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1. Introduction

This paper concerns itself with the stability problem for the following Boussinesq system with partial
dissipation
Oyu1 +u - Vuy :—81P+1/822u1, Z‘ER2, t>0,
Osug +u - Vug = —09P + v 011us + O, JCERQ, t>0,
00 +u-VO=ndn6, wcR2 t>0, (1.1)
V-u=0, zeR? t>0,
where u = (u1,ug) denotes the velocity field, P the pressure, © the temperature, and v > 0, n > 0 are the
viscosity and the thermal diffusivity, respectively. Here d; stands for the partial derivative with respect to
21 and the notation Js is similar. It is easy to verify that (1.1) admits the following steady state solution

1
u® =(0,0), 00 =z, PO= ixg (1.2)

This special solution represents the hydrostatic equilibrium. Hydrostatic equilibrium or hydrostatic balance
in fluid dynamics refers to the status of a fluid when it is at rest. This occurs when the gravity is balanced
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out by the pressure-gradient force. Our atmosphere is mostly in the hydrostatic equilibrium. The pressure-
gradient force prevents gravity from collapsing Earth’s atmosphere into a thin shell, whereas gravity prevents
the pressure gradient force from diffusing the atmosphere into space [1,2]. Understanding the stability of
perturbations near the hydrostatic balance is important both mathematically and physically.
This paper examines the stability of perturbations near the hydrostatic equilibrium in (1.2). To this end,
we consider the perturbation (u,f) with § = @ — zq. It is easy to check that, if (u, ©) satisfies (1.1), then
(u, 0) satisfies
Owut +u-Vuy = —01 P + v Oxuq, I’ER2, t>0,
3tu2+u-Vu2:—82P+1/811u2+9, .’EGRz, t >0,
00 +u-VO+uy =000, x€R? t>0,
V-u=0, zcR? t>0.

We are able to establish the following global stability result.

(1.3)

Theorem 1.1. Consider (1.3) with the initial data (ug,0p) € H'(R?). Then there exists a constant § > 0
such that, if || (uo, 00)|| g1 < 0, then (1.3) has a unique global solution (u, ) in the reqularity class

(u,0) € L(0,00; HY(R?)), douy, Orus, 0160 € L2(0, 00; H (R?)). (1.4)

Furthermore, (u, ) satisfies

(), 0() [ < C9, (1.5)

where C = C(v,n) is a constant.

The Boussinesq equations, especially those with partial dissipation have recently attracted considerable
interests. There are substantial developments on two fundamental problems, the global regularity and
stability problems (see, e.g., [3-12]). Our motivation of this study is two fold. The first is related to
the stability problem on the 2D Navier—Stokes equations with partial dissipation. The 2D Navier—Stokes
equations with full dissipation have the stability property that the H2-norm of any solution does not grow
in time. In contrast, the H2-norm of solutions to the 2D Euler equations may grow double exponentially
in time [13]. A natural question is whether solutions to the 2D Navier—-Stokes with partial dissipation are
stable.

The second motivation is due to several very recent important results on the stability problem on the
Boussinesq equations. Doering, Wu, Zhao and Zheng [6] were able to obtain the stability of the hydrostatic
balance of the 2D Boussinesq equations with only dissipation (without thermal diffusion). In addition, [6]
showed that all first-order derivatives of the velocity field decay to zero. However, [6] left open the exact
decay rates of the velocity and the eventual temperature profile. [10] made further progress by providing
precise decay rates of the velocity, and the temperature profile for the solution of the linearized perturbation
system. A conditional decay rate for the full nonlinear system is also obtained in [10]. When there is no
thermal diffusion, no information on the derivative of the temperature has been obtained and the stability
of the temperature gradient remains unknown. Theorem 1.1 is able to assess the stability of the temperature
gradient when the 2D Boussinesq system involves the horizontal thermal diffusion. It is also worth mentioning
the beautiful work of [4], which studied the stability of the hydrostatic balance for the 2D Boussinesq with
a velocity damping term.

We employ the bootstrapping argument to prove the desired H!-stability. We define the H!'-energy A(t)
by

t t
A(t) = w3 + 1017 + 277/ ||319(T)||?11d7+21// (1021 [I7 + [[Orusll7 )dr
0 0
and prove that, for a constant C' > 0 and any ¢ > 0,

A(t) < A(0) + C A(t)2. (1.6)
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A bootstrapping argument (see, e.g., [14, p. 20]) then yields (1.5). The proof of (1.6) involves the estimates of
quite a few triple product terms. The following anisotropic estimate for triple products is extremely useful.

Lemma 1.2. Assume that f, g, O2g, h and d1h are all in L*(R?). Then,
1 1 1 1
/ / \Fohldzdy < C|fll 2 llal E2 1920l S 11 2, 0121 2

This lemma can be found in [15]. The rest of this paper is devoted to the proof of Theorem 1.1, which is
provided in the next section.

2. Proof of Theorem 1.1
This section proves Theorem 1.1. For the sake of clarity, the proof is divided into two main parts: the

H'-stability and the uniqueness. The local existence can be obtained by a standard approach of Friedrichs’
method of cutoff in Fourier space (see, e.g., [16]), we omit the details here.

2.1. The H'-stability

This subsection proves the stability part of Theorem 1.1. First of all, we have the global L? bound

t t
lu(t)l|72 + 10172 +2V/0 (l0zus]|72 + HaluQHiz)dTJr?n/o 101617 dr

= [|uoll72 + [IbolI72- (2.1)

To bound [|Vul|;2 and ||V0|| 2, we resort to the vorticity equation,

Ow +u-Vw = l/(8111U2 — 822211,1) + 8197 (2 2)
8t9+u-v9+u2 :7]8119. ’
Taking the gradient of the second equation of (2.2) and dotting by (w, V) yield
1d 2 2 2
5 g Uwlize + IVOIL2) + |01Vl
= V/(8111U,2 — 8222u1)wda: + /(819&1 —Vus - Vﬁ)dx — /VG -Vu - Vodx
= K1+K2+K3. (23)

Writing w = 01us — Jau1, we have, by integration by parts,

Kl = V/2(8111u2 - 8222U1)(81U2 - a?“l)dx
R

—y/(811u2)2 + (8221“)2[156 — V/&nﬂtg@guldﬂ? — V/8222U181U2dl’

—I//(|({92VU1|2 + |81VU2|2)d£E
Writing u = V419 = (=029, 019) and Ay = w, we have

Ky = / (010 Ay — Vo - VO)dx = /(V@lw -V — Vo - VO)dx = 0.
R2
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To bound K3, we write out the four terms in K3 explicitly,
K3 = — /2 (O1u1 (010)% + 9112010050 + D2u1010050 + Dausz(920)%)da
= K31]R+ K32 + K33 + K.
By Lemma 1.2,

1 1 1 1
|[Ks1| < Cllovur]| 2101011 7211010201 72110101 7210101011 75 < C lJull 1 1010171,

1 1 1 1

|[K32| < C||O1uzl|p21[010]1721]01020| ;2 (1020|172 []01020|| 72 < C{[0]] g1 [|O1uz]| g1 [[016]| g1
1 1 1 1

|K33| < Cl|02un || 12[|010]] 7201020 72 (102011 7211010201 72 < C[|0]| g1 (| O2ua || g1 (|16 1.

To bound K34, we integrate by parts and apply Lemma 1.2,

K34 = /61u1(829)2d.13 = —2/U182061829dl‘

1 1 1 1
< C1010:0] 12110201172 101020] p2 [ || L2 1 02un | 72
1 1 1 3
< Cllull g 101152 102wl Fa 1016]] 51 -

We now set

t t
A(t) = [lu(®) 72 + 107 +277/ ||519(T)H§11d7+2V/ (02ual[F + 10ruall 3 )dr
0 0

The time integral of the bounds for K31, K39, K33 and K34 satisfies
t

| Kaldr<C sup ()] 1 / 1016021 dr < C A(t)?
TE[0,t
and . . . \

/ | K32| d, / | K33 d, / | K34 dr < C A(t)2.
Using the fact that [|[Vul| 2 :O||w||L2, integsating (2.3) ir? time and combining with (2.1), we find

A(t) < A(0) + CA(t)2.
A bootstrapping argument implies that, there is § > 0, such that, if A(0) < J, then
A(t) < Co

for a pure constant C' and for all ¢ > 0. This implies H !-stability.

2.2. Uniqueness

This subsection proves the uniqueness part of Theorem 1.1. We show that two solutions (~u(i)7 JLONION
and (u®), P(® §®)) of (1.3) in the regularity class (1.4) must coincide. Their difference (%, P, #) with
d=uV —u®, p=ph_pR g=90 _§®
satisfies, according to (1.3),

Oyl 4 - w1 +u® - Viiy = 0\ P + v 9ot
Oty + 1 - Vu ) L u® . Viip = —82P+V811u2+9
0,0+ - ve(1> +u® . V0 + Uy = n 0116,

V-u=0.
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Simple energy estimates show that
Ld (o PR ~ 12 ~ 12 a2
3d (Ilu(t)l\Lz + ||9(t)||Lz) + v([|02ur]72 + [012ll72) + nll010]|72

:—/26~Vu(1)ﬂdw—/zﬂ-ve(l)adx =1 + L.
R R

The two terms on the right-hand side can be bounded as follows.

1| < [Vu® | p2lfi@l|2a < CIVuD || Lo |[T]| L2 ]|V 12
14 — ~ ~
< Z(H@zulﬂiz + |101T2)172) + CI VU3 |[a] 32

By Lemma 1.2,

I

- / 2171310(1)5@* / U020 O
R

2
o )2 ]Ru)lNl 712
Cllun]l 2100071172 1102000 [ 2211011 1016117 5

1 1 1 ~ 1
+C 10200 | o[tz 172 1922 22 1012211016 2
Nya 7 v ~ ~
101011 + - (10152 |7 + (1027 |1 72)

IN

IN

~ 2 2
+C([[al 2 + 161172) (101601 F110: V0D |1 75 + 82617 2).

Combining the estimates above yields, for Y () = [[a(t)||32 + [|6(2)]|3 2,

d _ . ~
Y O + (10237 + 0172 72) + nllor0] 72 < a(®)Y (#), (2.4)

where , ,
a(t) = C|VuM |72 + Cl[016W 2,00 VOV |2, + C||9:07V][7 ..

Since (u™,0M) is in the regularity class (1.4), we have, for any T > 0,
T
/ a(t)dt < C(T) < +o0.
0
Gronwall’s inequality applied to (2.4) implies that, for any T > 0,
Y(#)=0 for t€][0,T).

The uniqueness result follows.
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