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Abstract. Solutions to the 2D Navier–Stokes equations with full dissipation in the whole space R
2 always decay to zero in

Sobolev spaces. In particular, any perturbation near the trivial solution is always asymptotically stable. In contrast, solutions
to the 2D Euler equations for inviscid flows can grow rather rapidly. An intermediate situation is when the dissipation is
anisotropic and only one-directional. The stability and large-time behavior problem for the 2D Navier–Stokes equations
with only one-directional dissipation is not well-understood. When the spatial domain is the whole space R

2, this problem
is widely open. This paper solves this problem when the domain is T × R with T being a 1D periodic box. The idea here
is to decompose the velocity u into its horizontal average ū and the corresponding oscillation ũ. By making use of special
properties of ũ, we establish a uniform upper bound and the stability of u in the Sobolev space H2, and show that ũ in H1

decays to zero exponentially in time.
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1. Introduction

Let T = [0, 1] be a one-dimensional (1D) periodic box and let Ω = T×R. Consider the 2D incompressible
Navier–Stokes equations with only horizontal dissipation,

⎧

⎪

⎨

⎪

⎩

∂tu + u · ∇u = −∇p + ν∂11u, x ∈ Ω, t > 0,

∇ · u = 0,

u(x, 0) = u0(x),
(1.1)

where u denotes the velocity field of the fluid, p the pressure and ν > 0 the viscosity. Here ∂1 is the
abbreviation of the partial derivative ∂x1 . In certain physical regimes and after suitable rescaling, the 2D
Navier–Stokes equations become degenerate and reduce to the model in (1.1). One outstanding example
is Prandtl’s equation (see, e.g., [6,7,11]).

When the spatial domain is the whole space R
2, the global existence and regularity of solutions to

(1.1) relies on the Yudovich approach and the upper bound on the Sobolev norms is double exponential
in time. The stability of perturbations near the trivial solution remains an open problem, let alone the
precise large-time behavior of these perturbations. This paper focuses on the domain Ω specified above.
The goal is two-fold. The first is to establish a uniform upper bound on the Sobolev norms of solutions
to (1.1), and the second is to assess the stability of perturbations and pinpoint the exact large-time
behavior of these perturbations. The results presented in this paper appear to be the very first ones
devoted to understanding the 2D anisotropic Navier–Stokes equations. We shall explain some of the
difficulties associated with the uniform upper bound and the stability problem.
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Mathematically the model in (1.1) is intermediate between the 2D Euler equations and the 2D Navier–
Stokes equations with full dissipation. The 2D Euler equations given by

{

∂tu + u · ∇u = −∇p,

∇ · u = 0

represent the simplest but one of the most frequently used models for incompressible ideal fluids. There
have been considerable recent interests on the precise large-time behavior of its solutions. One particular
issue is whether the vorticity gradient can grow double exponentially in time. Here the vorticity ω = ∇×u
is transported by the velocity field,

∂tω + u · ∇ω = 0.

The vorticity gradient in any Lebesgue norm Lp with 2 ≤ p ≤ ∞ admits an upper bound that grows
double exponentially in time. A significant problem is whether or not the double exponential growth rate
is sharp [10]. Kiselev and Sverak were able to construct an explicit initial vorticity on a unit disk for which
the corresponding vorticity gradient indeed grows double exponentially [4]. A general bounded domain
appears to share this property [13]. Whether or not such examples can be constructed in R

2 remains
an open problem. Other important results on related issues can be found in several references (see, e.g.,
[2,3,15]). As a special consequence of these growth results, perturbations near the trivial solution of the
2D Euler equations are in general not stable in the Sobolev setting. In contrast, the Sobolev norms of
solutions to the 2D incompressible Navier–Stokes equations

{

∂tu + u · ∇u = −∇p + νΔu, x ∈ R
2, t > 0,

∇ · u = 0
(1.2)

always decay algebraically in time (see, e.g., [8,9]). In particular, perturbations near the trivial solution
of (1.2) are always asymptotically stable in the Sobolev space H2(R2).

When the dissipation is degenerate and is only one-directional as in (1.1), it is not clear how the
solution would behave. In the case when the spatial domain is R

2, the global existence and regularity
relies on the Yudovich approach designed for the 2D Euler equations [14]. The essence of the Yudovich
approach is that the vorticity ω = ∇×u is bounded for all time. We can show via the Yudovich approach
that any u0 ∈ Hs(R2) with s > 2 leads to a unique global solution of (1.1). The solution remains in
Hs for all time, but the Hs-norm of the solution could grow rather rapidly in time. An upper bound on
‖u(t)‖Hs is double exponential in time,

‖u(t)‖Hs ≤ (‖u0‖Hs)eC ‖ω0‖L∞ t

, (1.3)

where ω0 = ∇ × u0 is the corresponding initial vorticity and C is a pure constant. It remains an open
problem whether or not the upper bound in (1.3) is sharp. Another immediate issue is whether or not
we can lower the regularity of the initial data to u0 ∈ H2(R2). Due to the Yudovich approach, the initial
vorticity ω0 = ∇ × u0 is required to be in L∞(R2), which in turn forces u0 ∈ Hs(R2) with s > 2. If we
want to lower the regularity assumption to H2(R2), we need a different approach. Unfortunately the lack
of dissipation in the vertical direction makes it impossible to control the growth of its solution without
the boundedness of the vorticity. When we resort to the energy method to bound ∇ω, namely

d

dt
‖∇ω(t)‖2

L2 + 2ν‖∂1∇ω(t)‖2
L2 = −2

∫

∇ω · ∇u · ∇ω dx,

the one-directional dissipation fails to control the nonlinearity. In fact, the nonlinear part contains four
component terms
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Hard := −
∫

R2
∇ω · ∇u · ∇ω dx

= −
∫

R2
∂1u1 (∂1ω)2 dx −

∫

R2
∂1u2 ∂1ω ∂2ω dx

−
∫

R2
∂2u1 ∂1ω ∂2ω dx −

∫

R2
∂2u2 (∂2ω)2 dx (1.4)

and the last two terms in (1.4) do not admit a time-integrable upper bound. This explains the difficulty
of seeking a solution in H2 as well as lowering the exponential upper bound. This is also the main reason
why the stability problem on (1.1) in R

2 remains a mystery.
When the spatial domain is Ω = T×R, this paper is able to obtain the global existence and regularity

in the H2-setting and provide a uniform upper bound on the H2-norm of the solution. By offering an
upper bound depending explicitly on the initial data, this paper also proves the stability of perturbations
near the trivial solution. More importantly, we establish the precise large-time behavior of the solutions.
The main idea here is to separate a physical quantity into its horizontal average and the corresponding
oscillation. More precisely, for a function f = f(x1, x2) integrable in x1 on T, we define the horizontal
average

f̄ =
∫

T

f(x1, x2) dx1 (1.5)

and write

f = f̄ + ˜f. (1.6)

Clearly f̄ also represents the zero-th horizontal Fourier mode of f . This decomposition is very useful due
to some of the associated fine properties. For example, f̄ and ˜f are orthogonal in L2, namely the inner
product (f̄ , ˜f) = 0 and as a consequence, for any f ∈ L2(Ω),

‖f‖2
L2(Ω) = ‖f̄‖2

L2(Ω) + ‖ ˜f‖2
L2(Ω).

In addition, a strong Poincaré type inequality holds,

‖ ˜f‖L2(Ω) ≤ C ‖∂1
˜f‖L2(Ω).

By applying this decomposition to the velocity field, namely writing u = ū + ũ and taking advantage of
the special properties of ũ such as the Poincaré type inequality, we are able to establish suitable upper
bounds for the nonlinear terms in (1.4), which in turn leads to a global and uniform upper bound for
‖u‖H2 . This explicit upper bound also implies the stability of perturbations near the trivial solution. In
addition, by writing the evolution equations of the oscillation ũ, we also able to prove that the H1-norm
of ũ decays to zero exponentially in time. More precisely, the following theorem holds.

Theorem 1.1. Let T = [0, 1] be a 1D periodic box and let Ω = T × R. Let ν > 0. Consider (1.1) in Ω.
Assume u0 ∈ H2(Ω) and ∇ · u0 = 0. Then (1.1) has a unique global solution u that obeys the global and
uniform H2 bound,

‖u(t)‖2
H2 + ν

∫ t

0

‖∂1u(τ)‖2
H2 dτ ≤ ‖u0‖2

H2eC(‖u0‖4
H1+‖u0‖2

H1 ) (1.7)

for some constant C > 0 and for all t > 0. In particular, (1.7) implies the stability of any perturbation
near the trivial solution.

Assume the initial data ‖u0‖H2 is sufficiently small. Let u be the corresponding solution. Let ũ denote
the oscillation of u, defined as in (1.6). Then the H1-norm of ũ decays to zero exponentially in time,
namely

‖ũ(t)‖H1 ≤ ‖u0‖H1 e−C0t

for some C0 > 0 and for all t > 0.

The rest of this paper proves Theorem 1.1.
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2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. A crucial idea in the proof is to decompose the
velocity u into its horizontal average ū and the corresponding oscillation part ũ. We establish and take
advantage of some special properties of this decomposition and those of ũ. To facilitate the proof, we list
several frequently used facts on the decomposition as lemmas.

Lemma 2.1. Let f̄ and ˜f be defined as in (1.5) and (1.6). Then

˜f = 0, ∂1f = ∂1f̄ = 0, ∂2f = ∂2f̄ , ˜∂2f = ∂2
˜f.

If a vector field F satisfies ∇ · F = 0, then

∇ · F̄ = 0 and ∇ · ˜F = 0.

For any f ∈ L2(Ω), we have

(f̄ , ˜f) = 0, ‖f‖2
L2(Ω) = ‖f̄‖2

L2(Ω) + ‖ ˜f‖2
L2(Ω),

where (f̄ , ˜f) denotes the L2-inner product.

All the items in Lemma 2.1 can be directly verified by the definition of f̄ and ˜f . The next lemma
assesses that the oscillation part ˜f obeys a strong Poincaré type inequality with the upper bound in terms
of ∂1

˜f instead of ∇ ˜f .

Lemma 2.2. Let f̄ and ˜f be defined as in (1.5) and (1.6). If ‖∂1
˜f‖L2(Ω) < ∞, then

‖ ˜f‖L2(Ω) ≤ C‖∂1
˜f‖L2(Ω),

where C is an absolute constant. In addition, if ‖∂1
˜f‖H1(Ω) < ∞, then

‖ ˜f‖L∞(Ω) ≤ C‖∂1
˜f‖H1(Ω).

The next two lemmas provide anisotropic upper bounds for the L∞-norm of a function on Ω and for
the triple product integral defined on Ω. They are simple but powerful tools for dealing with anisotropic
models. Such anisotropic upper bounds on the whole space R

d with d = 2, 3 have been discovered and
used by many authors (see, e.g., [1,12]). For a 1D function f = f(x2) satisfying f ∈ H1(R),

‖f‖L∞
x2

(R) ≤
√

2 ‖f‖ 1
2
L2

x2
(R) ‖∂2f‖ 1

2
L2

x2
(R). (2.1)

However, when the domain is bounded such as T, this type of inequalities would necessarily contain the
L2-part. More precisely, if f = f(x1) satisfying f ∈ H1(T),

‖f‖L∞
x1

(T) ≤
√

2 ‖f‖ 1
2
L2

x1
(T) ‖∂1f‖ 1

2
L2

x1
(T) + ‖f‖L2

x1
(T). (2.2)

As a consequence of (2.1) and (2.2), we obtain the anisotropic upper bounds in the following lemma.

Lemma 2.3. If a function f = f(x1, x2) on Ω satisfies f ∈ H2(Ω), then

‖f‖L∞(Ω) ≤ C ‖f‖ 1
4
L2(Ω)

(‖f‖L2(Ω) + ‖∂1f‖L2(Ω)

)
1
4 ‖∂2f‖ 1

4
L2(Ω)

× (‖∂2f‖L2(Ω) + ‖∂1∂2f‖L2(Ω)

)
1
4 . (2.3)

In addition, the integral of the triple product over Ω is bounded by
∣

∣

∣

∣

∫

Ω

f g h dx

∣

∣

∣

∣

≤ C ‖f‖ 1
2
L2 (‖f‖L2 + ‖∂1f‖L2)

1
2 ‖g‖ 1

2
L2 ‖∂2g‖ 1

2
L2 ‖h‖L2 . (2.4)

For the convenience of the readers, we provide a proof for this lemma.
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Proof. Applying Hölder’s inequality in each direction, Minkowski’s inequality, and (2.1) and (2.2), we
have

∣

∣

∣

∣

∫

Ω

f g h dx

∣

∣

∣

∣

≤ ‖f‖L2
x2

L∞
x1

‖g‖L∞
x2

L2
x1

‖h‖L2

≤ ‖f‖L2
x2

L∞
x1

‖g‖L2
x1

L∞
x2

‖h‖L2

≤ C
∥

∥

∥‖f‖ 1
2
L2

x1
‖∂1f‖ 1

2
L2

x1
+ ‖f‖L2

x1

∥

∥

∥

L2
x2

×
∥

∥

∥‖g‖ 1
2
L2

x2
‖∂2g‖ 1

2
L2

x2

∥

∥

∥

L2
x1

‖h‖L2

≤ C ‖f‖ 1
2
L2 (‖f‖L2 + ‖∂1f‖L2)

1
2 ‖g‖ 1

2
L2 ‖∂2g‖ 1

2
L2 ‖h‖L2 .

Here ‖f‖L2
x2

L∞
x1

represents the L∞-norm in the x1-variable, followed by the L2-norm in the x2-variable.
To prove (2.3), we again use Hölder’s inequality, Minkowski’s inequality, and (2.1) and (2.2),

‖f‖L∞
x1

L∞
x2

≤ C
∥

∥

∥‖f‖ 1
2
L2

x2
‖∂2f‖ 1

2
L2

x2

∥

∥

∥

L∞
x1

≤ C
∥

∥

∥‖f‖L∞
x1

∥

∥

∥

1
2

L2
x2

∥

∥

∥‖∂2f‖L∞
x1

∥

∥

∥

1
2

L2
x2

≤ C
∥

∥

∥‖f‖ 1
2
L2

x1
‖∂1f‖ 1

2
L2

x1
+ ‖f‖L2

x1

∥

∥

∥

1
2

L2
x2

×
∥

∥

∥‖∂2f‖ 1
2
L2

x1
‖∂1∂2f‖ 1

2
L2

x1
+ ‖∂2f‖L2

x1

∥

∥

∥

1
2

L2
x2

≤ C ‖f‖ 1
4
L2 (‖f‖L2 + ‖∂1f‖L2)

1
4 ‖∂2f‖ 1

4
L2

× (‖∂2f‖L2 + ‖∂1∂2f‖L2)
1
4 .

This completes the proof of Lemma 2.3. �

If we replace f by the oscillation part ˜f , some of the lower-order parts in (2.2), (2.3) and (2.4) can be
dropped, as the following lemma states.

Lemma 2.4. Let f̄ and ˜f be defined as in (1.5) and (1.6). Then

‖ ˜f‖L∞
x1

(T) ≤ C ‖ ˜f‖ 1
2
L2

x1
(T) ‖∂1

˜f‖ 1
2
L2

x1
(T). (2.5)

As a special consequence,

‖ ˜f‖L∞(Ω) ≤ C ‖ ˜f‖ 1
4
L2(Ω)‖∂1

˜f‖ 1
4
L2(Ω) ‖∂2

˜f‖ 1
4
L2(Ω) ‖∂1∂2

˜f‖ 1
4
L2(Ω) (2.6)

and
∣

∣

∣

∣

∫

Ω

˜f g h dx

∣

∣

∣

∣

≤ C ‖ ˜f‖ 1
2
L2 ‖∂1

˜f‖ 1
2
L2 ‖g‖ 1

2
L2 ‖∂2g‖ 1

2
L2 ‖h‖L2

≤ C ‖∂1
˜f‖L2 ‖g‖ 1

2
L2 ‖∂2g‖ 1

2
L2 ‖h‖L2 . (2.7)

Proof. (2.6) and (2.7) in this lemma can be shown similarly as those in Lemma 2.3. The only modification
here is to use (2.5) instead of (2.2). Since (2.5) does not contain the lower-order part, the inequalities in
this lemma do not have the lower-order terms. �

We are ready to prove Theorem 1.1.
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Proof. To establish the global existence and stability of the solutions to (1.1), the first step is the local
existence result, which can be proven by the standard contraction mapping argument together with a
local-in-time a priori bound. The portion with the contraction mapping argument is standard and can
be found in the book [5]. We shall just provide the local a priori bound. Taking the inner product in H2

of u with the first equation in (1.1), we find

d

dt
‖u(t)‖2

H2 + 2ν‖∂1u‖2
H2 = −2

∫

Ω

∇u · ∇ω · ∇ω dx. (2.8)

where ‖u‖2
H2 = ‖u‖2

L2 + ‖∇u‖2
L2 + ‖Δu‖2

L2 . By Hölder’s inequality and (2.3) in Lemma 2.3,

−2
∫

Ω

∇u · ∇ω · ∇ω dx ≤ 2‖∇u‖L∞‖∇ω‖2
L2

≤ C ‖∇u‖ 1
4
L2 (‖∇u‖L2 + ‖∂1∇u‖L2)

1
4 ‖∂2∇u‖ 1

4
L2

× (‖∂2∇u‖L2 + ‖∂1∂2∇u‖L2)
1
4 ‖∇ω‖2

L2

≤ C (‖∇u‖H1 + ‖∂1∇u‖H1) ‖∇ω‖2
L2

≤ ν‖∂1u‖2
H2 + C

(‖u‖3
H2 + ‖u‖4

H2

)

.

Inserting this upper bound in (2.8) leads to a differential inequality that assesses the local upper bound
for ‖u‖H2 . The local well-posedness follows as a consequence.

To prove the global existence and stability result, we need to obtain the uniform in time H2 estimate.
It is easy to see that, due to ∇ · u = 0,

‖u(t)‖2
L2 + 2ν

∫ t

0

‖∂1u(τ)‖2
L2 dτ = ‖u0‖2

L2 , (2.9)

‖∇u(t)‖2
L2 + 2ν

∫ t

0

‖∂1∇u(τ)‖2
L2 dτ = ‖∇u0‖2

L2 , (2.10)

where we have used
∫

Ω

(u · ∇u) · Δu dx = 0.

To bound the H2-norm, we resort to the vorticity equation,

∂tω + u · ∇ω = ν∂11ω. (2.11)

Taking the inner product of ∇ω with the gradient of (2.11), we have

1
2

d

dt
‖∇ω(t)‖2

L2 + ν‖∂1∇ω‖2
L2 = −

∫

∇u · ∇ω · ∇ω dx := N. (2.12)

We further write N into four terms,

N = −
∫

∂1u1 (∂1ω)2 dx −
∫

∂1u2 ∂1ω ∂2ω dx

−
∫

∂2u1 ∂1ω ∂2ω dx −
∫

∂2u2 (∂2ω)2 dx

:= N1 + N2 + N3 + N4.

N1 and N2 can be bounded directly. By Lemma 2.1, ∂1ū = 0 and ∂1u = ∂1ũ. By Lemma 2.2, Lemma 2.4
and Young’s inequality,
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|N1| =
∣

∣

∣

∣

−
∫

∂1ũ1 ∂1ω ∂1ω̃ dx

∣

∣

∣

∣

≤ C ‖∂1ũ1‖
1
2
L2 ‖∂1∂1ũ1‖

1
2
L2 ‖∂1ω‖ 1

2
L2 ‖∂2∂1ω‖ 1

2
L2 ‖∂1ω̃‖L2

≤ C ‖∂1u1‖
1
2
L2 ‖∂1∇u1‖

1
2
L2 ‖∂1ω‖L2 ‖∂1∇ω‖L2

≤ C ‖∂1u‖L2‖∂1∇u‖L2 ‖∇ω‖2
L2 +

ν

12
‖∂1∇ω‖2

L2

and

|N2| =
∣

∣

∣

∣

−
∫

∂1ũ2 ∂1ω̃ ∂2ω dx

∣

∣

∣

∣

≤ C ‖∂1ũ2‖
1
2
L2 ‖∂1∂1ũ2‖

1
2
L2 ‖∂1ω̃‖ 1

2
L2 ‖∂2∂1ω̃‖ 1

2
L2 ‖∂2ω‖L2

≤ C ‖∂1u2‖
1
2
L2 ‖∂1∇u2‖

1
2
L2 ‖∂1∇ω̃‖L2 ‖∂2ω‖L2

≤ C ‖∂1u‖L2‖∂1∇u‖L2 ‖∇ω‖2
L2 +

ν

12
‖∂1∇ω‖2

L2 .

The estimate of N3 is slightly more delicate.

N3 = −
∫

∂2u1 ∂1ω ∂2ω dx = −
∫

∂2(ū1 + ũ1) ∂1ω̃ ∂2(ω̄ + ω̃) dx

= −
∫

∂2ū1 ∂1ω̃ ∂2ω̄ dx −
∫

∂2ū1 ∂1ω̃ ∂2ω̃ dx

−
∫

∂2ũ1 ∂1ω̃ ∂2ω̄ dx −
∫

∂2ũ1 ∂1ω̃ ∂2ω̃ dx

:= N31 + N32 + N33 + N34.

The first term N31 is clearly zero,

N31 = −
∫

R

∂2ū1 ∂2ω̄

∫

T

∂1ω̃1 dx1 dx2 = 0.

To bound N32, we first use (2.7) of Lemma 2.4 and then Lemma 2.2 to obtain

|N32| ≤ C ‖∂2ū1‖L2 ‖∂1ω̃‖ 1
2
L2 ‖∂2∂1ω̃‖ 1

2
L2 ‖∂2ω̃‖ 1

2
L2‖∂1∂2ω̃‖ 1

2
L2

≤ C ‖∂2ū1‖L2 ‖∂1ω̃‖ 1
2
L2 ‖∂1∂2ω̃‖ 3

2
L2

≤ C ‖∂2u‖4
L2 ‖∂1ω‖2

L2 + ‖∂1∇ω‖2
L2

≤ C ‖u0‖2
H1‖∇u‖2

L2 ‖∂1∇u‖2
L2 +

ν

12
‖∂1∇ω‖2

L2

and

|N33| ≤ C ‖∂2ω̄‖L2 ‖∂2ũ1‖
1
2
L2 ‖∂1∂2ũ1‖

1
2
L2 ‖∂1ω̃‖ 1

2
L2 ‖∂2∂1ω̃‖ 1

2
L2

≤ C ‖∂2ω‖L2 ‖∂1∂1∂2ũ1‖
1
2
L2 ‖∂1∇ũ‖L2 ‖∂2∂1ω̃‖ 1

2
L2

≤ C ‖∂2ω‖L2 ‖∂1∇ω̃‖ 1
2
L2 ‖∂1∇ũ‖L2 ‖∂1∇ω̃‖ 1

2
L2

≤ C ‖∂2ω‖L2 ‖∂1∇ũ‖L2‖∂1∇ω̃‖L2

≤ C ‖∂1∇u‖2
L2 ‖∇ω‖2

L2 +
ν

12
‖∂1∇ω‖2

L2 .
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N34 can be similarly bounded as N32. N4 can also be bounded similarly.

|N4| =
∣

∣

∣

∣

∫

∂1ũ1 (∂2ω̄ + ∂2ω̃)2 dx

∣

∣

∣

∣

=
∣

∣

∣

∣

2
∫

∂1ũ1 ∂2ω̄ ∂2ω̃ dx +
∫

∂1ũ1 (∂2ω̃)2 dx

∣

∣

∣

∣

≤ C (‖∂2ω̄‖L2 + ‖∂2ω̃‖L2)‖∂1ũ1‖
1
2
L2 ‖∂2∂1ũ1‖

1
2
L2 ‖∂2ω̃‖ 1

2
L2 ‖∂1∂2ω̃‖ 1

2
L2

≤ C ‖∂1u‖L2‖∂1∇u‖L2 ‖∇ω‖2
L2 +

ν

12
‖∂1∇ω‖2

L2 .

Thus,

|N | ≤ C (‖∂1u‖2
L2 + ‖∂1∇u‖2

L2) ‖∇ω‖2
L2

+ C‖u0‖2
H1 ‖∂1∇u‖2

L2 ‖∇u‖2
L2 +

ν

2
‖∂1∇ω‖2

L2 . (2.13)

Inserting (2.13) in (2.12), combining with (2.9) and (2.10) and integrating in time yields the desired
inequality in (1.7),

sup
0≤τ≤t

‖u(τ)‖2
H2 + ν

∫ t

0

‖∂1u(τ)‖2
H2 dτ ≤ ‖u0‖2

H2eC(‖u0‖4
H1+‖u0‖2

H1 ).

Next we show the desired exponential decay. We first write the equations of ū = (ū1, ū2). Taking the
average of (1.1)

⎧

⎪

⎨

⎪

⎩

∂tū1 + ∂2(u1u2) = 0,
∂tū2 + ∂2(u2

2) = ∂2p̄,

∂2ū2 = 0.

(2.14)

Taking the difference of (1.1) and (2.14), we find
⎧

⎪

⎨

⎪

⎩

∂tũ1 + ∂1(u2
1) + ∂2(u1u2 − u1u2) = −∂1p̃ + ν∂11ũ1,

∂tũ2 + ∂1(u1u2) + ∂2(u2
2 − u2

2) = −∂2p̃ + ν∂11ũ2,

∂1ũ1 + ∂2ũ2 = 0.

(2.15)

Taking the inner product of (ũ1, ũ2) with (2.15) yields
d

dt
‖ũ(t)‖2

L2 + 2ν‖∂1ũ‖2
L2 = K1 + K2 + K3 + K4, (2.16)

where

K1 = −
∫

ũ1 ∂1(u2
1) dx, K2 = −

∫

ũ1 ∂2(u1u2 − u1u2) dx,

K3 = −
∫

ũ2 ∂1(u1u2) dx, K4 = −
∫

ũ2 ∂2(u2
2 − u2

2) dx.

By ∂1u1 = ∂1ũ1 and Lemma 2.2,

|K1| =
∣

∣

∣

∣

−2
∫

ũ1 u1 ∂1ũ1 dx

∣

∣

∣

∣

≤ ‖u1‖L∞ ‖ũ1‖L2 ‖∂1ũ1‖L2

≤ C ‖u1‖H2‖∂1ũ1‖2
L2 .

K3 can be bounded similarly,

|K3| ≤ 2‖ũ2‖L2 ‖u‖L∞ ‖∂1ũ‖L2 ≤ C ‖u‖H2‖∂1ũ‖2
L2 .

To bound K2, we write u = ū + ũ and

u1u2 − u1u2 = ū1 ũ2 + ū2 ũ1 + ũ1 ũ2 − ũ1 ũ2

= ū1 ũ2 + ū2 ũ1 + ˜̃u1 ũ2 (2.17)
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and thus

∂2(u1u2 − u1u2) = ∂2(ū1 ũ2) + ∂2(ū2 ũ1) + ˜∂2(ũ1 ũ2)

= ũ2 ∂2ū1 − ū1∂1ũ1 + ū2∂2ũ1 + ˜∂2(ũ1 ũ2).

Therefore, by Lemma 2.4,

|K2| =
∣

∣

∣

∣

−
∫

ũ1(ũ2 ∂2ū1 − ū1∂1ũ1 + ū2∂2ũ1 + ˜∂2(ũ1 ũ2)) dx

∣

∣

∣

∣

≤ C ‖∂2ū1‖L2 ‖ũ1‖
1
2
L2 ‖∂1ũ1‖

1
2
L2 ‖ũ2‖

1
2
L2 ‖∂2ũ2‖

1
2
L2

+‖ũ1‖L2 ‖ ˜∂2(ũ1 ũ2)‖L2 ,

where we have used
∫

ũ1 ū1 ∂1ũ1 dx = 0 and
∫

ũ1 ū2 ∂2ũ1 dx = 0.

By Lemma 2.2 and ∇ · ũ = 0, we have

‖ũ1‖L2 ≤ C‖∂1ũ1‖L2 ≤ C ‖∂1ũ‖L2 ,

‖ũ2‖L2 ≤ C‖∂1ũ2‖L2 ≤ C ‖∂1ũ‖L2 ,

‖∂2ũ2‖L2 = ‖∂1ũ1‖L2 ≤ ‖∂1ũ‖L2 .

Using these inequalities and ‖ ˜f‖L2 ≤ ‖f‖L2 , K2 is bounded by

|K2| ≤ C ‖∂2ū1‖L2 ‖∂1ũ‖2
L2 + ‖ũ1‖L2 ‖∂2(ũ1 ũ2)‖L2

≤ C ‖∂2ū1‖L2 ‖∂1ũ‖2
L2 + ‖ũ1‖L2 ‖ũ1‖L∞ ‖∂1ũ1‖L2

+‖ũ1‖L2 ‖∂2ũ1‖L∞
x1

L2
x2

‖ũ2‖L2
x1

L∞
x2

≤ C (‖∂2ū1‖L2 + ‖ũ1‖H2) ‖∂1ũ‖2
L2 .

K4 can be similarly estimated and

|K4| ≤ C ‖u‖H2‖∂1ũ‖2
L2 .

Inserting these upper bounds in (2.16) yields

d

dt
‖ũ(t)‖2

L2 + (2ν − C ‖u‖H2) ‖∂1ũ‖2
L2 ≤ 0. (2.18)

According to the stability result established above, if ε > 0 is sufficiently small and ‖u0‖H2 ≤ ε, then
‖u(t)‖H2 ≤ C ε and

2ν − C ‖u‖H2 ≥ ν.

(2.18) and Lemma 2.2 then yields the desired exponential decay for ‖ũ‖L2 .
Next we show the exponential decay of ‖∇ũ(t)‖L2 . We start by taking the gradient of the velocity

equation in (2.15) and then dot with ∇ũ to obtain

1
2

d

dt
‖∇ũ(t)‖2

L2 + ν‖∂1∇ũ‖2
L2 = Q1 + Q2 + Q3 + Q4,

where

Q1 = −
∫

∇ũ1 · ∇∂1(u2
1) dx, Q2 = −

∫

∇ũ1 · ∇∂2(u1u2 − u1u2) dx,

Q3 = −
∫

∇ũ2 · ∇∂1(u1u2) dx, Q4 = −
∫

∇ũ2 · ∇∂2(u2
2 − u2

2) dx.
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All terms can be bounded suitably. In fact, by Lemma 2.2,

|Q1| =
∣

∣

∣

∣

−2
∫

∇ũ1 · (∇u1 ∂1ũ1 + u1∂1∇ũ1) dx

∣

∣

∣

∣

≤ C ‖∇u1‖L2 ‖∇ũ1‖
1
2
L2‖∂1∇ũ1‖

1
2
L2 ‖∂1ũ1‖

1
2
L2 ‖∂2∂1ũ1‖

1
2
L2

+‖u1‖L∞ ‖∇ũ1‖L2 ‖∂1∇ũ1‖L2

≤ C ‖u1‖H2‖∂1∇ũ1‖2
L2 .

Q3 can be bounded similarly and

|Q3| ≤ C ‖u‖H2‖∂1∇ũ‖2
L2 .

By (2.17),

Q2 = −
∫

∇ũ1 · ∇∂2(ū1ũ2 + ũ1ū2 + ˜̃u1ũ2) dx

= Q21 + Q22 + Q23.

Writing Q21 more explicitly,

Q21 = −
∫

∇ũ1 · (∇∂2ū1ũ2 + ū1∇∂2ũ2 + ∇ū1∂2ũ2 + ∂2ū1∇ũ2) dx

and applying Lemma 2.4 and then Lemma 2.2, we obtain

|Q21| ≤ ‖∇∂2ū1‖L2‖∇ũ1‖
1
2
L2 ‖∂1∇ũ1‖

1
2
L2‖ũ2‖

1
2
L2‖∂2ũ2‖

1
2
L2

+‖ū1‖L∞‖∇ũ1‖L2 ‖∇∂2ũ2‖L2

+‖∇ū1‖L2 ‖∇ũ1‖
1
2
L2 ‖∂1∇ũ1‖

1
2
L2‖∂2ũ2‖

1
2
L2‖∂2∂2ũ2‖

1
2
L2

+‖∂2ū1‖L2 ‖∇ũ1‖
1
2
L2 ‖∂1∇ũ1‖

1
2
L2‖∇ũ2‖

1
2
L2‖∂2∇ũ2‖

1
2
L2

≤ C ‖u‖H2 ‖∂1ũ‖2
H1 .

The estimate for Q22 is similar and the upper bound is the same.

|Q23| =
∣

∣

∣

∣

−
∫

∇ũ1 · ∇∂2(˜̃u1ũ2) dx

∣

∣

∣

∣

=
∣

∣

∣

∣

−
∫

∂1ũ1 ∂1∂2(˜̃u1ũ2) dx −
∫

∂2ũ1 ∂2∂2(˜̃u1ũ2) dx

∣

∣

∣

∣

≤ ‖∂11ũ1‖L2 ‖∂2(˜̃u1ũ2)‖L2 + ‖∂2∂2ũ1‖L2‖∂2(˜̃u1ũ2)‖L2

≤ ‖∂11ũ1‖L2 ‖∂2(ũ1ũ2)‖L2 + ‖∂2∂2ũ1‖L2‖∂2(ũ1ũ2)‖L2

≤ C ‖∂1∂1ũ1‖L2 ‖ũ‖L∞‖∂2ũ‖L2

+‖∂2∂2ũ1‖L2(‖ũ2‖L2
x1

L∞
x2

‖∂2ũ1‖L2
x2

L∞
x1

+ ‖ũ1‖L2
x2

L∞
x1

‖∂2ũ2‖L2
x1

L∞
x2

)

≤ C ‖u‖H2 ‖∂1ũ‖2
H1 .

The upper bound for Q4 is the same. Combining the estimates for ‖ũ‖L2 and ‖∇ũ‖L2 , we find that

d

dt
‖ũ(t)‖2

H1 + (2ν − C ‖u‖H2)‖∂1ũ‖2
H1 ≤ 0,

which leads to the desired exponential decay in H1. This completes the proof of Theorem 1.1. �
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