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ABSTRACT. Micropolar equations, modeling micropolar fluid flows, consist of
coupled equations obeyed by the evolution of the velocity u and that of the mi-
crorotation w. This paper focuses on the two-dimensional micropolar equations
with the fractional dissipation (—A)®u and (—A)Pw, where 0 < o, 8 < 1. The
goal here is the global regularity of the fractional micropolar equations with
minimal fractional dissipation. Recent efforts have resolved the two borderline
cases a = 1, 8 =0 and a = 0, 8 = 1. However, the situation for the general
critical case @« + 8 = 1 with 0 < a < 1 is far more complex and the global
regularity appears to be out of reach. When the dissipation is split among the
equations, the dissipation is no longer as efficient as in the borderline cases and
different ranges of o and S require different estimates and tools. We aim at the
subcritical case a4+ 8 > 1 and divide o € (0, 1) into five sub-intervals to seek
the best estimates so that we can impose the minimal requirements on a and
B. The proof of the global regularity relies on the introduction of combined
quantities, sharp lower bounds for the fractional dissipation and delicate upper
bounds for the nonlinearity and associated commutators.
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1. Introduction. Micropolar equations, derived in 1960’s by Eringen [14, 15], gov-
ern the motion of micropolar fluids. Micropolar fluids are a class of fluids with mi-
crostructures such as fluids consisting of bar-like elements and liquid crystals made
up of dumbbell molecules (see, e.g., [9, 13, 25, 27]). They are non-Newtonian fluids
with nonsymmetric stress tensor. The micropolar equations take into account of the
kinematic viscous effect, microrotational effects as well as microrotational inertia.
The 3D micropolar equations are given by

Ou+u-Vu— 25V x w+ Vr = (v + k)Au,
V-u=0, (1.1)
Oyw + u - Vw 4 dkw — 26V X u = yAw + pVV - w,

where u = u(z,t) denotes the fluid velocity, w(z,t) the field of microrotation repre-
senting the angular velocity of the rotation of the fluid particles, 7(z,t) the scalar
pressure, and the parameter v denotes the kinematic viscosity, x the microrotation
viscosity, and v and g the angular viscosities. The 3D micropolar equations reduce
to the 2D micropolar equation when

u = (u1(x1, x2,t), us(x1,x2,1),0), w=(0,0,ws(x1,z2,t)), 7=mn(x1,202,1).
More explicitly, the 2D micropolar equations can be written as
Ou+u-Vu—26V X w+ Vr = (v + k)Au,
V-ou=0, (1.2)
Ow + u - Vw + 4kw — 26V X u = yAw,

where we have written u = (u1,us) and w for ws for notational brevity. Here and
in what follows,

Juy  Oug ow ow
Q == = - = — = _— .
Vixu 5‘x1 81’27 Vixw (31’2’ 8’131)

In addition to their applications in engineering and physics, the micropolar equa-
tions are also mathematically significant due to their special structures. The well-
posedness problem on the micropolar equations and closely related equations such
as the magneto-micropolar equations have attracted considerable attention recently
and very interesting results have been established ([7, 10, 12, 11, 16, 23, 30, 31, 33]).
Generally speaking, the global regularity problem for the micropolar equations is
easier than that for the corresponding incompressible magnetohydrodynamic equa-
tions and harder than that for the corresponding incompressible Boussinesq equa-
tions.

Recent efforts are focused on the 2D micropolar equations with partial dissipa-
tion. When there is full dissipation, the global well-posedness problem on (1.2) is
easy and can be solved similarly as that for the 2D Navier-Stokes equations (see,
e.g., [3, 4, 6, 28]). When there is only partial dissipation, the global existence and
regularity problem can be difficult. Due to recent efforts, the global regularity for
several partial dissipation cases have been resolved. In [12] Dong and Zhang ob-
tained the global regularity of (1.2) without the micro-rotation viscosity, namely
v =0. For (1.2) with v =0, v > 0, Kk > 0 and k # =, Xue obtained the global
well-posedness in the frame work of Besov spaces [30]. Very recently, Dong, Li
and Wu [11] proved the global well-posedness of (1.2) with only angular viscosity
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dissipation. [11] makes use of the maximal regularity of the heat operator and in-
troduces a combined quantity to obtain the desired global bounds. In addition, [11]
also obtains explicit decay rates of the solutions to this partially dissipated system.

This paper aims at the global existence and regularity of classical solutions to
the 2D micropolar equations with fractional dissipation

Ou+u-Vu+ (v+ k)A2%u — 26V x w + V7 = 0,
V-u=0, (1.3)
Ovw + u - Vw + yA2Pw + dkw — 26V x u = 0,

where 0 < a, 8 < 1 and A = (—A)Y? denotes the Zygmund operator, defined via
the Fourier transform - R
A f (&) = 1817 f(E)-

Clearly, (1.3) generalizes (1.2) and reduces to (1.2) when o« = = 1. Mathemati-
cally (1.3) has an advantage over (1.2) in the sense that (1.3) allows the study of a
family of equations simultaneously. Our attempt is to establish the global regularity
of (1.3) with the minimal amount of dissipation, namely for smallest «, 5 € (0, 1).
As aforementioned, the two endpoint cases, « =1 and § =0,and e =0 and =1
have previously been resolved in [12] and [11], respectively. The global regularity for

the general critical case when 0 < «, 8 < 1 and a4 § = 1 appears to be extremely
challenging.

When a + 8 = 1, the dissipation is not sufficient in controlling the nonlinearity
and standard energy estimates do not yield the desired global a priori bounds on
the solutions. Due to the presence of the linear derivative terms V x w and V X u in
(1.3), we need a + 3 > 1 even in the proof of the global L?-bound for the solution.
It does not appear to be possible to bound the nonlinear terms when we estimate
the Sobolev norms of the solutions in the critical or supercritical case o + § < 1.
This paper focuses on the subcritical case aw + 8 > 1, but we intend to get as close
as possible to the critical case a4+ 5 = 1. We are able to prove the following global
existence and regularity result for (1.3).

Theorem 1.1. Assume (ug,wo) € H*(R?) with s > 2 and V -ug = 0. If a, B €
(0, 1) satisfy

1
>1—2a2, O<a§6;
>1 @ 1< <3
_e T<ca< 2
- 37 6— —47
>§ §< <z' 1.4
B _2 a, 4—a—87 ()
7 39
> 5(1 — - < < —:
>5(1 — ), g S S o
l1—-a++vVa?—4a+3 3
— < 1
= 2 ’ 0 =40

then the fractional 2D micropolar equation (1.3) has a unique global reqular solution
(u, w) satisfying
u € C([0,00); H*(R?)) N L*(0,T; H*t*(R?));

w e C([0,00); H¥(R?)) N L2(0, T; H*A (R?)).
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Even though Theorem 1.1 requires a + 8 > 1, we have made serious efforts
towards the critical case a4 = 1. We divide o € (0, 1) into five different subranges
to seek the best estimates so that we can impose the minimal requirements on «
and 3. As we can tell from (1.4), a+ 3 is close to the critical case when either « is
close to 0 or close to 1. Figure 1 below depicts the regions of a and 3 for which the
global regularity is established in Theorem 1.1.

l,
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0.2 1
B=0.5*(1-ct ) (2)-4 a+3)N({1/2})
0+ T T T T
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FiGure 1. Regularity region

We briefly summarize the main challenge for each subrange and explain what we
have done to achieve the global regularity. Here and in what follows, we set the
viscosity coefficients v = k = v = 1 for simplicity. In order to prove Theorem 1.1,
we need global a priori bounds on the solutions in sufficiently functional settings.
More precisely, if we can show, for any T > 0,

/0 1(Va(t), V()| p= dt < oo, (1.5)

then Theorem 1.1 would follow from a more or less standard procedure. For any
a € (0,1) and a+ 3 > 1, the L2-norm of (u, w) is globally bounded (see Proposition
2.2). The next natural step is to obtain a global H'-bound for (u,w). We invoke
the equation of the vorticity 2 =V X u,

O+ (u-V)Q +2A%°Q + 2Aw = 0. (1.6)
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For 0 < a < 2, we need to estimate |||z and [[A*)~w| ;2 simultaneously in
order to bound the coupled terms. The index 28 — 1 is chosen to minimize the
requirement on [, which turns out to be
@
B>1-— 3" (1.7)
More regular global bound can be obtained for w,

t
A ()2, + / A28 0(s) [22ds < C(t, | (o, wo)| ),

which, due to a + 28 > 2, implies Vw € L} L for all ¢t > 0. However,, it appears
impossible to derive (1.5) from the vorticity equation (1.6) due to the presence of
the term Aw. We overcome this difficulty by considering the combined quantity

I =Q+ 2022y,
which satisfies
Ol 4w - VI 4 2A%°T = 4A2H20= 28y — gA2= 20y + 4A2728Q — 2[A%728 o - V]w.

The equation of I' eliminates the term Aw from the vorticity equation and makes
it possible to estimate the L9-norm of I'. In fact, by making use of sharp lower
bounds for the dissipative term and suitable commutator estimates, we are able to
obtain the global bound for ||T'|| L« for ¢ satisfying
2a
2<qg< ——.

S4<i_5
Due to the regularity of w, we obtain a global bound for |||« as a consequence.
By further assuming

B>1-2a% (1.8)

we are able to show that
t
[A%u(t)]|72 + [[A%w(t)]7: + / (1A% Fu)|Zz + AP w||7:) ds
0

< O, [ (uoy wo) [ m+),

which, especially, implies (1.5). (1.7) and (1.8) together yield the restriction on g
in (1.4) for 0 < a < 3.

For % < a< % and g > % — o, we estimate the L2-norm of Q and of Asw
simultaneously to establish a global bound for both of them. With this global
bound at our disposal, we further establish global bounds for [|[A%w]| > and [|AQ]| 12
and the corresponding bounds for w € LfH%+ﬁ and Q € L?H'*% which yield the
desired bound in (1.5). We remark that the estimates here actually hold for any
a€ (0,1)and 8 > %—a. We restrict « to the range % <a< % in order to minimize
the assumption on .

For % < a < 1, it appears very difficult to obtain any global bounds beyond the
L2-norm for (u,w). The strategy here is to work with another combined quantity

=0 A2 2%,
which satisfies
0,G 4 u- VG + 202G 4 2A27%G
= A2H20-2By, 4 gA2-20y,  gpd—dag, | (A28 gL Y,
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The advantage of the G-equation is that it removes Aw from the vorticity equation.
For o and ( satisfying

we are able to establish the global L? bound for G, for any ¢ > 0,

t
IG®I1Z +/0 IA“G(s)Z2 ds < C(t, || (uo, wo)lls+)-

This global bound serves as an adequate preparation for the following global L9-

bound for w, for any 2 < g < 28

11—’

t t
lw(®)l|7 +/ lw(s)I? o ds+/ [w(s)[|* 25 ds < C(¢, ||(uo, wo)| 1)
0 Li=# 0 B9

a,9

.28
where B, denotes a homogenerous Besov space. More information on Besov spaces

are provided in the appendix. Making use of this L¢ bound and further assuming
that o and 3 satisfy

l—a++va?—4a+3

2 9
we obtain a global bound for ||Q]|z2 and ||Vw| 2. To achieve (1.5), we further
bound [|[VQ||z2 and [[Awl|z. (1.4) for £ < a < 1 is a combination of (1.9) and
(1.10).

2682 —2(1—a)f—(1—a)>0 or B> (1.10)

As aforementioned, once the global bound in (1.5) is established, Theorem 1.1
can then be established following standard approaches. The rest of this paper is
divided into four sections and one appendix. Each one of the sections is devoted to
establishing the global a priori bounds for one of the three cases described above.
Section 5 outlines the proof of Theorem 1.1. The appendix provides the definitions
and related facts concerning the Besov spaces. In addition, we also supply the
details on several notations and simple facts used the regular sections.

2. The case for 0 < a < %. For the sake of clarity, the proof of Theorem 1.1 is
split into three major cases. This section is devoted to the case when 0 < a < %.
The aim here is to prove the global existence and regularity of solutions to (1.3)
when 0 < a < 2 and 3 satisfies (1.4). More precisely, we prove the following
theorem.

Theorem 2.1. Consider (1.3) with

9 1
>1-2a%, 0<04§6§
B8 o 1 3 (2.1)
>1- 2, S<a<®.
- 3 6 4

Assume (ug,wq) satisfies the conditions of Theorem 1.1. Then (1.3) possesses a
unique global solution satisfying, for any T > 0,

u € C([0,00); H*(R?)) N L2(0, T; H**(R?));
w e C([0,00); H¥(R?)) N L2(0, T; H*A (R?)).
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As aforementioned, the proof of Theorem 2.1 relies on suitable global a prior-
1 bounds for the solutions. This section focuses on the necessary global a priori
bounds. These bounds are proved in Proposition 2.2, Proposition 2.6 and Proposi-
tion 2.7.

Proposition 2.2. Consider (1.3) with o and 3 satisfying 3 > 1 — §. Assume
(up,wo) satisfies the conditions of Theorem 1.1 and let (u, w) be the corresponding
solution. Then (u,w) obeys the following global bounds, for any 0 <t < oo,

lu()IIZ2 + llw(®)]1Z: +/0 (IA%u() 122 + 1A% w(s)|72)ds < C, (2.2)
120172 + 1A%~ w(t)[17 +/0 (IAQ) 172 + 1A% w(s)]122) ds < €2.3)

t
1A w(t)]7, +/ [AF2Pw(s)|[Z2ds < C, (2.4)
0

where C’s depend on t and ||(ug, wo)|| m= only (the explicit dependence can be found
in the proof). Especially, due to o+ 283 > 2 according to (2.1), (2.4) implies, for
any T > 0,

T
/O IVe(t) |~ dt < C(T, | (o, wo) | 1r-)- (2.5)

To prove Proposition 2.2, we recall the following classical commutator estimate
(see, e.g., [19], [20, p.334]).

Lemma 2.3. Let s > 0. Let1l < r < oo and% =
q1,p2 € (1,00) and p1,q2 € [1,00]. Then,

1A%, flgller < C(IVFllzen |A gllzan + A Fllzellgllze )

where C' is a constant depending on the indices s,r,p1,q1,p2 and qgs.

+ L =L+ L with
q1

1
p1 P2 q2

The following lemma can be found in [21, p.614].
Lemma 2.4. Let 0 <s<1and 1l <p<oo. Then
IA°(fg) = fA°g =g A flle < Cligllzee [|A°f| e

The following lemma generalizes the Kato-Ponce inequality, which requires m to
be an integer (see, e.g., [21]). This lemma extends it to any real number m > 2.
For the convenience of the readers, we provide a proof for this lemma.

Lemma 2.5. Let 0 < s <0 < 1,2 < m < oo, and p,q,r € (1,00)% satisfying
1 % + l. Then, there exists C = C(s,0,m,p,q,r) such that

A28 o + A A2 Dllze < CllFlBg 1T - (2.6)

Proof of Lemma 2.5. 1t is easy to see that, for 0 < s < o and p,p € [1,0)?,
the Besov space By ; is embedded in the Bessel potential space L% (see, e.g., [17,
Chapter 1.3.1]), narnely

cr = llgllee +[1A%gllzr < Cllglisg, = C(llgllzr +llgll 57 ), (2.7)

where Bp 5 and Bg’ﬁ denote the standard inhomogenerous and homogeneous Besov
spaces, respectively. Besov spaces and their properties are provided in the appendix.
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A short proof for (2.7) is also given in the appendix. Setting p = p and invoking
the equivalence definition of By , in (A.3), we have

(@ +) =12 Ol

m—2
IS (A2 P, < C [1Fm21], +c/'“' /

|x|2+017
By the Holder inequality,
_ P _ -2
A2 F 15, < ANl = RN,

Due to the simple inequality
a2 ~ o™ =2] < Cm)la — bl(Jaf™ 2 + b 2)

and Holder’s inequality,

A2 @+ ) = A2 Ollee < Clf@+) = FOlpalll /™ e
< Olf@+) = FOlal FI72 )
Thus,
A2, < ClAIB A2,
-2 I+ ) = FOlR
+O||f||(y<m—)§) /2 |z[2Fop
< cwwwﬂﬂxﬂyunuwzﬁymwh
< CIACE2E 11, .
This completes the proof of (2.6). O

We remark that, if we replace the Bessel potential space norm by the norm of
the Sobolev-Slobodeckij space WP, the proof of Lemma 2.5 then implies

A2 e < ClFllBg N F I 2 (2.8)
In fact, (2.8) follows

vt ([ o) g0l
o, ~ o+ ( [ 1028

and combined with the rest of the proof for Lemma 2.5. The definition of Wsp
and some embedding properties are given in the appendix. Here we also want to
remark that unfortunately, it is not clear whether the term || f||p;  of (2.8) can be

replaced by ”fHWq

Proof of Proposition 2.2. Taking the L? inner product of (1.3) with (u,w), we find

57 (lu®liz + lw®)llz2) + 21A%u@)[F: + 1A w(®)]Z: + 4llw®)]Z.

2 RZ{(wa)-u—i—(qu)w}dx

IN

Al A%l 2 |ATw] e
1
A7z + S 1A w12 + Cllw®)]7s,

IN
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where we have used the condition o + 5 > 1 in the last inequality as well as the
following facts, due to V - u = 0,

/(u-Vu)~udac=O and /(u-Vw)wdx:O.
R2

R2
Applying Gronwall inequality gives, for 0 < ¢t < oo,

lu(®)ll72 + lw(®)l| +/O (IA%u(s)[1Z2 + A w(s)|[72)ds

< e (Juollze + llwollZ2) . (2.9)
which is (2.2). To prove (2.3) and (2.4), we apply Vx to the first equation of (1.3)
to obtain the vorticity equation
0+ (u- V)Q+ 2A%*Q + 2Aw = 0, (2.10)
where we have used —V x V x w = Aw. Taking the inner product of (2.10) with
and the inner product of third equation of (1.3) with A2(#=Dy leads to
1d

oy (1920172 + 1027~ w12) + 2 A Q)72 + A% w][Z2 + 4| A%~ wl|7.
= 2/ (AleQ-FQAz(QB*l)w) dx —/ [AZP=L 4 V]wA?P~ Lwde
R2 R2
= htl (2.11)

where we have used the facts
/ (u-VQ)Qdr=0 and (- VAP~ L)ALy dz = 0.
R? R2
To estimate I;, we integrate by parts and apply Holder’s inequality, the Gagliardo-
Nirenberg inequality and Young’s inequality to obtain

A2wQ + QA2 do
L )
R2

< A 2| w] g2 + (|| 22 | A2 D] 2
ST A3B—1, 35T B 1T | ABB—1, || 3T
< ATQU L (lwl 2" A wl|2270) + 12l 2 (1A wll 2 A% wl 727
1 2
< SIAQIE: + SIAY wl7s + CIQIL: + Cllwli: + ClIA w|Z:

where we have used (2.1),
a+38>3 and B<2(268-1)<35—-1.

To estimate I3, we employ Holder’s inequality and Sobolev’s inequality and invoke
Lemma 2.3 to obtain

/ A1 - V]w AP~ wde
R2

< (IVull 2 A% wllza + A7 ull oy [Vl zan ) [| A% ]| e
< 190 22 A% ]| 2 | AP w] 2

1 -
< Clofz: A wlze + A% iz,

where the indices are given by
2 2 2 2

r=—,

qzm; 3 plzma QI:m
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and they are so chosen to fulfill the requirements of the Sobolev inequalities,

1 1 1 1 26-1 1 36-1 1 28-1_1 §

¢ rT2 ¢ T2 2772 ¢ T3 T2y
1 1 1 1 28 -1 1 1 1 1 1 38-1
——"———i——:l’ ——/B :———, ———:——/B .
Poo@r D1 2 2 2 ¢ 2 2 2

Inserting the bounds for I; and I5 in(2.11) yields
d _ o _
7 (IQI7: + 14277 wl[Z2) + [AQ + A% w]Z:
< ClQl7e (IAw]|Fe +1) + CllA w]|Z..
Gronwall inequality together with (2.9) implies
¢
121172 + A% w(t)]17 +/0 (IAQ) 122 + 1A% w(s)[172) ds

Cct 2 2
S e{C’tJre f(HuoHLerHwOHLz)} (HVUOH%Z’ + ||V’UJ0||%2 +eCt (HUOH%Q + ”wOH%Q)) ,

which is (2.3). We now prove (2.4). Taking the inner product of third equation of
(1.3) with A28y yields

1 d (o3 « (o4
FalIA FwlZa + A2 w|Zs + 4l|AH wl |
= 2/ QA2(°‘+5)wdx—/ [AYTF - VwA* P wda
R2 R2
= Ji+ JQ, (212)

J1 is bounded by
1
J1 <2 AQ| L2 | AT Pw]| L2 < 4|AQY|7 + ZHA“”BwIIiz-

Similar to the estimates for I, we have, after applying Holder’s inequality, Sobolev’s
imbedding inequality and Lemma 2.3,

/ AP u - V]wA* Pudy
R2

< (Iull, 2 10wl 2+ 1A Pull 2]Vl e ) A1
< C(IA Qe + AR5 ) fawllgeras [ A ] 1

1
< C (I + Q1) 1A Pwllfe + Cllwllfs + 7 4w,

where we have used that o and 3 satisfy
0<a,B<l, a+28>2.

Inserting the bounds for J; and J3 in (2.12) and applying Gronwall’s inequality, we
have

t
||Aa+5w(t)||2L2 _|_/ (HA‘*JFQBUJ(S)”%Z) ds < C(t,ugp,wo)
0

which is (2.4). (2.5) follows from (2.4) via Sobolev’s inequality. This completes the
proof of Proposition 2.2. O
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The global bounds in Proposition 2.2 are not sufficient to prove Theorem 2.1.
More regular global bounds are needed. In particular, if we have, for any 7' > 0,

T
A|mwmmm<m, (2.13)

the global existence and regularity then follows. It does not appear plausible to
prove (2.13) directly via (2.10) when 0 < o < . Due to the term Aw in (2.10),
we need A2w € L}L*, which is unavailable at this moment. To overcome this
difficulty, we work with the combined quantity

I'=Q+2A*
Applying A%2~28 to the second equation in (1.3) leads to
(N> 2P w) +u- VA2 2P + A%w + 40> 2P — 20272 = —[A?72%F u - V]w
which, together with (2.10), yields the equation for T',
O, 4+ u- VI 4+ 2A%°T
= 4Ny AT 1 ANZT2PQ - 2Ny Vw.  (2.14)

Although (2.14) appears to be more complex than (2.10), it eliminates the most
regularity demanding term Aw and allows us to derive the L4 bounds of I', which is
crucial to derive the Q € L} L>°. More precisely, we prove the following proposition.

Proposition 2.6. Consider (1.3) with « and 8 satisfying (2.1). Assume (ug,wo)
satisfies the conditions of Theorem 1.1 and let (u,w) be the corresponding solution.
Then, for q satisfying

2a

2 < —_— 2.1
1<1 g5 (2.15)
(u, w) obeys the following global bounds,
IT(t) / IT(s) Hq 4 ds < C, (2.16)

where C' > 0 depends only on t and ||(ug, wo)| grs-

Proof. To start, by the above estimates (2.2)-(2.4) and I' = Q + 2A%2~ 2w, one gets

ITllzz < (1922 + ClIIA* > w]| e
a+38—2 2—
< 19202 + Cllwl 27 AP Ha+”

S C(ta U, U)())

and AT = A%Q + 2021228 a5 well as

t t t
/||Aaru’jzds /HAaQnidec/ A2 o282, s
0 0 0

IN

IN

t t 2(24a—28) 2(38-2)
[ Iargiads € [ (1Al T ol ) as
< C?(t, Ug, Wo), ’
which imply
IEOI: + [ T2 = dr < O o wo)
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Multiplying (2.14) by |['|972T" and integrating over R?, we have

d R
AT + CollTI o + CHlITIY o + CallA® (TI2) I3
B‘quq Lize

IN

: / (4A2+2028y) _ gA2=2B) P[4 2Tdx
R2

+ 9/ 4N272PQIT|972T da — g/ 2[A%728 - V]w|T|972T dx
2 R2 2 R2
= K1—|—K2+K3, (217)

where we have invoked the following lower bounds associated with the fractional
dissipation term, for any ¢ € [2,00) and s € (0, 1),

[ azes e = Cala (191) I (218)
[ 4% da = C(s.a) (2.19)
[ b= Cls. I (220)

a,9

where B; , denotes the standard homogeneous Besov space (see the appendix for
more details). (2.18) can be found in ([8]), (2.19) follows from (2.18) via the Sobolev
inequality and (2.20) is due to [5, Theorem 2]. By the Holder inequality and the
Hardy-Littlewood-Sobolev inequality,

K1 < C|A%(0)3) L AT (ANZH20=2By) — A2y |73
< cfac(n)| [@aztzem2iw - 822w rjEer| L
L2 L1+
< ofav(r#) (4A2+2a-25w—8A2_2ﬂw)H , Hr\ )
L2 L1to— B
«@ 5 a— 3-1
< C|A(T)?) 2(||A2+2 Pull 2 +A* 2ﬁwIILW ﬁ)IIFHz%
«a 2 « 4-1
< oA (v, kol + 1A +26w”L2)||FH2%

Col « o iy |12 . ) .
< A m®) |, + Clwle + 1A 22ul ) (0152 + I0152),

where we have used the following inequality

[ A2+20- 28, + [|A2 2P| o< Cllwllre + |A“2Pw]| 12),

L1+a B l+cx

following from the Gagliardo-Nirenberg mequahty, forany a — f < s < 2a+f,

s 1—9)) A a+28, 119 s+pB—a
A wHLHlffg < Cllwl| 2" [|A M BW”L?» = o123 B> a.
Noting that T' = Q + 2A2~2Pw, we split Ky as
Ky, = C [ A72PQ I Tdx
]R2
= —C [ A" 19 2Tdx + C/ A*72PT D721 da
R2 R2

= Ko + Koo.
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Clearly, due to 4 — 48 < 2+ 2a — 2, K27 can be estimated similarly as K; and

C

2
Kor < T2 [A(T)|| |, + Cllwllze + 1A wl5)? (1T 4% + UL

To estimate Kao, we assume that ¢ satisfies (2.15), namely

9<g< 2
<4<i—p
which implies 2 — 28 — 27“ < 270‘. We then choose 0 < s < ¢ < 1 satisfying
2 2
2-98- 2 cs<co< (2.21)
q q
By Lemma 2.5,
Ky < CIA*277°T |1 [[JA°(D1°D)| o
< ¢ (|r|| . |r||Lq) ITllee , WE2)
Bq’ -1
-2
< ¢ (Irll 5 + I ) ITley TS
Bglq 4 g=1
2
< c (|r|| ot mm) TN e TS
BQ?‘Z BQ?‘]
<

Co
ey 4, + 0.
B‘qu
where we have used the embeddings, due to (2.21),

2a 2a
q 172—28—s,q q o
By —= W , By — Bq’ q .

We now turn to the estimate of K3. By Lemma 2.4,

K; = —q/ [A2728 4 - V]w|T|9 2 Tdx
R2

IN

ClIAZ 2 (- Vw) — - VAT 2| |I0f2T| o

IN

C (|IVw A2~y o + [|A?72Pul| pa|| V| 2o ) |IT)|%,"
C|[A?72Pul| o || Vw| = T %, .

IN

Due to a + 28 > 2, Sobolev’s inequality implies
1A% u)|a < C (flullzz + [IA°Q22),  [Vwllze < C(Jw]re + [AFPw] 2).
Therefore,
K3 < O (Jlullfe + [lwl72 + +[AQ)Z2 + AT w][Z2) (1 +[IT1F.)-
Inserting the estimates for K, K5 and Kj in (2.17), we have

d 3 3 o (118
GeIT% + ZColITI" 5y + CallNy o+ Calla® (012 ) I3

< CO+ulZe + wlZe + A% w| Tz + [A*QY 7)1+ T)1%,)-

Gronwall’s inequality then implies

t
Tl + [ el . ds<c.
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This completes the proof of Proposition 2.6. O

With the global a priori bounds in the two previous propositions at our disposal,
we are ready to show that Vu is in L} LS, which especially implies (2.13).

Proposition 2.7. Consider (1.3) with o and 8 satisfying (2.1). Assume (ug,wo)
satisfies the conditions of Theorem 1.1 and let (u,w) be the corresponding solution.
Then (u,w) satisfies, for any 0 < t < oo,

t
IAZu(®)1Z: + A0l + /0(||A2+O‘u||2L2+||A2+5w||%z)(8)d8

< C(t,up, wo). (2.22)
As a special consequence, for any t > 0,
/Ot IVu(s)|= ds < C(t, [|(uo, wo) | z+) < 0. (2.23)
Proof. Taking the L? inner product of (1.3) with (A%u, A*w), we find
o (1A%l + IA%wl32) + 2N ulFa + APl + 4] A%,

= 2/ ((V x w)A*'w + (V x w) - A*u) dz
R2

7/ A% u - V]u A?udx — / [A% u- Vw A*wdz
R2 R2
= L+ Ls+ Ls. (2.24)
Noting that 2 < 3 — a < 2+ 3, we obtain by applying Hoélder’s inequality
Ly < CIAul 2| A° w2

1
< SlIATFule + ClIAY w7

IN

1 1
SIATF )2, + 2 AT w2 + Ol A%,
By Hoélder’s inequality and Sobolev’s inequality,

Ly < C" VuVuVude
R2

2,112
< ClIVull ppag 1A% 20
9 2(171_7(1) 9 2(1—a)
< OlQll, o, Al = TIAT A%l ™
1 _aa
< glIATulZe + YT A 7.

where V2u denotes all second-order partial derivatives of u. We will need the global
bound, for any T' > 0,

T g
/ [12(s) Z“li’l ds < 0. (2.25)
0 e

By Propositions 2.2 and 2.6, we have, for ¢ satisfying (2.15),

t t t
/ 190s)7 . ds < / ()7 o ds+C / A2 250 (s)| , ds
0 LI« 0 LI« 0 LI«
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IN

t t
J IR o ds e [l + 4% w1 ds
0 Li-«e 0
< C,
Therefore, if

aq < >1
_ or -,
oqurozfl_q q_a

then (2.25) holds. This is where we need 8 > 1 —2a? in (2.1) on a and 3. When
« and (3 satisfy (2.1), we can then choose ¢ satisfying (2.15) such that
200
1-5
Noting that 2 < 352 < 2+ 3, we have

1
>q> —.
(6%

Ly < C" VuV2wV2wdx‘+C‘ VQUVwV2wdx’
R2 R2

< CIVull, 2 I0%0]? o+ ClIVwllz= (IA%ulfF2 + [A%w]72)

< Al | AT wlffs + O Vwll ([A%]F + [ A%w]3:)

< CIAul AW IA w22 + OVl (1A% + [A4%w]F.)
1 1

< IV Pwle + CIAY | A%

+C|IVwllze (|A%u]Z2 + [A%w]Z2)

where, due to a + 8 > 1,
a+28-1_1

23 2
Inserting the estimates of Ly, Ly and L3 in (2.24), it follows that

7 UA%ulZa + [[A%w]T2) + [A*Fullfa + A% w7

< C (1 HIAT 2 + [Vl e + (19|

) (1A%l + %))

As explained previously, when « and § satisfy (2.1), (2.25) holds and Gronwall’s
inequality then implies (2.22). Sobolev’s inequality with (2.22) then implies (2.23).
This completes the proof of Proposition 2.7. O

3. The case for % <a< %. This section proves that the 2D micropolar equation
(1.3) with any 0 < « < 1 and 8 = % — « always possesses a unique global solution
when the initial data is sufficiently smooth. More precisely, the following global
regularity result holds.

Theorem 3.1. Consider (1.5) with « and B satisfying
3
0<a<l, 625—@ (3.1)

Assume (ug,wq) satisfies the conditions of Theorem 1.1. Then (1.3) possesses a
unique global solution satisfying, for any T > 0,

u € O([0,00); H*(R?)) N L*(0, T; H*T*(R?));

w € C([0,00); H*(R?)) N L*(0,T; H*#(R?)).



16 FIRST-NAME1 LAST-NAME1 AND FIRST-NAME2 LAST-NAME2

When a < 3, the requirement on 3 in (3.1) is more than those in (2.1) and
thus Theorem 2.1 is sharper for a < %. Similarly, as we shall see in the coming
section, for o > %, Theorem 4.1 in the subsequent section is stronger, Theorem 3.1

is significant only for « in the range between % and %.

As explained in the previous section, it suffices to provide the necessary glob-
al a priori bounds. The following proposition establishes the global bound for
[(Vu, Vw)| L1 £, which is sufficient for the proof of Theorem 3.1.

Proposition 3.2. Consider (1.3) with o and 8 satisfying (3.1). Assume (ug,wo)
satisfies the conditions of Theorem 1.1. Then the corresponding solution (u,w) of
(1.3) obeys, for any 0 < t < oo,

t
19012 + A w20+ [ (JAQs) |22 + [AFPu(s)|2.) ds < C(3.2)
0
t
1A w(b)|2s + / IS Bu(s)|2ds < C, (3.3)
0
t
IAQ() 22 + / |ATeQ(s)|2ads < C, (3.4)
0

where C’s depend on t,ug,wy only. Especially, (3.3) and (5.4) imply that

/O |(Vu(s), Vao(s))| 1= ds < oo. (3.5)

Proof. We first remark that the global L2-bound in (2.2) remains valid since it only
requires a+ 3 > 1. To show the global bound in (3.2), we take the L? inner product
of (2.10) with Q and L? inner product of third equation of (1.3) with Aw to obtain

1d N . . ;
52 (19032 + A2 w32 + 214203 + 125 PwlE. + 42 w)3,
R2 R2
= M + M. (3.6)

For the conciseness of our presentation, attention is focused on the case § = % —a.
The case 8 > % — « is even simpler. Noting that « + 8 = % and 0 <1—a<pf, we
have, by the interpolation inequality,

My < 20AQ e [AE ]| s + 2|ACQ 12 AT w]| s
3 3
< SIAQIR + LIAR Pl + CIAPwIRs + Clluls,
where we have used the following facts

2 3
1A 2 A+ 0w 2 < SIACRIR: + SIAFul?,

—Q 1 « -
IA*Q| 2 [[ATwll 2 < FIAQIIZ + B[IAT  w]|Ze.
By the divergence-free condition of u, we will show
[A%,u -V]w = [Aéaml,uﬂw + [A%(‘?IQ,uz]w.

Thanks to the following variant version of Lemma 2.3 (its proof is the same one as
for Lemma 2.3)

1A 0u,. gl < C IVl A gllzor + A Fzoa lgllien) 0= 1,2
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and Sobolev’s inequality, it ensures that

My < (IVull, 2 AR wl 2 + ARl 5wl 2, ) AR w] e

LI-7

IA

¢ (||AC'QHL2||ATC'WHL2 ¥ ||Af-ﬂfz||Lz||AﬁwHLz) A% »

IN

C (IIA*Q) 2| A%wl 2 + [AQ 2 [ A w]| 2 ) [[A2w]| 2

IN

1, L
1IIAQIIZ + ClIA wl|Z: [ A w]Za.

Inserting the estimates for M7 and M in (3.6) and applying Gronwall’s inequality,
we obtain (3.2). To prove (3.3), we take the L? inner product of third equation of
(1.3) with A3w to obtain

1d
2.dt

= 2 QA3wdac—/ [A%,U-V]wA%wdac
R2 R2

—AZw]|Ze + A2 w]|Z. + 4] AZ w7,

= N1 + NQ, (37)
Again, due to o + 8 = %,
3 o 1 .3
Ny < 2|A°Q g2 l|AF w2 < AJAQYT2 + AT 0] f..
By Lemma 2.3 and Sobolev’s inequality,

IAZw]|, 2 + [[AZul V]

N o< (Ivul], s, ) Iafw) s

LT—a a
CAQ g2 [[AFw]| 2| A2 ]| 2

1 p
< ClAQYallAZwllza + AT w] ..

L3 e L2u

IN

Inserting the estimates of N1, N3 in (3.7) and applying Gronwall’s inequality yield

, t
1A Zw(t)]3 +/ (I3 2w (s)]132 ) ds < C(t,uo,wp), (3.8)
0

which is (3.3). We now prove (3.4). Taking the L? inner product of (2.10) with
AQ, we have, noting that 1 > a > l

2 AQ)2. +21A 0|2,

2dt

< 2| A2wA3Q dx| + / (Vu-VQ) VQdx
R2 R2

< 2 AYOQ| 2 AT Pwl| 2 + [|Q 22|V 24

1
< SIAMCQUE: + CIAT ]| + HQ||L2||A%Q||%2
< ||A1+C*QHL + CIAR ) e + Q] (U ST AR ET)
< ||A1+mHL + O AR B+ C Q)BT

Integrating in time and using (3.2), we obtain (3.4). Finally, (3.5) follows from (3.3)
and 3.4 via Sobolev’s inequality. This completes the proof of Proposition 3.2. [
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4. The Case when % < a < 1. This section focuses on the case when % <a<l.

We prove theorem 1.1 for this range of a. More precisely, the following theorem
holds.

Theorem 4.1. Consider (1.3) with « and 8 satisfying

7 39
>5(1 - a), s<a<s —;
8 0
8 i (4.1)
>1—a—|—\/a —4da+3 §<a<1
2 ’ 40 — '

Assume (ug,wq) satisfies the conditions of Theorem 1.1. Then (1.3) possesses a
unique global solution satisfying, for any T > 0,

u € C([0,00); H*(R?)) N L*(0, T5 H*T*(R?));
w € C([0,00); H*(R?)) N L*(0, T; H**7(R?)).
One of the main difficulties to prove Theorem 4.1 is that direct energy estimates

on (1.3) do not yield the desired global bounds on the derivatives of v and w. To
overcome this difficulty, we consider the combined quantity

G =Q— A* 2%y,
which satisfies
G +u- VG +20**G 4+ 20*7G
AZH2B=200, L gN27 20 — oAy 4 [A2T2Y 4 - Vw., (4.2)
The following proposition establishes that |G| 2z admits a global bound.

Proposition 4.2. Consider (1.3) with « and 8 satisfying (4.1). Assume (ug,wo)
satisfies the conditions of Theorem 1.1. Let (u,w) denote the corresponding solution
of (1.3). Then, for any 0 <t < oo,

t
namm+4ummw@wsa (4.3)

where C' > 0 depends on t, ug, wy.

In order to prove this proposition, we need the following commutator type es-
timates involving the fractional Laplacian operator. The following lemma is taken
from [32]. Similar commutator estimates have been used previously (see, e.g., [18]).

Lemma 4.3. Assume p € [2,00), r € [1,00], 6 € (0,1) and s € (0,1) such that
s+ 06 <1. Then

1A%, £1g]

By, < CW,7,0,8)(IVFllzrllgll pszo—r + fllz2llgll2)- (4.4)

We are now ready to prove Proposition 4.2.

Proof of Proposition /.2. Taking the inner product of (4.2) with G, we obtain

1d o o
LGl + 2IACIs + 2 A G
= / (AZF207200 4 AN?720 — 20 4y) Glda + / [A2729 4 - V]w G dx
R? R?

= Hy, + Ho. (4.5)
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For the sake of conciseness, we focus on the case = 5(1— ) when a € [Z, 23] since
the case 8 > 5(1— ) is even easier. Noting that 0 < 2428 — 3,2 —2a,4—4a < 5,

we obtain, by applying Holder’s inequality and Young’s inequality,
Hy < [APP2073% | 2 [AG g2 + 4 A2 w]| 12| Gl 2 + 2] A**w]| 12| Gl 2
1
< O (llwllfe + 1A w]72) + ZIIA"‘Glliz + 1G22

Identifying H*® with the Besov space B3, and applying Lemma 4.3, Sobolev’s in-
equality and Young’s inequality, we obtain

Hy < A2 uwe [A%G 1o
< CIVull g2 fwll e + ull g2 el 22)[A°G 2
< Ol el -0 |AC] 22 + Clhull g2 o] 22 |AC .
< CUIG e + 1822wl o) Jwll e |AGllzz + Cllu 2 1wl 2 | A Gl
1
< SIAGIE + CIG Il -so + CIAP 203 0l 3o

+Cul Lz [[w] 2
By a simple interpolation inequality,

_ 28
A2 2 w][ Tz wl Fs-se = AT w][Za[lwlf? 5, < CllwlZallwl|Zs-

2s
Therefore, Hs is bounded by
1 (0%
Hy < 1A°GIZ: + CIGI L2 wlls + C lwlzllwlizs + CllullZellwla-

Inserting the estimates of Hy, Hs in (4.5) yields

d (e
ZIGIE: + IA°GI3.
< C (1 |[wlye) 1612 + O+ lwllf) s + Clul w3

Gronwall’s inequality then implies
t
IGOIE: + [ 1A°G(s)[2-ds < €.
0

This completes the proof of Proposition 4.2. O

The global bound for G in the previous proposition serves as a bridge to the
global bounds on w and 2. The following lemma controls the L?-norm of w.

Proposition 4.4. Under the same condition as in Proposition /.2 and for any q
satisfying
2
2<q< 20 (4.6)

we have, for any 0 <t < oo,

t t
Jw()|| 74 +/ Jw(s)|? o ds—l—/ [w($)]|? 25 ds < C(t, ug, wo). (4.7)
0 Lr=e 0 B,



20 FIRST-NAME1 LAST-NAME1 AND FIRST-NAME2 LAST-NAME2

Proof. Multiplying the third equation of (1.3) by |w|?~2w, integrating over R? and
using the divergence-free condition, we obtain

SOl + 4l + [ (4 w) ol ds

= /Qw|w|q72dx
R2

= /Gw|w|q72dx—|—/ A2y w|w|9? du, (4.8)
R? R?

where, in the last line above, we have used Q = G + A?72*w. As in (2.17), the
following lower bound holds

/(A2ﬁw)|w|q72wdx > C/ (Aﬁ|w|%)2dx
R2 R2

Collwl? o +Co|A”(jul?)

Y

2
|t CollT)? 1 (49)
B‘IJI

where Cy = Cy(8,q) > 0. On one hand, for g < ﬁ, we obtain by the Holder

inequality
[ Guluis < Gl
R
-1
< ClGllu=lwlTs
< ClGllme(1+ w7
On the other hand, for ¢ > =, we have
[ Gt ?de < 161, 2, ol 5
R2 1+«
(A—a)g—2 (1—a)g—2
-D)(1-55EE) (a— 1)7
< COGlas gy T I oy ey
CO o —ai, q
< §”w”fil_q —|—OHG||( +2B 1)q+2H ”(q (a+28 1)q+2)

Co
< §||w||iﬁ + CA+ |GI7r) (1 + [w]|f0),

where we have used the simple fact that i < 2. Therefore, for any q > 2,

28
a+257q1)q+2
the first term in (4.8) can be bounded by

_ Co
/RQGwI"qu Pdo < - IIwIIq o FCAHGIE) (A + [[wll). (4.10)

To bound the second term in (4.8), we use Lemma 2.5. For ¢ satisfying (4.6), we
choose 0 <5 < 0 < 1 satisfying

2 - - 2
2—2a——5<s<0<—5. (4.11)
q q

By Holder’s inequality and Lemma 2.5,

IN

C||A2‘2a‘§w||LqHAg(|w\q 2 H a

—1

/ A2y w|w|9 % dx
R2

IN

Cllwl 2 fwlips , llwlf”

a,q Tq-1
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-2
< Cllwl® 2 [wlfs
B’I’I
< IIwIIq 20 + Cllwl|, (4.12)
B‘Z‘Z

where we have used the embeddings, due to (4.11),

28 28
v 2—2a—3,q q o
By =W N Byl — Bq, q .

This explains why we need to restrict ¢ to the range in (4.6). Combining (4.10) and
(4.12), we obtain

d
glwlge 4 lwl? o < CA+IGIFa + 1N w]F2) (1 + flw]f.).

Gronwall’s 1nequahty, together with Proposition 4.2, yields
@+ [ oI s+ [ ot M1 s ds < O v, ),

which is (4.7). O

We now show that, for any 0 < t < oo, Vu, Vw € L} L, which allows us to
establish the desired global regularity.

Proposition 4.5. Assume (ug,wq) satisfies the conditions of Theorem 1.1 and let
(u, w) be the corresponding solution of (1.3) with « and B satisfying (4.1). Then,
for any 0 <t < oo,

t
121172 + |Aw(®)]1Z +/0 (IA*Q) 172 + 1A Pw(s)[72) ds < C, (4.13)

t
IAQ) 1 + 1A% w(®)]|72 +/O (A 2Qs)lI7: + A% Pw(s)l|F2) ds < C. (4.14)

In particular, (4.14) implies Vu, Vw € L} L>.
Proof. Taking the L? inner product of (2.10) with Q and the L? inner product of
third equation of (1.3) with A%w, we have

1d
2dt
where

(12122 + AwlZ2) + 2IA°Q[ T2 + A Pwl|Fs + 4] Awl[Fs = Ty + T2,

J1:2/ (A’wQ+ QA%w) da, Jg:—/ A u- VwAwdz.
R2 R2

Due to 5 < 1, by Sobolev’s inequality and Young’s inequality,

Ji < CHAl’ﬁQIILzllA”ﬁwHLQ
1-1=8 a =
< CHQIILz = (AR F AP o
<

1 (HA“QIILz + AT PwZ:) + CllQlZ.

Due to G = Q — A2~ 22w and the Biot-Savart law Vu = VVLTAT1Q, we write
Vu=VVIATIG 4+ VVEATIAZ 29,
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Correspondingly, Jo can be written into two parts,

Jo = /U'VwAwdx
R?

< 7/ VuVw Vuwdx
RZ

= Jo1 + Jao,

where
Joy=— | VVIATIGVwYVwdr, Jo=— [ VVIATIA22% Vw Vwdz.
R2 R2
Jo1 and Jao can be bounded as follows. By Holder’s inequality, the boundedness of
Riesz transforms and Sobolev’s inequality,

J21 cla] IVwllzz [Vwl], 2

IN

Lla

IN

1
§||A1+Bw”%2 +C Gl ||vw”%27
where we have used the embedding inequalities, due to a + 8 > 1,

Gl 2. < ClGllaa,  [[Vwl 2 < Cllw]ges.

We set /3 < qo < 25 to be specified later and let g, = q[;131
By the duahty of the Besov spaces and Sobolev’s inequality, we have

Joz < Cllwl| 20 [[VwVwl| , ,, 28
BQO a0 qO qO “©
< COllwl 2o [VoVwl| 5, 20
qO 0 CHR)
< Cllw|l 2 ||vaw||~z 20-2 4
BQOOCIO
< Clwll 2 [[Vw| , 5, 2 [[Vwl|pa
B 0
qo a0 L,
< Cllw|l 2 (IVwlz=° IVwllfs) (IVwll 28 Vwl Gs)
BQOO‘ZO
< HAwHHﬁ + Cl|w] (,“B R [Aw||Z
B‘IOO‘IO
< HA“%an+c(1+||w||<a;f DT ) A3,
B‘IOO(IU
where ¢¢ € (J%BB_I, %) and [, A, € are given by
I 2q0 N 2qo 9:(1—0)QO+1—5
(2—a)go—(1+5)’ ag+p -1’ Bao

We note that, in the third inequality above, we used the norm equivalence By , ~

Ws’p, as explained in the appendix. In addition, we invoked (2.8) in the fourth
inequality above. Combining all the estimates above, we have

d [e3%
7 QU172 + 1Aw]Z2) + 2AIAQFa + AT Pw][Z2 + 4l| Al 7.
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90
qu a0

< C (IIGIIHa + [lwll 5 e 1) IVwlZ + C QU

We explain that, when « and § satisfy (4.1), we have

T Bag
/ Jwl| 55~V dt < oo (4.15)
0 quooqﬂ
In fact, (4.1) implies
2 1
p > .
l—-a a+p-1

262 —2(1—a)f—(1—a) >0 or

Therefore, we can choose qo < 7= a such that

qo > # or Bao <gq

‘T atp-1 (@+B-Dag+p-1""
Then (4.15) follows from Proposition 4.4. Gronwall’s inequality then implies the
desired bound (4.13).

In order to prove (4.14), we take the L? inner product of (2.10) with A% and
the L? inner product of the third equation of (1.3) with A*w to obtain

1d
2

= 2/ (A’wA%Q + QA'w) dx—/ ([A,u-V]IQ AQ + [A®,u- V]w A*w) dx
R? R?

IAQZ: + [|A%w]|72) + 2A|AQ|IT2 + [|A2Pw]|F2 + 4| A%w]Z,

Duetoa+f>1and g <1,

IN

2/ (APwA*Q+ QA W) d C|A*PQ| 12 |A>TPw)| 12
R2

1,7

CIIAQHLQ

IN

JASRQ) 5 (A% ]2
< 3 (||A1+“QI\L2 + A% w]72) + ClIAQ[E.
Noting the following fact due to V-u =0
—/ [A% u - V]w A*wdz
R2

= — [ A(u-Vw)Awdz + / (u- VAw) Awdz
]R2 R2

= - Z 6ku18 w Awdzr — 2 Z OLu; 01 0;w Awdx

kyi=1 R?

- Z / u; 008w Awda:+/ (u - VAw) Awdz
R2

k,i=1

- Z / Ofu;idyw Awdz — 2 Z |, Orui0p 0w Mwde,

k,i=1 k,i=1
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we have by using Lemma 2.3, the Gagliardo-Nirenberg inequality and Young’s in-
equality

—/ ([A,u-VIQ AQ+ [A%, u- V]w A*w) dx

= —/ A, u-V]Q Ade—/ [A% u - V]w A?wdz
R2

R2
< ClliAvu-VIQU o AR o +ClIA%) o [Vull o M%), o
IVl 3 1A%
< ol 5 AQY o+ (90,2 99 IR, .
LC|A2] fnwnmwwn . + OIVall 3 A%
< CIVul, 2 A9 o+ ClA%] | ||Vw||m||A2 ||LH%
OV ||A2w||’; ﬁ
< cHAl—anznAQnyHA”anz+anl—ﬁﬂnm||A2w||Lz||A2+ﬂw||Lz
1-i-o 1—1l=o
O e Aw]) s T A ] A% T A P T
1
< LIAOQU. 1 AT P w]3)
21 (}‘
e (nmLz T ACQZ + AT T ||Aw||L2)
< (1A% + [AQ]22)
1
< LA + A% ul)

+C (1921172 + 411> + (1A Pwl[fs + 1) Aw]l?.)
x ([IA%w]|Z2 + |AQ1Z:)

where we have used the fact 5 ﬁ( o ) < 2. These estimates combined with Gronwall’s

inequality then allow us to obtam (4.14). This completes the proof of Proposition
4.5. O

5. Proof of Theorem 1.1. The global a priori bounds obtained in the previous
three sections, especially

T
/ 1(Vu, V) (t) || L r2) di < C(T, || (uo, wo) | +) < o0
0

is sufficient for the proofs of Theorems 2.1, 3.1 and 4.1. Since Theorem 1.1 combines
all three of them, it suffices to provide the proof for Theorem 1.1.

Proof of Theorem 1.1. The existence of desired solutions to (1.3) can be obtained
by standard approaches such as the Friedrichs method. For n € N, define the
operator J, by

Tnp = FH(xB0,m) () F(9)(E)),

where F and F~! denote the Fourier and inverse Fourier transforms, respectively,
and xp(o,n) denotes the characteristic function on the ball B(0,n). Consider the
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approximate equations of (1.3)
sy, + 2, A2, = 2J, PV X wy, — Jp P(Jptiy, - Vipuy,),
V- -u, =0, (5.1)
Oywy, + JuA2Pw, + 4wy, = 2T,V Xty — Jp(Jpty - VJaw,), ’
un($70) = Jnu07 wn($70) = an();
where P denotes the standard projection onto divergence-free vector fields. The
standard Picard type theorem ensures that, for some T;, > 0, there exists a unique
local solution (uy,,w,) on [0,T},) in the functional setting { f € L*(R?) : supp F(f) C
B(0,n)}. Due to J2 = J, and PJ, = J, P, it is easy to see that (J,up, Jywy,) is
also a solution. The uniqueness of such local solutions implies
Up = Jplhn, W, = Jpwy,.
Therefore, (5.1) becomes
Oyt + 2A%%u,, = 2PV X wy, — Jp P(uy - Vuy,),
V- u, =0,
0wy, + A*Pw, + 4w, =2V X u, — Ju (U, - V),
Un(2,0) = Joup, wy(z,0) = Jwp.

A basic L? energy estimate implies (u,,w,) of (5.2) satisfies

t
lun ()12 + llwn (®)]1Z2 +/O (1A% (7)II72 + A% w0 (7)][72) 7 < C(t, 10, wo),

where C is independent of n. Therefore, the local solution can be extended into a
global one, by the standard Picard Extension Theorem (see, e.g., [6]). Next we show
that (uy,,w,) admits a uniform global bound in H*(R?) with (s > 2). Following
the proofs of Propositions 2.7, 3.2 and 4.5, we obtain, for any ¢ > 0,

t
/ [(Vn, Vwn)(s)|| L ds < C(2, |[(uo, wo)|[m+) < o0,
0

where we have used the fact that |[(u,(x,0),wn(z,0))||gs < ||(uo,wo)||ms. By a
standard energy estimate involving (5.2), we have

Ld

2dt

= 2 [ {(Vxw,) A*u, + (V x u,)A*w,} dv
R2

—|—/ [A®, up, - V]ug, - Nupde +/ [A%, up, - V]w, AN w,dx
R2 R2

|
(
(lunllFrs + llwallde) + 21A%unlFs + 1A wnlFre + Vel

IN

(IA%unllZre + 1A% wnlF) + C (IVunlle + | Vewn|lz +1)

[N

% (lunllZrs + llwnllZe) -

Gronwall’s inequality then allows us to conclude that, for any ¢ > 0,

t
el Zre + lwn 77 +/O (1Al Fe + 1A W] 7 )ds

< (luollfe + llwoll3 )€ S Tl +19wn =+

< O, [[(uo, wo)lm#)-

Once this uniform global bound is at our disposal, a standard compactness argument
allows us to obtain the global existence of the desired solution (u,w) to (1.3). The
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uniqueness part for solutions at this regularity level is standard and is thus omitted.
This completes the proof of Theorem 1.1. O

Appendix A. Besov spaces. This appendix provides the definition of the Littlewood-
Paley decomposition and the definition of Besov spaces. Some related facts used

in the previous sections are also included. The material presented in this appendix
can be found in several books and many papers (see, e.g., [1, 2, 22, 24, 26, 29]).

We start with several notations. S denotes the usual Schwarz class and S’ its
dual, the space of tempered distributions. Sy denotes a subspace of S defined by

SO_{¢€S: /Rdd)(l')xrydx_oa|7|_0,1v2a}

and &) denotes its dual. S can be identified as
sh=8/s4 =8P,

where P denotes the space of multinomials. We also recall the standard Fourier
transform and the inverse Fourier transform,

~

foy = [ f@emtan, g'w) = [ gl
Rd Rd
To introduce the Littlewood-Paley decomposition, we write for each j € Z

Aj={¢eR?: 271 < ¢ <27}

The Littlewood-Paley decomposition asserts the existence of a sequence of functions
{®,},ez € S such that

supp®; C A;,  D,(6) = Bo(277¢) or ®j(z) = 27900 (2 ),

and

SN 1, if&eR4\ {0},
Z‘Dj(f){o , ;fgzo.\{}

j=—00

Therefore, for a general function ¢ € S, we have

> B,©B(€) = d() for £ € R\ {0},
j=—00
In addition, if ¢ € Sy, then
37 8(©)P(€) = (&) for any € € R
j=—o00

That is, for ¢ € Sy,
o @ixp =0

j=—o00

and hence

Y vjxf=f  feS

j=—c0
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in the sense of weak-* topology of &j. For notational convenience, we define
Ajf=0;xf, jeL (A1)
We now choose ¥ € S such that
VO =1-) 9;(6), R
§=0
Then, for any ¢ € S,
Ui+ Ojxgp=1
j=0
and hence
o0
Usf+Y ®jxf=f
§=0
in &’ for any f € §’. We set
0, if j < -2,
Ajf=< Uxf, if j =—1, (A.2)
@, * f, ifj=0,1,2,---

For notational convenience, we write A; for A ; when there is no confusion. They
are different for j < —1. As provided below, the homogeneous Besov spaces are
defined in terms of Aj while the inhomogeneous Besov spaces are defined in Aj.
Besides the Fourier localization operators Aj, the partial sum S; is also a useful
notation. For an integer j,

j—1
Si= Y Ay,

k=—1
where Ay is given by (A.2). For any f € &', the Fourier transform of S;f is
supported on the ball of radius 2/ and

S;f—~f ind.

In addition, for two tempered distributions v and v, we also recall the notion of
paraproducts

T,v= ZSj,luAjv, R(u,v) = Z Ajuljv

J li—jl<2
and Bony’s decomposition, see e.g. [1],
uv = Tyv + Tyu + R(u,v).
In addition, the notation ﬁk, defined by
Ap = Dpor + Ap + App,
is also useful.

Definition A.1. For s € R and 1 < p,q < oo, the homogeneous Besov space B;q
consists of f € S} satisfying

/]

By = 127118 f oo < oo.
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An equivalent norm of the the homogeneous Besov space Bqu with s € (0,1) is
given by

If@+) = FO e 17
||f||35,q:[/w Lr®D) gl (A3)

‘x|d+sq

Definition A.2. The inhomogeneous Besov space By , with 1 < p,q < oo and
s € R consists of functions f € 8" satisfying

11155, = 1127185 fll 2ol < oo.

Many frequently used function spaces are special cases of Besov spaces. The
following proposition lists some useful equivalence and embedding relations.

Proposition A.3. For any s € R,
H?® ~ B3 ,.

s

ForanyseR and 1 < ¢ < o0,

s s s
Bq,min{q,2} — Wq - Bq,max{q,Z}'

For any non-integer s > 0, the Holder space C* is equivalent to BS, ..

Bernstein’s inequalities are useful tools in dealing with Fourier localized function-
s. These inequalities trade integrability for derivatives. The following proposition
provides Bernstein type inequalities for fractional derivatives. The upper bounds
also hold when the fractional operators are replaced by partial derivatives.

Proposition A.4. Let > 0. Let 1 <p < q < o0.
1) If f satisfies
supp f C {€ €R?: [¢] < K27},
for some integer j and a constant K > 0, then
[(=A)*fll La@ray < C1 22O‘j+jd(5_5)||f||Lp(Rd)-
2) If f satisfies
supp f C {€ € R?: K127 < [¢] < K127}

for some integer j and constants 0 < K1 < Ko, then

1

, id(l_1
Ch 22aj||f||Lq(1Rd) S(=A)* fllLagray < Co 920 +id(5 q)”fHLP(Rd)a

where Cy and Cs are constants depending on «,p and q only.

We now provide the proof of (2.7). By Proposition A .4,
A%l < 3 1A Augllr = IATA iglles + 3 1A% Argllzs

E>—1 k>0

Cllglee +> 27 *A Argl|»
E>0

Cliglle +C'ligllps -

IN

IA
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Finally we provide the definition of Sobolev-Slobodeckij space WeP. Let us
assume s > 0 and 1 < p < oco. When s > 0 is an integer, the Sobolev norm is
standard, namely

1 lwes = (2 19°1115.)
la|<s
When s > 0 is a fraction, the norm in WsP is given by

0°F @) = FQI N
£l = Il + ( ) / [ )

|ee|=

We remark that, except for p = 2, WP with this norm is different from the most
frequently used definition of Sobolev spaces of fractional order, or the Bessel poten-
tial space L% (or sometimes denoted by W*? or H}) (see, e.g., [17, Chapter 1.3.1],
[26, p.13]). The norm in L? is given by

1z = IFllze + [|A°f]] e
WeP is closely related to Besov spaces (see, e.g., [26, 29]). In fact,

Ws’pr’t’B;,p(_)ﬁg’ 1<p<2; ﬁg%B;’pst,q 2 <p<oo.
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