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Abstract
This paper focuses on the three-dimensional (3D) incompressible anisotropic Boussinesq
system with horizontal dissipation. The goal here is to assess the stability property and pin-
point the precise large-time behavior of perturbations near the hydrostatic balance. Important
tools such as Schonbek’s Fourier splitting method have been developed to understand the
large-time behavior of PDE systems with full dissipation, but these tools may not apply
directly when the systems are only partially dissipated. This paper solves the stability prob-
lem and designs an effective approach to obtain the optimal decay rates for the anisotropic
Boussinesq system concerned here. The tool developed in this paper may be useful for many
other partially dissipated systems.

Mathematics Subject Classification 35B35 · 35B40 · 35Q35 · 76D03

1 Introduction

This paper intends to understand the stability of the hydrostatic balance or hydrostatic equi-
librium and provide optimal estimates on the large-time behavior of perturbations near the
hydrostatic balance. There are two distinct motivations for this study. The first is physical.
Hydrostatic balance is an important equilibrium of many geophysical fluids. In fact, our
atmosphere is mainly in hydrostatic balance, between the upward-directed pressure gradient
force and the downward-directed force of gravity. Understanding the stability of pertur-
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bations near the hydrostatic equilibrium may help gain insight into certain severe weather
phenomena (see, e.g., [17, 24]). The second is mathematical. The partial differential equation
(PDE) system concerned here models anisotropic fluids and involve only partial dissipation.
Although significant progress has been made on the large-time behavior of fully dissipated
PDE systems (see, e.g., [25–27]), but the large-time behavior of anisotropic PDE systems
is generally not well-understood and is a very active research topic. This paper offers new
ideas and presents a successful story on a partially dissipated Boussinesq system.

Themost frequently employed PDEmodel for geophysical fluids is the Boussinesq system
for buoyancy-driven fluids (see, e.g., [8, 11, 20, 24, 34]). The Boussinesq system studied here
is for anisotropic fluids and involves only horizontal dissipation,

⎧
⎨

⎩

∂t u + u · ∇u = −∇P + ν �hu + �e3, x ∈ R
3, t > 0,

∂t� + u · ∇� = η �h�, x ∈ R
3, t > 0,

∇ · u = 0, x ∈ R
3, t > 0,

(1.1)

where u = (u1, u2, u3) denotes the velocity field, P the pressure, � the temperature, e3 =
(0, 0, 1), and ν > 0 and η > 0 are the viscosity and the thermal diffusivity, respectively. Here
�h = ∂x1x1 + ∂x2x2 stands for the horizontal Laplacian. For notational convenience, we shall
write ∂i for ∂xi for i = 1, 2, 3, and ∇h = (∂1, ∂2). (1.1) arises naturally in the modeling of
anisotropic fluids such as the rotating fluids in Ekman layers. A standard reference is Chapter
4 of Pedlosky’s book [24].

The hydrostatic balance given by

u(0) ≡ (0, 0, 0), �(0) = x3, P(0) = 1

2
x23 (1.2)

is a very special steady-state solution of (1.1) with great geophysical and astrophysical impor-
tance (see, e.g., [17, 23, 24, 33]). To understand the stability and large-time behavior of
perturbations near the hydrostatic balance in (1.2), we consider the equations governing the
perturbation (u, θ, p) with θ = � − x3, p = P − P(0),

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + u · ∇u = −∇ p + ν �hu + θe3, x ∈ R
3, t > 0,

∂tθ + u · ∇θ + u3 = η �hθ, x ∈ R
3, t > 0,

∇ · u = 0, x ∈ R
3, t > 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ R
3.

(1.3)

We remark that here buoyancy acts in the direction of gravity e3 and that the gravitational
constant is rescaled to 1.Our goal here is to understand the stability problem and give a precise
account of the large time behavior of the solutions to (1.3). The large-time behavior problem
is not trivial. Due to the presence of the buoyancy forcing term θe3 in the velocity equation,
Sobolev norms and even the L2-normof the velocity in (1.1) can grow in time. Brandolese and
Schonbek have shown in [6] that the L2-norm of the velocity to the Boussinesq system with
full viscous dissipation and thermal diffusion can grow in time even for very nice initial data
(say, data that are smooth, fast spatial decaying and small in some strong norm). Therefore
the original system (1.1) is not even stable due to the explicit examples of Brandolese and
Schonbek [6]. Perturbing near the hydrostatic balance generates the new term u3 in (1.3),
which helps balance the buoyancy force. In fact, the buoyancy term is canceled by the new
term u3 in the process of estimating ‖u‖2

L2 +‖θ‖2
L2 or Sobolev norms. We caution that, if we

take �(0) = −x3, then we may have instability [12]. However, due to the lack of the vertical
dissipation, the system (1.3) is degenerate. Indeed, the wave equations in (1.7) converted
from this system are degenerate wave equations. A quick inspection on the spectra of the
linearized system of (1.3) would shed light on the nature of this degeneracy.
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To separate the linear parts in (1.3) from the nonlinear parts, we apply theHelmholtz-Leray
projection P = I − ∇�−1∇· to the velocity equation in (1.3) to obtain

∂t u = ν�hu + P(θe3) − P(u · ∇u). (1.4)

By the definition of P,

P(θe3) = θe3 − ∇�−1∇ · (θe3) =
⎡

⎣
−∂1∂3�

−1θ

−∂2∂3�
−1θ

θ − ∂23�−1θ

⎤

⎦ . (1.5)

Alternatively we can write θ − ∂23�−1θ = �h�
−1θ . Inserting (1.5) in (1.4) yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u = ν�hu +
⎡

⎢
⎣

−∂1∂3�
−1θ

−∂2∂3�
−1θ

�h�
−1θ

⎤

⎥
⎦ − P(u · ∇u),

∂tθ = η�hθ − u3 − u · ∇θ,

(1.6)

which separates the linear parts from the nonlinear parts. Furthermore, by differentiating
(1.6) in time and making suitable substitutions, we discover that (1.6) can be converted into
a system of anisotropic and degenerate wave equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t t u1 − (ν + η)�h∂t u1 + νη�2
hu1 + ∂21�−1u1 + ∂1∂2�

−1u2 = N1,

∂t t u2 − (ν + η)�h∂t u2 + νη�2
hu2 + ∂1∂2�

−1u1 + ∂22�−1u2 = N2,

∂t t u3 − (ν + η)�h∂t u3 + νη�2
hu3 + �h�

−1u3 = N3,

∂t tθ − (ν + η)�h∂tθ + νη�2
hθ + �h�

−1θ = N4,

(1.7)

where

N1 = (−∂t + η�h) (P(u · ∇u))1 + ∂1∂3�
−1(u · ∇θ),

N2 = (−∂t + η�h) (P(u · ∇u))2 + ∂2∂3�
−1(u · ∇θ),

N3 = (−∂t + η�h) (P(u · ∇u))3 − �h�
−1(u · ∇θ),

N4 = (−∂t + ν�h)(u · ∇θ) + (P(u · ∇u))3 .

Clearly, u3 and θ satisfy the same linear wave equation with different nonlinear parts. The
equations for u1 and u2 are slightly different. The precise formula of the spectra can be
obtained from (1.6) or (1.7). To avoid nonessential notation complications, we set ν = η = 1.
Taking the Fourier transform of the linear portion of (1.6), we have

∂t

[
û
θ̂

]

= A

[
û
θ̂

]

, (1.8)

where A denotes the matrix of multipliers associated with the linear operators,

A =

⎡

⎢
⎢
⎢
⎢
⎣

−|ξh |2 0 0 − ξ1ξ3
|ξ |2

0 −|ξh |2 0 − ξ2ξ3
|ξ |2

0 0 −|ξh |2 |ξh |2
|ξ |2

0 0 −1 −|ξh |2

⎤

⎥
⎥
⎥
⎥
⎦
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with ξh = (ξ1, ξ2). The corresponding characteristic polynomial is given by

(λ + |ξh |2)2
(

λ2 + 2|ξh |2λ + |ξh |4 + |ξh |2
|ξ |2

)

= 0,

which yields the spectra,

λ1 = λ2 = −|ξh |2, λ3 = −|ξh |2 − |ξh |
|ξ | i, λ4 = −|ξh |2 + |ξh |

|ξ | i .

The spectra reveal that the dissipation in the linearized system is essentially horizontal. More
precisely, The real part of all eigenvalues λ j with j = 1, 2, 3, 4 is −|ξh |2 and thus

|eλ j t | = e−|ξh |2t ,

which is the symbol of the heat operator associated with the horizontal Laplacian. Therefore,
as far as the large-time behavior is concerned, this linearized system is essentially controlled
by the horizontal Laplacian. Classical tools for large-time behavior such that Schonbek’s
Fourier splitting method no longer directly apply to the system studied here. This paper
develops a new approach to obtain the optimal decay rates for this partially dissipated system.
We expect this approach to work for many other partially dissipated PDE sytems.

To gain insight on our problem, we briefly examine the 3D anisotropic heat equation with
horizontal dissipation

{
∂t u = ν�hu, x ∈ R

3, t > 0,

u(x, 0) = u0(x), x ∈ R
3.

(1.9)

In order to obtain an explicit decay rate of the solution to (1.9), the energy method is no
longer sufficient and the explicit representation of the solution is necessary,

u(t) = eν�h t u0.

To extract the sharp decay rates for the solution u of (1.9), it is generally necessary to assume
either u0 in a suitable Lebesgue space

u0 ∈ Lq(R3) with 1 ≤ q < 2,

or in a Sobolev space with negative index. Since the dissipation in (1.9) is only horizontal,
the negative derivatives should also be horizontal,


−σ
h u0 ∈ L2,

where 
−σ
h u0 is defined in terms of the Fourier transform

̂
−σ
h u0(ξ) = |ξh |−σ û0(ξ).

We can easily check that the solution u of (1.9) and its first-order derivatives obeys the
following optimal decay rates, for any t > 0,

‖u(t)‖L2 ≤ C (νt)−
σ
2 ‖
−σ

h u0‖L2 , (1.10)

‖∂3u(t)‖L2 ≤ C (νt)−
σ
2 ‖∂3
−σ

h u0‖L2 , (1.11)

‖∇hu(t)‖L2 ≤ C (νt)−
σ+1
2 ‖
−σ

h u0‖L2 . (1.12)

The estimates above follow from the solution formula û(ξ, t) = e−ν|ξh |2t û0(ξ). The power
decay in t is due to arbitrarily small frequencies.
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With these helpful hints from the heat equation, our approach starts with solving the
linearized system (1.8) and representing the nonlinear system (1.6) in an integral form via
the Duhamel principle

[
û(t)
θ̂(t)

]

= eAt
[
û0
θ̂0

]

+
∫ t

0
eA(t−τ)

[
M̂1(τ )

M̂2(τ )

]

dτ,

where M1 and M2 are the two nonlinear terms in (1.6),

M1 = −P(u · ∇u), M2 = −u · ∇θ.

To avoid possible notational confusion, we remark that M1 ∈ R
3 and M2 ∈ R are not compo-

nents. In order to obtain an explicit formula for the fundamental matrix eAt , we diagonalize
A via its eigenvalues and eigenvectors, and break eAt down to explicit kernel functions. The
detailed derivation and the precise integral representation of (1.6) are given in Sect. 2. Alter-
natively we could have also achieved the same formula by solving the wave equations in
(1.7).

As a preparation for the optimal decay rates on the nonlinear system, we first examine the
linearized system of (1.6), namely

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u = ν�hu +
⎡

⎢
⎣

−∂1∂3�
−1θ

−∂2∂3�
−1θ

�h�
−1θ

⎤

⎥
⎦ ,

∂tθ = η�hθ − u3.

The analysis is performed on its corresponding explicit solution representation,

ûh = eλ1t û0h +
(

ξhξ3

|ξh |2 e
λ1t + ξhξ3

|ξh |2G2 + ξhξ3G1

)

û03 − ξhξ3

|ξ |2 G1θ̂0 (1.13)

û3 = (−G2 − |ξh |2G1
)
û03 + |ξh |2

|ξ |2 G1θ̂0 (1.14)

θ̂ = −G1û03 + (G3 + |ξh |2G1)θ̂0, (1.15)

where G1, G2 and G3 are given by (see (2.4) below)

G1 = eλ4t − eλ3t

λ4 − λ3
= e−|ξh |2t

( |ξh |
|ξ |

)−1

sin
|ξh |
|ξ | t,

G2 = λ3eλ4t − λ4eλ3t

λ4 − λ3
= λ3G1 − eλ3t ,

G3 = λ4eλ4t − λ3eλ3t

λ4 − λ3
= λ3G1 + eλ4t .

We are able to obtain the stability and optimal decay rates stated in the following proposition.
The results in this proposition and their proofs are part of our program for optimal decay rates
on the nonlinear system (1.6), and will be used in the proof of our main result, Theorem 1.3
below.

Proposition 1.1 Let s be non-negative and σ > 0. Assume the initial velocity field u0 =
(u01, u02, u03) satisfies ∇ · u0 = 0.

(1) If (u0, θ0) satisfies

u0, θ0, 
−σ
h u0, 
−σ

h θ0 ∈ Ḣ s,
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then the solution (u, θ) given by (1.13), (1.14) and (1.15) satisfies

‖u(t)‖Ḣ s , ‖θ(t)‖Ḣ s ≤ C
(‖(u0, θ0)‖Ḣ s + ‖(
−σ

h u0,

−σ
h θ0)‖Ḣ s

)
(1 + t)−

σ
2 . (1.16)

(2) If (u0, θ0) satisfies

∂3u0, ∂3θ0, 
−σ
h ∂3u0, 
−σ

h ∂3θ0 ∈ Ḣ s,

then

‖∂3u(t)‖Ḣ s , ‖∂3θ(t)‖Ḣ s

≤ C
(‖(∂3u0, ∂3θ0)‖Ḣ s + ‖(
−σ

h ∂3u0,

−σ
h ∂3θ0)‖Ḣ s

)
(1 + t)−

σ
2 . (1.17)

(3) If (u0, θ0) satisfies


−σ
h u0, 
−σ

h θ0 ∈ Ḣ s,

then, for any t > 0,

‖∇hu(t)‖Ḣ s , ‖∇hθ(t)‖Ḣ s ≤ C ‖(
−σ
h u0,


−σ
h θ0)‖Ḣ s t−

σ+1
2 . (1.18)

If, in addition, (u0, θ0) satisfies


−σ
h ∇hu0, 
−σ

h ∇hθ0 ∈ Ḣ s,

then

‖∇hu(t)‖Ḣ s , ‖∇hθ(t)‖Ḣ s

≤ C
(‖(
−σ

h ∇hu0,

−σ
h ∇hθ0)‖Ḣ s + ‖(
−σ

h u0,

−σ
h θ0)‖Ḣ s

)
(1 + t)−

σ+1
2 . (1.19)

The bounds for the linearized problem are explicit and thus easily seen to be optimal. It is
also clear that the vertical derivatives have the same decay rate as that for the solution itself,
but the horizontal derivatives increase the decay rate by −1/2. We also remark that (1.18)
is suitable for large t > 0. For t > 0 close to 0, (1.18) is an over-estimate and should be
replaced by (1.19).

The second preparation is a small data global well-posedness and stability result on the
nonlinear system (1.6).

Proposition 1.2 Consider the nonlinear system in (1.3) with ν > 0 and η > 0. Assume
(u0, θ0) ∈ Hm(R3) with m ≥ 2 satisfies ∇ · u0 = 0. Then there exists ε = ε(ν, η) > 0 such
that, if

‖u0‖Hm + ‖θ0‖Hm ≤ ε,

then (1.3) has a unique global solution (u, θ) ∈ L∞(0,∞; Hm) satisfying, for a constant
C > 0 and for all t ≥ 0,

‖u(t)‖2Hm + ‖θ(t)‖2Hm + ν

∫ t

0
‖∇hu‖2Hm dτ + η

∫ t

0
‖∇hθ‖2Hm dτ ≤ C ε2.

We are now ready to state our main results presenting the stability and optimal decay rates
for perturbations near the hydrostatic balance.
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Theorem 1.3 Consider the nonlinear system in (1.3) with ν > 0 and η > 0. Let 3
4 ≤ σ < 1.

Assume (u0, θ0) ∈ H4(R3) satisfies ∇ · u0 = 0,

‖u0‖H4 + ‖θ0‖H4 ≤ ε, (1.20)

‖
−σ
h u0‖L2 + ‖
−σ

h θ0‖L2 ≤ ε, (1.21)

‖∂3
−σ
h u0‖L2 + ‖∂3
−σ

h θ0‖L2 ≤ ε (1.22)

for some sufficiently small ε > 0. Then (1.3) has a unique global solution (u, θ) satisfying,
for a constant C > 0 and for all t ≥ 0,

‖u(t)‖H4 + ‖θ(t)‖H4 ≤ C ε,

‖
−σ
h u(t)‖L2 + ‖
−σ

h θ(t)‖L2 ≤ C ε,

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C ε(1 + t)−
σ
2 ,

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C ε(1 + t)−
σ
2 − 1

2 .

The regularity requirement (u0, θ0) ∈ H4 and the condition σ ≥ 3
4 are needed in order

to handle the most challenging term ∂33u when we estimate ‖∂3u‖L2 . More technical details
are provided on pages 28-29 in the proof of Theorem 1.3. The decay rates for the solution are
the same as those in (1.10), (1.11) and (1.12), and are thus optimal. The sharp decay result
presented here appears to be the first such result on the 3D anisotropic Boussinesq equations.
It is hoped that this result together with its proof helps chart a new path to the stability and
large-time behavior problems involving anisotropic fluids.

We thank the referee and the editor for bringing to our attention the work of Shang and Xu
[28]. Shang and Xu [28] examined the stability of two Boussinesq systems with dissipation
and thermal diffusion in two directions as well as the decay of the corresponding linearized
systems. Their decay results, stated in their Theorems 1.3 and 1.6, are for the linearized
systems (1.10) and (1.17) in [28], which involve no nonlinear terms. Their paper doesn’t
provide any decay result for the nonlinear systems.

Themain goal of our paper is to obtain the optimal decay rates of the nonlinear Boussinesq
system involving only horizontal dissipation. It is generally much more difficult to obtain
the large-time behavior of nonlinear PDE systems. The anisotropic dissipation here makes
the optimal decay problem even more challenging. Since only dissipation in the horizontal
directions is available, the nonlinear effects requiremuchmore delicate analysis. In particular,
we need to exploit cancellations and other properties such as the incompressibility in order
to control terms involving vertical derivatives.

Since the energymethod and other classical tools such as the Fourier-splitting scheme [25]
no longer work for the nonlinear Boussinesq system considered here, this paper proposes and
implements an innovative approach. We derive and make use of the integral representation
of the nonlinear Boussinesq system. Our approach consists of three main steps. The first is to
solve the linearized system explicitly and use this explicit solution formula to derive decay
rates for the solution itself as well as its derivatives. The main result of this step is presented
in Proposition 1.1. In comparison with the decay results for the linearized systems in [28],
Proposition 1.1 contains much more information. Besides the decay rate for the Hs-norm,
Proposition 1.1 also features decay rates for the horizontal and the vertical derivatives, which
are optimal and reveal a faster decay rate for the horizontal derivative. The second main step
is to establish the small data global well-posedness and stability for the nonlinear system.
The result of this step is stated in Proposition 1.2. In particular, Proposition 1.2 guarantees
that the solution of the nonlinear system is global and it is legitimate to study its precise
large-time behavior. The third step, the main thrust of our work, is to establish the optimal

123
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decay rates for the nonlinear Boussinesq system, as stated in Theorem 1.3. By the explicit
solution formula of the linearized system and Duhamel’s principle, we convert the nonlinear
Boussinesq system into an integral representation. Then the bootstrapping argument is applied
to this integral form. Due to the lack of dissipation in the vertical direction, the analysis on the
nonlinear effects is very difficult and involved. In particular, we need to exploit cancellations
and other properties such as the incompressibility in order to control terms involving vertical
derivatives.

The framework of the proof is to apply the bootstrapping argument to the integral rep-
resentation of the nonlinear system given by (2.1), (2.2) and (2.3). A very useful abstract
version of the bootstrap principle can be found in [31,p. 21]. We assume the initial datum
(u0, θ0) satisfies the assumptions (1.20), (1.21) and (1.22), and make the ansatz that the
solution (u, θ) satisfies, for a suitably selected constant C0 > 0,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0 ε,

‖
−σ
h u(t)‖L2 , ‖
−σ

h θ(t)‖L2 ≤ C0 ε,

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 ,

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 − 1

2 ,

for t ∈ [0, T ]with T > 0. The initial time T > 0 exists by local well-posedness. By imposing
the smallness conditions on (u0, θ0) as in (1.20), (1.21) and (1.22), we then show via (2.1),
(2.2) and (2.3) that (u, θ) actually satisfies the following improved inequalities,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0

2
ε, (1.23)

‖
−σ
h u(t)‖L2 , ‖
−σ

h θ(t)‖L2 ≤ C0

2
ε, (1.24)

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (1.25)

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 − 1

2 . (1.26)

The bootstrapping argument then implies that the maximal time T with this property is given
by T = ∞. Thus, the four inequalities above indeed hold for all t < ∞. In particular, they
yield the global in time bounds and decay rates.

Our main efforts are devoted to proving (1.23), (1.24), (1.25) and (1.26). The initial time
T > 0 exists by local well-posedness. Proving these improved inequalities is very hard due
to the lack of full dissipation. As aforementioned, some of the nonlinear terms such as ∂33u
in the expression of ∂3u require extremely careful analysis. Various cancellations and other
properties are exploited. This is a long and nontrivial process. Various anisotropic inequalities
are invoked to fully make use of the anisotropic dissipation in the system. In order to obtain
suitable upper bounds for some of the terms, we have to exploit the structure of the kernel
function together with the corresponding term it acts on. To explain this point, we take two
terms from the representation of uh in (2.1) as an example,

(
ξhξ3

|ξh |2 e
λ1t + ξhξ3

|ξh |2G2 + ξhξ3G1

)

û03 (1.27)

and
∫ t

0

(
ξhξ3

|ξh |2 e
λ1(t−τ) + ξhξ3

|ξh |2G2(t − τ) + ξhξ3G1(t − τ)

)

( ̂P(u · ∇u))3(τ ) dτ. (1.28)

123
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The kernel function in (1.27) has a factor 1
|ξh | , which has to be canceled in order to obtain a

bound of the form e−|ξh |2t . The idea here is to combine ξ3 with û03 and use the divergence-free
condition ξ3û03 = −ξh · û0h to generate a factor ξh . To deal with the nonlinear term (1.28),
we have also managed to generate factor ξh in ( ̂P(u · ∇u))3. By applying the definition of
the projection operator and the divergence-free condition ∇ · u = 0, and invoking some
cancellations via combination, we find the identity

( ̂P(u · ∇u))3 = ̂∇h · (uhu3) − ̂∇h · ∂3�−1∇ · (u ⊗ uh)

− ̂∇h · �−1∂33(uhu3) + ̂�−1�h∂3(u3u3)

and the Fourier transform of the right-hand side involves ξh , which allows us to cancel
the factor 1

|ξh | in the kernel. More technical details can be found in the proofs of the two
propositions and Theorem 1.3.

Finally, we mention some of the closely related work. Due to their practical applications
andmathematical significance, the stability and large-time properties of perturbations near the
hydrostatic balance have recently attracted considerable mathematical interests. The work
of Doering et al. [12] investigated the stability of the hydrostatic equilibrium to the 2D
Boussinesq systemwith only kinematic dissipation (without thermal diffusion) and rigorously
proved the global asymptotic stability of any perturbation near the hydrostatic equilibrium
[12]. In addition, extensive numerical simulations are performed in [12] to corroborate the
analytical results and predict some phenomena that are not proven. The work of Tao et
al. [30] resolves several important issues left open in [12]. In particular, [30] provides a
precise description of the final buoyancy distribution in case of general initial conditions
and the explicit decay rate of the velocity field or the total mechanical energy. The paper of
Castro, Córdoba and Lear successfully established the stability and large time behavior on the
2D Boussinesq equations with velocity damping instead of dissipation [9]. The stabilizing
effect of the temperature on the buoyancy-driven fluids and the stability of the hydrostatic
equilibrium were discovered for several partially dissipated 2D Boussinesq systems [2, 15,
16]. There are very significant recent developments on the stability of shear flow to the fluid
equations with various partial dissipation [3–5, 10, 13, 14, 18, 22, 29, 32, 37, 39–41].

The rest of this paper is divided into four sections. Section 2 details how we convert the
nonlinear Boussinesq system (1.6) into an integral form stated in Proposition 2.1. Section 3
presents the linear stability theory and the optimal decay rates for the linearized system. In
particular, we prove Proposition 1.1. Section 4 proves the nonlinear stability result stated
in Proposition 1.2. The optimal decay rates, our main result stated in Theorem 1.3, are
established in Sect. 5. For the sake of clarity, Sect. 5 is further divided into four subsections.

2 Spectra and integral representation

This section separates the linear and the nonlinear parts in (1.3), solves the linearized sys-
tem and represents the nonlinear system in an integral form via Duhamel’s principle. More
precisely, we prove the following proposition.

Proposition 2.1 The system in (1.3) can be converted into the following integral form
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ûh = eλ1t û0h +
(

ξhξ3

|ξh |2 e
λ1t + ξhξ3

|ξh |2G2 + ξhξ3G1

)

û03 − ξhξ3

|ξ |2 G1θ̂0

−
∫ t

0
eλ1(t−τ)( ̂P(u · ∇u))h(τ ) dτ

−
∫ t

0

(
ξhξ3

|ξh |2 e
λ1(t−τ) + ξhξ3

|ξh |2G2 + ξhξ3G1

)

( ̂P(u · ∇u))3(τ ) dτ

+
∫ t

0

ξhξ3

|ξ |2 G1(t − τ) ̂(u · ∇θ)(τ ) dτ (2.1)

û3 = (−G2 − |ξh |2G1
)
û03 + |ξh |2

|ξ |2 G1θ̂0

+
∫ t

0
(G2 + |ξh |2G1)(t − τ) ̂P(u · ∇u)3(τ ) dτ

−
∫ t

0

|ξh |2
|ξ |2 G1(t − τ) ̂(u · ∇θ)(τ ) dτ (2.2)

θ̂ = −G1û03 + (G3 + |ξh |2G1)θ̂0 +
∫ t

0
G1(t − τ) ̂P(u · ∇u)3(τ ) dτ

−
∫ t

0
(G3(t − τ) + |ξh |2G1(t − τ)) ̂(u · ∇θ)(τ ) dτ (2.3)

where

G1 = eλ4t − eλ3t

λ4 − λ3
= e−|ξh |2t

( |ξh |
|ξ |

)−1

sin
|ξh |
|ξ | t,

G2 = λ3eλ4t − λ4eλ3t

λ4 − λ3
= λ3G1 − eλ3t ,

G3 = λ4eλ4t − λ3eλ3t

λ4 − λ3
= λ3G1 + eλ4t .

(2.4)

with λ1, λ2, λ3 and λ4 given by

λ1 = λ2 = −|ξh |2, λ3 = −|ξh |2 − |ξh |
|ξ | i, λ4 = −|ξh |2 + |ξh |

|ξ | i . (2.5)

Proof of Proposition 2.1 We have separated the linear parts from the nonlinear ones in (1.3)
and obtained (1.6). Taking the Fourier transform of (1.6), we find

∂t

[
û(t)
θ̂(t)

]

= A

[
û(t)
θ̂(t)

]

+
[
M̂1

M̂2

]

,

where A represents the multiplier matrix of the linear operators, and M1 and M2 are the
nonlinear terms,

A =

⎡

⎢
⎢
⎢
⎢
⎣

−|ξh |2 0 0 − ξ1ξ3
|ξ |2

0 −|ξh |2 0 − ξ2ξ3
|ξ |2

0 0 −|ξh |2 |ξh |2
|ξ |2

0 0 −1 −|ξh |2

⎤

⎥
⎥
⎥
⎥
⎦

M1 = −P(u · ∇u), M2 = −u · ∇θ.
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By the Duhamel principle,
[
û(t)
θ̂(t)

]

= eAt
[
û0
θ̂0

]

+
∫ t

0
eA(t−τ)

[
M̂1(τ )

M̂2(τ )

]

dτ. (2.6)

We compute the fundamental matrix eAt explicitly. The characteristic polynomial associated
with A is given by

(λ + |ξh |2)2
(

λ2 + 2|ξh |2λ + |ξh |4 + |ξh |2
|ξ |2

)

= 0

and thus the spectra of A are

λ1 = λ2 = −|ξh |2, λ3 = −|ξh |2 − |ξh |
|ξ | i, λ4 = −|ξh |2 + |ξh |

|ξ | i .

The two eigenvectors corresponding to λ1 = λ2 are

−→
V 1 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ ,

−→
V 2 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦ .

The eigenvectors
−→
V m associated with the eigenvalues λm(m = 3, 4) satisfy

(λm I − A)
−→
V m

=

⎡

⎢
⎢
⎢
⎢
⎣

λm + |ξh |2 0 0 ξ1ξ3
|ξ |2

0 λm + |ξh |2 0 ξ2ξ3
|ξ |2

0 0 λm + |ξh |2 −|ξh |2
|ξ |2

0 0 1 λm + |ξh |2

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

Vm1

Vm2

Vm3

Vm4

⎤

⎥
⎥
⎦ = 0

and thus

−→
V 3 =

⎡

⎢
⎢
⎣

−ξ1ξ3
−ξ2ξ3

−(λ3 + |ξh |2)2 |ξ |2
(λ3 + |ξh |2)|ξ |2

⎤

⎥
⎥
⎦ ,

−→
V 4 =

⎡

⎢
⎢
⎣

−ξ1ξ3
−ξ2ξ3

−(λ4 + |ξh |2)2 |ξ |2
(λ4 + |ξh |2)|ξ |2

⎤

⎥
⎥
⎦ .

Thus the eigen-matrix is given by

V =

⎡

⎢
⎢
⎣

1 0 −ξ1ξ3 −ξ1ξ3
0 1 −ξ2ξ3 −ξ2ξ3
0 0 −(λ3 + |ξh |2)2|ξ |2 −(λ4 + |ξh |2)2|ξ |2
0 0 (λ3 + |ξh |2)|ξ |2 (λ4 + |ξh |2)|ξ |2

⎤

⎥
⎥
⎦

and

V−1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 ξ1ξ3
|ξh |2 0

0 1 ξ2ξ3
|ξh |2 0

0 0 λ4+|ξh |2
|ξh |2(λ4−λ3)

(λ4+|ξh |2)2
|ξh |2(λ4−λ3)

0 0 − λ3+|ξh |2
|ξh |2(λ4−λ3)

− (λ3+|ξh |2)2
|ξh |2(λ4−λ3)

⎤

⎥
⎥
⎥
⎥
⎦

.
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As a consequence, the fundamental matrix is given by

eAt = V

⎡

⎢
⎢
⎣

eλ1t 0 0 0
0 eλ1t 0 0
0 0 eλ3t 0
0 0 0 eλ4t

⎤

⎥
⎥
⎦ V−1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

eλ1t 0 ξ1ξ3
|ξh |2 e

λ1t + ξ1ξ3
|ξh |2 G2 + ξ1ξ3G1 − ξ1ξ3

|ξ |2 G1

0 eλ2t ξ2ξ3
|ξh |2 e

λ2t + ξ2ξ3
|ξh |2 G2 + ξ2ξ3G1 − ξ2ξ3

|ξ |2 G1

0 0 −G2 − |ξh |2G1
|ξh |2
|ξ |2 G1

0 0 −G1 G3 + |ξh |2G1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where we have written

G1 = eλ4t − eλ3t

λ4 − λ3
= e−|ξh |2t sin

|ξh ||ξ | t
|ξh ||ξ |

,

G2 = λ3eλ4t − λ4eλ3t

λ4 − λ3
= λ3G1 − eλ3t ,

G3 = λ4eλ4t − λ3eλ3t

λ4 − λ3
= λ3G1 + eλ4t .

Inserting eAt in (2.6) yields the desired representations (2.1), (2.2) and (2.3). This completes
the proof of Proposition 2.1. ��

3 Linear stability and optimal decay

This section focuses on the stability of the linearized system of (1.3) and the optimal decay
rates. This result serves as the first step for the nonlinear stability and optimal decay rates
presented in the next two sections. Recall that, by (1.6), the linearized portion of (1.3) can
be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u = ν�hu +
⎡

⎢
⎣

−∂1∂3�
−1θ

−∂2∂3�
−1θ

�h�
−1θ

⎤

⎥
⎦ ,

∂tθ = η�hθ − u3.

(3.1)

According to Proposition 2.1, (3.1) can be solved explicitly as (1.3) can be represented as

ûh = eλ1t û0h +
(

ξhξ3

|ξh |2 e
λ1t + ξhξ3

|ξh |2G2 + ξhξ3G1

)

û03 − ξhξ3

|ξ |2 G1θ̂0 (3.2)

û3 = (−G2 − |ξh |2G1
)
û03 + |ξh |2

|ξ |2 G1θ̂0 (3.3)

θ̂ = −G1û03 + (G3 + |ξh |2G1)θ̂0, (3.4)

where G1, G2, G3 and λ1 through λ4 are given in (2.4) and (2.5), respectively. Our goal here
is to prove Proposition 1.1 given in the introduction.

In order to prove Proposition 1.1, we first state a lemma that provides upper bounds for
G1, G2 and G3 defined in (2.4).
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Lemma 3.1 There are two constants C > 0 and c0 > 0 such that, for any ξ ∈ R
3 and t ≥ 0,

|G1| ≤ t e−|ξh |2t , |ξh |2|G1| ≤ C e−c0|ξh |2t ,
|G2| ≤ C e−c0|ξh |2t , |G3| ≤ C e−c0|ξh |2t .

Proof of Lemma 3.1 The upper bounds for G1 follow directly from the definition of G1 and
the simple fact that | sin y| ≤ |y| for any real number y. To bound G2, we notice that

G2 = λ3G1 − eλ3t = −|ξh |2G1 − i
|ξh |
|ξ | G1 − eλ3t

and thus

|G2| ≤ |ξh |2t e−|ξh |2t + 2e−|ξh |2t ≤ C e−c0 |ξh |2t ,

where we have used the fact that ya e−y ≤ e−c0 y for any a ≥ 0 and y ≥ 0. G3 can be
bounded similarly. ��
Proof of Proposition 1.1 Due to the frequency decoupling in the solution representation in
(3.2), (3.3) and (3.4), it suffices to set s = 0 and consider the L2-norm. We start with the
estimate of uh . The first term in (3.2) is easily bounded. For any 0 ≤ t < 1,

‖eλ1t û0h‖L2 ≤ ‖û0h‖L2 = ‖u0h‖L2 . (3.5)

For t ≥ 1,

‖eλ1t û0h‖L2 = ‖|ξh |σ e−|ξh |2t |ξh |−σ û0h‖L2 ≤ C t−
σ
2 ‖
−σ

h u0h‖L2 . (3.6)

Here we have used the following inequality

sup
ξh

|ξh |σ e−|ξh |2t = t−
σ
2 sup

ξh

(|ξh |2t) σ
2 e−|ξh |2t = C t−

σ
2 ,

where C = supb≥0 b
σ
2 e−b < ∞. Combining (3.5) and (3.6) yields

‖eλ1t û0h‖L2 ≤ C
(‖u0h‖L2 + ‖
−σ

h u0h‖L2
)
(1 + t)−

σ
2 .

Since the bound for 0 ≤ t < 1 is quite simple, we shall only present the estimates for t ≥ 1
in the rest of the proof. We consider the second term in (3.2). For notational convenience, we
write

I =
(

ξhξ3

|ξh |2 e
λ1t + ξhξ3

|ξh |2G2 + ξhξ3G1

)

û03.

By ∇ · u0 = 0 or ξ1û01 + ξ2û02 + ξ3û03 = 0 and Lemma 3.1,

‖I‖L2 =
∥
∥
∥
∥ξh

(
eλ1t

|ξh |2 + G2

|ξh |2 + G1

)

ξ3û03

∥
∥
∥
∥
L2

=
∥
∥
∥
∥ξh

(
eλ1t

|ξh |2 + G2

|ξh |2 + G1

)

(−ξh · û0h)
∥
∥
∥
∥
L2

= ‖(eλ1t + G2 + |ξh |2G1)̂u0h‖L2

≤ ‖e−|ξh |2t û0h‖L2 .

Therefore,

‖I‖L2 ≤ C
(‖u0h‖L2 + ‖
−σ

h u0h‖L2
)
(1 + t)−

σ
2 .
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We now turn to the last term in (3.2). Since

∣
∣
∣
∣
ξhξ3

|ξ |2 G1

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

ξhξ3

|ξ |2 e−|ξh |2t sin
|ξh ||ξ | t

|ξh ||ξ |

∣
∣
∣
∣
∣
≤ e−|ξh |2t .

Therefore,
∥
∥
∥
∥
ξhξ3

|ξ |2 G1θ̂0

∥
∥
∥
∥
L2

≤ ‖e−|ξh |2t θ̂0‖L2 ≤ C
(‖θ0‖L2 + ‖
−σ

h θ0‖L2
)
(1 + t)−

σ
2 .

Combining the estimates for the three terms above yields

‖u(t)‖L2 ≤ C
(‖(u0h, θ0)‖L2 + ‖(
−σ

h u0h,

−σ
h θ0)‖L2

)
(1 + t)−

σ
2 .

Using Lemma 3.1 and noticing that

∣
∣
∣
∣
|ξh |2
|ξ |2 G1

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

|ξh |2
|ξ |2 e−|ξh |2t sin

|ξh ||ξ | t
|ξh ||ξ |

∣
∣
∣
∣
∣
≤ e−|ξh |2t ,

we have from (3.3) that

‖u3‖L2 ≤ C ‖e−|ξh |2t û03‖L2 + ‖e−|ξh |2t θ̂0‖L2

≤ C
(‖(u03, θ0)‖L2 + ‖(
−σ

h u03,

−σ
h θ0)‖L2

)
(1 + t)−

σ
2 .

The estimate of the first term in (3.4) needs some attention. By∇·u0 = 0 or ξh ·û0h+ξ3û03 =
0,

‖G1û03‖L2 =
∥
∥
∥e−|ξh |2t sin

|ξh ||ξ | t
|ξh ||ξ |

û03
∥
∥
∥
L2

≤
∥
∥
∥e−|ξh |2t |ξ |

|ξh | û03
∥
∥
∥
L2

≤
∥
∥
∥e−|ξh |2t |ξh | + |ξ3|

|ξh | û03
∥
∥
∥
L2

≤ ‖e−|ξh |2t û03‖L2 +
∥
∥
∥
∥e

−|ξh |2t |ξh · û0h |
|ξh |

∥
∥
∥
∥
L2

≤ C
(‖u0‖L2 + ‖
−σ

h u0‖L2
)
(1 + t)−

σ
2 .

The second term is easily bounded,

‖(G3 + |ξh |2G1)θ̂0‖L2 ≤ C
(‖θ0‖L2 + ‖
−σ

h θ0‖L2
)
(1 + t)−

σ
2 .

Therefore,

‖θ‖L2 ≤ C
(‖(u0, θ0)‖L2 + ‖(
−σ

h u0,

−σ
h θ0)‖L2

)
(1 + t)−

σ
2 .

Therefore (1.16) is proven. The proof of (1.17) is similarly to that for (1.16). In fact, (1.17) can
be shown by repeating the process for (1.16) with ∂3u and ∂3θ replacing u and θ , respectively.
We now turn to (1.18). Noticing that the upper bound for each term in (3.2), (3.3) and (3.4)
contains the factor e−|ξh |2t , we can easily obtain the extra decay factor via the inequality, for
any t > 0,

‖|ξh |e−|ξh |2t f ‖L2 ≤ C t−
σ+1
2 ‖
−σ

h f ‖L2 .
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This explains (1.18). Combining (1.18) with t ≥ 1 and the basic inequality with 0 ≤ t < 1,

‖|ξh |e−|ξh |2t f ‖L2 ≤ C ‖|ξh | f ‖L2

leads to (1.19). This completes the proof of Proposition 1.1. ��

4 Nonlinear stability

This section is devoted to proving Proposition 1.2, which establishes the nonlinear stability.
This proposition serves as a preparation for our main result on the optimal decay proven in
the next section.

The proof uses the following lemma that provides anisotropic upper bounds for the integral
of a triple product. It is a very powerful tool in dealing with anisotropic equations.

Lemma 4.1 The following estimates hold when the right-hand sides are all bounded.
∫

R3
| f gh|dx ≤ C ‖ f ‖

1
2
L2‖∂1 f ‖

1
2
L2‖g‖

1
2
L2‖∂2g‖

1
2
L2‖h‖

1
2
L2‖∂3h‖

1
2
L2 ,

∫

R3
| f gh|dx ≤ C ‖ f ‖

1
4
L2‖∂1 f ‖

1
4
L2‖∂2 f ‖

1
4
L2‖∂1∂2 f ‖

1
4
L2‖g‖

1
2
L2‖∂3g‖

1
2
L2‖h‖L2 .

A simple proof of this lemma can be found in [36]. The 2D version of such anisotropic
upper bounds can be found in [7]. We will not reproduce a proof of Lemma 4.1 here, but
instead begin with the proof of Proposition 1.2.

Proof of Proposition 1.2 Since the local (in time) well-posedness of (1.3) can be established
via a standard approach (see [21]), our attention is focused on the global bound of (u, θ). The
framework of the proof is the bootstrapping argument. Define the energy functional E(t) by

E(t) = sup
0≤τ≤t

‖(u, θ)(τ )‖2Hm + ν

∫ t

0
‖∇hu‖2Hm dτ + η

∫ t

0
‖∇hθ‖2Hmdτ.

Our main efforts are devoted to showing that, for a constant C > 0 and for t > 0,

E(t) ≤ E(0) + C E(t)
3
2 . (4.1)

Once (4.1) is shown, then a direct application of the bootstrapping argument implies that, if

E(0) = ‖(u0, θ0)‖2Hm ≤ 1

16C2 or ‖(u0, θ0)‖Hm ≤ ε := 1

4C
, (4.2)

then,

E(t) ≤ 1

8C2 for all t > 0. (4.3)

In fact, if we make the ansatz that

E(t) ≤ 1

4C2 . (4.4)

Inserting (4.4) in (4.1) and invoking (4.2) yields

E(t) ≤ E(0) + 1

2
E(t) or E(t) ≤ 2E(0) ≤ 1

8C2 ,
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which is only half of the bound in the ansatz in (4.4). The bootstrapping argument then
implies (4.3). It remains to prove (4.1). Due to the norm equivalence

‖ f ‖2Hm ∼ ‖ f ‖2L2 +
3∑

i=1

‖∂mi f ‖2L2 ,

it suffices to bound ‖(u, θ)‖L2 and
∑3

i=1 ‖(∂mi u, ∂mi θ)‖L2 . First of all, we have the global
L2-bound. Dotting the equations in (1.3) by (u, θ) and integrating by parts, we find

‖(u, θ)(t)‖2L2 + 2ν
∫ t

0
‖∇hu‖2L2 dτ + 2η

∫ t

0
‖∇hθ‖2L2dτ = ‖(u0, θ0)‖2L2 . (4.5)

Applying the differential operator ∂mi to the equations in (1.3), dotting the resulting equations
by (∂mi u, ∂mi θ), and integrating by parts, we have

d

dt

3∑

i=1

(‖∂mi u‖2L2 + ‖∂mi θ‖2L2

) + 2ν
3∑

i=1

‖∇h∂
m
i u‖2L2 + 2η

3∑

i=1

‖∇h∂
m
i θ‖mL2

= J1 + J2, (4.6)

where J1 and J2 are given by

J1 = −
3∑

i=1

∫

∂mi (u · ∇u) · ∂mi u dx,

J2 = −
3∑

i=1

∫

∂mi (u · ∇θ) · ∂mi θ dx .

Here we have used the fact that
∫

(∂mi θe3 · ∂mi u − ∂mi u3∂
m
i θ) dx = 0.

We decompose J1 as

J1 = −
2∑

i=1

∫

∂mi (u · ∇u) · ∂mi u dx −
2∑

k=1

∫

∂m3 (uk · ∂ku) · ∂m3 u dx

−
∫

∂m3 (u3 · ∂3u) · ∂m3 u dx

:= J11 + J12 + J13.

J11 is easy to deal with. Due to ∇ · u = 0,

J11 =
2∑

i=1

∫

∂mi (u ⊗ u) · ∇∂mi u dx

≤ C ‖u‖L∞ ‖∇hu‖2Hm ≤ C ‖u‖Hm ‖∇hu‖2Hm .

Here we have used the calculus inequality for a product. For any nonnegative integerm, there
exists C > 0 such that, for any u, v ∈ L∞ ∩ Hm ,

‖Dm(uv)‖L2 ≤ C
(‖u‖L∞‖Dmv||L2 + ‖Dmu‖L2‖v‖L∞

)
.
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This inequality can be found in [21,p.98]. By the Leibniz Formula and
∫

(u · ∇∂mi u) · ∂mi u dx = 0, i = 1, 2, 3,

we have

J12 = −
2∑

k=1

m∑

l=1

Clm
∫

∂ l3uk · ∂m−l
3 ∂ku · ∂m3 u dx,

where Clm denotes the combinatorial number,

Clm = m!
l!(m − l)! .

By Lemma 4.1,

|J12| ≤ C
2∑

k=1

m∑

l=1

‖∂ l3uk‖
1
2
L2 ‖∂1∂ l3uk‖

1
2
L2 ‖∂m−l

3 ∂ku‖
1
2
L2 ‖∂3∂m−l

3 ∂ku‖
1
2
L2

× ‖∂m3 u‖
1
2
L2 ‖∂2∂m3 u‖

1
2
L2

≤ C ‖u‖Hm ‖∇hu‖2Hm .

By ∇ · u = 0 or ∂3u3 = −∇h · uh and Lemma 4.1,

J13 = −
m∑

l=1

Clm
∫

∂ l3u3 · ∂m−l
3 ∂3u · ∂m3 u dx

=
m∑

l=1

Clm
∫

∂ l−1
3 ∇h · uh · ∂m−l

3 ∂3u · ∂m3 u dx

≤ C
m∑

l=1

‖∂ l−1
3 ∇h · uh‖

1
2
L2 ‖∂3∂ l−1

3 ∇h · uh‖
1
2
L2 ‖∂m−l

3 ∂3u‖
1
2
L2 ‖∂1∂m−l

3 ∂3u‖
1
2
L2

× ‖∂m3 u‖
1
2
L2 ‖∂2∂m3 u‖

1
2
L2

≤ C ‖u‖Hm ‖∇hu‖2Hm .

Therefore,

|J1| ≤ C ‖u‖Hm ‖∇hu‖2Hm . (4.7)

Using ∇ · u = 0, we decompose J2 as

J2 = −
2∑

i=1

∫

∂mi ∇ · (uθ) · ∂mi θ dx

−
2∑

k=1

∫

∂m3 (uk · ∂kθ) · ∂m3 θ dx −
∫

∂m3 (u3∂3θ) · ∂m3 θ dx

:= J21 + J22 + J23.
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By integration by parts and Sobolev’s inequality, for m ≥ 2,

J21 =
2∑

i=1

∫

∂mi (uθ) · ∇∂mi θ dx

≤ C
2∑

i=1

(‖∂mi u‖L2‖θ‖L∞ + ‖u‖L∞‖∂mi θ‖L2
) ‖∇∂mi θ‖L2

≤ C (‖u‖Hm + ‖θ‖Hm )
(‖∇hu‖2Hm + ‖∇hθ‖2Hm

)
.

By the Leibniz Formula and

∫

(u · ∇∂mi θ) · ∂mi θ dx = 0, i = 1, 2, 3,

we have

J22 + J23 = −
2∑

k=1

m∑

l=1

Clm
∫

∂ l3uk · ∂m−l
3 ∂kθ · ∂m3 θ dx

−
m∑

l=1

Clm
∫

∂ l3u3 · ∂m−l
3 ∂3θ · ∂m3 θ dx .

By ∇ · u = 0 or ∂3u3 = −∇h · uh and Lemma 4.1,

|J22| + |J23| ≤ C
2∑

k=1

m∑

l=1

‖∂ l3uk‖
1
2
L2 ‖∂1∂ l3uk‖

1
2
L2 ‖∂m−l

3 ∂kθ‖
1
2
L2

× ‖∂3∂m−l
3 ∂kθ‖

1
2
L2‖∂m3 θ‖

1
2
L2 ‖∂2∂m3 θ‖

1
2
L2

+ C
m∑

l=1

‖∂ l−1∇h · uh‖
1
2
L2 ‖∂3∂ l−1∇h · uh‖

1
2
L2 ‖∂m−l

3 ∂3θ‖
1
2
L2

× ‖∂1∂m−l
3 ∂3θ‖

1
2
L2‖∂m3 θ‖

1
2
L2 ‖∂2∂m3 θ‖

1
2
L2

≤ C (‖u‖Hm + ‖θ‖Hm )
(‖∇hu‖2Hm + ‖∇hθ‖2Hm

)
.

Collecting the bounds for J2, we obtain

|J2| ≤ C (‖u‖Hm + ‖θ‖Hm )
(‖∇hu‖2Hm + ‖∇hθ‖2Hm

)
. (4.8)

Inserting (4.7) and (4.8) in (4.6), integrating in time over [0, t] and adding to (4.5), we deduce

E(t) ≤ E(0) + C
∫ t

0

(
‖u‖Hm ‖∇hu‖2Hm

+ (‖u‖Hm + ‖θ‖Hm )
(‖∇hu‖2Hm + ‖∇hθ‖2Hm

) )
dτ

≤ E(0) + C E(t)
3
2 ,

which is the desired inequality (4.1). This completes the proof of Proposition 1.2. ��
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5 Optimal decays for the nonlinear system

This section proves our main result, Theorem 1.3. We need several tools, which are stated
in the following lemmas. The first lemma provides an upper bound for the L p-norm of a
one-dimensional function, which serves as a basic ingredient for anisotropic upper bounds.
A proof can be found in [38].

Lemma 5.1 Let 2 ≤ p ≤ ∞. Let s > 1
2 − 1

p . Then, there exists a constant C = C(p, s) such
that, for any 1D function f ∈ Hs(R),

‖ f ‖L p(R) ≤ C ‖ f ‖1−
1
s

(
1
2− 1

p

)

L2(R)
‖
s f ‖

1
s

(
1
2− 1

p

)

L2(R)
.

In particular, if p = ∞ and s = 1, then f = f (x3),

‖ f ‖L∞ ≤ C ‖ f ‖
1
2
L2(R)

‖∂3 f ‖
1
2
L2(R)

.

The second lemma states Minkowski’s inequality. It is an elementary tool that allows us
to estimate the Lebesgue norm with larger index first followed by the Lebesgue norm with
a smaller index. The following version is taken from [1,p. 4] and a more general statement
can be found in [19, p. 47].

Lemma 5.2 For a nonnegative measurable function f over R
m × R

n and for 1 ≤ p ≤ q ≤
∞,

∥
∥‖ f ‖L p(Rm )

∥
∥
Lq (Rn)

≤ ∥
∥‖ f ‖Lq (Rn)

∥
∥
L p(Rm )

.

For convenience, we introduce the notation

Lq
h(R

3) := Lq
x1,x2(R

3), ‖ f ‖L p
h L

q
x3

:=
∥
∥
∥‖ f ‖Lq

x3

∥
∥
∥
L p
h

,

which is frequently used in the context.
The next lemmaprovides an exact L p−Lq decay estimate for the generalized heat operator

associated with a fractional Laplacian (see, e.g, [35]).

Lemma 5.3 Let β ≥ 0, α > 0, ν > 0, 1 ≤ p ≤ q ≤ ∞. Then

‖
β e−ν(−�)α t f ‖Lq (Rd ) ≤ C t
− β

2α − d
2α

(
1
p − 1

q

)

‖ f ‖L p(Rd ).

Proof of Theorem 1.3 The bootstrapping argument is suitable for our purpose. We assume
the initial datum (u0, θ0) satisfies (1.20), (1.21) and (1.22) for sufficiently small ε > 0. The
bootstrapping argument starts with the ansatz that, for a suitably selected C0 > 0,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0 ε, (5.1)

‖
−σ
h u(t)‖L2 , ‖
−σ

h θ(t)‖L2 ≤ C0 ε, (5.2)

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 , (5.3)

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 − 1

2 . (5.4)

for t ∈ [0, T ] with some T > 0. These inequalities hold on the initial time interval [0, T ]
guaranteed by local well-posedness. We then show that (5.1), (5.2), (5.3) and (5.4) remain
true with C0 replaced by C0/2, namely

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0

2
ε, (5.5)
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‖
−σ
h u(t)‖L2 , ‖
−σ

h θ(t)‖L2 ≤ C0

2
ε, (5.6)

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (5.7)

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 − 1

2 . (5.8)

The bootstrapping argument then asserts that (5.5), (5.6), (5.7) and (5.8) hold for all t > 0.
It then suffices to prove (5.5) through (5.8). (5.5) follows directly from Proposition 1.2

with m = 4. By Proposition 1.2,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C1ε.

Then (5.5) clearly holds when we take C0 ≥ 2C1. The rest of this section is divided into
four subsections. The first subsection estimates ‖
−σ

h u(t)‖L2 and ‖
−σ
h θ(t)‖L2 and verifies

(5.6). The second subsection estimates ‖u(t)‖L2 and ‖θ(t)‖L2 and verifies part of (5.7). The
third subsection bounds ‖∂3u(t)‖L2 and ‖∂3θ(t)‖L2 and completes verifying (5.7). The last
subsection works on ‖∇hu(t)‖L2 and ‖∇hθ(t)‖L2 and proves (5.8).

5.1 Verification of (5.6)

This subsection estimates ‖
−σ
h u(t)‖L2 and ‖
−σ

h θ(t)‖L2 and verifies (5.6). Applying
−σ
h

to (1.3) and dotting with (
−σ
h u,
−σ

h θ), we obtain

d

dt

(‖
−σ
h u‖2L2 + ‖
−σ

h θ‖2L2

) + 2
(
‖
1−σ

h u‖2L2 + ‖
1−σ
h θ‖2L2

)

= −2
∫


−σ
h (u · ∇u) · 
−σ

h u dx − 2
∫


−σ
h (u · ∇θ) · 
−σ

h θ dx

:=N1 + N2, (5.9)

where we have used
∫

(
−σ
h (θe3) · 
−σ

h u − 
−σ
h u3 
−σ

h θ) dx = 0.

We distinguish the horizontal derivatives from the vertical ones and write N1 as

N1 = −2
∫


−σ
h (uh · ∇hu) · 
−σ

h u dx − 2
∫


−σ
h (u3∂3uh) · 
−σ

h uh dx

− 2
∫


−σ
h (u3∂3u3) · 
−σ

h u3 dx

:= N11 + N12 + N13. (5.10)

N12 involves the unfavorable derivative ∂3 and may potentially generate the worst upper
bound. We deal with this term first. By Hölder’s inequality, the Hardy-Littlewood-Sobolev
inequality and Lemmas 5.1, 5.2 and 5.3,

|N12| ≤ ‖
−σ
h (u3∂3uh)‖L2 ‖
−σ

h uh‖L2

=
∥
∥
∥‖
−σ

h (u3∂3uh)‖L2
h

∥
∥
∥
L2
x3

‖
−σ
h uh‖L2

≤
∥
∥
∥‖u3∂3uh‖Lq

h

∥
∥
∥
L2
x3

‖
−σ
h uh‖L2

123



Optimal decay for the 3D anisotropic Boussinesq equations… Page 21 of 34   136 

≤
∥
∥
∥‖u3∂3uh‖L2

x3

∥
∥
∥
Lq
h

‖
−σ
h uh‖L2

≤
∥
∥
∥‖u3‖L∞

x3
‖∂3uh‖L2

x3

∥
∥
∥
Lq
h

‖
−σ
h uh‖L2

≤ ‖u3‖
L

2
σ
h L∞

x3

‖∂3uh‖L2
h L

2
x3

‖
−σ
h uh‖L2 ,

where

1

2
+ σ

2
= 1

q
.

Clearly, for 3
4 ≤ σ < 1, we have

1 < q < 2.

The first part on the right-hand side can be further bounded as follows. By Lemma 5.1 and
Hölder’s inequality with σ

2 = 1
4 + 2σ−1

4 ,

‖u3‖
L

2
σ
h L∞

x3

≤ C

∥
∥
∥
∥‖u3‖

1
2
L2
x3

‖∂3u3‖
1
2
L2
x3

∥
∥
∥
∥
L

2
σ
h

≤ C

∥
∥
∥
∥‖u3‖

1
2
L2
x3

∥
∥
∥
∥
L

4
2σ−1
h

∥
∥
∥
∥‖∂3u3‖

1
2
L2
x3

∥
∥
∥
∥
L4
h

≤ C ‖∂3u3‖
1
2
L2 ‖u3‖

1
2

L
2

2σ−1
h L2

x3

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖

1
2

L2
x3
L

2
2σ−1
h

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 .

Thus we have obtained the following bound

|N12| ≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3uh‖L2 ‖
−σ
h uh‖L2 .

The other two terms in (5.10) can be estimated similarly,

N11 ≤ C ‖∂3uh‖
1
2
L2 ‖uh‖σ− 1

2
L2 ‖∇huh‖1−σ

L2 ‖∇hu‖L2 ‖
−σ
h u‖L2 ,

N13 ≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∇h · uh‖L2 ‖
−σ
h u3‖L2 .

Combining the upper bounds for N1 yields

|N1| ≤ C ‖u‖σ− 1
2

L2 ‖∇u‖L2‖∇hu‖
3
2−σ

L2 ‖‖
−σ
h u‖L2 . (5.11)

The estimate of N2 shares some similarities with that for N1 and starts by writing

N2 = −2
∫


−σ
h (uh · ∇hθ) · 
−σ

h θ dx − 2
∫


−σ
h (u3∂3θ) · 
−σ

h θ dx

= N21 + N22.
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The two terms N21 and N22 can be estimated similarly as N11 and N12,

N21 ≤ C ‖∂3uh‖
1
2
L2 ‖uh‖σ− 1

2
L2 ‖∇huh‖1−σ

L2 ‖∇hθ‖L2 ‖
−σ
h θ‖L2 ,

N22 ≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3θ‖L2 ‖
−σ
h θ‖L2 .

Therefore,

|N2| ≤ C ‖u‖σ− 1
2

L2 ‖(∇u,∇θ)‖L2

(

‖∇hu‖
3
2−σ

L2 + ‖∇hθ‖
3
2−σ

L2

)

‖
−σ
h θ‖L2 . (5.12)

Inserting (5.11) and (5.12) in (5.9) and integrating in time, we obtain

‖
−σ
h u‖2L2 + ‖
−σ

h θ‖2L2 + 2
∫ t

0

(
‖
1−σ

h u‖2L2 + ‖
1−σ
h θ‖2L2

)
dτ

≤ C
∫ t

0
‖u‖σ− 1

2
L2 ‖(∇u,∇θ)‖L2

(

‖∇hu‖
3
2−σ

L2 + ‖∇hθ‖
3
2−σ

L2

)

‖
−σ
h θ‖L2 dτ.

Invoking the ansatz in (5.1) through (5.4), we obtain

‖
−σ
h u‖2L2 + ‖
−σ

h θ‖2L2 ≤ C C3
0 ε3

∫ t

0
(1 + τ)−

σ
2 (σ+ 1

2 ) (1 + τ)(
3
2−σ)(− σ

2 − 1
2 ) dτ

≤ C C3
0 ε3

∫ t

0
(1 + τ)−

σ
2 − 3

4 dτ

≤ C C3
0 ε3

for any σ > 1
2 . If we choose ε > 0 to be sufficiently small such that

CC0ε ≤ 1

4
,

then

‖
−σ
h u‖2L2 + ‖
−σ

h θ‖2L2 ≤ 1

4
C2
0ε

2,

which, in particular, verifies (5.6).

5.2 Estimates of ‖u‖L2 and ‖�‖L2 and verification of (5.7)

This subsection verifies part of (5.7).We take advantage of the integral representation formula
in (2.1), (2.2) and (2.3). Since the linear terms in these formula have been estimated in
Proposition 1.1 and its proof, it suffices to bound the time integral parts. For notational
convenience, we denote the time integral terms in (2.1), (2.2) and (2.3) as

K1 =
∫ t

0
eλ1(t−τ)( ̂P(u · ∇u))h(τ ) dτ,

K2 =
∫ t

0

(
ξhξ3

|ξh |2 e
λ1(t−τ + ξhξ3

|ξh |2G2(t − τ) + ξhξ3G1(t − τ)

)

( ̂P(u · ∇u))3(τ ) dτ,

K3 =
∫ t

0

ξhξ3

|ξ |2 G1(t − τ) ̂(u · ∇θ)(τ ) dτ,

K4 =
∫ t

0
(G2 + |ξh |2G1)(t − τ) ̂P(u · ∇u)3(τ ) dτ,
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K5 =
∫ t

0

|ξh |2
|ξ |2 G1(t − τ) ̂(u · ∇θ)(τ ) dτ,

K6 =
∫ t

0
G1(t − τ) ̂P(u · ∇u)3(τ ) dτ,

K7 =
∫ t

0
(G3(t − τ) + |ξh |2G1(t − τ)) ̂(u · ∇θ)(τ ) dτ.

We first bound uh and start with K1. By the definition of the projection operator P =
I − ∇�−1∇·, we have

P(u · ∇u))h = u · ∇uh − ∇h�
−1∇ · (u · ∇u)

= uh · ∇huh + u3∂3uh − �−1∇ · ∇ · ∇h(u ⊗ u). (5.13)

Correspondingly the upper bound consists of three parts,

‖K1‖L2 ≤
∫ t

0
‖e�h(t−τ)uh · ∇huh(τ )‖L2 dτ

+ C
∫ t

0
‖e�h(t−τ)∇h(u ⊗ u)(τ )‖L2 dτ

+
∫ t

0
‖e�h(t−τ)u3∂3uh(τ )‖L2 dτ

= K11 + K12 + K13,

where we have used the bounedness of the Riesz transform on L2,

‖�−1∇ · ∇ · F‖L2 ≤ C ‖F‖L2 .

K11 and K12 involve the good derivative ∇h and are easier to control while K13 is harder due
to the bad derivative ∂3. By Lemmas 5.1, 5.2 and 5.3,

K11 ≤
∫ t

0

∥
∥
∥‖e�h(t−τ)uh · ∇hu(τ )‖L2

h

∥
∥
∥
L2
x3

dτ

≤
∫ t

0

∥
∥
∥(t − τ)−

1
2 ‖uh · ∇hu(τ )‖L1

h

∥
∥
∥
L2
x3

dτ

≤
∫ t

0
(t − τ)−

1
2

∥
∥
∥‖uh(τ )‖L2

h
‖∇hu(τ )‖L2

h

∥
∥
∥
L2
x3

dτ

≤
∫ t

0
(t − τ)−

1
2 ‖uh(τ )‖L∞

x3
L2
h
‖∇hu(τ )‖L2

x3
L2
h
dτ

≤
∫ t

0
(t − τ)−

1
2 ‖uh(τ )‖L2

h L
∞
x3

‖∇hu(τ )‖L2 dτ

≤
∫ t

0
(t − τ)−

1
2 ‖uh(τ )‖

1
2

L2
h L

2
x3

‖∂3uh(τ )‖
1
2

L2
h L

2
x3

‖∇hu(τ )‖L2 dτ

≤
∫ t

0
(t − τ)−

1
2 ‖uh‖

1
2
L2‖∂3uh‖

1
2
L2‖∇hu(τ )‖L2 dτ.
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Invoking (5.1) through (5.4), we have,

K11 ≤ C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4 (1 + τ)−

σ
2 − 1

2 dτ

= C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−σ− 1

2 dτ

≤

⎧
⎪⎨

⎪⎩

C2
0 ε2 (1 + t)−σ if σ < 1

2

C2
0 ε2 (1 + t)− 1

2 if σ > 1
2

C2
0 ε2 (1 + t)− 1

2 ln(1 + t) if σ = 1
2 .

Therefore, for 1
2 < σ < 1,

K11 ≤ C2
0 ε2 (1 + t)−

σ
2 .

If ε is taken to be sufficiently small such that

C0 ε ≤ 1

128
, (5.14)

then

K11 ≤ C0

128
ε (1 + t)−

σ
2 .

K12 contains the good derivative ∇h and admits the same upper bound as the one for K11.
We now turn to K13.

K13 ≤
∫ t

0

∥
∥
∥‖e�h(t−τ)u3∂3uh(τ )‖L2

h

∥
∥
∥
L2
x3

dτ

≤
∫ t

0
‖(t − τ)−

1
2 ‖u3∂3uh(τ )‖L1

h
‖L2

x3
dτ

≤
∫ t

0
(t − τ)−

1
2 ‖‖u3(τ )‖L2

h
‖∂3uh(τ )‖L2

h
‖L2

x3
dτ

≤
∫ t

0
(t − τ)−

1
2 ‖u3(τ )‖

1
2

L2
h L

2
x3

‖∂3u3(τ )‖
1
2

L2
h L

2
x3

‖∂3uh(τ )‖L2 dτ

≤
∫ t

0
(t − τ)−

1
2 ‖u3(τ )‖

1
2
L2‖∇h · uh(τ )‖

1
2
L2‖∂3uh(τ )‖L2 dτ

Invoking (5.1) through (5.4) yields
∫ t

0
‖e�h(t−τ)u3∂3uh(τ )‖L2 dτ

≤ C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4 − 1

4 (1 + τ)−
σ
2 dτ

= C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−σ− 1

4 dτ

≤ C2
0 ε2 (1 + t)−

σ
2

for any 1
2 ≤ σ < 1. If ε is taken to satisfy (5.14), then

∫ t

0
‖e�h(t−τ)u3∂3uh(τ )‖L2 dτ ≤ C0

128
ε (1 + t)−

σ
2 .
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Combining the upper bounds, we obtain

‖K1‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

We now bound ‖K2‖L2 . We take a quick inspection of the integrand in K2. In order to bound

ξhξ3

|ξh |2 e
λ1(t−τ) + ξhξ3

|ξh |2G2(t − τ) + ξhξ3G1(t − τ)

suitably, we need to generate the factor ξh from ̂P(u · ∇u)3. By the definition of P,

P(u · ∇u)3 = u · ∇u3 − ∂3�
−1∇ · (u · ∇u)

= ∂1(u1u3) + ∂2(u2u3) + ∂3(u3u3)

− ∂3�
−1(∂1(u · ∇u1) + ∂2(u · ∇u2) + ∂3(u · ∇u3))

= ∂1(u1u3) + ∂2(u2u3) − ∂3�
−1(∂1∇ · (uu1) + ∂2∇ · (uu2)

+ ∂3(u3u3)) − ∂3�
−1∂3∇ · (uu3)

= ∂1(u1u3) + ∂2(u2u3) − ∂3�
−1(∂1∇ · (uu1) + ∂2∇ · (uu2))

− ∂3�
−1∂3∂1(u1u3) − ∂3�

−1∂3∂2(u2u3)

+ ∂3(u3u3) − ∂3�
−1∂3∂3(u3u3)

= ∂1(u1u3) + ∂2(u2u3) − ∂3�
−1(∂1∇ · (uu1) + ∂2∇ · (uu2))

− ∂3�
−1∂3∂1(u1u3) − ∂3�

−1∂3∂2(u2u3)

+ �−1(�∂3(u3u3) − ∂3∂3∂3(u3u3))

= ∂1(u1u3) + ∂2(u2u3) − ∂3�
−1(∂1∇ · (uu1) + ∂2∇ · (uu2))

− ∂3�
−1∂3∂1(u1u3) − ∂3�

−1∂3∂2(u2u3)

+ �−1�h∂3(u3u3), (5.15)

where we have combined two terms to generate the desirable factor

�∂3(u3u3) − ∂3∂3∂3(u3u3) = �h∂3(u3u3).

It is clear that each term contains ∂1 or ∂2. That is, its Fourier transform has the desired factor
|ξh |. Therefore, by the upper bounds for G1 and G2 in Lemma 3.1

|G1| ≤ t e−|ξh |2t , |ξh |2|G1| ≤ C e−c0|ξh |2t , |G2| ≤ C e−c0|ξh |2t ,

we have
∣
∣
∣
∣

(
1

|ξh |e
λ1(t−τ) + 1

|ξh |G2(t − τ) + ξhG1(t − τ)

)

ξ3 ̂P(u · ∇u)3

∣
∣
∣
∣

≤ C e−c0|ξh |2(t−τ)
(
|ξ3û1u3| + |ξ3û2u3| + |ξ3|2|ξ |−2| ̂∇ · (uu1)|

+ |ξ3|2|ξ |−2| ̂∇ · (uu2)| + |ξ3|2|ξ |−2| ̂∂3(u1u3)|
+ |ξ3|2|ξ |−2| ̂∂3(u2u3)| + |ξ3|2|ξ |−2| ̂∇h · (u3u3)|

)

≤ C e−c0|ξh |2(t−τ)
(
| ̂∂3(uhu3)| + | ̂∇ · (uuh)| + | ̂∇h · (u3u3)|

)
. (5.16)

123



  136 Page 26 of 34 R. Ji et al.

Therefore,

‖K2‖L2 ≤ C
∫ t

0
‖ec0�h(t−τ)∂3(uhu3)(τ )‖L2 dτ

+ C
∫ t

0
‖ec0�h(t−τ)∇h · (uuh)(τ )‖L2 dτ

+ C
∫ t

0
‖ec0�h(t−τ)∇h · (u3u3)‖L2 dτ.

These terms are pretty much like the terms in K1. Thus similar estimates lead to the same
upper bound

‖K2‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

To bound K3, we first bound the kernel. By the definition of G1,

∣
∣
∣
∣
ξhξ3

|ξ |2 G1

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

ξhξ3

|ξ |2 e−|ξh |2t sin
|ξh ||ξ | t

|ξh ||ξ |

∣
∣
∣
∣
∣
≤ e−|ξh |2t . (5.17)

As in the estimate of ‖K1‖L2 ,

‖K3‖L2 ≤ C
∫ t

0
‖ec0�h(t−τ)uh · ∇hθ(τ )‖L2 dτ

+
∫ t

0
‖ec0�h(t−τ)u3∂3θ(τ )‖L2 dτ.

The two terms on the right-hand side can be bounded as K11 and K13 above. Thus,

‖K3‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

To bound K4, we use Lemma 3.1 and the definition of G1,
∣
∣(G2 + |ξh |2G1)(t − τ)

∣
∣ ≤ C e−c0|ξh |2(t−τ)

for two constants C > 0 and c0 > 0. We also invoke (5.15). Then the estimate of ‖K4‖L2

can be proceeded as in ‖K2‖L2 and

‖K4‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

K5 behaves like K3. Since
∣
∣
∣
∣
|ξh |2
|ξ |2 G1(t − τ)

∣
∣
∣
∣ ≤ C e−c0|ξh |2(t−τ),

‖K5‖L2 obeys the same bound as ‖K3‖L2 ,

‖K5‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

The estimate of K6 is pretty much like the last term in K2, and thus

‖K6‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .
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K7 behaves like K3 and has the same bound

‖K7‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

Combining the upper bounds for the linear parts and the upper bounds for K1 through K5,
we obtain

‖u(t)‖L2 ≤ C ε(1 + t)−
σ
2 + 1

4
C0 ε(1 + t)−

σ
2 ≤ 1

2
C0 ε(1 + t)−

σ
2

if we choose C0 ≥ 4C . Similarly, by the upper bounds on K6 and K7, we obtain

‖θ(t)‖L2 ≤ 1

2
C0 ε(1 + t)−

σ
2 .

5.3 Estimates of ‖@3u‖L2 and ‖@3�‖L2 and verification of (5.7)

This subsection provides upper bounds for ‖∂3u‖L2 and ‖∂3θ‖L2 , which allow us to complete
the verification of (5.7). We again make use of the integral representation (2.1), (2.2) and
(2.3). We apply ∂3 to (2.1), (2.2) and (2.3) and then take the L2-norm. The linear parts have
been estimated in the proof of Proposition 1.1, so we focus on the bounds for ∂3K1 through
∂3K7 with K1 through K7 defined in the previous subsection.

We start with ‖∂3K1‖L2 . As in (5.13), we can write

∂3P(u · ∇u))h = ∂3u · ∇uh + u · ∂3∇uh − ∂3∇h�
−1∇ · (u · ∇u)

= ∂3uh · ∇huh + ∂3u3∂3uh + uh · ∇h∂3uh

+ u3∂33uh − ∂3�
−1∇ · ∇h(u · ∇u)

= u3∂33uh + ∂3uh · ∇huh − ∇h · uh∂3uh + ∇h · (uh∂3uh)

− ∇h · uh∂3uh − ∂3�
−1∇ · ∇h(u · ∇u)

= u3∂33uh + (∂3uh · ∇huh − 2∇h · uh∂3uh)
+ ∇h · (uh∂3uh) − ∂3�

−1∇ · ∇h(u · ∇u).

Correspondingly ∂3K1 is then divided into four terms,

∂3K1 = L11 + L12 + L13 + L14, (5.18)

where

L11 =
∫ t

0
e�h(t−τ) u3∂33uh(τ ) dτ,

L12 =
∫ t

0
e�h(t−τ) (∂3uh · ∇huh − 2∇h · uh∂3uh)(τ ) dτ,

L13 =
∫ t

0
e�h(t−τ) ∇h · (uh∂3uh)(τ ) dτ,

L14 = −
∫ t

0
e�h(t−τ) ∂3�

−1∇ · ∇h(u · ∇u)(τ ) dτ.
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L11 involves the unfavorable derivative ∂33 and may yield the worst decay rate. By Lem-
mas 5.1, 5.2 and 5.3,

‖L11‖L2 ≤
∫ t

0
‖e�h(t−τ)u3 ∂33uh(τ )‖L2 dτ

≤
∫ t

0

∥
∥
∥‖e�h(t−τ)u3 ∂33uh(τ )‖L2

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

1
2

∥
∥
∥‖u3 ∂33uh(τ )‖L1

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

1
2

∥
∥
∥‖u3‖L2

h
‖∂33uh‖L2

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

1
2 ‖u3‖L2

h L
∞
x3

‖∂33uh‖L2 dτ

≤ C
∫ t

0
(t − τ)−

1
2 ‖u3‖

1
2
L2 ‖∂3u3‖

1
2
L2 ‖∂33uh‖L2 dτ

≤ C
∫ t

0
(t − τ)−

1
2 ‖u3‖

1
2
L2 ‖∇h · uh‖

1
2
L2 ‖∂3uh‖

2
3
L2 ‖∂43uh‖

1
3
L2 dτ,

where we have used the interpolation inequality,

‖∂33uh‖L2 ≤ ‖∂3uh‖
2
3
L2 ‖∂43uh‖

1
3
L2 .

We now invoke the ansatz in (5.3) and (5.4) to obtain, for 3
4 ≤ σ < 1,

∫ t

0
‖e�h(t−τ)u3 ∂33uh(τ )‖L2 dτ

≤ C C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−

σ
4 (1 + τ)−

1
4− σ

4 (1 + τ)−
σ
3 dτ

= C C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−

5
6 σ− 1

4 dτ

≤ C C2
0 ε2 (1 + t)−

5
6 σ+ 1

4

≤ C C2
0 ε2 (1 + t)−

σ
2

≤ C0

128
ε (1 + t)−

σ
2 ,

where σ ≥ 3
4 is used in the last inequality to ensure that

−5

6
σ + 1

4
≤ −σ

2
.

This is exactly where we need the constraints on σ . L12 and L13 can be dealt with similarly.

‖L12‖L2 ≤ C
∫ t

0

∥
∥
∥‖e�h(t−τ)∂3uh · ∇huh(τ )‖L2

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

1
2

∥
∥
∥‖∂3uh · ∇huh(τ )‖L1

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

1
2 ‖∂3uh‖

1
2
L2 ‖∂33uh‖

1
2
L2 ‖∇huh(τ )‖L2 dτ
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≤ C
∫ t

0
(t − τ)−

1
2 ‖∂3uh‖

5
6
L2 ‖∂43uh‖

1
6
L2 ‖∇huh(τ )‖L2 dτ

≤ C C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−

5
12 σ (1 + τ)−

1
2− σ

2 dτ

≤ C C2
0 ε2

∫ t

0
(t − τ)−

1
2 (1 + τ)−

11
12 σ− 1

2 dτ

≤ C C2
0 ε2 (1 + t)−

11
12 σ

≤ C0

128
ε (1 + t)−

σ
2 .

‖L13‖L2 ≤ C
∫ t

0

∥
∥
∥‖e�h(t−τ)∇h · (uh∂3uh)(τ )‖L2

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

3
4

∥
∥
∥‖uh∂3uh‖L4/3

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

3
4

∥
∥
∥‖uh‖L4

h
‖∂3uh‖L2

h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

3
4 ‖uh‖L4

h L
∞
x3

‖∂3uh‖L2 dτ

≤ C
∫ t

0
(t − τ)−

3
4 ‖uh‖

1
2

L2
h L

∞
x3

‖∇huh‖
1
2

L2
h L

∞
x3

‖∂3uh‖L2 dτ

≤ C
∫ t

0
(t − τ)−

3
4 ‖u‖

1
4
L2 ‖∂3u‖

1
4
L2 ‖∇huh‖

1
4
L2 ‖∂3∇huh‖

1
4
L2‖∂3uh‖L2 dτ

≤ C C2
0 ε2

∫ t

0
(t − τ)−

3
4 (1 + τ)−

7
8 σ− 1

8 dτ

≤ C C2
0 ε2(1 + t)−

7
8 σ+ 1

8

≤ C0

128
ε (1 + t)−

σ
2 .

The estimate of L14 in L2 is pretty much the same as those in the first three terms, so we just
briefly sketch it. By the boundedness of the Riesz transform

‖∂3�−1∇ · f ‖L2 ≤ C ‖ f ‖L2 ,

‖L14‖L2 ≤ C
∫ t

0

∥
∥
∥e�h(t−τ)∇h(u · ∇u)

∥
∥
∥
L2

dτ ≤ C0

128
ε (1 + t)−

σ
2 .

Therefore,

‖∂3K1‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

To bound ‖∂3K2‖L2 , we obtain as in (5.16) the following upper bound
∣
∣
∣
∣

((
ξhξ3

|ξh |2 e
λ1(t−τ) + ξhξ3

|ξh |2G2 + ξhξ3G1

)

(t − τ)

)

̂∂3P(u · ∇u)3

∣
∣
∣
∣

≤ C e−c0|ξh |2(t−τ)
(
| ̂∂33(uhu3)| + | ̂∂3∇ · (uuh)| + | ̂∂3∇h · (u3u3)|

)
.
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Therefore,

‖∂3K2‖L2

≤ C
∫ t

0

∥
∥
∥ec0�h(t−τ) (|∂33(uhu3)| + |∂3∇ · (uuh)| + |∂3∇h · (u3u3)|)

∥
∥
∥
L2

dτ.

The three terms on the right-hand side are similar to those terms in (5.18) and admit the same
bound as the one for ‖∂3K1‖L2 ,

‖∂3K2‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

The estimates of ∂3K3 through ∂3K7 are very similar and thus omitted. Combining all the
upper bounds, we obtain

‖∂3u(t)‖L2 , ‖∂3θ(t)‖L2 ≤ 1

2
C0 ε (1 + t)−

σ
2 ,

which verifies (5.7).

5.4 Estimates of ‖∇hu‖L2 and ‖∇h�‖L2 and verification of (5.8)

This subsection proves (5.8). We again make use of the integral representation (2.1), (2.2)
and (2.3). We apply ∇h to (2.1), (2.2) and (2.3) and then take the L2-norm. The linear parts
have been estimated in the proof of Proposition 1.1, so we focus on the bounds for ∇hK1

through ∇hK7 with K1 through K7 defined in the Sect. 5.2.
We start with ∇hK1. As in (5.13), we write

P(u · ∇u))h = u3∂3uh + uh · ∇huh − �−1∇ · ∇ · ∇h(u ⊗ u).

and ‖∇hK1‖L2 is then bounded

Mi := ‖∇hKi‖L2 ≤ M11 + M12 + M13, for i = 1, · · · , 7,

where

M11 =
∫ t

0
‖∇he

�h(t−τ)(u3∂3uh)(τ )‖L2 dτ,

M12 =
∫ t

0
‖∇he

�h(t−τ)(uh · ∇huh)(τ )‖L2 dτ,

M13 =
∫ t

0
‖∇he

�h(t−τ)(�−1∇ · ∇ · ∇h(u ⊗ u))(τ )‖L2 dτ.

By Lemma 5.3,

M11 ≤
∫ t

0

∥
∥
∥‖∇he

�h(t−τ)(u3∂3uh)(τ )‖L2
h

∥
∥
∥
L2
x3

dτ

≤ C
∫ t

0
(t − τ)−

1
2 ‖‖e�h(t−τ)(u3∂3uh)(τ )‖L2

h
‖L2

x3
dτ.

We remark that we can no longer proceed as in the estimate of K13. We already have the

factor (t − τ)− 1
2 and an estimate as in that of K13 would generate another (t − τ)− 1

2 and thus
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produce (t − τ)−1, which is not integrable on (0, t). Instead we use a different estimate. We
choose q satisfying

1

q
= 1

2
+ σ

2
or q = 2

1 + σ
.

For 3
4 ≤ σ < 1, we have 1 < q < 2. Then, by Lemma 5.3,

M11 ≤ C
∫ t

0
(t − τ)−

1+σ
2

∥
∥
∥‖u3∂3uh(τ )‖Lq

h

∥
∥
∥
L2
x3

dτ

The integrand can be further bounded as in Sect. 5.1,
∥
∥
∥‖u3∂3uh‖Lq

h

∥
∥
∥
L2
x3

≤
∥
∥
∥‖u3‖L∞

x3
‖∂3uh‖L2

x3

∥
∥
∥
Lq
h

≤ ‖u3‖
L

2
σ
h L∞

x3

‖∂3uh‖L2
h L

2
x3

≤ C

∥
∥
∥
∥‖u3‖

1
2
L2
x3

‖∂3u3‖
1
2
L2
x3

∥
∥
∥
∥
L

2
σ
h

‖∂3uh‖L2

≤ C

∥
∥
∥
∥‖u3‖

1
2
L2
x3

∥
∥
∥
∥
L

4
2σ−1
h

∥
∥
∥
∥‖∂3u3‖

1
2
L2
x3

∥
∥
∥
∥
L4
h

‖∂3uh‖L2

≤ C ‖∂3u3‖
1
2
L2 ‖u3‖

1
2

L
2

2σ−1
h L2

x3

‖∂3uh‖L2

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖

1
2

L2
x3
L

2
2σ−1
h

‖∂3uh‖L2

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3uh‖L2 .

Therefore, for any 3
4 ≤ σ < 1,

M11 ≤ C
∫ t

0
(t − τ)−

1+σ
2 ‖∇h · uh‖

1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3u‖L2 dτ

≤ C C2
0 ε2

∫ t

0
(t − τ)−

1+σ
2 (1 + τ)−( 32−σ)( 12+ σ

2 ) (1 + τ)−
σ
2 (σ+ 1

2 ) dτ

= C C2
0 ε2

∫ t

0
(t − τ)−

1+σ
2 (1 + τ)−

3
4− σ

2 dτ

≤ C C2
0 ε2 (1 + t)−

1+σ
2

≤ 1

128
C0 ε (1 + t)−

1+σ
2 .

M12 can be bounded similarly and they admit the same upper bound. For M13, we first bound
it by the fact that Riesz transforms are bounded on L2,

M13 ≤ C
∫ t

0
‖∇he

�h(t−τ)∇h(u ⊗ u))(τ )‖L2 dτ

and then proceed as in the estimates of M11 to obtain the same upper bound. Therefore,

‖∇hM1(t)‖L2 ≤ C0

4
ε (1 + t)−

1+σ
2 .
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According to (5.16),

‖∇hM2(t)‖L2 ≤ C
∫ t

0
‖∇he

�h(t−τ)∂3(uhu3)‖L2 dτ

+ C
∫ t

0
‖∇he

�h(t−τ)∇ · (uuh)‖L2 dτ

+ C
∫ t

0
‖∇he

�h(t−τ)∇h · (u3u3)‖L2 dτ.

These three terms can be estimated as those in ∇hM1 and obey the same upper bound. By
(5.17),

‖∇hM3(t)‖L2 ≤ C
∫ t

0
‖∇he

�h(t−τ)uh · ∇hθ(τ )‖L2 dτ

+ C
∫ t

0
‖∇he

c0�h(t−τ)u3∂3θ(τ )‖L2 dτ.

The terms in ∇hM3 can also be bounded similarly as those in ∇hM1. The terms in ∇hM4

through ∇hM7 can also be bounded similarly and the details are omitted. As a consequence,
we have verified (5.8). This completes the proof of Theorem 1.3. ��

Finally we make some concluding remarks. We have proposed and implemented a new
and effective approach to extracting the optimal decay estimates for the 3D Boussinesq
system with only horizontal dissipation. It is not difficult to see that this approach also
works for the Boussinesq system with full dissipation. When the full dissipation is present,
the estimates of many terms (especially those with vertical derivatives) can be significantly
simplified. In addition, although the approach is developed in this paper for the Boussinesq
system, it is expected to be applicable to many other anisotropic PDE systems such as
the magneto-hydrodynamic equations with horizontal dissipation. We are also working on
anisotropic Boussinesq systems without horizontal velocity or thermal dissipation. There
are many challenges. One particular difficult case is when there is no horizontal velocity
dissipation in the Boussinesq system. Then the dissipation is only in the vertical direction
and it is not clear in R

3 if one can control the velocity nonlinearity by dissipation in only
one direction in the Sobolev setting. We are hopeful that some progress will be made on this
front in the near future.
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