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Abstract This paper studies solutions of the two-dimensional incompressible Boussi-
nesq equations with fractional dissipation. The spatial domain is a periodic box. The
Boussinesq equations concerned here govern the coupled evolution of the fluid velocity
and the temperature and have applications in fluid mechanics and geophysics. When
the dissipation is in the supercritical regime (the sum of the fractional powers of the
Laplacians in the velocity and the temperature equations is less than 1), the classical
solutions of the Boussinesq equations are not known to be global in time. Leray–Hopf
type weak solutions do exist. This paper proves that such weak solutions become even-
tually regular (smooth after some time T > 0) when the fractional Laplacian powers
are in a suitable supercritical range. This eventual regularity is established by exploiting
the regularity of a combined quantity of the vorticity and the temperature as well as the
eventual regularity of a generalized supercritical surface quasi-geostrophic equation.
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1 Introduction

We consider the following two-dimensional (2D) incompressible Boussinesq equa-
tions with fractional dissipation in the periodic box T

2 ≡ [0, 2π ]2,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u + u · ∇u + ν �αu = −∇ p + θe2, x ∈ T
2, t > 0,

∇ · u = 0, x ∈ T
2, t > 0,

∂tθ + u · ∇θ + κ �βθ = 0, x ∈ T
2, t > 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ T
2,

(1.1)

where u = u(x, t) represents the 2D velocity, p = p(x, t) the pressure, θ = θ(x, t)
the temperature, e2 the unit vector in the vertical direction, and ν > 0, κ > 0, α > 0
and β > 0 are real parameters. Here � = √−
 represents the Zygmund operator
with �α being defined through the Fourier transform, namely

�̂α f (ξ) = |ξ |α f̂ (ξ),

where

f̂ (ξ) = 1

(2π)2

∫

T2
e−i x ·ξ f (x) dx .

When α = 2 and β = 2, (1.1) becomes the 2D Boussinesq equations with standard
dissipation. The standard 2D Boussinesq equations and their fractional Laplacian gen-
eralizations have attracted considerable attention recently due to their physical appli-
cations and mathematical significance. The Boussinesq equations model geophysical
flows such as atmospheric fronts and oceanic circulation, and play an important role
in the study of Raleigh-Bernard convection (see, e.g., Constantin and Doering 1999;
Gill 1982; Majda 2003; Pedlosky 1987). Mathematically the 2D Boussinesq equa-
tions serve as a lower dimensional model of the 3D hydrodynamics equations. In fact,
the Boussinesq equations retain some key features of the 3D Navier–tokes and the
Euler equations such as the vortex stretching mechanism. As pointed out in Majda
and Bertozzi (2001), the inviscid Boussinesq equations can be identified with the 3D
Euler equations for axisymmetric flows.

One main focus of recent research on the 2D Boussinesq equations has been on the
global regularity issue when only fractional dissipation is present (see, e.g., Adhikari
et al. 2010, 2011; Cao and Wu 2013; Constantin and Vicol 2012; Cui et al. 2012;
Danchin and Paicu 2009, 2011; Shu 1994; Hmidi 2011; Hmidi et al. 2010, 2011; Hou
and Li 2005; Jiu et al. 0000; Kc et al. 2014, 0000; Lai et al. 2011; Larios et al. 2013;
Miao and Xue 2011; Moffatt 2001; Ohkitani 2001; Wu and Wu 0000; Wu 2010; Zhao
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2010). The global regularity of solutions to (1.1) relies crucially on the sizes of α and
β and it is helpful to divide α and β into three cases:

(i) the subcritical case, α + β > 1;
(ii) the critical case, α + β = 1;

(iii) the supercritical case, α + β < 1.

The smaller the sum α+β is, the more difficult the global regularity problem seems
to be. The global regularity for several subcritical cases was obtained in Constantin
and Vicol (2012), Miao and Xue (2011), and Wu (2010). In Constantin and Vicol
(2012), Constantin and Vicol verified the global regularity for the case

ν > 0, κ > 0, α ∈ (0, 2), β ∈ (0, 2), β >
2

2 + α
.

Miao and Xue in 2011 proved the global existence and uniqueness for (1.1) with ν > 0,
κ > 0 and

α ∈
(

6 − √
6

4
, 1

)

, β ∈
(

1 − α, min

{
7 + 2

√
6

5
α − 2,

α(1 − α)√
6 − 2α

, 2 − 2α

})

.

Hmidi et al. (2010, 2011) were able to establish the global regularity for two
critical cases: (1.1) with α = 1 and κ = 0 and (1.1) with ν = 0 and β = 1. Jiu
et al. (in press) recently examined the general critical case α + β = 1 and obtained
the global existence and uniqueness of classical solutions of (1.1) with α ≥ α0,

where α0 = 23−√
145

12 ≈ 0.9132. The global regularity problem for other critical cases
remains open.

Very little is known about the supercritical case α + β < 1. The global regularity
problem appears to be out of reach when α and β are in this regime. This paper shows
that Leray-Hopf weak solutions do exist for all time. The major goal of this paper is
the eventual regularity of such weak solutions. In fact, we show that weak solutions
are actually smooth for t > T , where T > 0 depends on the initial data and the indices
α and β. More precisely, we have the following theorem.

Theorem 1.1 Consider the initial-value problem (1.1) with ν > 0, κ > 0, α > α0,
β > 0 and α + β < 1, where

α0 = 23 − √
145

12
≈ 0.9132. (1.2)

Assume that (u0, θ0) ∈ Hs(T2) with s > 2, and u0 and θ0 have zero mean. Let (u, θ)
be a global weak solution of (1.1). Then, there exist 0 < T1 ≤ T2 < ∞ such that
(u, θ) is actually a classical solution on [0, T1] and on [T2,∞).

This theorem reflects the regularization effect of the dissipation even in the supercrit-
ical case. Since the existence of T1 > 0 follows directly from the local well-posedness
of classical solutions, the efforts of proving Theorem 1.1 is solely devoted to showing
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the existence of T2 > 0 such that (u, θ) is actually a classical solution on [T2,∞). This
is not trivial and the energy method does not provide any global bounds controlling
the derivatives of (u, θ). Following Hmidi et al. (2010) and Jiu et al. (in press), we
resort to the regularity of a new function

G = ω − Rαθ with Rα = �−α∂1,

which satisfies

∂t G + u · ∇G +�αG = [Rα, u · ∇]θ +�β−α∂1θ. (1.3)

Here ω denotes the vorticityω = ∇ ×u and we have used the standard commutator
notation

[Rα, u · ∇]θ = Rα(u · ∇θ)− u · ∇Rαθ.

(1.3) can be obtained by taking the difference of the vorticity equation

{
∂tω + u · ∇ω + ν�αω = ∂1θ,

u = ∇⊥ψ, 
ψ = ω or u = ∇⊥
−1ω.
(1.4)

and the resulting equation after applying Rα to the temperature equation. As shown
in Jiu et al. (in press), for α0 < α, G is globally regular in the sense that

ũ ≡ ∇⊥
−1G

is actually Lipschitz. As a consequence, the velocity can be decomposed into

u = ∇⊥
−1ω = ∇⊥
−1G + ∇⊥
−1Rαθ ≡ ũ + v. (1.5)

where v ≡ ∇⊥
−1Rαθ in can be written more explicitly as

v = ∇⊥
−1�−α ∂1 θ.

Therefore, the temperature equation becomes a generalized supercritical surface
quasi-geostrophic (SQG) type equation

⎧
⎪⎨

⎪⎩

∂tθ + u · ∇θ +�βθ = 0, x ∈ T
2, t > 0,

u = ũ + v, �αv = −∇⊥�−2∂1θ, x ∈ T
2, t > 0,

θ(x, 0) = θ0(x), x ∈ T
2,

(1.6)

where α + β < 1. The SQG equation with critical or supercritical dissipation has
been investigated extensively recently (see, e.g., Caffarelli and Vasseur 2010; Chen et
al. 2007; Constantin 2006; Constantin et al. 2008, 1994; Constantin and Vicol 2012;
Constantin and Wu 2008, 2009; Córdoba and Córdoba 2004; Córdoba and Fefferman
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2002; Dabkowski 2011; Dong and Pavlović 2009; Kiselev 2011; Kiselev et al. 2007;
Miao et al. 2012; Silvestre 2010). Especially eventual regularity results have been
established for the supercritical SQG equation. (1.6) can be treated as a generalized
SQG equation with supercritical dissipation. Following the work of Dabkowski (2011),
we can show that weak solutions of (1.6) are eventually regular. More precisely, we
have the following proposition.

Proposition 1.2 Consider (1.6) with α > 0, β > 0 and α + β < 1. Assume that ũ
satisfies

M ≡ ‖∇ũ‖L∞
t,loc L∞

x
< ∞. (1.7)

Assume θ0 ∈ Hs(T2) with s > 2 and has zero mean. Let θ be a Leray-Hopf weak
solution of (1.6). Then there exists T > 0 such that θ ∈ L∞([T,∞),Cσ (T2)) for
some σ > 1 − α − β.

Here Cσ denotes the standard Hölder space. It then follows from a regularity result
in Constantin and Wu (2008) that θ ∈ C∞(T2 × [T,∞)). This leads to the regularity
of u and ω according to (1.4), and especially Theorem 1.1.

The rest of this paper is divided into three regular sections and one appendix.
Section 2 presents the global existence of weak solutions to (1.1). Section 3 proves
Theorem 1.1 assuming Proposition 1.2 while Sect. 4 establishes Proposition 1.2. A
key component in the proof of Proposition 1.2 is stated as a proposition and proved in
Appendix 1.

2 A Global Weak Solution of (1.1)

The statement of Theorem 1.1 involves the global existence of a weak solution of
(1.1). This section provides a proof for this fact, which is stated here as a proposition.

Proposition 2.1 Consider (1.1) with ν > 0, κ > 0, α > 0 and β > 0. Assume that
(u0, θ0) ∈ L2(T2) and u0 and θ0 have zero mean. Then (1.1) has a global weak solution
u ∈ Cw([0, T ]; L2) ∩ L2([0, T ]; H

α
2 ) for any T > 0 and θ ∈ Cw([0,∞); L2) ∩

L2([0,∞); Ḣ
β
2 ).

Here Cw denotes the continuity in the weak L2 sense and Ḣ s denotes the homoge-
neous Sobolev space. The weak solution is defined in the standard sense. We recall it
for reader’s convenience.

Definition 2.2 Let T > 0. A function pair (u, θ) satisfying u ∈ Cw([0, T ]; L2) ∩
L2([0, T ]; H

α
2 ) and θ ∈ Cw([0, T ]; L2)∩L2([0, T ]; Ḣ

β
2 ) is said to be a weak solution

of (1.1) if it obeys the following conditions:
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(1) For any vector field φ ∈ C∞
0 (T

2 ×[0, T ])with ∇ ·φ = 0, for any scalar function
ϕ ∈ C∞

0 (T
2 × [0, T ]) and for a.e. t ∈ [0, T ],

∫

u(x, t) · φ(x, t) dx −
∫

u0(x) · φ(x, 0) dx −
∫ t

0

∫

u · ∂τφ dxdτ

= −ν
∫ t

0

∫

u ·�αφ dxdτ +
∫ t

0

∫

(u ⊗ u) : ∇φ dxdτ

+
∫ t

0

∫

φ · (θe2) dxdτ,

and

∫

θ(x, t) ϕ(x, t) dx −
∫

θ0(x) ϕ(x, 0) dx −
∫ t

0

∫

θ · ∂τϕ dxdτ

= −ν
∫ t

0

∫

θ �βϕ dxdτ −
∫ t

0

∫

θu · ∇ϕ dxdτ.

(2) For any scalar function η ∈ C∞
0 (T

2) and for a.e. t ∈ [0, T ],
∫

u(x, t) · ∇η(x) dx = 0.

Proposition 2.1 is proven through the Galerkin approximation. For an integer N ≥ 1
and for f ∈ L2(T2), JN is a Fourier truncation operator defined by

JN f (x) =
∑

|m|≤N

f̂ (m) eim·x ,

where f̂ denotes the Fourier mode of f ,

f̂ (m) = 1

(2π)2

∫

T2
e−im·x f (x) dx .

In addition,

L2
N ≡

⎧
⎨

⎩
f ∈ L2(T2) : f (x) =

∑

|m|≤N

f̂ (m) eim·x
⎫
⎬

⎭
.

It is clear that f ∈ L2
N implies that f ∈ Hs(T2) for any s > 0. We also write P for

the Leray projection operator onto divergence-free vector fields, namely

P = I − ∇(−
)−1∇·
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with I being the identity operator. The following Picard type local existence and
extension result will be used in the proof (see, e.g., Majda and Bertozzi 2001, pp.
100–103).

Lemma 2.3 Let Y be a Banach space and let O ⊂ Y be an open subset. Let F : O →
Y be a mapping satisfying

(1) F maps O to Y ;
(2) F is locally Lipschitz, namely, for any f ∈ O, there exists L = L( f ) and a

neighborhood U ( f ) such that

‖F( f )− F(g)‖Y ≤ L( f )‖ f − g‖Y for any g ∈ U ( f ).

Then, for any f0 ∈ O, the ODE

d f

dt
= F( f ), f (0) = f0

has a unique local solution f ∈ C1([0, T ]; O) for some T > 0. Furthermore, either
f = f (t) exists for all time or T < ∞ and f (t) leaves O as t → T .

We will now prove Proposition 2.1.

Proof The proof is divided into three main steps. The first step establishes the global
existence of an approximate solution. Fix an integer N ≥ 1 and consider (uN , θN ) ∈
(L2

N × L2
N )× L2

N (abbreviated as L2
N later) solving the following system of equations

⎧
⎪⎨

⎪⎩

∂t uN + PJN (PJN uN · ∇PJN uN )+ ν �αPJN uN = PJN (θ
N e2),

∂tθ
N + JN (PJN uN · ∇ JN θ

N )+ κ �β JN θ
N = 0,

uN (x, 0) = uN
0 (x) ≡ JN u0(x), θN (x, 0) = θN

0 (x) = JN θ0(x).

(2.1)

We apply Lemma 2.3 with Y = O = L2
N , f = (uN , θN ) and

F( f ) =
[−PJN (PJN uN · ∇PJN uN )− ν �αPJN uN + PJN (θ

N e2)

−JN (PJN uN · ∇ JN θ
N )− κ �β JN θ

N

]

.

We check that F( f ) defined above indeed verifies the conditions in Lemma 2.3.
For any f = (uN , θN ) ∈ L2

N , we have

‖F( f )‖L2 = ‖PJN uN · ∇PJN uN ‖L2 + ν‖�αPJN uN ‖L2 + ‖PJN (θ
N e2)‖L2

+‖JN (PJN uN · ∇PJN θ
N )‖L2 + κ ‖�β JN θ

N ‖L2

≤ (
1 + νNα + κNβ

)‖ f ‖L2 + C N 2‖ f ‖2
L2 ,
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where we have used the simple estimates that, for a constant independent of N ,

‖PJN uN · ∇PJN uN ‖L2 ≤ ‖PJN uN ‖L∞ ‖∇PJN uN ‖L2

≤ ‖P̂JN uN ‖L1 N ‖PJN uN ‖L2

≤ C N 2 ‖P̂JN uN ‖L2 ‖PJN uN ‖L2

≤ C N 2 ‖ f ‖2
L2

together with ‖P̂JN uN ‖L1 ≤ C N ‖P̂JN uN ‖L2 , which follows from

‖P̂JN uN ‖L1 =
∑

|m|≤N

|P̂uN (m)| ≤ C N

⎡

⎣
∑

|m|≤N

|P̂uN (m)|2
⎤

⎦

1/2

= C N ‖P̂JN uN ‖L2 .

Therefore, F maps Y to Y . In addition, for g = (U N ,�N ), we can check that

‖F( f )− F(g)‖Y ≤ νNα‖uN − U N ‖L2 + (1 + κNβ)‖θN −�N ‖L2

+ C N 2
(
‖uN ‖L2 + ‖θN ‖L2 + ‖U N ‖L2 + ‖�N ‖L2

)

×
(
‖uN − U N ‖L2 + ‖θN −�N ‖L2

)

≤
(

1 + νNα + κNβ + C N 2(‖ f ‖L2 + ‖g‖L2)
)

‖ f − g‖L2 ,

which verifies the local Lipschitz continuity. Thus we obtain a unique local solution
(uN , θN ) ∈ L2

N of (2.1) on a time interval [0, T0] for some T0 > 0. In addition,
noticing that P

2 = P and J 2
N = JN , we easily see that (PuN , θN ) and (JN uN , JN θ

N )

are also solutions. The uniqueness then implies that

PuN = uN , uN = JN uN , θN = JN θ
N .

Consequently, uN is divergence-free, ∇ · uN = 0, and (2.1) is reduced to

∂t uN + PJN (uN · ∇uN )+ ν �αuN = PJN (θ
N e2), (2.2)

∂tθ
N + JN (uN · ∇θN )+ κ �βθN = 0, (2.3)

uN (x, 0) = uN
0 (x) ≡ JN u0(x), θN (x, 0) = θN

0 (x) = JN θ0(x).

Therefore, we obtain after taking the inner product of (2.2) with uN and (2.3) with
θN and integrating by parts

‖θN (t)‖2
L2 + 2κ

∫ t

0
‖�β

2 θN (τ )‖2
L2 dτ = ‖JN θ0‖2

L2 ≤ ‖θ0‖2
L2 , (2.4)

d

dt
‖uN (t)‖2

L2 + 2ν‖�α
2 uN (τ )‖2

L2 ≤ 2‖uN (t)‖L2 ‖θN (t)‖L2
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or

‖uN (t)‖2
L2 + 2ν

∫ t

0
‖�α

2 uN (τ )‖2
L2 dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2. (2.5)

Therefore (uN (t), θN (t)) ∈ L2
N at any time t > 0. The extension part of Lemma

2.3 then implies that (uN (t), θN (t)) ∈ L2
N is a global solution for all time.

The second step is to show that, for a subsequence of (uN , θN ) (still denoted by
(uN , θN )),

uN − u → 0 in L2([0, T ]; L2), θN − θ → 0 in L2([0, T ]; L2).

First, the global bounds in (2.4) and (2.5) allow us to extract a subsequence
of (uN , θN ), still denoted by (uN , θN ), which converges weakly to (u, θ) ∈
L∞([0, T ]; L2) for u ∈ L∞([0, T ]; L2)∩L2([0, T ]; Ḣ

α
2 ) and θ ∈ L∞([0,∞); L2)∩

L2([0,∞); Ḣ
β
2 ). Now we show that, for any s > 2,

∂t u
N , ∂tθ

N ∈ L∞([0, T ]; H−s). (2.6)

To verify (2.6), we test ∂t uN against φ ∈ Hs with s > 2,

∫

∂t u
N · φdx = −

∫

uN · ∇uN · PJNφdx−ν
∫

�αuN · φdx+
∫

θN e2 · PJNφdx

=
∫

uN · ∇PJNφ · uN dx−ν
∫

uN ·�αφdx+
∫

θN e2 · PJNφdx .

By Hölder’s inequality and the Sobolev embedding,

∣
∣
∣
∣

∫

∂t u
N · φdx

∣
∣
∣
∣ ≤ ν‖uN ‖L2‖�αφ‖L2 + ‖uN ‖2

L2‖PJN ∇φ‖L∞ + ‖θN ‖L2 ‖φ‖L2

≤ ν‖uN ‖L2‖φ‖H1 + C ‖uN ‖2
L2 ‖φ‖Hs + ‖θN ‖L2 ‖φ‖L2 < ∞.

That is, for s > 2,

‖∂t u
N ‖H−s ≤ ν‖uN ‖L2 + C ‖uN ‖2

L2 + ‖θN ‖L2

≤ C (‖u0‖L2 + t‖θ0‖L2)2 + ν(‖u0‖L2 + t‖θ0‖L2)+ ‖θ0‖L2 .

Similarly, we can prove that ∂tθ
N ∈ H−s . This verifies (2.6). Combining this

with the global bounds in (2.4) and (2.5), especially uN ∈ L2([0, T ]; Ḣ
α
2 ) and

θ ∈ L2([0,∞); Ḣ
β
2 ), we obtain, by applying the Aubin-Lions Lemma, the strong

convergence

uN − u → 0 in L2([0, T ]; L2), θN − θ → 0 in L2([0, T ]; L2).

123



46 J Nonlinear Sci (2015) 25:37–58

This strong convergence allows us to pass the limit in the weak formulation of (2.1)
to obtain the global weak solution defined in Definition 2.2. This completes the proof
of Proposition 2.1. ��

3 Proof of Theorem 1.1

This section proves Theorem 1.1. We recall two results to be used in the proof. The
first result states that ũ (defined in the introduction) is actually Lipschitz at any time.
This fact is established in the work of Jiu et al. (in press).

Proposition 3.1 Consider (1.1) with ν > 0, κ > 0, α > α0, β > 0 and α + β < 1,
where α0 is given by (1.2). Assume that (u0, θ0) ∈ Hs(R2) with s > 2. Let (u, θ) be
a global weak solution of (1.1). Then, ũ defined by the Biot–Savart law

ũ = ∇⊥
−1G with G = ω −�−α∂1θ

is actually Lipschitz at any time, namely

‖∇ũ(·, t)‖L∞(T2) < ∞

for any t ∈ (0,∞).

We also need a regularization result stating that, if a weak solution of (1.6) is Hölder
continuous with an index bigger than 1 − α− β, then it is actually a smooth solution.
This result can be proven by following the lines in the paper by Constantin and Wu
(2008).

Proposition 3.2 Consider (1.6) with α > 0, β > 0 and α + β < 1. Assume that ũ
satisfies

‖∇ũ(·, t)‖L∞(T2) < ∞

for any t ∈ (0,∞). Let θ0 ∈ Hs(T2) with s > 2 and let θ be a corresponding weak
solution of (1.6). If, for σ > 1 − α − β and 0 < t1 < t2 ≤ ∞,

θ ∈ L∞([t1, t2); Cσ (T2)),

then

θ ∈ C∞(T2 × (t1, t2)).

We now turn to the proof of our main theorem.

Proof of Theorem 1.1 The existence of T1 > 0 such that

(u, θ) ∈ C([0, T1]; Hs(T2))
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is a consequence of the local well-posedness of (1.1) in Hs with s > 2. By Propositions
3.1 and 1.2, there exists T2 > 0 such that

θ ∈ Cσ (T2 × [T2,∞)).

By Proposition 3.2,

θ ∈ C∞(T2 × [T2,∞)).

Then it follows from the vorticity equation that

ω ∈ L∞(T2 × [T2,∞)),

which further implies

u ∈ C([T2,∞); Hs).

Then a result similar to Proposition 3.2 on the 2D Navier–Stokes equations with a
smooth forcing term implies

u ∈ C∞(T2 × [T2,∞)).

This completes the proof of Theorem 1.1. ��

4 Proof of Proposition 1.2

This section presents the proof of Proposition 1.2. We draw ideas from Dabkowski
(2011). For the convenience of the reader and for future references on the generalized
SQG type equations, we provide a complete proof.

The proof of Proposition 1.2 relies on an equivalent definition of the standard Hölder
space, as the dual of a special class of functions. We first define the dual class and then
state the equivalence result. This equivalence holds in T

d for general dimension d.

Definition 4.1 Let r ∈ (0, 1] and p ≥ 2. The class, denoted by U(r), consists of
functions ψ satisfying the following two conditions:

(1) There exist A > 0 such that

‖ψ‖L p(Td ) ≤ A
1
p r− d

q

where q is the conjugate index of p, namely, 1
p + 1

q = 1.
(2) For any function f ∈ C∞ ∩ Lip(1),

∣
∣
∣
∣

∫

Td
f (x) ψ(x) dx

∣
∣
∣
∣ ≤ r, (4.1)
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where Lip(B) denotes the set of Lipschitz functions with the Lipschitz coefficient
equal to B, namely, | f (x)− f (y)| ≤ B |x − y| for any x, y ∈ T

2.

Lemma 4.2 Let σ ∈ (0, 1]. Then, a function g ∈ Cσ (Td) if and only if

∣
∣
∣
∣

∫

Td
g(x) ψ(x) dx

∣
∣
∣
∣ ≤ Crσ

for some constant C > 0, any ψ ∈ U(r) and any r ∈ (0, 1).

Proposition 1.2 is proven through an inductive process and one key step is the
following proposition that assesses a property on the evolution of the class functions.

Proposition 4.3 Let 0 < α, β, σ < 1, α + β < 1 and α + β + σ − 2
q > 1. Assume

that θ0 ∈ Hs with s > 2 and let θ be a weak solution of (1.6). Then, there exist two
small parameters δ > 0 and r0 > 0 such that the following conclusion holds: Fix any
t > 0, 0 < r ≤ r0 and 0 < s < rβ . Assume that

(1) θ satisfies ∣
∣
∣
∣

∫

T2
θ(x, τ ) φ(x, τ ) dx

∣
∣
∣
∣ ≤ Rσ (4.2)

for any τ ∈ [t − s, t], R ≥ r eδ and φ ∈ U(R); and
(2) ψ(x, t) ∈ U(r) and ψ(x, τ ) with τ ∈ [t − s, t] solves the following equation

⎧
⎪⎨

⎪⎩

∂τψ + u · ∇ψ −�βψ = 0, x ∈ T
2,

u = ũ + v, �αv = −∇⊥�−2∂1θ, x ∈ T
2,

ψ(x, τ )|τ=t = ψ(x, t), x ∈ T
2,

(4.3)

that is, ψ(x, τ ) evolves backward in time starting from ψ(x, t).

Then

ψ(x, t − s)/(e−δsr−β
) ∈ U(

reδ σ
−1sr−β )

or
ψ(x, t − s) ∈ e−δsr−β U(

reδ σ
−1sr−β )

. (4.4)

We also need a decay property on the solution of (1.6) in Lebesgue spaces.

Lemma 4.4 Consider the generalized supercritical SQG equation (1.6). Assume that
θ0 ∈ Hs with s > 2 and let θ be a weak solution of (1.6). If θ0 has zero mean, then
‖θ(·, t)‖Lq with any q ∈ (1,∞) decays exponentially in time,

‖θ(·, t)‖Lq ≤ ‖θ0‖Lq e−t .

If θ0 does not have zero mean, then ‖θ(·, t)‖Lq decays at least algebraically,

‖θ(·, t)‖Lq ≤ ‖θ0‖Lq

(
1 + C a t‖θ0‖a q

Lq

) 1
a q

, a = β

2(q − 1)
.
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The exponential decay rate easily follows from (1.6) while the algebraical decay
can be found in Córdoba and Córdoba (2004).

With these preparations at our disposal, we now prove Proposition 1.2.

Proof of Proposition 1.2 The proof is achieved through an inductive process. The goal
here is to show that there exist small parameters r0 > 0 and δ > 0, and a sequence of
times Tn such that for t ≥ Tn ,

∣
∣
∣
∣

∫

T2
θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ ≤ rσ for any r ≥ r0e−nδ and ψ ∈ U(r) (4.5)

and

T ≡
∞∑

n=0

Tn < ∞. (4.6)

It then follows that, for t ≥ T ,

∣
∣
∣
∣

∫

T2
θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ ≤ rσ for any r ∈ (0, 1]. (4.7)

According to Lemma 4.2, (4.7) implies that θ(·, t) ∈ Cσ (T2) for any t ≥ T .
We start with the case n = 0. The existence of T0 > 0 relies on the large-time

decay result stated in Lemma 4.4. By Hölder’s inequality and Lemma 4.4,

∣
∣
∣
∣

∫

θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ ≤ ‖θ‖Lq ‖ψ‖L p ≤ C̃ t−

2
p β r− 2

q ,

where C̃ is a constant. Therefore, for any fixed r0 > 0, there is T0 > 0 such that

∣
∣
∣
∣

∫

θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ ≤ rσ for any r ≥ r0 and t ≥ T0.

In particular, we choose r0 and δ > 0 as in Proposition 4.3. We make the inductive
assumption that there exists Tn > 0 such that, for t ≥ T0 + T1 + · · · + Tn ,

∣
∣
∣
∣

∫

θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ ≤ rσ for any r ≥ r0 e−nδ and ψ ∈ U(r) (4.8)

and show that, there exists Tn+1 > 0 such that, for t ≥ T0 + T1 + · · · + Tn + Tn+1,

∣
∣
∣
∣

∫

θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ ≤ rσ for any r ≥ r0 e−(n+1)δ and ψ ∈ U(r). (4.9)

The proof of (4.9) is slightly involved. Assume ψ ∈ U(r) with r ≥ r0 e−(n+1)δ .
Consider the backward in time evolution starting from ψ(x, t), namely ψ(x, τ ) with
τ ∈ [t − s, t] satisfying (4.3). Here 0 < s ≤ rβ , as in Proposition 4.3. Noticing
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the negative sign in the front of �βψ and applying the divergence-free condition,
∇ · u = 0, we can check that

d

dτ

∫

θ(x, τ ) ψ(x, τ ) dx = 0.

Therefore, for τ ∈ [t − s, t],
∫

θ(x, t) ψ(x, t) dx =
∫

θ(x, τ ) ψ(x, τ ) dx . (4.10)

Since the inductive assumption (4.8) fulfills the conditions of Proposition 4.3, we
have, by Proposition 4.3 with r ∈ [r0 e−(n+1)δ, r0 e−nδ) and Tn+1 = s = σrβ ,

ψ(·, t − Tn+1) ∈ e−δ σ U(reδ). (4.11)

Then, if

t ≥ T0 + T1 + · · · + Tn + Tn+1 and r ≥ r0 e−(n+1)δ,

we have

t − Tn+1 ≥ T0 + T1 + · · · + Tn and reδ ≥ r0 e−nδ.

Therefore, by (4.10) and (4.11),

∣
∣
∣
∣

∫

θ(x, t) ψ(x, t) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

θ(x, t − Tn+1) ψ(x, t − Tn+1) dx

∣
∣
∣
∣

≤ e−δ σ (reδ)σ = rσ .

That is, (4.9) is true. Finally we verify that (4.6) is true. According to our choice of
Tn above,

T = T0 +
∞∑

n=1

σ(r0e−nδ)β = T0 + σ rβ0 e−δβ 1

1 − e−δβ < ∞.

We have thus completed the proof of Proposition 1.2. ��
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Appendix 1: Proof of Proposition 4.3

This appendix provides a detailed proof of Proposition 4.3. The proof draws ideas
from Dabkowski (2011), but the framework is generalized to deal with the general
form of the SQG type equation and may be useful for future work. In addition, some
technical details are simplified here, for example, the proof of (5.7).

Proof of Proposition 4.3 According to Definition 4.1, it suffices to verify that ψ pos-
sesses the following properties:

(1) For any f0 ∈ Lip(1), namely f0 Lipschitz with Lipschitz constant 1,

∣
∣
∣
∣

∫

T2
f0(x) ψ(x, t − s) dx

∣
∣
∣
∣ ≤ r e(σ

−1−1)δ s r−β ; (5.1)

(2) For A and p as defined in Definition 4.1, and 1
p + 1

q = 1,

‖ψ(x, t − s)‖L p ≤ A
1
p r− 2

q e−(1+ 2
qσ )δ s r−β

. (5.2)

The proof of (5.1) is involved. The idea is to consider the evolution of f0 according
to an equation close to (1.6) so that we can use the condition ψ(x, t) ∈ U(r). Let ur

to be the mollification of u (u is defined in (1.6)), namely

ur = ρr ∗ u,

where ρr represents the standard mollifier, namely

ρ ≥ 0, ρ ∈ C∞
0 , suppρ ⊂ B(0, 1),

∫

T2
ρ(x) dx = 1, ρr (x) = r−2ρ(r−1x).

(5.3)

Here r is assumed to be small. Assume f = f (x, τ ) with τ ∈ [t − s, t] solves the
linear equation

∂τ f + ur · ∇ f +�β f = 0, f (x, t − s) = f0(x). (5.4)

It is then easily checked using (4.3) and (5.4) that

∫

f0(x) ψ(x, t − s) dx =
∫

f (x, t) ψ(x, t) dx

+
∫ t

t−s

∫

(u(x, τ )− ur (x, τ )) · ∇ f (x, τ ) ψ(x, τ ) dxdτ.

(5.5)

To bound the first term on the right, we show that

f (·, t) ∈ Lip(C1 eC s rα+σ−1
). (5.6)
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This can be achieved by simple energy estimates. In fact, ∇ f satisfies

∂τ (∇ f )+ ur · ∇(∇ f )+�β(∇ f ) = −(∇ur )(∇ f ).

To bound ‖∇ f ‖L∞ , we first bound ‖∇ f ‖Lγ for large γ and then let γ → ∞.
Multiplying each side by ∇ f |∇ f |γ−2, integrating in space and applying ∇ · ur = 0,
we find

1

γ

d

dt
‖∇ f ‖γLγ ≤ ‖∇ur‖L∞ ‖∇ f ‖γLγ ,

where we have applied the following inequality involving fractional Laplacian operator
(see Córdoba and Córdoba 2004),

∫

|∇ f |γ−2∇ f ·�β(∇ f ) dx ≥ 0.

Therefore,

‖∇ f (·, τ )‖Lγ (T2) ≤ ‖∇ f0‖Lγ (T2) e
∫ τ

t−s ‖∇ur (·,ζ )‖L∞(T2)dζ .

Due to ‖∇ f0‖Lγ (T2) ≤ (4π2)
1
γ ‖∇ f0‖L∞ and f0 ∈ Lip(1), we obtain by letting

γ → ∞,

‖∇ f (·, t)‖L∞ ≤ e
∫ t

t−s ‖∇ur (·,ζ )‖L∞(T2)dζ . (5.7)

Recall that

∇ur = ∇(ρr ∗ (̃u + v)) = ρr ∗ ∇ũ + ∇ρr ∗ v.

Due to (1.7), namely ũ ∈ Lip(M),

‖ρr ∗ ∇ũ‖L∞ ≤ ‖ρr‖L1‖∇ũ‖L∞ ≡ M < ∞. (5.8)

It is not difficult to verify that ∇ρr (x) = r−3(∇ρ)(r−1x) ∈ r−1U(2r) using the
fact that ‖∇ρr‖L1 ≤ r−1, ‖∇ρr‖L∞ ≤ C r−3 and ∇ρr has mean zero. Thus, by (4.2),

|∇ρr ∗ θ | =
∣
∣
∣

∫

θ(y)∇ρr (x − y) dy
∣
∣
∣ ≤ Cr−1 (2r)σ = C rσ−1, (5.9)

where we have used the fact that ∇ρr (x−y) = ∇ρr (y−x) ∈ r−1U(2r) (the translation
of a test function is still a test function). Since

v = −∇⊥�−2�−α∂1θ,

we have ‖v‖Cα ≤ ‖θ‖L∞ by using the fact that Riesz transforms ∇⊥�−2∂1 are
bounded in Hölder space. By 5.9 and Lemma 4.2 (relating a Hölder function to the
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power of r when acting on a test function),

|∇ρr ∗ v| ≤ C rα+σ−1. (5.10)

Inserting (5.8) and (5.10) in (5.7) leads to (5.6). By (5.6) and the fact thatψ(x, t) ∈
U(r),

∣
∣
∣

∫

f (x, t) ψ(x, t) dx
∣
∣
∣ ≤ C1 r eC s rα+σ−1

. (5.11)

Next we bound the second term on the right of (5.5). Applying Hölder’s inequality
in space and integrating in time, we obtain

∣
∣
∣

∫ t

t−s

∫

(u − ur ) · ∇ fψ(x, τ ) dxdτ
∣
∣
∣

≤ s sup
τ∈[t−s,t]

‖(u − ur )(·, τ )‖Lq ‖∇ f ‖L∞‖ψ(·, τ )‖L p . (5.12)

Recall that ‖∇ f ‖L∞ is bounded according to (5.6) and also 1
p + 1

q = 1. Since
ψ(·, t) ∈ U(r) and ‖ψ(·, τ )‖L p increases in time (due to the evolution equation
(4.3)), we have

‖ψ(·, τ )‖L p ≤ ‖ψ(·, t)‖L p ≤ A
1
p r− 2

q . (5.13)

It then suffices to bound ‖(u − ur )(·, τ )‖Lq . We claim that

‖(u − ur )(·, τ )‖Lq ≤ C rσ+α. (5.14)

Since ũ ∈ Lip(M),

‖(u − ur )(·, τ )‖Lq ≤ ‖(̃u − ũr )(·, τ )‖Lq + ‖(v − vr )(·, τ )‖Lq

≤ C r ‖∇ũ‖L∞ + ‖(v − vr )(·, τ )‖Lq

≤ C r M + ‖(v − vr )(·, τ )‖Lq .

Recall v = −∇⊥�−2�−α∂1θ . By the boundedness of Riesz transforms on Lq

(1 < q < ∞) and a simple analysis of Fourier series (Stein 1970),

‖(v − vr )(·, τ )‖Lq (T2) ≤ C ‖�−α(θ − θr )‖Lq (T2) ≤ Crα ‖θ − θr‖Lq (T2). (5.15)

To bound ‖θ − θr‖Lq (T2), we cover T
2 by Br , disks of radius r and the number of

such disks is of order r−2. First we bound ‖θ − θr‖Lq (Br ). For any constant c,

‖θ − θr‖Lq (Br ) ≤ ‖θ − c‖Lq (Br ) + ‖c − θr‖Lq (Br ) ≤ 2‖θ − c‖Lq (B3r ). (5.16)
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To further the estimate, we choose c such that sign(θ − c) |θ − c|q−1 has mean zero
on B3r , namely

∫

B3r

sign(θ − c) |θ − c|q−1 dx = 0.

Then,

‖θ − c‖q
Lq (B3r )

=
∫

B3r

(θ − c) sign(θ − c) |θ − c|q−1 dx

=
∫

B3r

θ sign(θ − c) |θ − c|q−1 dx

= r
2
q ‖θ − c‖q−1

L p(q−1)(B3r )

∫

T2
θ(x, τ ) φ(x, τ ) dx, (5.17)

where we have set

φ(x, τ ) = r− 2
q ‖θ − c‖−(q−1)

L p(q−1)(B3r )
χB3r sign(θ − c) |θ − c|q−1.

Since φ has mean zero, it is easily checked that φ satisfies, for any f ∈ Lip(1),

‖φ‖L p(T2) ≤ A
1
p (3r)−

2
q ,

∣
∣
∣
∣

∫

T2
f (x) φ(x, τ ) dx

∣
∣
∣
∣ ≤ C (3r)

for some constants A and C . That is, φ ∈ U(3r). Therefore, by (4.2) with eδ ≤ 3,

∣
∣
∣
∣

∫

T2
θ(x, τ ) φ(x, τ ) dx

∣
∣
∣
∣ ≤ (3r)σ . (5.18)

Inserting (5.18) in (5.17) and realizing that p(q − 1) = q, we have

‖θ − c‖q
Lq (B3r )

≤ C r
2
q +σ ‖θ − c‖q−1

Lq (B3r )

or

‖θ − c‖Lq (B3r ) ≤ C r
2
q +σ

. (5.19)

Since the number of disks needed to cover T
2 is of the order r−2, we combine

(5.15), (5.16) and (5.19) to obtain

‖v − vr‖Lq (T2) ≤ C r− 2
q r

2
q +σ+α = C rα+σ . (5.20)

123



J Nonlinear Sci (2015) 25:37–58 55

Therefore, by inserting (5.6), (5.13) and (5.20) in (5.12), we have

∣
∣
∣

∫ t

t−s

∫

(u(x, τ )− ur (x, τ )) · ∇ f (x, τ ) ψ(x, τ ) dxdτ
∣
∣
∣≤ C A

1
p rα+σ− 2

q s eCs rα+σ−1
.

(5.21)

Combining the bounds in (5.11) and (5.21) and recalling that

s ≤ rβ, α + β + σ − 2

q
> 1,

we have, by taking C rα+β+σ−1
0 ≤ C r

2
q

0 ≤ (σ−1 − 1)δ,

∣
∣
∣
∣

∫

T2
f0(x) ψ(x, t − s) dx

∣
∣
∣
∣ ≤ C r eCs rα+σ−1 ≤ r e(σ

−1−1)δ s r−β
.

We have thus completed the proof of (5.1).
Next we prove (5.2). To bound ‖ψ(·, τ )‖L p for τ ∈ [t − s, t], we multiply (4.3) by

� ≡ ψ |ψ |p−2, integrate in space and apply ∇ · u = 0 to obtain

1

p

d

dt
‖ψ(·, τ )‖p

L p =
∫

T2
��βψ dx . (5.22)

Applying the integral representation for �βψ (see Córdoba and Córdoba 2004),
we have
∫

��βψ dx = Cβ

∫

T2
�(x, τ )

∑

n∈Z2

p.v.
∫

T2

ψ(x, τ )− ψ(y, τ )

|x − y − n|2+β dy dx

= Cβ
∑

n∈Z2

p.v.
∫

T2×T2

�(x, τ )(ψ(x, τ )− ψ(y, τ ))

|x − y − n|2+β dydx

= Cβ
2

∑

n∈Z2

p.v.
∫

T2×T2

(�(x, τ )−�(y, τ ))(ψ(x, τ )− ψ(y, τ ))

|x − y − n|2+β dydx,

where p.v. denotes principal value. Since the integrand on the right-hand side is non-
negative, we have by keeping only the term with n = (0, 0),

∫

��βψ dx ≥ Cβ
2

p.v.
∫

T2×T2

(�(x, τ )−�(y, τ ))(ψ(x, τ )− ψ(y, τ ))

|x − y|2+β dxdy

≥ Cβ
2

∫

|x−y|≤r

(�(x, τ )−�(y, τ ))(ψ(x, τ )− ψ(y, τ ))

|x − y|2+β dxdy.

For |x − y| ≤ r ,

|x − y|−2−β ≥ r−βr−2 ≥ r−β ρr (x − y),
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where ρr is the standard mollifier defined in (5.3). Since �ψ = |ψ |p,

∫

��βψ dx

≥ Cβ
2

∫

T2×T2
(�(x, τ )−�(y, τ ))(ψ(x, τ )−ψ(y, τ )) r−βρr (x−y) dxdy

= Cβ

∫

T2×T2
|ψ(x)|p r−βρr (x − y)dxdy

− Cβ

∫

T2×T2
�(y, τ ) ψ(x, τ ) r−βρr (x − y)dxdy. (5.23)

Using the fact that ‖ρr‖L1 = 1, we have

∫

T2×T2
|ψ(x, τ )|p r−βρr (x − y)dxdy

= r−β
∫

T2
|ψ(x, τ )|p

∫

T2
ρr (x − y)dydx

= r−β‖ψ(τ)‖p
L p . (5.24)

Furthermore,

∣
∣
∣
∣

∫

T2×T2
�(y, τ ) ψ(x, τ ) r−βρr (x − y)dxdy

∣
∣
∣
∣

= r−β
∣
∣
∣
∣

∫

T2
ψ(x, τ )

∫

T2
ρr (x − y)�(y, τ )dy dx

∣
∣
∣
∣

= r−β
∣
∣
∣
∣

∫

T2
ψ(x, τ ) (ρr ∗�)(x) dx

∣
∣
∣
∣ .

This term is bounded by invoking (5.1). By taking suitable δ and σ such that, for
s ≤ rβ ,

eδ((σ
−1−1)sr−β ≤ 2.

If we set F = ρr ∗ � and f = F/‖∇F‖L∞ , then f ∈ Lip(1) and we obtain by
applying (5.1)

∣
∣
∣
∣

∫

T2×T2
�(y, τ ) ψ(x, τ ) r−βρr (x − y)dxdy

∣
∣
∣
∣ ≤ r−β 2r ‖∇F‖L∞

≤ 2r1−β‖∇ρr ∗�‖L∞

≤ 2r1−β‖∇ρr‖L p ‖�‖Lq

≤ C r1−β r−1− 2
q ‖ψ‖p−1

L p .
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If ‖ψ‖L p ≤ 1
2 A

1
p r− 2

q , then (5.2) is already proven. If ‖ψ‖L p ≥ 1
2 A

1
p r− 2

q , then

∣
∣
∣
∣

∫

T2×T2
�(y, τ ) ψ(x, τ ) r−βρr (x − y)dxdy

∣
∣
∣
∣ ≤ C A− 1

p r−β‖ψ‖p
L p . (5.25)

Inserting (5.24) and (5.25) in (5.23), we obtain

∫

�(x, τ )�βψ(x, τ ) dx ≥ (1 − C A− 1
p ) r−β‖ψ‖p

L p .

It then follows from integrating (5.22) that

‖ψ(·, t − s)‖L p ≤ e−s(1−C A
− 1

p ) r−β ‖ψ(·, t)‖L p .

Since ψ(x, t) ∈ U(r), in particular, ‖ψ(·, t)‖L p ≤ A
1
p r− 2

q , we have

‖ψ(·, t − s)‖L p ≤ A
1
p r− 2

q e−(1−C A
− 1

p ) s r−β ≤ A
1
p r− 2

q e−(1+ 2
qσ )δsr−β

when (1+ 2
qσ )δ ≤ (1−C A− 1

p ). This proves (5.2). We thus have completed the proof
of Proposition 4.3. ��
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