) as

‖𝑏(𝑛) ⋅ ∇𝑏(𝑛)‖
𝐵

𝑑
2 −2𝛼+1
2,1 (ℝ𝑑 )

≤ ‖𝑏(𝑛) ⊗ 𝑏(𝑛)‖
𝐵

𝑑
2 −2𝛼+2
2,1 (ℝ𝑑 )

= ‖𝑏(𝑛) ⊗ 𝑏(𝑛)‖
𝐵
( 𝑑2 −𝛼+1)+(

𝑑
2 −𝛼+1)−

𝑑
2

2,1

.

For 𝛼 < 1, 𝑠1 =
𝑑

2 − 𝛼 + 1 and 𝑠2 =
𝑑

2 − 𝛼 + 1 no longer satisfy the condition

𝑠1, 𝑠2 ≤ 𝑑

2

and Lemma 1.2 is not applicable. We are able to overcome this difficulty by performing a detailed analysis on different frequen-

cies of this product and making full use of the available dissipation in the case when 𝛼 < 1. The suitable estimate obtained for

this product allows us to conclude that (𝑢(𝑛+1), 𝑏(𝑛+1)) is indeed in 𝑌 . The next step is to extract a strongly convergent subsequence

via the Aubin-Lions Lemma and show the limit (𝑢, 𝑏) is indeed a weak solution of (1.1). The uniqueness of weak solutions in

the regularity class (1.3) and (1.4) can be established by directly working with the 𝐿2-norm of the difference between any two

weak solutions.

The rest of this paper is divided into three sections. Section 2 provides the definitions of the Besov spaces and related tools.

In addition, we prove two bounds on triple products involving Fourier localized functions. These bounds are repeatedly used in

the subsequent sections. Section 3 proves the existence part of Theorem 1.1 while Section 4 establishes the uniqueness part of

Theorem 1.1.
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2 PREPARATION

This section serves as a preparation. We provide the definition of the Besov spaces and related facts to be used in the subsequent

sections. More details can be found in several books and many papers (see, e.g., [2, 3, 20, 21, 23]). In addition, we prove bounds

on triple products involving Fourier localized functions to be used extensively in the sections that follow.

We start with the partition of unit. Let 𝐵(0, 𝑟) and (0, 𝑟1, 𝑟2) denote the standard ball and the annulus, respectively,

𝐵(0, 𝑟) =
{
𝜉 ∈ ℝ𝑑 ∶ |𝜉| ≤ 𝑟

}
, (0, 𝑟1, 𝑟2) = {

𝜉 ∈ ℝ𝑑 ∶ 𝑟1 ≤ |𝜉| ≤ 𝑟2
}
.

There are two compactly supported smooth radial functions 𝜙 and 𝜓 satisfying

supp𝜙 ⊂ 𝐵(0, 4∕3), supp𝜓 ⊂ (0, 3∕4, 8∕3),
𝜙(𝜉) +

∑
𝑗≥0

𝜓(2−𝑗𝜉) = 1 for all 𝜉 ∈ ℝ𝑑. (2.1)

We use ℎ̃ and ℎ to denote the inverse Fourier transforms of 𝜙 and 𝜓 respectively,

ℎ̃ = −1𝜙, ℎ = −1𝜓.

In addition, for notational convenience, we write 𝜓𝑗(𝜉) = 𝜓(2−𝑗𝜉). By a simple property of the Fourier transform,

ℎ𝑗(𝑥) ∶= −1(𝜓𝑗)(𝑥) = 2𝑑𝑗 ℎ(2𝑗𝑥).

The inhomogeneous dyadic block operator Δ𝑗 are defined as follows

Δ𝑗𝑓 = 0 for 𝑗 ≤ −2,

Δ−1𝑓 = ℎ̃ ∗ 𝑓 = ∫ℝ𝑑
𝑓 (𝑥 − 𝑦) ℎ̃(𝑦) 𝑑𝑦,

Δ𝑗𝑓 = ℎ𝑗 ∗ 𝑓 = 2𝑑𝑗 ∫ℝ𝑑
𝑓 (𝑥 − 𝑦)ℎ(2𝑗𝑦) 𝑑𝑦 for 𝑗 ≥ 0.

The corresponding inhomogeneous low frequency cut-off operator 𝑆𝑗 is defined by

𝑆𝑗𝑓 =
∑

𝑘≤𝑗−1
Δ𝑘𝑓 .

For any function 𝑓 in the usual Schwarz class  , (2.1) implies

𝑓 (𝜉) = 𝜙(𝜉)𝑓 (𝜉) +
∑
𝑗≥0

𝜓(2−𝑗𝜉) 𝑓 (𝜉) (2.2)

or, in terms of the inhomogeneous dyadic block operators,

𝑓 =
∑
𝑗≥−1

Δ𝑗𝑓 or Id =
∑
𝑗≥−1

Δ𝑗 ,

where Id denotes the identity operator. More generally, for any 𝐹 in the space of tempered distributions, denoted  ′, (2.2) still

holds but in the distributional sense. That is, for 𝐹 ∈  ′,

𝐹 =
∑
𝑗≥−1

Δ𝑗𝐹 or Id =
∑
𝑗≥−1

Δ𝑗 in  ′. (2.3)

In fact, one can verify that

𝑆𝑗𝐹 ∶=
∑

𝑘≤𝑗−1
Δ𝑘𝐹 → 𝐹 𝑎𝑠 𝑗 → ∞ in  ′.

(2.3) is referred to as the Littlewood-Paley decomposition for tempered distributions.
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In terms of the inhomogeneous dyadic block operators, we can write the standard product in terms of the paraproducts, namely

𝐹 𝐺 =
∑

|𝑗−𝑘|≤2𝑆𝑘−1𝐹 Δ𝑘𝐺 +
∑

|𝑗−𝑘|≤2 Δ𝑘𝐹 𝑆𝑘−1𝐺 +
∑

𝑘≥𝑗−1
Δ𝑘𝐹 Δ̃𝑘𝐺,

where Δ̃𝑘 = Δ𝑘−1 + Δ𝑘 + Δ𝑘+1. Due to ∇ ⋅ 𝐹 = 0. This is the so-called Bony decomposition.

The inhomogeneous Besov space can be defined in terms of Δ𝑗 specified as above.

Definition 2.1. The inhomogeneous Besov space 𝐵𝑠
𝑝,𝑞 with 1 ≤ 𝑝, 𝑞 ≤ ∞ and 𝑠 ∈ ℝ consists of 𝑓 ∈  ′ satisfying

‖𝑓‖𝐵𝑠
𝑝,𝑞

≡ ‖2𝑗𝑠‖Δ𝑗𝑓‖𝐿𝑝‖𝑙𝑞 < ∞.

Bernstein’s inequality is a useful tool on Fourier localized functions and these inequalities trade derivatives for integrability.

The following lemma provides Bernstein type inequalities for fractional derivatives.

Lemma 2.2. Let 𝛼 ≥ 0. Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.

1) If 𝑓 satisfies

supp 𝑓 ⊂ {𝜉 ∈ ℝ𝑑 ∶ |𝜉| ≤ 𝐾2𝑗},

for some integer 𝑗 and a constant 𝐾 > 0, then

‖(−Δ)𝛼𝑓‖𝐿𝑞(ℝ𝑑 ) ≤ 𝐶1 2
2𝛼𝑗+𝑗𝑑( 1

𝑝
−1
𝑞
)‖𝑓‖𝐿𝑝(ℝ𝑑 ).

2) If 𝑓 satisfies

supp 𝑓 ⊂ {𝜉 ∈ ℝ𝑑 ∶ 𝐾12𝑗 ≤ |𝜉| ≤ 𝐾22𝑗}

for some integer 𝑗 and constants 0 < 𝐾1 ≤ 𝐾2, then

𝐶1 22𝛼𝑗‖𝑓‖𝐿𝑞(ℝ𝑑 ) ≤ ‖(−Δ)𝛼𝑓‖𝐿𝑞(ℝ𝑑 ) ≤ 𝐶2 2
2𝛼𝑗+𝑗𝑑( 1

𝑝
−1
𝑞
)‖𝑓‖𝐿𝑝(ℝ𝑑 ),

where 𝐶1 and 𝐶2 are constants depending on 𝛼, 𝑝 and 𝑞 only.

Next we state and prove bounds for the triple products involving Fourier localized functions. These bounds will be used quite

frequently in the proof of Theorem 1.1 in the subsequent section.

Lemma 2.3. Let 𝑗 ≥ 0 be an integer. Let Δ𝑗 be the inhomogeneous Littlewood-Paley localization operator. Let 𝐹 be a
divergence-free vector field. Then

||||∫ℝ𝑑
Δ𝑗(𝐹 ⋅ ∇𝐺) ⋅ Δ𝑗𝐻 𝑑𝑥

|||| ≤ 𝐶 ‖Δ𝑗𝐻‖𝐿2

(
2𝑗

∑
𝑚≤𝑗−1

2
𝑑
2𝑚 ‖Δ𝑚𝐹‖𝐿2

∑
|𝑗−𝑘|≤2 ‖Δ𝑘𝐺‖𝐿2

+
∑

|𝑗−𝑘|≤2 ‖Δ𝑘𝐹‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚 ‖Δ𝑚𝐺‖𝐿2 +

∑
𝑘≥𝑗−1

2𝑗 2
𝑑
2 𝑘 ‖Δ𝑘𝐹‖𝐿2‖Δ̃𝑘𝐺‖𝐿2

)
(2.4)
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and

||||∫ℝ𝑑
Δ𝑗(𝐹 ⋅ ∇𝐺) ⋅ Δ𝑗𝐺 𝑑𝑥

|||| ≤ 𝐶 ‖Δ𝑗𝐺‖𝐿2

( ∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚 ‖Δ𝑚𝐹‖𝐿2

∑
|𝑗−𝑘|≤2 ‖Δ𝑘𝐺‖𝐿2

+
∑

|𝑗−𝑘|≤2 ‖Δ𝑘𝐹‖𝐿2
∑
𝑚≤𝑗

2(1+
𝑑
2 )𝑚 ‖Δ𝑚𝐺‖𝐿2 +

∑
𝑘≥𝑗−1

2𝑗 2
𝑑
2 𝑘 ‖Δ𝑘𝐹‖𝐿2‖Δ̃𝑘𝐺‖𝐿2

)
. (2.5)

Proof. By the paraproduct decomposition,

Δ𝑗(𝐹 ⋅ ∇𝐺) =
∑

|𝑗−𝑘|≤2 Δ𝑗(𝑆𝑘−1𝐹 ⋅ Δ𝑘∇𝐺) +
∑

|𝑗−𝑘|≤2 Δ𝑗(Δ𝑘𝐹 ⋅ 𝑆𝑘−1∇𝐺) +
∑

𝑘≥𝑗−1
Δ𝑗(Δ𝑘𝐹 ⋅ ∇Δ̃𝑘𝐺).

By Hölder’s inequality and Bernstein’s inequality in Lemma 2.2,

||||∫ℝ𝑑
Δ𝑗(𝐹 ⋅ ∇𝐺) ⋅ Δ𝑗𝐻 𝑑𝑥

|||| ≤ ‖Δ𝑗𝐻‖𝐿2

( ∑
|𝑗−𝑘|≤2 2

𝑘 ‖𝑆𝑘−1𝐹‖𝐿∞ ‖Δ𝑘𝐺‖𝐿2 +
∑

|𝑗−𝑘|≤2 ‖Δ𝑘𝐹‖𝐿2 ‖𝑆𝑘−1∇𝐺||𝐿∞

+
∑

𝑘≥𝑗−1
2𝑗 ‖Δ𝑘𝐹‖𝐿2‖Δ̃𝑘𝐺‖𝐿∞

)
,

where we have used ∇ ⋅ 𝐹 = 0 in the last part. (2.4) then follows if we invoke the inequalities of the form

‖𝑆𝑘−1𝐹‖𝐿∞ ≤ ∑
𝑚≤𝑘−2

2
𝑑
2𝑚 ‖Δ𝑚𝐹‖𝐿2 . (2.6)

To prove (2.5), we further write the first term as the sum of a commutator and two correction terms,

Δ𝑗(𝐹 ⋅ ∇𝐺) =
∑

|𝑗−𝑘|≤2[Δ𝑗 , 𝑆𝑘−1𝐹 ⋅ ∇]Δ𝑘𝐺 +
∑

|𝑗−𝑘|≤2(𝑆𝑘−1𝐹 − 𝑆𝑗𝐹 ) ⋅ Δ𝑗Δ𝑘∇𝐺

+𝑆𝑗𝐹 ⋅ ∇Δ𝑗𝐺 +
∑

|𝑗−𝑘|≤2 Δ𝑗(Δ𝑘𝐹 ⋅ 𝑆𝑘−1∇𝐺) +
∑

𝑘≥𝑗−1
Δ𝑗(Δ𝑘𝐹 ⋅ ∇Δ̃𝑘𝐺),

where Δ̃𝑘 = Δ𝑘−1 + Δ𝑘 + Δ𝑘+1. Due to ∇ ⋅ 𝐹 = 0,

∫ℝ𝑑
𝑆𝑗𝐹 ⋅ ∇Δ𝑗𝐺 ⋅ Δ𝑗𝐺 𝑑𝑥 = 0.

By Hölder’s inequality, Bernstein’s inequality and a commutator estimate,

||||∫ℝ𝑑
Δ𝑗(𝐹 ⋅ ∇𝐺) ⋅ Δ𝑗𝐺 𝑑𝑥

|||| ≤ ‖Δ𝑗𝐺‖𝐿2

( ∑
|𝑗−𝑘|≤2 ‖∇𝑆𝑘−1𝐹‖𝐿∞‖Δ𝑘𝐺‖𝐿2 + 𝐶 2(1+

𝑑
2 )𝑗

∑
|𝑗−𝑘|≤2 ‖Δ𝑘𝐹‖𝐿2 ‖Δ𝑗𝐺‖𝐿2

+
∑

|𝑗−𝑘|≤2 ‖Δ𝑘𝐹‖𝐿2 ‖𝑆𝑘−1∇𝐺‖𝐿∞ +
∑

𝑘≥𝑗−1
2𝑗 2

𝑑
2 𝑘 ‖Δ𝑘𝐹‖𝐿2 ‖Δ̃𝑘𝐺‖𝐿2

)
.

(2.5) then follows when we invoke similar inequalities as (2.6). This completes the proof of Lemma 2.3. □

3 PROOF FOR THE EXISTENCE PART OF THEOREM 1.1

This section proves the existence part of Theorem 1.1. The approach is to construct a successive approximation sequence and

show that the limit of a subsequence actually solves (1.1) in the weak sense.
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Proof for the existence part of Theorem 1.1. We consider a successive approximation sequence {(𝑢(𝑛), 𝑏(𝑛))} satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢(1) = 𝑆2𝑢0, 𝑏(1) = 𝑆2𝑏0,

𝜕𝑡𝑢
(𝑛+1) + 𝜈(−Δ)𝛼𝑢(𝑛+1) = ℙ(−𝑢(𝑛) ⋅ ∇𝑢(𝑛+1) + 𝑏(𝑛) ⋅ ∇𝑏(𝑛)),

𝜕𝑡𝑏
(𝑛+1) + 𝜂(−Δ)𝛽𝑏(𝑛+1) = −𝑢(𝑛) ⋅ ∇𝑏(𝑛+1) + 𝑏(𝑛) ⋅ ∇𝑢(𝑛),

∇ ⋅ 𝑢(𝑛+1) = 0, ∇ ⋅ 𝑏(𝑛+1) = 0,
𝑢(𝑛+1)(𝑥, 0) = 𝑆𝑛+1𝑢0, 𝑏(𝑛+1)(𝑥, 0) = 𝑆𝑛+1𝑏0,

(3.1)

where ℙ is the standard Leray projection. For

𝑀 = 2

(‖𝑢0‖
𝐵

𝑑
2 +1−2𝛼
2,1

+ ‖𝑏0‖
𝐵

𝑑
2
2,1

)
,

𝑇 > 0 being sufficiently small and 0 < 𝛿 < 1 (to be specified later), we set

𝑌 ≡
{

(𝑢, 𝑏)||| ‖𝑢‖𝐿∞(0,𝑇 ;𝐵
𝑑
2 +1−2𝛼
2,1 )

≤ 𝑀, ‖𝑏‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝑀, ‖𝑢‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +1
2,1 )

≤ 𝛿, ‖𝑏‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1 )

≤ 𝛿

}
. (3.2)

Our goal is to show that {(𝑢(𝑛), 𝑏(𝑛))} has a subsequence that converges to the weak solution of (1.1). This process consists of

three main steps. The first step is to show that (𝑢(𝑛), 𝑏(𝑛)) is uniformly bounded in 𝑌 . The second step is to extract a strongly

convergent subsequence via the Aubin-Lions Lemma while the last step is to show that the limit is indeed a weak solution of

(1.1).

Our main effort is devoted to showing the uniform bound for (𝑢(𝑛), 𝑏(𝑛)) in 𝑌 . This is proven by induction. Clearly,

‖𝑢(1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2 +1−2𝛼
2,1 )

≤ 𝑀, ‖𝑏(1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝑀.

If 𝑇 > 0 is sufficiently small, then

‖𝑢(1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +1
2,1 )

≤ 𝑇 ‖𝑆2𝑢0‖
𝐵

𝑑
2 +1
2,1

≤ 𝑇 𝐶 ‖𝑢0‖
𝐵

𝑑
2 +1−2𝛼
2,1

≤ 𝛿,

‖𝑏(1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1 )

≤ 𝑇 ‖𝑆2𝑏0‖
𝐵

𝑑
2 +2𝛽
2,1

≤ 𝑇 𝐶 ‖𝑏0‖
𝐵

𝑑
2
2,1

≤ 𝛿.

Assuming that (𝑢(𝑛), 𝑏(𝑛)) obeys the bounds defined in 𝑌 , namely

‖𝑢(𝑛)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2 +1−2𝛼
2,1 )

≤ 𝑀, ‖𝑏(𝑛)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝑀,

‖𝑢(𝑛)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +1
2,1 )

≤ 𝛿, ‖𝑏(𝑛)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1 )

≤ 𝛿,

we prove that (𝑢(𝑛+1), 𝑏(𝑛+1)) obeys the same bound for suitably selected 𝑇 > 0 and 𝛿 > 0. For the sake of clarity, the proof of

the four bounds is achieved in the following four subsections.

3.1 The estimate of 𝒖(𝒏+𝟏) in 𝑩
𝟏+ 𝒅

𝟐 −𝟐𝜶
𝟐,𝟏 (ℝ𝒅)

Let 𝑗 ≥ 0 be an integer. Applying Δ𝑗 to the second equation in (3.1) and then dotting with Δ𝑗𝑢
(𝑛+1), we obtain

1
2
𝑑

𝑑𝑡
‖Δ𝑗𝑢

(𝑛+1)‖2
𝐿2 + 𝜈‖Λ𝛼Δ𝑗𝑢

(𝑛+1)‖2
𝐿2 = 𝐴1 + 𝐴2, (3.3)
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where

𝐴1 = −∫ Δ𝑗(𝑢(𝑛) ⋅ ∇𝑢(𝑛+1)) ⋅ Δ𝑗𝑢
(𝑛+1) 𝑑𝑥,

𝐴2 = ∫ Δ𝑗(𝑏(𝑛) ⋅ ∇𝑏(𝑛)) ⋅ Δ𝑗𝑢
(𝑛+1) 𝑑𝑥.

We remark that the projection operator ℙ has been eliminated due to the divergence-free condition ∇ ⋅ 𝑢(𝑛+1) = 0. The dissipative

part admits a lower bound

𝜈‖Λ𝛼Δ𝑗𝑢
(𝑛+1)‖2

𝐿2 ≥ 𝐶0 22𝛼𝑗 ‖Δ𝑗𝑢
(𝑛+1)‖2

𝐿2 ,

where 𝐶0 > 0 is a constant. According to Lemma 2.3, 𝐴1 can be bounded by

|𝐴1| ≤ 𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖2

𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)‖𝐿2 + 𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 ‖Δ𝑗𝑢

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛+1)‖𝐿2

+𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 2𝑗

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ𝑘𝑢

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑢
(𝑛+1)‖𝐿2 .

Also by Lemma 2.3, 𝐴2 is bounded by

|𝐴2| ≤ 𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 2𝑗 ‖Δ𝑗𝑏

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2 + 𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 ‖Δ𝑗𝑏

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2

+𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 2𝑗

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑏
(𝑛)‖𝐿2 .

Inserting the estimates above in (3.3) and eliminating ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 from both sides of the inequality, we obtain

𝑑

𝑑𝑡
‖Δ𝑗𝑢

(𝑛+1)‖𝐿2 + 𝐶0 22𝛼𝑗‖Δ𝑗𝑢
(𝑛+1)‖𝐿2 ≤ 𝐽1 +⋯ + 𝐽6, (3.4)

where

𝐽1 = 𝐶 ‖Δ𝑗𝑢
(𝑛+1)‖𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)‖𝐿2 ,

𝐽2 = 𝐶 ‖Δ𝑗𝑢
(𝑛)‖𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛+1)‖𝐿2

𝐽3 = 𝐶 2𝑗
∑

𝑘≥𝑗−1
2
𝑑
2 𝑘 ‖Δ̃𝑘𝑢

(𝑛+1)‖𝐿2 ‖Δ𝑘𝑢
(𝑛)‖𝐿2 ,

𝐽4 = 𝐶 2𝑗 ‖Δ𝑗𝑏
(𝑛)‖𝐿2

∑
𝑚≤𝑗−1

2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2 ,

𝐽5 = 𝐶 ‖Δ𝑗𝑏
(𝑛)‖𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2 ,

𝐽6 = 𝐶 2𝑗
∑

𝑘≥𝑗−1
2
𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑏
(𝑛)‖𝐿2 .

Integrating (3.4) in time yields

‖Δ𝑗𝑢
(𝑛+1)(𝑡)‖𝐿2 ≤ 𝑒−𝐶0 22𝛼𝑗 𝑡 ‖Δ𝑗𝑢

(𝑛+1)
0 ‖𝐿2 + ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏)(𝐽1 +⋯ + 𝐽6) 𝑑𝜏. (3.5)
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Multiplying (3.5) by 2(1+
𝑑
2 −2𝛼)𝑗 and summing over 𝑗, we have

‖𝑢(𝑛+1)(𝑡)‖
𝐵
1+ 𝑑

2 −2𝛼
2,1

≤ ‖𝑢(𝑛+1)0 ‖
𝐵
1+ 𝑑

2 −2𝛼
2,1

+
∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏)(𝐽1 +⋯ + 𝐽6) 𝑑𝜏. (3.6)

The terms on the right-hand side can be estimated as follows. Recalling the definition of 𝐽1 above and using the inductive

assumption on 𝑢(𝑛), we have, for any 𝑡 ≤ 𝑇 ,∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 𝐽1 𝑑𝜏

≤ 𝐶 ∫
𝑡

0

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗‖Δ𝑗𝑢

(𝑛+1)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏

= 𝐶 ‖𝑢(𝑛+1)‖
𝐿∞

(
0,𝑡;𝐵

1+ 𝑑
2 −2𝛼

2,1

) ‖𝑢(𝑛)‖
𝐿1

(
0,𝑡;𝐵

1+ 𝑑
2

2,1

)
≤ 𝐶 ‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

) ‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

)
≤ 𝐶 𝛿 ‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

).

The term involving 𝐽2 admits the same bound. In fact, by Young’s inequality for series convolution,∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 𝐽2 𝑑𝜏

≤ 𝐶 ∫
𝑡

0

∑
𝑗

2(1+
𝑑
2 )𝑗‖Δ𝑗𝑢

(𝑛)‖𝐿2
∑
𝑚≤𝑗

22𝛼(𝑚−𝑗)2(1+
𝑑
2 −2𝛼)𝑚‖Δ𝑚𝑢

(𝑛+1)(𝜏)‖𝐿2 𝑑𝜏

≤ 𝐶 ∫
𝑡

0
‖𝑢(𝑛)(𝜏)‖

𝐵
1+ 𝑑

2
2,1

‖𝑢(𝑛+1)(𝜏)‖
𝐵
1+ 𝑑

2 −2𝛼
2,1

𝑑𝜏

≤ 𝐶 𝛿 ‖𝑢(𝑛+1)‖
𝐿∞

(
0,𝑡;𝐵

1+ 𝑑
2 −2𝛼

2,1

)
≤ 𝐶 𝛿 ‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

).

The term with 𝐽3 is bounded by

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 𝐽3 𝑑𝜏

= ∫
𝑡

0

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 2𝑗

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ̃𝑘𝑢

(𝑛+1)‖𝐿2 ‖Δ𝑘𝑢
(𝑛)‖𝐿2 𝑑𝜏

= 𝐶 ∫
𝑡

0

∑
𝑗

∑
𝑘≥𝑗−1

2(2+
𝑑
2 −2𝛼)(𝑗−𝑘) 2(1+

𝑑
2 )𝑘‖Δ𝑘𝑢

(𝑛)‖𝐿22(1+
𝑑
2 −2𝛼)𝑘‖Δ̃𝑘𝑢

(𝑛+1)‖𝐿2 𝑑𝜏

≤ 𝐶 ∫
𝑡

0
‖𝑢(𝑛)(𝜏)‖

𝐵
1+ 𝑑

2
2,1

‖𝑢(𝑛+1)(𝜏)‖
𝐵
1+ 𝑑

2 −2𝛼
2,1

𝑑𝜏

≤ 𝐶 ‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ‖𝑢(𝑛+1)‖
𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

)
≤ 𝐶 𝛿 ‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

),
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where we have used Young’s inequality for convolution. Since 𝛼 > 1
2 , we choose 0 < 𝜌 < 1

2 such that

𝛼 − 1
2
− 𝜌 > 0. (3.7)

Using the elementary bound

2(2𝛼−4𝜌)𝑗(𝑡 − 𝜏)
2𝛼−4𝜌
2𝛼 𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) ≤ 𝐶, (3.8)

we obtain

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 𝐽4 𝑑𝜏

=
∑
𝑗
∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 2(1+

𝑑
2 −2𝛼)𝑗 2𝑗 ‖Δ𝑗𝑏

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2 𝑑𝜏

≤ 𝐶 ‖𝑏(𝑛)‖
𝐿∞(0,𝑡;𝐵

𝑑
2
2,1)

∑
𝑗
∫

𝑡

0
2−(2𝛼−4𝜌)𝑗(𝑡 − 𝜏)−

2𝛼−4𝜌
2𝛼 2(1+

𝑑
2 −2𝛼)𝑗 2𝑗 ‖Δ𝑗𝑏

(𝑛)‖𝐿2 𝑑𝜏

≤ 𝐶 ‖𝑏(𝑛)‖
𝐿∞(0,𝑡;𝐵

𝑑
2
2,1)

∫
𝑡

0

∑
𝑗

2−4𝛼𝑗+2𝑗+4𝜌𝑗 2
𝑑
2 𝑗 ‖Δ𝑗𝑏

(𝑛)‖𝐿2 (𝑡 − 𝜏)−
2𝛼−4𝜌
2𝛼 𝑑𝜏

≤ 𝐶 ‖𝑏(𝑛)‖2
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

∫
𝑡

0
(𝑡 − 𝜏)−

2𝛼−4𝜌
2𝛼 𝑑𝜏

= 𝐶

𝜌
𝑡
2𝜌
𝛼 ‖𝑏(𝑛)‖2

𝐿∞(0,𝑇 ;𝐵
𝑑
2
2,1)

≤ 𝐶

𝜌
𝑇

2𝜌
𝛼 𝑀2.

Since 𝐽5 ≤ 𝐽4, the term associated with 𝐽5 in (3.6) admits the same bound,

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 𝐽5 𝑑𝜏 ≤ 𝐶

𝜌
𝑇

2𝜌
𝛼 𝑀2.

It remains to bound 𝐽6. Invoking (3.7) and (3.8) again, we have

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ∫

𝑡

0
𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏) 𝐽6 𝑑𝜏

= 𝐶 ∫
𝑡

0

∑
𝑗

2(2+
𝑑
2 −2𝛼)𝑗𝑒−𝐶0 22𝛼𝑗 (𝑡−𝜏)

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑏
(𝑛)‖𝐿2 𝑑𝜏

≤ 𝐶 ∫
𝑡

0

∑
𝑗

2(2+
𝑑
2 −2𝛼)𝑗2−(2𝛼−4𝜌)𝑗(𝑡 − 𝜏)−

2𝛼−4𝜌
2𝛼

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑏
(𝑛)‖𝐿2 𝑑𝜏

= 𝐶 ∫
𝑡

0

∑
𝑗

2(−4𝛼+2+4𝜌)𝑗(𝑡 − 𝜏)−
2𝛼−4𝜌
2𝛼

∑
𝑘≥𝑗−1

2
𝑑
2 (𝑗−𝑘)2

𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 2
𝑑
2 𝑘 ‖Δ̃𝑘𝑏

(𝑛)‖𝐿2 𝑑𝜏

≤ 𝐶 ‖𝑏(𝑛)‖2
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

∫
𝑡

0
(𝑡 − 𝜏)−

2𝛼−4𝜌
2𝛼 𝑑𝜏

= 𝐶

𝜌
𝑡
2𝜌
𝛼 ‖𝑏(𝑛)‖2

𝐿∞(0,𝑇 ;𝐵
𝑑
2
2,1)

≤ 𝐶

𝜌
𝑇

2𝜌
𝛼 𝑀2.
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Collecting the bounds above and inserting them in (3.6), we find, for any 𝑡 ≤ 𝑇 ,

‖𝑢(𝑛+1)(𝑡)‖
𝐵

𝑑
2 +1−2𝛼
2,1

≤ ‖𝑢(𝑛+1)0 ‖
𝐵
1+ 𝑑

2 −2𝛼
2,1

+ 𝐶 𝛿 ‖𝑢(𝑛+1)‖
𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

) + 𝐶

𝜌
𝑇

2𝜌
𝛼 𝑀2, (3.9)

where 0 < 𝜌 < 1
2 satisfies (3.7).

3.2 The estimate of 𝒃(𝒏+𝟏) in 𝑩
𝒅

𝟐
𝟐,𝟏(ℝ

𝒅)

Applying Δ𝑗 to the third equation in (3.1) and then dotting with Δ𝑗𝑏
(𝑛+1), we obtain

1
2
𝑑

𝑑𝑡
‖Δ𝑗𝑏

(𝑛+1)‖2
𝐿2 + 𝐶1 22𝛽𝑗‖Δ𝑗𝑏

(𝑛+1)‖2
𝐿2 ≤ 𝐵1 + 𝐵2, (3.10)

where 𝐶1 > 0 is a constant and

𝐵1 = −∫ Δ𝑗(𝑢(𝑛) ⋅ ∇𝑏(𝑛+1)) ⋅ Δ𝑗𝑏
(𝑛+1) 𝑑𝑥,

𝐵2 = ∫ Δ𝑗(𝑏(𝑛) ⋅ ∇𝑢(𝑛)) ⋅ Δ𝑗𝑏
(𝑛+1) 𝑑𝑥.

By Lemma 2.3, we have

|𝐵1| ≤ 𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖2

𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)‖𝐿2 + 𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 ‖Δ𝑗𝑢

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑏

(𝑛+1)‖𝐿2

+𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 2𝑗

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ̃𝑘𝑏

(𝑛+1)‖𝐿2 ‖Δ𝑘𝑢
(𝑛)‖𝐿2

and

|𝐵2| ≤ 𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 2𝑗 ‖Δ𝑗𝑢

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2 + 𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 ‖Δ𝑗𝑏

(𝑛)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)‖𝐿2

+𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 2𝑗

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑢
(𝑛)‖𝐿2 .

Inserting the estimates above in (3.10) and eliminating ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 from both sides of the inequality, we obtain

𝑑

𝑑𝑡
‖Δ𝑗𝑏

(𝑛+1)‖𝐿2 + 𝐶1 22𝛽𝑗‖Δ𝑗𝑏
(𝑛+1)‖𝐿2 ≤ 𝐾1 +⋯ +𝐾6, (3.11)

where

𝐾1 = 𝐶 ‖Δ𝑗𝑏
(𝑛+1)‖𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)‖𝐿2 ,

𝐾2 = 𝐶 ‖Δ𝑗𝑢
(𝑛)‖𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑏

(𝑛+1)‖𝐿2

𝐾3 = 𝐶 2𝑗
∑

𝑘≥𝑗−1
2
𝑑
2 𝑘 ‖Δ̃𝑘𝑏

(𝑛+1)‖𝐿2 ‖Δ𝑘𝑢
(𝑛)‖𝐿2 ,

𝐾4 = 𝐶 2𝑗 ‖Δ𝑗𝑢
(𝑛)‖𝐿2

∑
𝑚≤𝑗−1

2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)‖𝐿2 ,

𝐾5 = 𝐶 ‖Δ𝑗𝑏
(𝑛)‖𝐿2

∑
𝑚≤𝑗−1

2(1+
𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)‖𝐿2 ,

𝐾6 = 𝐶 2𝑗
∑

𝑘≥𝑗−1
2
𝑑
2 𝑘 ‖Δ𝑘𝑏

(𝑛)‖𝐿2 ‖Δ̃𝑘𝑢
(𝑛)‖𝐿2 .
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Integrating (3.11) in time yields, for any 𝑡 ≤ 𝑇 ,

‖Δ𝑗𝑏
(𝑛+1)(𝑡)‖𝐿2 ≤ 𝑒−𝐶1 22𝛽𝑗 𝑡 ‖Δ𝑗𝑏

(𝑛+1)
0 ‖𝐿2 + ∫

𝑡

0
𝑒−𝐶1 22𝛽𝑗 (𝑡−𝜏) (𝐾1 +⋯ +𝐾6) 𝑑𝜏. (3.12)

Multiplying (3.12) by 2
𝑑
2 𝑗 and summing over 𝑗, we have

‖𝑏(𝑛+1)(𝑡)‖
𝐵

𝑑
2
2,1

≤ ‖𝑏(𝑛+1)0 ‖
𝐵

𝑑
2
2,1

+
∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝑒−𝐶1 22𝛽𝑗 (𝑡−𝜏) (𝐾1 +⋯ +𝐾6) 𝑑𝜏. (3.13)

The terms containing 𝐾1 through 𝐾6 on the right of (3.13) can be bounded suitably even without the dissipative factor. For this

reason, we use the simple bound

𝑒−𝐶0 22𝛽𝑗 (𝑡−𝜏) ≤ 1.

Since the estimates are similar to those in the previous subsection, we omit some details. The bounds are∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝐾1 𝑑𝜏 ≤ 𝐶 ‖𝑏(𝑛+1)‖

𝐿∞(0,𝑇 ;𝐵
𝑑
2
2,1)

‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ≤ 𝐶 𝛿 ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

,

∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝐾2 𝑑𝜏 ≤ 𝐶 ‖𝑢(𝑛)‖

𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝐶 𝛿 ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

.

The estimate for the term with 𝐾3 is also similar,∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝐾3 𝑑𝜏 ≤ 𝐶 ∫

𝑡

0

∑
𝑗

∑
𝑘≥𝑗−1

2
𝑑
2 𝑘 ‖Δ̃𝑘𝑏

(𝑛+1)‖𝐿2 2(1+
𝑑
2 )(𝑗−𝑘) 2(1+

𝑑
2 )𝑘 ‖Δ𝑘𝑢

(𝑛)‖𝐿2 𝑑𝜏

≤ 𝐶 ‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝐶 𝛿 ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

.

The terms related to 𝐾4, 𝐾5 and 𝐾6 all obey the same bound∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝐾4 𝑑𝜏,

∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝐾5 𝑑𝜏,

∑
𝑗

2
𝑑
2 𝑗 ∫

𝑡

0
𝐾6 𝑑𝜏

≤ 𝐶 ‖𝑏(𝑛)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ≤ 𝐶 𝛿𝑀.

Collecting the estimates and inserting them in (3.13), we obtain, for any 𝑡 ≤ 𝑇 ,

‖𝑏(𝑛+1)(𝑡)‖
𝐵

𝑑
2
2,1

≤ ‖𝑏(𝑛+1)0 ‖
𝐵

𝑑
2
2,1

+ 𝐶 𝛿 ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

+ 𝐶 𝛿𝑀. (3.14)

3.3 The estimate of ‖𝒖(𝒏+𝟏)‖
𝑳𝟏
(
𝟎,𝑻 ;𝑩

𝟏+ 𝒅
𝟐

𝟐,𝟏

)

We multiply (3.5) by 2(1+
𝑑
2 )𝑗 , sum over 𝑗 and integrate in time to obtain

‖𝑢(𝑛+1)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ≤ ∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 𝑒−𝐶0 22𝛼𝑗 𝑡 ‖Δ𝑗𝑢

(𝑛+1)
0 ‖𝐿2 𝑑𝑡

+∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)(𝐽1 +⋯ + 𝐽6) 𝑑𝜏 𝑑𝑠.
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We estimate the terms on the right and start with the first term.

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 𝑒−𝐶0 22𝛼𝑗 𝑡 ‖Δ𝑗𝑢

(𝑛+1)
0 ‖𝐿2 𝑑𝑡 = 𝐶

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗

(
1 − 𝑒−𝐶0 22𝛼𝑗𝑇

)‖Δ𝑗𝑢
(𝑛+1)
0 ‖𝐿2 . (3.15)

Since 𝑢0 ∈ 𝐵
1+ 𝑑

2 −2𝛼
2,1 , it follows from the Dominated Convergence Theorem that

lim
𝑇→0

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗

(
1 − 𝑒−𝐶0 22𝛼𝑗𝑇

)‖Δ𝑗𝑢
(𝑛+1)
0 ‖𝐿2 = 0.

Therefore, we can choose 𝑇 sufficiently small such that

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 𝑒−𝐶0 22𝛼𝑗 𝑡 ‖Δ𝑗𝑢

(𝑛+1)
0 ‖𝐿2 𝑑𝑡 ≤ 𝛿

4
.

Applying Young’s inequality for the time convolution, we have

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)𝐽1 𝑑𝜏 𝑑𝑠

= 𝐶 ∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)‖Δ𝑗𝑢

(𝑛+1)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏 𝑑𝑠

≤ 𝐶
∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑇

0
‖Δ𝑗𝑢

(𝑛+1)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏 ∫
𝑇

0
𝑒−𝐶0 22𝛼𝑗𝑠 𝑑𝑠

≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) ∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 −2𝛼)𝑗 ‖Δ𝑗𝑢

(𝑛+1)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏

≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) ‖𝑢(𝑛+1)‖
𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

) ‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

)

≤ 𝐶 𝛿 (1 − 𝑒−𝐶2𝑇 ) ‖𝑢(𝑛+1)‖
𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

),

where we have used the fact that there exists 𝐶2 > 0 satisfying, for 𝑗 ≥ 0,

∫
𝑇

0
𝑒−𝐶0 22𝛼𝑗𝑠 𝑑𝑠 ≤ 𝐶 2−2𝛼𝑗 (1 − 𝑒−𝐶2𝑇 ). (3.16)

We remark that the functional setting here is the inhomogeneous Besov spaces and the index 𝑗 is bounded below. This is the

reason why there is 𝐶2 > 0 satisfying (3.16). This can not be done for homogeneous Besov spaces. The terms with 𝐽2 and 𝐽3
can be similarly estimated and obey the same bound,

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)𝐽2 𝑑𝜏 𝑑𝑠 ≤ 𝐶 𝛿 (1 − 𝑒−𝐶2𝑇 ) ‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

),

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)𝐽3 𝑑𝜏 𝑑𝑠 ≤ 𝐶 𝛿 (1 − 𝑒−𝐶2𝑇 ) ‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

).
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By Young’s inequality for the time convolution, we have

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)𝐽4 𝑑𝜏 𝑑𝑠

= 𝐶 ∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)2𝑗 ‖Δ𝑗𝑏

(𝑛)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)(𝜏)‖𝐿2 𝑑𝜏 𝑑𝑠

≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) ∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2−2𝛼)𝑗 ‖Δ𝑗𝑏

(𝑛)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)(𝜏)‖𝐿2 𝑑𝜏

≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) sup
0≤𝑡≤𝑇

‖𝑏(𝑛)(𝑡)‖
𝐵

𝑑
2
2,1

∫
𝑇

0
‖𝑏(𝑛)(𝑡)‖

𝐵
𝑑
2 +2−2𝛼
2,1

𝑑𝑡

≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) ‖𝑏(𝑛)‖
𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

) ‖𝑏(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1

)

= 𝐶 (1 − 𝑒−𝐶2𝑇 ) 𝛿𝑀,

where we have used the condition that 𝛼 + 𝛽 ≥ 1. The other two terms involving 𝐽5 and 𝐽6 obey the same bound,

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)𝐽5 𝑑𝜏 𝑑𝑠 ≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) 𝛿𝑀,

∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ∫

𝑠

0
𝑒−𝐶0 22𝛼𝑗 (𝑠−𝜏)𝐽6 𝑑𝜏 𝑑𝑠 ≤ 𝐶 (1 − 𝑒−𝐶2𝑇 ) 𝛿𝑀.

Collecting the estimates above leads to

‖𝑢(𝑛+1)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

) ≤ 𝛿

4
+ 𝐶 𝛿(1 − 𝑒−𝐶2𝑇 )‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

) + 𝐶 (1 − 𝑒−𝐶2𝑇 ) 𝛿𝑀. (3.17)

3.4 The estimate of ‖𝒃(𝒏+𝟏)‖
𝑳𝟏
(
𝟎,𝑻 ;𝑩

𝒅
𝟐 +𝟐𝜷
𝟐,𝟏

)

Multiplying (3.12) by 2(
𝑑
2 +2𝛽)𝑗 , summing over 𝑗 and integrating in time, we have

‖𝑏(𝑛+1)‖
𝐿1

(
0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1

) ≤ ∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 𝑒−𝐶1 22𝛽𝑗 𝑡 ‖Δ𝑗𝑏

(𝑛+1)
0 ‖𝐿2 𝑑𝑡

+∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)(𝐾1 +⋯ +𝐾6) 𝑑𝜏 𝑑𝑠.

The terms on the right can be bounded as follows. As in (3.15),

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 𝑒−𝐶1 22𝛽𝑗 𝑡 ‖Δ𝑗𝑏

(𝑛+1)
0 ‖𝐿2 𝑑𝑡 = 𝐶

∑
𝑗

2
𝑑
2 𝑗
(
1 − 𝑒−𝐶1 22𝛽𝑗𝑇

)‖Δ𝑗𝑏
(𝑛+1)
0 ‖𝐿2 .

Since 𝑏0 ∈ 𝐵
𝑑
2
2,1, it follows from the Dominated Convergence Theorem that

lim
𝑇→0

∑
𝑗

2
𝑑
2 𝑗
(
1 − 𝑒−𝐶1 22𝛽𝑗𝑇

)‖Δ𝑗𝑏
(𝑛+1)
0 ‖𝐿2 = 0.
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Therefore, we can choose 𝑇 sufficiently small such that

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 𝑒−𝐶1 22𝛽𝑗 𝑡 ‖Δ𝑗𝑏

(𝑛+1)
0 ‖𝐿2 𝑑𝑡 ≤ 𝛿

4
.

The terms involving 𝐾1 through 𝐾6 can be estimated as follows. Applying Young’s inequality for the time convolution, we have

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)𝐾1 𝑑𝜏 𝑑𝑠

= 𝐶 ∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)‖Δ𝑗𝑏

(𝑛+1)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏 𝑑𝑠

≤ 𝐶
∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑇

0
‖Δ𝑗𝑏

(𝑛+1)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏 ∫
𝑇

0
𝑒−𝐶1 22𝛽𝑗𝑠 𝑑𝑠

≤ 𝐶 (1 − 𝑒−𝐶3𝑇 ) ∫
𝑇

0

∑
𝑗

2
𝑑
2 𝑗 ‖Δ𝑗𝑏

(𝑛+1)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2(1+

𝑑
2 )𝑚‖Δ𝑚𝑢

(𝑛)(𝜏)‖𝐿2 𝑑𝜏

≤ 𝐶 (1 − 𝑒−𝐶3𝑇 ) ‖𝑏(𝑛+1)‖
𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

) ‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

)

≤ 𝐶 𝛿 (1 − 𝑒−𝐶3𝑇 ) ‖𝑏(𝑛+1)‖
𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

),

where 𝐶3 > 0 is a constant. The two terms involving 𝐾2 and 𝐾3 admit the same bound,

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)𝐾2 𝑑𝜏 𝑑𝑠 ≤ 𝐶 𝛿 (1 − 𝑒−𝐶3𝑇 ) ‖𝑏(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

),

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)𝐾3 𝑑𝜏 𝑑𝑠 ≤ 𝐶 𝛿 (1 − 𝑒−𝐶3𝑇 ) ‖𝑏(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

).

The terms containing 𝐾4 is bounded by

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)𝐾4 𝑑𝜏 𝑑𝑠

= 𝐶 ∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)2𝑗 ‖Δ𝑗𝑢

(𝑛)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)(𝜏)‖𝐿2 𝑑𝜏 𝑑𝑠

≤ 𝐶 (1 − 𝑒−𝐶3𝑇 )∫
𝑇

0

∑
𝑗

2(1+
𝑑
2 )𝑗 ‖Δ𝑗𝑢

(𝑛)(𝜏)‖𝐿2
∑

𝑚≤𝑗−1
2
𝑑
2 𝑚‖Δ𝑚𝑏

(𝑛)(𝜏)‖𝐿2 𝑑𝜏

≤ 𝐶 (1 − 𝑒−𝐶3𝑇 ) sup
0≤𝑡≤𝑇

‖𝑏(𝑛)(𝑡)‖
𝐵

𝑑
2
2,1

∫
𝑇

0
‖𝑢(𝑛)(𝑡)‖

𝐵
1+ 𝑑

2
2,1

𝑑𝑡

≤ 𝐶 (1 − 𝑒−𝐶3𝑇 )‖𝑏(𝑛)‖
𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

) ‖𝑢(𝑛)‖
𝐿1

(
0,𝑇 ;𝐵

1+ 𝑑
2

2,1

)

= 𝐶 (1 − 𝑒−𝐶3𝑇 )𝛿𝑀.
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The terms with 𝐾5 and 𝐾6 obey the same bound,

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)𝐾5 𝑑𝜏 𝑑𝑠 ≤ 𝐶 (1 − 𝑒−𝐶3𝑇 )𝛿𝑀,

∫
𝑇

0

∑
𝑗

2(
𝑑
2 +2𝛽)𝑗 ∫

𝑠

0
𝑒−𝐶1 22𝛽𝑗 (𝑠−𝜏)𝐾6 𝑑𝜏 𝑑𝑠 ≤ 𝐶 (1 − 𝑒−𝐶3𝑇 )𝛿𝑀.

Collecting the estimates above, we conclude that

‖𝑏(𝑛+1)‖
𝐿1

(
0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1

) ≤ 𝛿

4
+ 𝐶 𝛿 (1 − 𝑒−𝐶3𝑇 ) ‖𝑏(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

𝑑
2
2,1

) + 𝐶 (1 − 𝑒−𝐶3𝑇 )𝛿𝑀. (3.18)

The bounds in (3.9), (3.14), (3.17) and (3.18) allow us to conclude that, if we choose 𝑇 > 0 sufficiently small and 𝛿 > 0
suitably, then

‖𝑢(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2 +1−2𝛼
2,1 )

≤ 𝑀, ‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝑀,

‖𝑢(𝑛+1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +1
2,1 )

≤ 𝛿, ‖𝑏(𝑛+1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1 )

≤ 𝛿.

In fact, if we choose 𝑇 and 𝛿 satisfying

𝐶𝛿 ≤ 1
4
,

𝐶

𝜌
𝑇

2𝜌
𝛼 𝑀 ≤ 1

4
,

then (3.9) implies

‖𝑢(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2 +1−2𝛼
2,1 )

≤ 1
2
𝑀 + 1

4
‖𝑢(𝑛+1)‖

𝐿∞

(
0,𝑇 ;𝐵

1+ 𝑑
2 −2𝛼

2,1

) + 1
4
𝑀

or

‖𝑢(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2 +1−2𝛼
2,1 )

≤ 𝑀.

Similarly, if 𝐶𝛿 ≤ 1
4 , then (3.14) states

‖𝑏(𝑛+1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

≤ 𝑀.

According to (3.17) and (3.18), if we choose 𝑇 sufficiently small such that

𝐶 (1 − 𝑒−𝐶2𝑇 ) 𝛿 ≤ 1
2
, 𝐶 (1 − 𝑒−𝐶3𝑇 ) 𝛿 ≤ 1

2
,

𝐶 (1 − 𝑒−𝐶2𝑇 )𝑀 ≤ 1
4
, 𝐶 (1 − 𝑒−𝐶3𝑇 )𝑀 ≤ 1

4
,

then

‖𝑢(𝑛+1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +1
2,1 )

≤ 𝛿, ‖𝑏(𝑛+1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1 )

≤ 𝛿.

These uniform bounds allow us to extract a weakly convergent subsequence. That is, there is (𝑢, 𝑏) ∈ 𝑌 such that a subsequence

of (𝑢(𝑛), 𝑏(𝑛)) (still denoted by (𝑢(𝑛), 𝑏(𝑛))) satisfies

𝑢(𝑛)
∗
⇀ 𝑢 in 𝐿∞(0, 𝑇 ;𝐵

𝑑
2 +1−2𝛼
2,1 ) ∩ 𝐿1(0, 𝑇 ; 𝐵

𝑑
2 +1
2,1 ),

𝑏(𝑛)
∗
⇀ 𝑏 in 𝐿∞(0, 𝑇 ;𝐵

𝑑
2
2,1) ∩ 𝐿1(0, 𝑇 ; 𝐵

𝑑
2 +2𝛽
2,1 ).
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In order to show that (𝑢, 𝑏) is a weak solution of (1.1), we need to further extract a subsequence which converges strongly to

(𝑢, 𝑏). This is done via the Aubin-Lions Lemma. We can show by making use of the equations in (3.1) that (𝜕𝑡𝑢(𝑛), 𝜕𝑡𝑏(𝑛)) is

uniformly bounded in

𝜕𝑡𝑢
(𝑛) ∈ 𝐿1(0, 𝑇 ;𝐵

𝑑
2 −2𝛼+1
2,1 ) ∩ 𝐿2(0, 𝑇 ;𝐵

𝑑
2 +1−3𝛼
2,1 ),

𝜕𝑡𝑏
(𝑛) ∈ 𝐿1(0, 𝑇 ;𝐵

𝑑
2
2,1) ∩ 𝐿2(0, 𝑇 ;𝐵

𝑑
2 −𝛽
2,1 ).

Since we are in the case of the whole space ℝ𝑑 , we need to combine Cantor’s diagonal process with the Aubin-Lions Lemma to

show that a subsequence of the weakly convergent subsequence, still denoted by (𝑢(𝑛), 𝑏(𝑛)), has the following strongly convergent

property,

(𝑢(𝑛), 𝑏(𝑛)) → (𝑢, 𝑏) in 𝐿2(0, 𝑇 ;𝐵𝛾
2,1(𝑄)),

where
𝑑

2 − 𝛼 ≤ 𝛾 < 𝑑

2 and 𝑄 ⊂ ℝ𝑑 is a compact subset. This strong convergence property would allow us to show that (𝑢, 𝑏) is

indeed a weak solution of (1.1). This process is routine and we omit the details. This completes the proof for the existence part

of Theorem 1.1.

4 PROOF FOR THE UNIQUENESS PART OF THEOREM 1.1

This section proves the uniqueness part of Theorem 1.1.

Proof. Assume that (𝑢(1), 𝑏(1)) and (𝑢(2), 𝑏(2)) are two solutions of (1.1) in the regularity class in (1.3) and (1.4). Their difference

(�̃�, �̃�) with

�̃� = 𝑢(2) − 𝑢(1), �̃� = 𝑏(2) − 𝑏(1)

satisfies

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡�̃� + 𝜈(−Δ)𝛼�̃� = −ℙ(𝑢(2) ⋅ ∇�̃� + �̃� ⋅ ∇𝑢(1)) + ℙ(𝑏(2) ⋅ ∇�̃� + �̃� ⋅ ∇𝑏(1)),
𝜕𝑡�̃� + 𝜂(−Δ)𝛽 �̃� = −𝑢(2) ⋅ ∇�̃� − �̃� ⋅ ∇𝑏(1) + 𝑏(2) ⋅ ∇�̃� + �̃� ⋅ ∇𝑢(1),
∇ ⋅ �̃� = ∇ ⋅ �̃� = 0,
�̃�(𝑥, 0) = 0, �̃�(𝑥, 0) = 0.

(4.1)

In the case when 𝛼 = 1 and 𝛽 = 0, the uniqueness has been obtained in [7, 19, 24]. We focus on the case when 𝛼 > 1∕2, 𝛽 > 0
and 𝛼 + 𝛽 ≥ 1. We estimate the difference (�̃�, �̃�) in 𝐿2. Dotting (4.1) by (�̃�, �̃�) and applying the divergence-free condition, we

find

1
2
𝑑

𝑑𝑡
(‖�̃�‖2

𝐿2 + ‖�̃�||2
𝐿2 ) + 𝜈‖Λ𝛼�̃�‖2

𝐿2 + 𝜂‖Λ𝛽 �̃�||2
𝐿2 = 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5,

where

𝐿1 = −∫ �̃� ⋅ ∇𝑢(1) ⋅ �̃� 𝑑𝑥,

𝐿2 = ∫ 𝑏(2) ⋅ ∇�̃� ⋅ �̃� 𝑑𝑥 + ∫ 𝑏(2) ⋅ ∇�̃� ⋅ �̃� 𝑑𝑥,

𝐿3 = ∫ �̃� ⋅ ∇𝑏(1) ⋅ �̃� 𝑑𝑥,

𝐿4 = −∫ �̃� ⋅ ∇𝑏(1) ⋅ �̃� 𝑑𝑥,

𝐿5 = ∫ �̃� ⋅ ∇𝑢(1) ⋅ �̃� 𝑑𝑥.
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Due to ∇ ⋅ 𝑏(2) = 0, we find 𝐿2 = 0 after integration by parts. We remark that 𝐿3 + 𝐿4 is not necessarily zero. By Hölder’s

inequality,

|𝐿1| ≤ ‖∇𝑢(1)‖𝐿∞ ‖�̃�‖2
𝐿2 ≤ 𝐶 ‖𝑢(1)‖

𝐵
1+ 𝑑

2
2,1

‖�̃�‖2
𝐿2 .

To bound 𝐿3, we set

1
𝑝
= 1

2
− 𝛼

𝑑
,

1
𝑞
= 𝛼

𝑑

and apply Hölder’s inequality to obtain

|𝐿3| ≤ ‖�̃�‖𝐿2 ‖∇𝑏(1)‖𝐿𝑞 ‖�̃�‖𝐿𝑝 ≤ 𝐶 ‖�̃�‖𝐿2 ‖𝑏(1)‖
𝐵

𝑑
2 +𝛽
2,1

‖Λ𝛼�̃�‖𝐿2 ≤ 𝜈

4
‖Λ𝛼�̃�‖𝐿2 + 𝐶 ‖𝑏(1)‖2

𝐵
𝑑
2 +𝛽
2,1

‖�̃�‖2
𝐿2 ,

where we have used the inequalities, due to 𝛼 + 𝛽 ≥ 1,

‖�̃�‖𝐿𝑝 ≤ 𝐶 ‖Λ𝛼�̃�‖𝐿2 ,

‖∇𝑏(1)‖𝐿𝑞 ≤ ∑
𝑗≥−1

‖Δ𝑗∇𝑏(1)‖𝐿𝑞 ≤ 𝐶
∑
𝑗≥−1

2𝑗+𝑑𝑗(
1
2−

1
𝑞
) ‖Δ𝑗𝑏

(1)‖𝐿2

≤ 𝐶
∑
𝑗≥−1

2
𝑑
2 𝑗+(1−

𝑑
𝑞
)𝑗 ‖Δ𝑗𝑏

(1)‖𝐿2 ≤ 𝐶
∑
𝑗≥−1

2
𝑑
2 𝑗+𝛽𝑗 ‖Δ𝑗𝑏

(1)‖𝐿2

≤ 𝐶 ‖𝑏(1)‖
𝐵

𝑑
2 +𝛽
2,1

.

𝐿4 obeys exactly the same bound,

|𝐿4| ≤ 𝜈

4
‖Λ𝛼�̃�‖𝐿2 + 𝐶 ‖𝑏(1)‖2

𝐵
𝑑
2 +𝛽
2,1

‖�̃�‖2
𝐿2 .

The last term 𝐿5 can be bounded as 𝐿1,

|𝐿5| ≤ 𝐶 ‖𝑢(1)‖
𝐵
1+ 𝑑

2
2,1

‖�̃�‖2
𝐿2 .

Combining these estimates leads to

𝑑

𝑑𝑡
(‖�̃�‖2

𝐿2 + ‖�̃�||2
𝐿2 ) + 𝜈‖Λ𝛼�̃�‖2

𝐿2 + 2𝜂‖Λ𝛽 �̃�||2
𝐿2

≤ 𝐶 ‖𝑢(1)‖
𝐵
1+ 𝑑

2
2,1

(‖�̃�‖2
𝐿2 + ‖�̃�||2

𝐿2 ) + 𝐶 ‖𝑏(1)‖2
𝐵

𝑑
2 +𝛽
2,1

‖�̃�‖2
𝐿2 . (4.2)

Since (𝑢(1), 𝑏(1)) is in the regularity class (1.3) and (1.4), we have

∫
𝑇

0
‖𝑢(1)(𝑡)‖

𝐵
1+ 𝑑

2
2,1

𝑑𝑡 < ∞.

In addition, by Hölder’s inequality,

‖𝑏(1)‖
𝐵

𝑑
2 +𝛽
2,1

=
∑
𝑗

2(
𝑑
2 +𝛽)𝑗 ‖Δ𝑗𝑏

(1)‖𝐿2 =
∑
𝑗

2
𝑑
4 𝑗‖Δ𝑗𝑏

(1)‖ 1
2
𝐿2 2

𝑑
4 𝑗+𝛽𝑗‖Δ𝑗𝑏

(1)‖ 1
2
𝐿2

≤
(∑

𝑗

2
𝑑
2 𝑗 ‖Δ𝑗𝑏

(1)‖𝐿2

) 1
2
(∑

𝑗

2(
𝑑
2 +2𝛽)𝑗 ‖Δ𝑗𝑏

(1)‖𝐿2

) 1
2

= ‖𝑏(1)‖ 1
2

𝐵
𝑑
2
2,1

‖𝑏(1)‖ 1
2

𝐵
𝑑
2 +2𝛽
2,1

. (4.3)
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Therefore,

∫
𝑇

0
‖𝑏(1)(𝑡)‖2

𝐵
𝑑
2 +𝛽
2,1

𝑑𝑡 ≤ ∫
𝑇

0
‖𝑏(1)(𝑡)‖

𝐵
𝑑
2
2,1

‖𝑏(1)(𝑡)‖
𝐵

𝑑
2 +2𝛽
2,1

𝑑𝑡 ≤ ‖𝑏(1)‖
𝐿∞(0,𝑇 ;𝐵

𝑑
2
2,1)

‖𝑏(1)‖
𝐿1(0,𝑇 ;𝐵

𝑑
2 +2𝛽
2,1 )

< ∞. (4.4)

Applying Gronwall’s inequality to (4.2) and invoking (4.3) and (4.4), we obtain

‖�̃�‖𝐿2 = ‖�̃�‖𝐿2 = 0,

which leads to the desired uniqueness. This completes the proof of the uniqueness part of Theorem 1.1. □
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