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UNIQUE WEAK SOLUTIONS OF THE NON-RESISTIVE
MAGNETOHYDRODYNAMIC EQUATIONS WITH

FRACTIONAL DISSIPATION∗

QUANSEN JIU† , XIAOXIAO SUO‡ , JIAHONG WU§ , AND HUAN YU¶

Abstract. This paper examines the uniqueness of weak solutions to the d-dimensional magne-
tohydrodynamic (MHD) equations with the fractional dissipation (−∆)αu and without the magnetic
diffusion. Important progress has been made on the standard Laplacian dissipation case α= 1. This
paper discovers that there are new phenomena with the case α<1. The approach for α= 1 can not be
directly extended to α<1. We establish that, for α<1, any initial data (u0,b0) in the inhomogeneous
Besov space Bσ2,∞(Rd) with σ>1+ d

2
−α leads to a unique local solution. For the case α≥1, u0 in

the homogeneous Besov space B̊
1+ d

2
−2α

2,1 (Rd) and b0 in B̊
1+ d

2
−α

2,1 (Rd) guarantees the existence and
uniqueness. These regularity requirements appear to be optimal.
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1. Introduction
The MHD equations govern the motion of electrically conducting fluids such as

plasmas, liquid metals, and electrolytes. They consist of a coupled system of the Navier-
Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. Since
their initial derivation by the Nobel Laureate H. Alfvén in 1942 [1], the MHD equations
have played pivotal roles in the study of many phenomena in geophysics, astrophysics,
cosmology and engineering (see, e.g., [5, 18]). Besides their wide physical applicability,
the MHD equations are also of great interest in mathematics. As a coupled system,
the MHD equations contain much richer structures than the Navier-Stokes equations.
They are not merely a combination of two parallel Navier-Stokes-type equations but an
interactive and integrated system. Their distinctive features make analytic studies a
great challenge but offer new opportunities.

Attention here is focused on the d-dimensional non-resistive MHD equations with
fractional dissipation,

∂tu+u ·∇u+ν(−∆)αu=−∇P +b ·∇b, x∈Rd, t>0,

∂tb+u ·∇b= b ·∇u, x∈Rd, t>0,

∇·u=∇·b= 0, x∈Rd, t>0,

u(x,0) =u0(x), b(x,0) = b0(x), x∈Rd,

(1.1)

where u, P and b represent the velocity, the pressure and the magnetic field, respectively,
and ν >0 is the kinematic viscosity and α>0 is a parameter. The fractional Laplacian
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operator (−∆)α is defined via the Fourier transform,

̂(−∆)αf(ξ) = |ξ|2α f̂(ξ),

where

f̂(ξ) =
1

(2π)d/2

∫
Rd
e−ix·ξ f(x)dx.

When α= 1, (1.1) reduces to the standard MHD equations without magnetic diffusion,
which models electrically conducting fluids that can be treated as perfect conductors
such as strongly collisional plasmas. When α>0 is fractional, (1.1) may be applicable
in some geophysical and astrophysical circumstances. One example is in the thinning of
atmosphere. Flows in the middle atmosphere traveling upward undergo changes due to
the changes in atmospheric properties. The effect of kinematic diffusion is attenuated
by the thinning of atmosphere. This anomalous attenuation can be modeled by using
the space fractional Laplacian. In addition, (1.1) may be used to model nonlocal and
long-range diffusive interactions. Mathematically (1.1) allows us to study a family of
equations simultaneously and provides a broad view on how the solutions are related to
the sizes of α. Fractional Laplacian diffusion has recently been applied to model many
real-world phenomena, ranging from quasi-geostrophic flows [8,17,31], flame propagation
[7] to jumping processes in probability and finance [16]. Several books and monographs
have been exclusively devoted to nonlocal diffusion (see, e.g., [6]).

One of the most fundamental issues on the MHD equations is the well-posedness
problem. Mathematically rigorous foundational work has been laid by G. Duvaut and
J. L. Lions in [21] and by M. Sermange and R. Temam in [40]. The MHD equations
have recently gained renewed interests and there have been substantial developments
on the well-posedness problem, especially when the MHD equations involve only partial
or fractional dissipation (see, e.g., [10–12, 15, 19, 20, 22, 29, 30, 45, 49–54]). A summary
on some of the recent results can be found in a review paper [46]. Equations (1.1) with
α≥1+ d

2 always has a unique global solution (see [46]). Yamazaki was able to improve
this result by weakening the dissipation by a logarithm [52]. It remains an outstanding
open problem whether or not (1.1) with α<1+ d

2 can have finite-time singular classical
solutions. Even the global existence of Leray-Hopf weak solutions is not known due to
the lack of suitable strong convergence in b. In spite of the difficulties due to the lack of
magnetic diffusion, significant progress has been made on the global well-posedness of
solutions near background magnetic fields and many exciting results have been obtained
(see, e.g., [3, 9, 25–27,33,36–38,41,44,47,48,55]).

Another direction of research on the non-resistive MHD equations has resulted in
a steady stream of progress. This direction has been seeking the weakest possible
functional setting for which one still has the uniqueness. The results currently available
are for (1.1) with α= 1. Q. Jiu and D. Niu [28] proved the local well-posedness of (1.1)
with α= 1 in the Sobolev space Hs with s≥3. Fefferman, McCormick, Robinson and
Rodrigo were able to weaken the regularity assumption to (u0,b0)∈Hs with s> d

2 in [23]

and then to u0∈Hs−1+ε and b0∈Hs with s> d
2 in [24]. Chemin, McCormick, Robinson

and Rodrigo [14] made further improvement by assuming only u0∈B
d
2−1
2,1 and b0∈B

d
2
2,1.

Here Bsp,q denotes an inhomogeneous Besov space. They obtained the local existence
for d= 2 and 3, and the uniqueness for d= 3. R. Wan [43] obtained the uniqueness for
d= 2. J. Li, W. Tan and Z. Yin [32] recently made an important progress by reducing the

functional setting to homogeneous Besov space u0∈ B̊
d
p−1

p,1 and b0∈ B̊
d
p

p,1 with p∈ [1,2d].
The definitions of the Besov spaces are provided in the Appendix.
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The aim of this paper is to establish the local existence and uniqueness of weak
solutions with the minimal initial regularity assumption and for the largest possible
range of α’s. The case when α>1 can be handled similarly as the case when α= 1.

We can show that, for α>1, any initial data (u0,b0) with u0∈ B̊
d
2 +1−2α
2,1 (Rd) and b0∈

B̊
d
2 +1−α
2,1 (Rd) leads to a unique local solution.

However, when α<1, the situation is different and there are new phenomena. The
approach for the case α= 1 can not be directly extended to α<1. We tested several
seemingly natural classes of initial data:

(1)u0∈B
d
2 +1−2α
2,1 (Rd) and b0∈B

d
2
2,1(Rd); (1.2)

(2)u0∈B
d
2 +1−2α
2,1 (Rd) and b0∈B

d
2 +1−α
2,1 (Rd); (1.3)

(3)u0∈B
d
2 +1−α
2,1 (Rd) and b0∈B

d
2 +1−α
2,1 (Rd), (1.4)

but it appears impossible to prove the local existence and uniqueness of weak solutions
in these functional settings. Our investigation with these initial data leads to several
discoveries. First, we realize that, in order to attain the uniqueness, the regularity level
of the Besov space for b0 has to have at least d

2 −α+1-derivative, which is more than d
2

for α<1. Second, we discover that if the derivative of the Besov setting for b0 exceeds
d
2 , then u0 and b0 should have the same Besov setting in order to establish the existence
of solutions. Furthermore, one needs to combine the term of b ·∇b in the equation of
u and u ·∇b in the equation of b in order to generate the cancellation. More technical
explanations are given in Section 5. As a consequence of these findings, we choose the
following Besov spaces for α<1,

u0∈Bσ2,∞(Rd), b0∈Bσ2,∞(Rd), σ>
d

2
+1−α.

These functional settings appear to be optimal when α<1. More technical evidence is
provided in Section 5. Our precise result is stated in the following theorem.

Theorem 1.1. Let d≥2 and consider (1.1) with 0≤α<1+ d
4 . Assume the initial

data (u0,b0) satisfies ∇·u0 =∇·b0 = 0, and is in the following Besov spaces

for α≥1, u0∈ B̊
d
2 +1−2α
2,1 (Rd), b0∈ B̊

d
2 +1−α
2,1 (Rd), (1.5)

for α<1, u0∈Bσ2,∞(Rd), b0∈Bσ2,∞(Rd), σ>
d

2
+1−α. (1.6)

Then there exist T >0 and a unique local solution (u,b) of (1.1) satisfying, in the case
of α≥1,

u∈C([0,T ];B̊
d
2 +1−2α
2,1 (Rd))∩L1(0,T ;B̊

d
2 +1
2,1 (Rd)), b∈C([0,T ];B̊

d
2 +1−α
2,1 (Rd))

and, in the case of α<1,

u∈C([0,T ];Bσ2,∞(Rd))∩ L̃2(0,T ;Bα+σ
2,∞ (Rd)), b∈C([0,T ];Bσ2,∞(Rd)).

Theorem 1.1 covers a full range of α∈ [0,1+ d
4 ) and includes α= 1 and α= 0 as two

special cases. α<1+ d
4 is imposed to satisfy a technical requirement in bounding the

high frequency interaction terms in the paraproduct decomposition. When α reaches
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this upper bound, the functional setting for u0 is B̊−1
2,1 . When α≥1, the initial data

(u0,b0) and the corresponding solution are in the homogeneous Besov spaces. For α<1,
the functional setting are the inhomogeneous Besov spaces. We may not be able to
reduce the assumption for α<1 to the corresponding homogeneous Besov spaces.

As aforementioned, the regularity assumptions imposed on (u0,b0) in Theorem 1.1
may be the minimal requirements we need for the existence and uniqueness. We present

a detailed explanation in Section 5. Roughly speaking, when α≥1, u0∈ B̊
d
2 +1−2α
2,1 (Rd)

in (1.5) is necessary in order for the solution u∈L1(0,T ;B̊
d
2 +1
2,1 (Rd)), which is more

or less the regularity level for the uniqueness. The regularity setting for u0 leads to

the corresponding choice for b0, namely b0∈ B̊
d
2 +1−α
2,1 (Rd). In the case when α<1,

(1.6) may be optimal due to our findings discovered in working with three other initial
Besov settings described above in (1.2), (1.3) and (1.4). Another hint comes from the
uniqueness requirement for the ideal MHD equations. When α is zero or α>0 is small,
(1.6) is the regularity class that guarantees the uniqueness of solutions to the ideal MHD
equations.

The statement of Theorem 1.1 clearly indicates that the case α≥1 is handled dif-
ferently from the case α<1. The existence part of Theorem 1.1 is proven through
a successive approximation process. Naturally we divide the consideration into two
cases: α≥1 and α<1. In the case when α≥1, the successive approximation sequence
(u(n),b(n)) satisfies

u(1) = S̊1u0, b(1) = S̊1b0,

∂tu
(n+1) +ν(−∆)αu(n+1) =P(−u(n) ·∇u(n+1) +b(n) ·∇b(n)),

∂tb
(n+1) =−u(n) ·∇b(n+1) +b(n) ·∇u(n),

∇·u(n+1) =∇·b(n+1) = 0,

u(n+1)(x,0) = S̊n+1u0, b(n+1)(x,0) = S̊n+1b0,

(1.7)

where P is the standard Leray projection and S̊j is the standard homogeneous low
frequency cutoff operator (see the Appendix for its definition). The functional setting
for (u(n),b(n)) is given by

M = 2

(
‖u0‖

B̊
d
2
+1−2α

2,1

+‖b0‖
B̊
d
2
+1−α

2,1

)
Y ≡

{
(u,b)

∣∣ ‖u‖
L̃∞(0,T ;B̊

d
2
+1−2α

2,1 )
≤M, ‖b‖

L̃∞(0,T ;B̊
d
2
+1−α

2,1 )
≤M,

‖u‖
L1(0,T ;B̊

d
2
+1

2,1 )
≤ δ, ‖u‖

L̃2(0,T ;B̊
d
2
+1−α

2,1 )
≤ δ
}
, (1.8)

where T >0 is chosen to be sufficiently small and 0<δ<1 is specified in Section 2. In
the case when α<1, (u(n),b(n)) satisfies

u(1) =S1u0, b(1) =S1b0,

∂tu
(n+1) +ν(−∆)αu(n+1) =P(−u(n) ·∇u(n+1) +b(n) ·∇b(n+1)),

∂tb
(n+1) =−u(n) ·∇b(n+1) +b(n) ·∇u(n+1),

∇·u(n+1) =∇·b(n+1) = 0,

u(n+1)(x,0) =Sn+1u0, b(n+1)(x,0) =Sn+1b0

(1.9)
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and the corresponding functional setting is

M = 2max

{
‖(u0,b0)‖Bσ2,∞ ,

1√
C0

‖(u0,b0)‖Bσ2,∞

}
,

Y ≡
{

(u,b)
∣∣ ‖(u,b)‖L̃∞(0,T ;Bσ2,∞)≤M, ‖u‖L̃2(0,T ;Bα+σ

2,∞ )≤M
}
, (1.10)

where C0>0 is a pure constant as defined in (3.1). The main effort is devoted to
showing that (u(n),b(n)) actually converges to a weak solution of (1.1). The process of
obtaining a subsequence of (u(n),b(n)) that converges to a weak solution (u,b) of (1.1)
is divided into two main steps. The first step is to assert the uniform boundedness of
(u(n),b(n)) in Y while the second step is to extract a strongly convergent subsequence
via the Aubin-Lions Lemma. The strong convergence then ensures that the limit is
indeed a weak solution of (1.1). The uniform boundedness is shown via an iterative
process. We assume (u(n),b(n))∈Y and show (u(n+1),b(n+1))∈Y .

The technical approach to proving the uniform boundedness for the case α≥1 is
different from that for the case when α<1. For α<1, we estimate u(n+1) and b(n+1)

in L̃∞(0,T ;Bσ2,∞), and u(n+1) in L̃2(0,T ;Bα+σ
2,∞ ) simultaneously. The purpose is to

make use of the cancellation resulting from adding the equations for ‖∆ju
(n+1)‖L2 and

‖∆jb
(n+1)‖L2 . The cancellation is in the sum∫

Rd
∆j(b

(n) ·∇b(n+1)) ·∆ju
(n+1)dx+

∫
Rd

∆j(b
(n) ·∇u(n+1)) ·∆jb

(n+1)dx,

whose paraproduct decomposition contains∫
Rd

(
Sjb

(n) ·∇∆jb
(n+1) ·∆ju

(n+1) +Sjb
(n) ·∇∆ju

(n+1) ·∆jb
(n+1)

)
dx= 0

as ∇·b(n) = 0. This appears to be the only approach that allows us to show the existence
of solutions in functional spaces with the order of the derivative exceeding d

2 . In the

case when α≥1, b0∈ B̊
d
2 +1−α
2,1 (Rd) and the order of derivative is d

2 +1−α≤ d
2 . The

desired norms of u(n+1) and b(n+1) can be suitably estimated without the cancellation.
In addition, some upper bounds on products in Besov spaces are valid only for α≥1
and break down when α<1. When α≥1,

‖b(n) ·∇b(n+1)‖
B
d
2
−2α+1

2,1 (Rd)
≤‖b(n)⊗b(n+1)‖

B
d
2
−2α+2

2,1 (Rd)

≤C ‖b(n)‖
B
d
2
−α+1

2,1 (Rd)
‖b(n+1)‖

B
d
2
−α+1

2,1 (Rd)

based on the following lemma (see, e.g., [2, p.90] or Lemma 2.6 in [32]).

Lemma 1.1. Let 1≤p≤∞, s1,s2≤ d
p and s1 +s2>dmax{0, 2

p−1}. Then

‖f g‖
Ḃ
s1+s2−

d
p

p,1 (Rd)
≤C ‖f‖Ḃs1p,1(Rd)‖g‖Ḃs2p,1(Rd).

However, when α<1, Lemma 1.1 breaks down since s1 = d
2 −α+1 and s2 = d

2 −α+1

no longer satisfy the condition s1,s2≤ d
2 . This difficulty is overcome by performing a

detailed analysis on different frequencies of this product when α<1.

The rest of this paper is divided into four sections and an appendix. Section 2
focuses on the proof of the existence part in Theorem 1.1 for the case when α≥1
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while Section 3 is devoted to the case when α<1. Section 4 presents the proof for the
uniqueness part of Theorem 1.1. We again distinguish between the case when α≥1 and
the case when α<1. Section 5 explains in detail why the regularity assumptions on the
initial data in Theorem 1.1 may be optimal. In particular, we describe the difficulties
when the regularity assumptions are reduced to those in (1.2), (1.3) and (1.4). The
Appendix provides the definitions of Besov spaces and other closely related tools.

2. Proof of the existence part in Theorem 1.1 for α≥1
This section proves the existence part of Theorem 1.1 for the case α≥1. The

approach is to construct a successive approximation sequence and show that the limit
of a subsequence actually solves (1.1) in the weak sense.

Proof. (Proof for the existence part of Theorem 1.1 in the case when
α≥1.) We consider a successive approximation sequence {(u(n),b(n))} satisfying (1.7).
We define the functional setting Y as in (1.8) . Our goal is to show that {(u(n),b(n))}
has a subsequence that converges to a weak solution of (1.1). This process consists of
three main steps. The first step is to show that (u(n),b(n)) is uniformly bounded in Y .
The second step is to extract a strongly convergent subsequence via the Aubin-Lions
Lemma while the last step is to show that the limit is indeed a weak solution of (1.1).
Our main effort is devoted to showing the uniform bound for (u(n),b(n)) in Y . This is
proven by induction.

We show inductively that (u(n),b(n)) is bounded uniformly in Y . Recall that (u0,b0)
is in the regularity class (1.5). According to (1.7),

u(1) = S̊1u0, b(1) = S̊1b0.

Clearly,

‖u(1)‖
L̃∞(0,T ;B̊

d
2
+1−2α

2,1 )
≤M, ‖b(1)‖

L̃∞(0,T ;B̊
d
2
+1−α

2,1 )
≤M.

If T >0 is sufficiently small, then

‖u(1)‖
L1(0,T ;B̊

d
2
+1

2,1 )
≤T‖S̊2u0‖

B̊
d
2
+1

2,1

≤T C ‖u0‖
B̊
d
2
+1−2α

2,1

≤ δ,

‖u(1)‖
L̃2(0,T ;B̊

d
2
+1−α

2,1 )
≤
√
T C ‖u0‖

B̊
d
2
+1−2α

2,1

≤ δ.

Assuming that (u(n),b(n)) obeys the bounds defined in Y , namely

‖u(n)‖
L̃∞(0,T ;B̊

d
2
+1−2α

2,1 )
≤M, ‖b(n)‖

L̃∞(0,T ;B̊
d
2
+1−α

2,1 )
≤M,

‖u(n)‖
L1(0,T ;B̊

d
2
+1

2,1 )
≤ δ, ‖u(n)‖

L̃2(0,T ;B̊
d
2
+1−α

2,1 )
≤ δ,

we prove that (u(n+1),b(n+1)) obeys the same bounds for sufficiently small T >0 and
suitably selected δ>0. For the sake of clarity, the rest of this section is divided into five
subsections.

2.1. The estimate of u(n+1) in L̃∞(0,T ;B̊
1+ d

2−2α
2,1 (Rd)). Let j be an integer.

Applying ∆̊j (we shall just use ∆j to simplify the notation) to the second equation in
(1.7) and then dotting with ∆ju

(n+1), we obtain

1

2

d

dt
‖∆ju

(n+1)‖2L2 +ν‖Λα∆ju
(n+1)‖2L2 =A1 +A2, (2.1)
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where

A1 =−
∫

∆j(u
(n) ·∇u(n+1)) ·∆ju

(n+1)dx,

A2 =

∫
∆j(b

(n) ·∇b(n)) ·∆ju
(n+1)dx.

We remark that the projection operator P has been eliminated due to the divergence-free
condition ∇·u(n+1) = 0. The dissipative part admits a lower bound

ν‖Λα∆ju
(n+1)‖2L2 ≥ C0 22αj ‖∆ju

(n+1)‖2L2 ,

where C0>0 is a constant. According to Lemma 6.2, A1 can be bounded by

|A1|≤C ‖∆ju
(n+1)‖2L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2

+C ‖∆ju
(n+1)‖L2 ‖∆ju

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n+1)‖L2

+C ‖∆ju
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆ku

(n)‖L2 ‖∆̃ku
(n+1)‖L2 .

Also by Lemma 6.2, A2 is bounded by

|A2|≤C ‖∆ju
(n+1)‖L2 2j ‖∆jb

(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2

+C ‖∆ju
(n+1)‖L2 ‖∆jb

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n)‖L2

+C ‖∆ju
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆kb

(n)‖L2 ‖∆̃kb
(n)‖L2 .

Inserting the estimates above in (2.1) and eliminating ‖∆ju
(n+1)‖L2 from both sides of

the inequality, we obtain

d

dt
‖∆ju

(n+1)‖L2 +C0 22αj‖∆ju
(n+1)‖L2 ≤J1 + ·· ·+J6, (2.2)

where

J1 =C ‖∆ju
(n+1)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 ,

J2 = C ‖∆ju
(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n+1)‖L2

J3 = C 2j
∑
k≥j−1

2
d
2 k ‖∆ku

(n)‖L2 ‖∆̃ku
(n+1)‖L2 ,

J4 = C 2j ‖∆jb
(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2 ,

J5 = C ‖∆jb
(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n)‖L2 ,

J6 = C 2j
∑
k≥j−1

2
d
2 k ‖∆kb

(n)‖L2 ‖∆̃kb
(n)‖L2 .
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Integrating (2.2) in time yields

‖∆ju
(n+1)(t)‖L2 ≤e−C022αjt‖∆ju

(n+1)
0 ‖L2

+

∫ t

0

e−C022αj(t−τ)(J1 + ·· ·+J6)dτ. (2.3)

Taking the L∞(0,T ) of (2.3), then multiplying by 2(1+ d
2−2α)j and summing over j, we

have

‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )

≤‖u(n+1)
0 ‖

B
1+ d

2
−2α

2,1

+
∑
j

2(1+ d
2−2α)j

∥∥∥∥∫ t

0

e−C022αj(t−τ)(J1 + ·· ·+J6)dτ

∥∥∥∥
L∞(0,T )

.

Applying Young’s inequality to the convolution in time yields

‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )

≤‖u(n+1)
0 ‖

B
1+ d

2
−2α

2,1

+
∑
j

2(1+ d
2−2α)j ‖J1 + ·· ·+J6‖L1(0,T ) . (2.4)

The terms on the right-hand side can be estimated as follows. Recalling the definition
of J1 and using the inductive assumption on u(n), we have

∑
j

2(1+ d
2−2α)j

∫ T

0

J1dτ

= C

∫ T

0

∑
j

2(1+ d
2−2α)j‖∆ju

(n+1)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 dτ

≤ C ‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )
‖u(n)‖

L1(0,T ;B̊
1+ d

2
2,1 )

≤Cδ‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )
.

The term involving J2 admits the same bound. In fact,

∑
j

2(1+ d
2−2α)j

∫ T

0

J2dτ

= C

∫ T

0

∑
j

2(1+ d
2 )j‖∆ju

(n)‖L2

∑
m≤j−1

22α(m−j)2(1+ d
2−2α)m‖∆mu

(n+1)‖L2 dτ

≤ C
∫ T

0

‖u(n)(τ)‖
B̊

1+ d
2

2,1

‖u(n+1)(τ)‖
B̊

1+ d
2
−2α

2,1

dτ

≤ Cδ‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )
,

where we have used the fact that 2α(m−j)≤0. The term with J3 is bounded by

∑
j

2(1+ d
2−2α)j

∫ T

0

J3dτ =

∫ T

0

∑
j

2(1+ d
2−2α)j 2j

∑
k≥j−1

2
d
2 k ‖∆̃ku

(n+1)‖L2 ‖∆ku
(n)‖L2 dτ
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= C

∫ T

0

∑
j

∑
k≥j−1

2(2+ d
2−2α)(j−k) 2(1+ d

2 )k‖∆ku
(n)‖L2

×2(1+ d
2−2α)k‖∆̃ku

(n+1)‖L2 dτ

≤ C
∫ T

0

‖u(n)(τ)‖
B̊

1+ d
2

2,1

‖u(n+1)(τ)‖
B̊

1+ d
2
−2α

2,1

dτ

≤ Cδ‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )
,

where we have used Young’s inequality for series convolution and the fact (2+ d
2 −

2α)(j−k)<0. This is the place where we need α<1+ d
4 . We now estimate the terms

involving J4 through J6. The term with J4 is bounded by,

∑
j

2(1+ d
2−2α)j

∫ T

0

J4dτ

=
∑
j

∫ T

0

2(1+ d
2−2α)j 2j ‖∆jb

(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2 dτ

=

∫ T

0

∑
j

2(1+ d
2−α)j ‖∆jb

(n)‖L2

∑
m≤j−1

2(1−α)(j−m) 2(1+ d
2−α)m‖∆mb

(n)‖L2 dτ

≤ CT ‖b(n)‖
L̃∞(0,T ;B̊

1+ d
2
−α

2,1 )
‖b(n)‖

L̃∞(0,T ;B̊
1+ d

2
−α

2,1 )

≤ CTM2,

where we have used the fact that α≥1 and (1−α)(j−m)≤0. The terms with J5 and
J6 are estimated similarly and they obey the same bound. Inserting the bounds above
in (2.4), we find

‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )
≤‖u(n+1)

0 ‖
B̊

1+ d
2
−2α

2,1

+Cδ‖u(n+1)‖
L̃∞(0,T ;B̊

1+ d
2
−2α

2,1 )
+CTM2.

(2.5)

2.2. The estimate of ‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
−α+1

2,1 )
. We use the third equation of

(1.7). Applying ∆j to the third equation in (1.7) and then dotting with ∆jb
(n+1), we

obtain

1

2

d

dt
‖∆jb

(n+1)‖2L2 ≤B1 +B2, (2.6)

where

B1 =−
∫

∆j(u
(n) ·∇b(n+1)) ·∆jb

(n+1)dx,

B2 =

∫
∆j(b

(n) ·∇u(n)) ·∆jb
(n+1)dx.

By Lemma 6.2,

|B1|≤C ‖∆jb
(n+1)‖2L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2
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+C ‖∆jb
(n+1)‖L2 ‖∆ju

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n+1)‖L2

+C ‖∆jb
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆̃kb

(n+1)‖L2 ‖∆ku
(n)‖L2

and

|B2|≤C ‖∆jb
(n+1)‖L2 2j ‖∆ju

(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2

+C ‖∆jb
(n+1)‖L2 ‖∆jb

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2

+C ‖∆jb
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆kb

(n)‖L2 ‖∆̃ku
(n)‖L2 .

Inserting the estimates above in (2.6) and eliminating ‖∆jb
(n+1)‖L2 from both sides of

the inequality, we obtain

d

dt
‖∆jb

(n+1)‖L2 ≤K1 + ·· ·+K6, (2.7)

where

K1 =C ‖∆jb
(n+1)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 ,

K2 = C ‖∆ju
(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n+1)‖L2

K3 = C 2j
∑
k≥j−1

2
d
2 k ‖∆̃kb

(n+1)‖L2 ‖∆ku
(n)‖L2 ,

K4 = C 2j ‖∆ju
(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2 ,

K5 = C ‖∆jb
(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 ,

K6 = C 2j
∑
k≥j−1

2
d
2 k ‖∆kb

(n)‖L2 ‖∆̃ku
(n)‖L2 .

Integrating (2.7) in time yields,

‖∆jb
(n+1)(t)‖L2 ≤ ‖∆jb

(n+1)
0 ‖L2 +

∫ t

0

(K1 + ·· ·+K6)dτ. (2.8)

Taking the L∞(0,T ) of (2.8), multiplying by 2( d2−α+1)j and summing over j, we have

‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
−α+1

2,1 )

≤‖b(n+1)
0 ‖

B̊
d
2
−α+1

2,1

+
∑
j

2( d2−α+1)j

∫ T

0

(K1 + ·· ·+K6)dτ. (2.9)

The terms on the right can be bounded similarly as those in the previous subsection.
In fact, ∑

j

2( d2−α+1)j

∫ T

0

K1dτ ≤ C ‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−α

2,1 )
‖u(n)‖

L1(0,T ;B̊
1+ d

2
2,1 )
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≤Cδ‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−α

2,1 )
.

Similarly, ∑
j

2( d2−α+1)j

∫ T

0

K2dτ ≤ Cδ‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−α

2,1 )
,

∑
j

2( d2−α+1)j

∫ T

0

K3dτ ≤ Cδ‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−α

2,1 )
.

The terms with K4, K5 and K6 are bounded as follows.∑
j

2( d2−α+1)j

∫ T

0

K4dτ

= C
∑
j

2( d2−α+1)j

∫ T

0

2j ‖∆ju
(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2 dτ

= C

∫ T

0

∑
j

2( d2 +1)j‖∆ju
(n)‖L2

∑
m≤j−1

2(1−α)(j−m) 2( d2 +1−α)m‖∆mb
(n)‖L2 dτ

≤ C ‖u(n)‖
L1(0,T ;B̊

1+ d
2

2,1 )
‖b(n)‖

L̃∞(0,T ;B̊
d
2
+1−α

2,1 )

≤CδM,

where we have used the fact that α≥1 and (1−α)(j−m)≤0. Similarly,∑
j

2( d2−α+1)j

∫ T

0

K5dτ ≤CδM,
∑
j

2( d2−α+1)j

∫ T

0

K6dτ ≤CδM.

Inserting the estimates above in (2.9), we find

‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
−α+1

2,1 )
≤‖b(n+1)

0 ‖
B̊
d
2
−α+1

2,1

+Cδ‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−α

2,1 )
+CδM.

(2.10)

2.3. The estimate of ‖u(n+1)‖
L1

(
0,T ;B̊

1+ d
2

2,1

). We multiply (2.3) by 2(1+ d
2 )j ,

sum over j and integrate in time to obtain

‖u(n+1)‖
L1

(
0,T ;B̊

1+ d
2

2,1

)≤
∫ T

0

∑
j

2(1+ d
2 )j e−C022αjt‖∆ju

(n+1)
0 ‖L2 dt

+

∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)(J1 + ·· ·+J6)dτ ds.

We estimate the terms on the right and start with the first term.∫ T

0

∑
j

2(1+ d
2 )j e−C022αjt‖∆ju

(n+1)
0 ‖L2 dt

=C
∑
j

2(1+ d
2−2α)j

(
1−e−C022αjT

)
‖∆ju

(n+1)
0 ‖L2 .
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Since u0∈ B̊
1+ d

2−2α
2,1 , it follows from the dominated convergence theorem that

lim
T→0

∑
j

2(1+ d
2−2α)j

(
1−e−C022αjT

)
‖∆ju

(n+1)
0 ‖L2 = 0.

Therefore, we can choose T sufficiently small such that∫ T

0

∑
j

2(1+ d
2 )j e−C022αjt‖∆ju

(n+1)
0 ‖L2 dt≤ δ

4
.

Applying Young’s inequality for the time convolution, we have∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)J1dτ ds

= C

∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)‖∆ju
(n+1)(τ)‖L2

×
∑

m≤j−1

2(1+ d
2 )m‖∆mu

(n)(τ)‖L2 dτ ds

≤ C
∫ T

0

∑
j

2(1+ d
2 )j ‖∆ju

(n+1)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 dτ×
∫ T

0

e−C022αjsds

≤ C
∫ T

0

∑
j

2(1+ d
2−α)j ‖∆ju

(n+1)(τ)‖L2

×
∑

m≤j−1

2(m−j)α2(1+ d
2−α)m‖∆mu

(n)(τ)‖L2 dτ

≤ C ‖u(n)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
‖u(n+1)‖

L̃2(0,T ;B̊
1+ d

2
−α

2,1 )

≤ Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
.

The terms with J2 and J3 can be estimated similarly and they share the same upper
bound with the term involving J1,∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)J2dτ ds≤ Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
,

∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)J3dτ ds≤ Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
.

We now examine the terms involving J4 through J6. Again by Young’s inequality,∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)J4dτ ds

= C

∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)2j ‖∆jb
(n)(τ)‖L2×

∑
m≤j−1

2
d
2 m‖∆mb

(n)(τ)‖L2 dτ ds

≤ C
∫ T

0

∑
j

2( d2 +2−2α)j ‖∆jb
(n)(τ)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)(τ)‖L2 dτ
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≤ C
∫ T

0

∑
j

2( d2 +1−α)j ‖∆jb
(n)(τ)‖L2

∑
m≤j−1

2(1−α)(j−m) 2( d2 +1−α)m‖∆mb
(n)(τ)‖L2 dτ

≤ C
∫ T

0

‖b(n)(τ)‖2
B̊

1+ d
2
−α

2,1

dτ

≤ CT ‖b(n)‖2
L̃∞(0,T ;B̊

1+ d
2
−α

2,1 )
≤ CTM2,

where we have used the fact that α≥1 and (1−α)(j−m)≤0 again. The other two
terms involving J5 and J6 obey the same bound,∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)J5dτ ds≤ CTM2,

∫ T

0

∑
j

2(1+ d
2 )j

∫ s

0

e−C022αj(s−τ)J6dτ ds≤ CTM2.

Here we have used α<1+ d
4 in the estimate of J6. Collecting the estimates above leads

to

‖u(n+1)‖
L1

(
0,T ;B̊

1+ d
2

2,1

)≤ δ
4

+Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
+CTM2. (2.11)

2.4. The bound for ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
. We multiply (2.3) by 2(1+ d

2−α)j ,

take the L2(0,T )-norm and sum over j to obtain

‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
≤
∑
j

2(1+ d
2−α)j

∥∥∥e−C022αjt‖∆ju
(n+1)
0 ‖L2

∥∥∥
L2(0,T )

+
∑
j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)(J1 + ·· ·+J6)dτ

∥∥∥∥
L2(0,T )

. (2.12)

The first term on the right is bound by∑
j

2(1+ d
2−α)j

∥∥∥e−C022αjt‖∆ju
(n+1)
0 ‖L2

∥∥∥
L2(0,T )

=C
∑
j

2(1+ d
2−2α)j

(
1−e−2C022αjT

) 1
2 ‖∆ju

(n+1)
0 ‖L2 .

Since u0∈ B̊
1+ d

2−2α
2,1 , it follows from the dominated convergence theorem that

lim
T→0

∑
j

2(1+ d
2−2α)j

(
1−e−2C022αjT

) 1
2 ‖∆ju

(n+1)
0 ‖L2 = 0.

Therefore we can choose T >0 sufficiently small such that∑
j

2(1+ d
2−α)j

∥∥∥e−C022αjt‖∆ju
(n+1)
0 ‖L2

∥∥∥
L2(0,T )

≤ δ
4
.
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The other six terms on the right of (2.12) are estimated as follows. Applying Young’s
inequality for the time convolution, we have∑

j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)J1dτ

∥∥∥∥
L2(0,T )

= C
∑
j

2(1+ d
2−α)j

∥∥∥∫ s

0

e−C022αj(s−τ)‖∆ju
(n+1)(τ)‖L2

×
∑

m≤j−1

2(1+ d
2 )m‖∆mu

(n)(τ)‖L2 dτ
∥∥∥
L2(0,T )

≤ C
∑
j

2(1+ d
2−α)j ‖e−C022αjs‖L2(0,T )

×
∥∥∥‖∆ju

(n+1)(τ)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)(τ)‖L2

∥∥∥
L1(0,T )

≤ C
∫ T

0

∑
j

2(1+ d
2−2α)j ‖∆ju

(n+1)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 dτ

≤ C
∫ T

0

∑
j

2(1+ d
2−α)j ‖∆ju

(n+1)(τ)‖L2

×
∑

m≤j−1

2(m−j)α2(1+ d
2−α)m‖∆mu

(n)(τ)‖L2 dτ

≤ C ‖u(n)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
‖u(n+1)‖

L̃2(0,T ;B̊
1+ d

2
−α

2,1 )

≤ Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
.

The terms with J2 and J3 share the same upper bound,∑
j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)J2dτ

∥∥∥∥
L2(0,T )

≤ Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
,

∑
j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)J3dτ

∥∥∥∥
L2(0,T )

≤ Cδ‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
.

The estimate of the term with J4 is similar. Again by Young’s inequality,∑
j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)J4dτ

∥∥∥∥
L2(0,T )

= C
∑
j

2(1+ d
2−α)j

∥∥∥∫ s

0

e−C022αj(s−τ)2j ‖∆jb
(n)(τ)‖L2

×
∑

m≤j−1

2
d
2 m‖∆mb

(n)(τ)‖L2 dτ
∥∥∥
L2(0,T )

≤ C
∑
j

2( d2 +2−2α)j
∥∥∥‖∆jb

(n)(τ)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)(τ)‖L2

∥∥∥
L1(0,T )

≤ C
∫ T

0

∑
j

2( d2 +1−α)j ‖∆jb
(n)(τ)‖L2
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×
∑

m≤j−1

2(1−α)(j−m) 2( d2 +1−α)m‖∆mb
(n)(τ)‖L2 dτ

≤ C
∫ T

0

‖b(n)(τ)‖2
B̊

1+ d
2
−α

2,1

dτ

≤ CT ‖b(n)‖2
L̃∞(0,T ;B̊

1+ d
2
−α

2,1 )
≤ CTM2.

The other two terms involving J5 and J6 obey the same bound,∑
j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)J5dτ

∥∥∥∥
L2(0,T )

≤ CTM2,

∑
j

2(1+ d
2−α)j

∥∥∥∥∫ s

0

e−C022αj(s−τ)J6dτ

∥∥∥∥
L2(0,T )

≤ CTM2.

Collecting the estimates above leads to

‖u(n+1)‖
L̃2(0,T ;B̊

1+ d
2
−α

2,1 )
≤ δ

4
+Cδ‖u(n+1)‖

L̃2(0,T ;B̊
1+ d

2
−α

2,1 )
+CTM2. (2.13)

2.5. Completion of the proof for the existence part in the case when
α≥1. The bounds in (2.5), (2.10), (2.11) and (2.13) allow us to conclude that, if we
choose T >0 sufficiently small and δ>0 suitably, then

‖u(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−2α

2,1 )
≤M, ‖b(n+1)‖

L̃∞(0,T ;B̊
d
2
+1−α

2,1 )
≤M,

‖u(n+1)‖
L1(0,T ;B̊

d
2
+1

2,1 )
≤ δ, ‖u(n+1)‖

L̃2(0,T ;B̊
d
2
+1−α

2,1 )
≤ δ.

In fact, if T and δ in (2.5) satisfy

Cδ≤ 1

4
, CTM ≤ 1

4
,

then (2.5) implies

‖u(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−2α

2,1 )
≤ 1

2
M+

1

4
‖u(n+1)‖

L̃∞(0,T ;B̊
d
2
+1−2α

2,1 )
+

1

4
M

or

‖u(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−2α

2,1 )
≤M.

Similarly, if Cδ≤ 1
4 in (2.10), then (2.10) states

‖b(n+1)‖
L̃∞(0,T ;B̊

d
2
+1−α

2,1 )
≤M.

According to (2.13), if we choose Cδ≤ 1
4 and CTM2≤ 1

2δ, then

‖u(n+1)‖
L̃2(0,T ;B̊

d
2
+1−α

2,1 )
≤ δ

and consequently, if Cδ≤ 1
4 and CTM2≤ 1

2δ in (2.11), then

‖u(n+1)‖
L̃1(0,T ;B̊

d
2
+1

2,1 )
≤ δ.
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These uniform bounds allow us to extract a weakly convergent subsequence. That is,
there is (u,b)∈Y such that a subsequence of (u(n),b(n)) (still denoted by (u(n),b(n)))
satisfies

u(n) ∗⇀u in L̃∞(0,T ;B̊
d
2 +1−2α
2,1 ),

b(n) ∗⇀b in L̃∞(0,T ;B̊
d
2 +1−α
2,1 ).

In order to show that (u,b) is a weak solution of (1.1), we need to further extract
a subsequence which converges strongly to (u,b). This is done via the Aubin-Lions
Lemma. We can show by making use of the equations in (1.7) that (∂tu

(n),∂tb
(n)) is

uniformly bounded in

∂tu
(n)∈L1(0,T ;B̊

d
2−2α+1
2,1 )∩ L̃2(0,T ;B̊

d
2 +1−3α
2,1 ),

∂tb
(n)∈L2(0,T ;B̊

d
2 +1−2α
2,1 )

Since we are in the case of the whole space Rd, we need to combine Cantor’s diagonal
process with the Aubin-Lions Lemma to show that a subsequence of the weakly con-
vergent subsequence, still denoted by (u(n),b(n)), has the following strongly convergent
property,

(u(n),b(n))→ (u,b) in L2(0,T ;B̊γ2,1(Q)),

where d
2 +1−2α≤γ< d

2 +1−α and Q⊂Rd is any compact subset. This strong conver-
gence property would allow us to show that (u,b) is indeed a weak solution of (1.1). This
process is routine and we omit the details. This completes the proof for the existence
part of Theorem 1.1 in the case when α≥1.

3. Proof of the existence part in Theorem 1.1 with α<1
This section proves the existence part of Theorem 1.1 for the case when α<1. The

idea is still to construct a successive approximation sequence and show that the limit of
a subsequence actually solves (1.1) in the weak sense. Some of the technical approaches
here are different from those for α≥1.

Proof. (Proof for the existence part of Theorem 1.1 in the case when
α<1.) We consider a successive approximation sequence {(u(n),b(n))} satisfying (1.9).
We define the functional setting Y as in (1.10). Our goal is to show that {(u(n),b(n))}
has a subsequence that converges to the weak solution of (1.1). This process consists of
three main steps. The first step is to show that (u(n),b(n)) is uniformly bounded in Y .
The second step is to extract a strongly convergent subsequence via the Aubin-Lions
Lemma while the last step is to show that the limit is indeed a weak solution of (1.1).
Our main effort is devoted to showing the uniform bound for (u(n),b(n)) in Y . This
is proven by induction. We start with the basis step. Recall that (u0,b0) is in the
regularity class (1.6). According to (1.9),

u(1) =S2u0, b(1) =S2b0.

Clearly,

‖u(1)‖L̃∞(0,T ;Bσ2,∞)≤M, ‖b(1)‖L̃∞(0,T ;Bσ2,∞)≤M.

If T >0 is sufficiently small, then

‖u(1)‖L̃2(0,T ;Bα+σ
2,∞ )≤

√
T‖S2u0‖Bα+σ

2,∞
≤
√
T C ‖u0‖Bσ2,∞ ≤M.
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Assuming that (u(n),b(n)) obeys the bounds defined in Y , namely

‖u(n)‖L̃∞(0,T ;Bσ2,∞)≤M, ‖b(n)‖L̃∞(0,T ;Bσ2,∞)≤M, ‖u(n)‖L̃2(0,T ;Bα+σ
2,∞ )≤M,

we prove that (u(n+1),b(n+1)) obeys the same bound for sufficiently small T >0.

The proof involves inhomogeneous dyadic block operator ∆j and the inhomogeneous
Besov spaces. Let j≥0 be an integer. Applying ∆j to the second and third equation
in (1.9) and then dotting by (∆ju

(n+1),∆jb
(n+1)), we have

d

dt

(
‖∆ju

(n+1)‖2L2 +‖∆jb
(n+1)‖2L2

)
+C0 22αj ‖∆ju

(n+1)‖2L2 ≤E1 +E2 +E3, (3.1)

where C0>0 is constant and

E1 =−2

∫
∆j(u

(n) ·∇u(n+1)) ·∆ju
(n+1)dx,

E2 =−2

∫
∆j(u

(n) ·∇b(n+1)) ·∆jb
(n+1)dx,

E3 = 2

∫
∆j(b

(n) ·∇b(n+1)) ·∆ju
(n+1)dx+

∫
∆j(b

(n) ·∇u(n+1)) ·∆jb
(n+1)dx.

According to Lemma 6.2, E1 is bounded by

|E1| ≤ C ‖∆ju
(n+1)‖2L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2

+C ‖∆ju
(n+1)‖L2 ‖∆ju

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n+1)‖L2

+C ‖∆ju
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆ku

(n)‖L2 ‖∆̃ku
(n+1)‖L2

:=L1 +L2 +L3.

E2 is bounded by

|E2| ≤ C ‖∆jb
(n+1)‖2L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2

+C ‖∆jb
(n+1)‖L2 ‖∆ju

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n+1)‖L2

+C ‖∆jb
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆̃kb

(n+1)‖L2 ‖∆ku
(n)‖L2

:=L4 +L5 +L6.

E3 is bounded by

|E3| ≤ C ‖∆ju
(n+1)‖L2 ‖∆jb

(n+1)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n)‖L2

+C ‖∆ju
(n+1)‖L2 ‖∆jb

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n+1)‖L2

+C ‖∆ju
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆kb

(n)‖L2 ‖∆̃kb
(n+1)‖L2
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+C ‖∆jb
(n+1)‖L2 ‖∆jb

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n+1)‖L2

+C ‖∆jb
(n+1)‖L2 2j

∑
k≥j−1

2
d
2 k ‖∆̃ku

(n+1)‖L2 ‖∆kb
(n)‖L2

:=L7 +L8 +L9 +L10 +L11.

Inserting these bounds in (3.1) and then integrating in time yield

‖∆ju
(n+1)‖2L2 +‖∆jb

(n+1)‖2L2 +C0 22αj

∫ t

0

‖∆ju
(n+1)‖2L2 dτ

≤‖∆ju
(n+1)
0 ‖2L2 +‖∆jb

(n+1)
0 ‖2L2 +

∫ t

0

(L1 + ·· ·+L11)dτ. (3.2)

When j=−1, all the nonlinear terms can be estimated similarly and the only difference
is on the dissipative term. When j=−1, the dissipative term no longer admits a lower
bound because the support of the Fourier transform includes the origin. This does not
cause a problem. It is easy to see from (1.9) that the L2-norm of (u(n+1),b(n+1)) is
bounded uniformly,

‖u(n+1)(t)‖2L2 +‖b(n+1)(t)‖2L2 +2ν‖Λαu(n+1)(t)‖2L2
tL

2 ≤‖u0‖2L2 +‖b0‖2L2 .

Since ‖∆−1u
(n+1)(t)‖L2 ≤‖u(n+1)(t)‖L2 is uniformly bounded and the time interval on

which we are seeking the solution is finite, (3.2) remains valid for j=−1 if we add a
constant term on the right. Taking L∞(0,T ) of (3.2), then multiplying by 22σj and
taking the sup in j yield

‖u(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

+‖b(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

+C0‖u(n+1)‖2
L̃2(0,T ;Bσ+α2,∞ )

≤‖u0‖2Bσ2,∞+‖b0‖2Bσ2,∞+sup
j

22σj

∫ T

0

(L1 + ·· ·+L11)dτ. (3.3)

We now estimate the eleven terms on the right. By Hölder’s inequality,

sup
j

22σj

∫ T

0

L1dτ

=C sup
j

22σj

∫ T

0

‖∆ju
(n+1)‖2L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2 dτ

≤C ‖u(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

sup
j

∑
m≤j−1

2(1+ d
2−(α+σ))m

∫ T

0

2(α+σ)m‖∆mu
(n)‖L2 dτ

≤C ‖u(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

∑
m≤j−1

2(1+ d
2−(α+σ))m

√
T ‖2(α+σ)m‖∆mu

(n)‖L2‖L2(0,T )

≤C ‖u(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

√
T sup

m
‖2(α+σ)m‖∆mu

(n)‖L2‖L2(0,T )

=C
√
T ‖u(n)‖L̃2(0,T ;Bσ+α2,∞ )‖u

(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

≤C
√
TM ‖u(n+1)‖2

L̃∞(0,T ;Bσ2,∞)
,

where we have used the fact that α+σ>1+ d
2 and we are working with inhomogeneous

dyadic blocks. The terms with L2, L3 and L4 can be bounded very similarly and the
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bounds for them are

sup
j

22σj

∫ T

0

L2dτ ≤ C
√
TM ‖u(n+1)‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ),

sup
j

22σj

∫ T

0

L3dτ ≤ C
√
TM ‖u(n+1)‖2

L̃∞(0,T ;Bσ2,∞)
,

sup
j

22σj

∫ T

0

L4dτ ≤ C
√
TM ‖b(n+1)‖2

L̃∞(0,T ;Bσ2,∞)
.

The term with L5 is estimated slightly differently.

sup
j

22σj

∫ T

0

L5dτ

=C sup
j

22σj

∫ T

0

‖∆jb
(n+1)‖L2 ‖∆ju

(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mb

(n+1)‖L2 dτ

=C sup
j

∫ T

0

2σj‖∆jb
(n+1)‖L2 2(α+σ)j‖∆ju

(n)‖L2

×
∑

m≤j−1

2α(m−j) 2(1+ d
2−(α+σ))m2σm‖∆mb

(n+1)‖L2 dτ

≤C ‖b(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

sup
j

∫ T

0

2(α+σ)j‖∆ju
(n)‖L2 dτ

≤C ‖b(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

√
T sup

j
‖2(α+σ)j‖∆ju

(n)‖L2‖L2(0,T )

=C
√
T ‖u(n)‖L̃2(0,T ;Bσ+α2,∞ )‖b

(n+1)‖2
L̃∞(0,T ;Bσ2,∞)

≤C
√
TM ‖b(n+1)‖2

L̃∞(0,T ;Bσ2,∞)
,

where we have used the fact that m−j <0 and 1+ d
2 −α−σ<0. The estimates of the

other terms are similar,

sup
j

22σj

∫ T

0

L6dτ ≤ C
√
TM ‖b(n+1)‖2

L̃∞(0,T ;Bσ2,∞)
,

sup
j

22σj

∫ T

0

L7dτ ≤ C
√
TM ‖b(n+1)‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ),

sup
j

22σj

∫ T

0

L8dτ ≤ C
√
TM ‖b(n+1)‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ),

sup
j

22σj

∫ T

0

L9dτ ≤ C
√
TM ‖b(n+1)‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ),

sup
j

22σj

∫ T

0

L10dτ ≤ C
√
TM ‖b(n+1)‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ),

sup
j

22σj

∫ T

0

L11dτ ≤ C
√
TM ‖b(n+1)‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ).

Inserting the bounds above in (3.3) yields

‖(u(n+1),b(n+1))‖2
L̃∞(0,T ;Bσ2,∞)

+C0‖u(n+1)‖2
L̃2(0,T ;Bσ+α2,∞ )
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≤‖(u0,b0)‖2Bσ2,∞+C
√
TM ‖(u(n+1),b(n+1))‖2

L̃∞(0,T ;Bσ2,∞)

+C
√
TM ‖(u(n+1),b(n+1))‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ ). (3.4)

We choose T >0 to be sufficiently small such that

C
√
TM ‖(u(n+1),b(n+1))‖2

L̃∞(0,T ;Bσ2,∞)

+C
√
TM ‖(u(n+1),b(n+1))‖L̃∞(0,T ;Bσ2,∞)‖u

(n+1)‖L̃2(0,T ;Bσ+α2,∞ )

≤ 3

4
‖(u(n+1),b(n+1))‖2

L̃∞(0,T ;Bσ2,∞)
+

3

4
C0‖u(n+1)‖2

L̃2(0,T ;Bσ+α2,∞ )
.

Then (3.4) implies

‖(u(n+1),b(n+1))‖L̃∞(0,T ;Bσ2,∞)≤2‖(u0,b0)‖Bσ2,∞ =M,

‖u(n+1)‖L̃2(0,T ;Bσ+α2,∞ )≤
2√
C0

‖(u0,b0)‖Bσ2,∞ ≤M.

These uniform bounds allow us to extract a weakly convergent subsequence. That is,
there is (u,b)∈Y such that a subsequence of (u(n),b(n)) (still denoted by (u(n),b(n)))
satisfies

u(n) ∗⇀u in L̃∞(0,T ;Bσ2,∞)∩ L̃2(0,T ;Bσ+α
2,∞ ),

b(n) ∗⇀b in L̃∞(0,T ;Bσ2,∞).

In order to show that (u,b) is a weak solution of (1.1), we need to further extract
a subsequence which converges strongly to (u,b). This is done via the Aubin-Lions
Lemma. We can show by making use of the equations in (1.9) that (∂tu

(n),∂tb
(n)) is

uniformly bounded in

∂tu
(n)∈ L̃2(0,T ;Bσ−α2,∞ ), ∂tb

(n)∈ L̃2(0,T ;B
d
2
2,∞).

Since the domain here is the whole space Rd, we need to combine Cantor’s diagonal
process with the Aubin-Lions Lemma to show that a subsequence of the weakly con-
vergent subsequence, still denoted by (u(n),b(n)), has the following strongly convergent
property,

u(n)→u in L2(0,T ;Bγ12,∞(Q)) for γ1∈ (σ−α,σ+α)

b(n)→ b in L2(0,T ;Bγ22,∞(Q)) for γ2∈ (d/2,σ),

where Q⊂Rd is any compact subset. This strong convergence property would allow us
to show that (u,b) is indeed a weak solution of (1.1). This process is routine and we
omit the details. This completes the proof for the existence part of Theorem 1.1 in the
case when α<1.

4. Proof for the uniqueness part of Theorem 1.1
This section proves the uniqueness part of Theorem 1.1. The case α≥1 is treated

differently from the case α<1. When α≥1, estimating the L2-difference of two solutions
does not lead to the desired uniqueness due to the difficulty in suitably bounding one
of the terms. Instead we need to estimate the velocity difference ũ in a different setting
from that for the difference for the magnetic field b̃. More precisely, we combine the
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estimate of ‖ũ‖
L̃1
t B̊

d
2
2,∞(Rd)

with ‖b̃‖
L∞t B̊

d
2
−α

2,∞ (Rd)
. After invoking a logarithmic Besov-

type inequality, we are able to obtain the desired uniqueness. The effectiveness of this
approach for the uniqueness was discovered in [43] for the 2D MHD equations with the
standard Laplacian dissipation and used in [32] for the 2D and 3D MHD equations again
with the standard Laplacian dissipation. The case α<1 is simpler. We can directly
work with the L2-difference to obtain the uniqueness.

Naturally this section is divided into two subsections. The first subsection deals
with the simpler case α<1 while the second subsection is devoted to the case α≥1.

4.1. The case α<1.
Proof. Assume that (u(1),b(1)) and (u(2),b(2)) are two solutions. Their difference

(ũ, b̃) with

ũ=u(2)−u(1), b̃= b(2)−b(1)

satisfies
∂tũ+ν(−∆)αũ=−P(u(2) ·∇ũ+ ũ ·∇u(1))+P(b(2) ·∇b̃+ b̃ ·∇b(1)),

∂tb̃=−u(2) ·∇b̃− ũ ·∇b(1) +b(2) ·∇ũ+ b̃ ·∇u(1),

∇· ũ=∇· b̃= 0,

ũ(x,0) = 0, b̃(x,0) = 0.

(4.1)

We estimate the difference (ũ, b̃) in L2(Rd). Dotting (4.1) by (ũ, b̃) and applying the
divergence-free condition, we find

1

2

d

dt
(‖ũ‖2L2 +‖b̃||2L2)+ν‖Λαũ‖2L2 =Q1 +Q2 +Q3 +Q4 +Q5, (4.2)

where

Q1 =−
∫
ũ ·∇u(1) · ũdx,

Q2 =

∫
b(2) ·∇b̃ · ũdx+

∫
b(2) ·∇ũ · b̃dx,

Q3 =

∫
b̃ ·∇b(1) · ũdx,

Q4 =−
∫
ũ ·∇b(1) · b̃dx,

Q5 =

∫
b̃ ·∇u(1) · b̃dx.

As ∇·b(2) = 0, we find Q2 = 0 after integration by parts. We remark that Q3 +Q4 is not
necessarily zero. The operator ∆j in this subsection denotes the inhomogeneous dyadic
block operators and the Besov spaces are inhomogeneous. By Hölder’s inequality,

|Q1|≤‖∇u(1)‖L∞ ‖ũ‖2L2 , |Q5|≤‖∇u(1)‖L∞ ‖b̃‖2L2 .

To bound Q3, we set

1

p
=

1

2
− α
d
,

1

q
+

1

p
=

1

2
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and apply Hölder’s inequality and Sobolev’s inequality to obtain

|Q3|≤‖b̃‖L2 ‖∇b(1)‖Lq ‖ũ‖Lp
≤ C ‖b̃‖L2 ‖∇b(1)‖Lq ‖Λαũ‖L2

≤ ν

4
‖Λαũ‖2L2 +C ‖∇b(1)‖2Lq ‖b̃‖2L2 .

Q4 obeys exactly the same bound. Inserting these bounds in (4.2), we find

d

dt
(‖ũ‖2L2 +‖b̃||2L2)+ν‖Λαũ‖2L2

≤ C ‖∇u(1)‖L∞ (‖ũ‖2L2 +‖b̃||2L2)+C ‖∇b(1)‖2Lq ‖b̃‖2L2 . (4.3)

By Bernstein’s inequality,∫ T

0

‖∇u(1)‖L∞ dt≤
∑
j≥−1

∫ T

0

‖∆j∇u(1)‖L∞ dt

≤
∑
j≥−1

∫ T

0

2(1+ d
2 )j‖∆ju

(1)‖L2dt

≤
∑
j≥−1

2(1+ d
2−α−σ)j

∫ T

0

2(α+σ)j ‖∆ju
(1)‖L2dt

≤
∑
j≥−1

2(1+ d
2−α−σ)j

√
T ‖2(α+σ)j ‖∆ju

(1)‖L2‖L2(0,T )

≤≤ C
√
T ‖u(1)‖L̃2(0,T ;Bσ+α2,∞ ), (4.4)

where we have used the fact that σ>1+ d
2 −α. In addition,

‖∇b(1)‖Lq ≤
∑
j≥−1

‖∆j∇b(1)‖Lq

≤ C
∑
j≥−1

2j+dj(
1
2−

1
q )‖∆jb

(1)‖L2

≤ C
∑
j≥−1

2j+dj(
1
2−

α
d )‖∆jb

(1)‖L2

= C
∑
j≥−1

2(1+ d
2−α−σ)j 2σj ‖∆jb

(1)‖L2

≤ C ‖b(1)‖Bσ2,∞ ,

where again we have used the fact that σ>1+ d
2 −α. Therefore,∫ T

0

‖∇b(1)‖2Lq dt≤ CT ‖b(1)‖2
L̃∞(0,T ;Bσ2,∞)

. (4.5)

Applying Grönwall’s inequality to (4.3) and invoking (4.4) and (4.5), we obtain

‖ũ‖L2 =‖b̃‖L2 = 0,

which leads to the desired uniqueness. This completes the proof of the uniqueness part
of Theorem 1.1 for the case when α<1.
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4.2. The case α≥1. As we have mentioned at the beginning of this section,
the uniqueness for this case can no longer be established by estimating the difference
in L2. Before we give the proof, we explain why one of the terms can not be bounded
suitably in the L2-setting. Q1 and Q5 can still be bounded as before. Q3 has to be
bounded differently. By integration by parts,

Q3 =−
∫
b̃ ·∇ũ ·b(1)dx.

For p and q defined by

1

p
=

1

2
+

1−α
d

,
1

p
+

1

q
=

1

2
,

we have, by Hölder’s inequality,

|Q3|≤‖b̃‖L2 ‖∇ũ‖Lp ‖b(1)‖Lq
≤ C ‖b̃‖L2 ‖Λα−1∇ũ‖L2 ‖b(1)‖Lq

≤ ν
4
‖Λαũ‖2L2 +C ‖b(1)‖2Lq ‖b̃‖2L2 .

Q4 can not be bounded similarly as Q3. In fact, Q4 is the main trouble that prevents
us from deriving the uniqueness. In order to prove the uniqueness, we have to abandon
the L2-setting and combine the estimate of ‖ũ‖

L̃1
t B̊

d
2
2,∞(Rd)

with ‖b̃‖
L∞t B̊

d
2
−α

2,∞ (Rd)
. The

precise proof is given as follows.

Proof. Throughout the following proof, ∆j denotes the homogeneous dyadic block
operators for the simplicity of notation. As in (2.2), we have from (4.1) that

d

dt
‖∆j ũ‖L2 +C0 22αj‖∆j ũ‖L2

≤‖[∆j ,u
(2) ·∇]ũ‖L2 +‖∆j(ũ ·∇u(1))‖L2 +‖∆j(b

(2) ·∇b̃)‖L2 +‖∆j (̃b ·∇b(1))‖L2 .

Integrating in time and taking into account the zero initial condition, we find

‖∆j ũ‖L2 ≤
∫ t

0

e−C022αj(t−τ)
(
‖[∆j ,u

(2) ·∇]ũ‖L2 +‖∆j(ũ ·∇u(1))‖L2

+‖∆j(b
(2) ·∇b̃)‖L2 +‖∆j (̃b ·∇b(1))‖L2

)
dτ.

For 1≤ q≤∞, we take the Lq-norm in time and apply Young’s inequality for the time
convolution to obtain

‖∆j ũ‖LqtL2 ≤‖e−C022αjt‖Lq
(
‖[∆j ,u

(2) ·∇]ũ‖L1
tL

2 +‖∆j(ũ ·∇u(1))‖L1
tL

2

+‖∆j(b
(2) ·∇b̃)‖L1

tL
2 +‖∆j (̃b ·∇b(1))‖L1

tL
2

)
.

Multiplying each side by 2
2α
q j+( d2−2α)j and taking the supremum with respect to j, we

have

‖ũ‖
L̃qt B̊

d
2
−2α+2α

q
2,∞

≤ C sup
j∈Z

2( d2−2α)j
(
‖[∆j ,u

(2) ·∇]ũ‖L1
tL

2 +‖∆j(ũ ·∇u(1))‖L1
tL

2

+‖∆j(b
(2) ·∇b̃)‖L1

tL
2 +‖∆j (̃b ·∇b(1))‖L1

tL
2

)
.
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The four terms on the right of the inequality above can be bounded as in the proof of
the existence part. More precisely, the first two terms are bounded by

sup
j∈Z

2( d2−2α)j ‖[∆j ,u
(2) ·∇]ũ‖L1

tL
2 ≤ C ‖u(2)‖

L1
t B̊

1+ d
2

2,1

‖ũ‖
L∞t B̊

d
2
−2α

2,∞

,

sup
j∈Z

2( d2−2α)j ‖∆j(ũ ·∇u(1))‖L1
tL

2 ≤ C ‖u(1)‖
L1
t B̊

1+ d
2

2,1

‖ũ‖
L∞t B̊

d
2
−2α

2,∞

.

The second two terms are bounded slightly differently,

sup
j∈Z

2( d2−2α)j ‖∆j(b
(2) ·∇b̃)‖L1

tL
2 ≤
∫ t

0

sup
j∈Z

2( d2−2α)j ‖∆j(b
(2) ·∇b̃)‖L2 dτ

≤C
∫ t

0

‖b(2)‖
B̊

1+ d
2
−α

2,1

‖b̃‖
B̊
d
2
−α

2,∞

dτ,

sup
j∈Z

2( d2−2α)j ‖∆j (̃b ·∇b(1))‖L1
tL

2 ≤ C
∫ t

0

‖b(1)‖
B̊

1+ d
2
−α

2,1

‖b̃‖
B̊
d
2
−α

2,∞

dτ.

Using these bounds and taking q=∞ and q= 1, we find

‖ũ‖
L∞t B̊

d
2
−2α

2,∞

+‖ũ‖
L̃1
t B̊

d
2
2,∞

≤ C
(
‖u(1)‖

L1
t B̊

1+ d
2

2,1

+‖u(2)‖
L1
t B̊

1+ d
2

2,1

)
‖ũ‖

L∞t B̊
d
2
−2α

2,∞

+C

∫ t

0

(
‖b(1)‖

B̊
1+ d

2
−α

2,1

+‖b(2)‖
B̊

1+ d
2
−α

2,1

)
‖b̃‖

B̊
d
2
−α

2,∞

dτ. (4.6)

Working with the equation of b̃ in (4.1), we have

‖b̃‖
L∞t B

d
2
−α

2,∞

≤ sup
j∈Z

2( d2−α)j

∫ t

0

(
‖[∆j ,u

(2) ·∇]̃b‖L2 +‖∆j(ũ ·∇b(1))‖L2

+‖∆j(b
(2) ·∇ũ)‖L2 +‖∆j (̃b ·∇u(1))‖L2

)
dτ.

Estimating the four terms on the right in a similar fashion as in the existence proof, we
find that

‖b̃‖
L∞t B

d
2
−α

2,∞

≤ C
(
‖u(1)‖

L1
t B̊

1+ d
2

2,1

+‖u(2)‖
L1
t B̊

1+ d
2

2,1

)
‖b̃‖

L∞t B̊
d
2
−α

2,∞

+C
(
‖b(1)‖

L∞t B̊
1+ d

2
−α

2,1

+‖b(2)‖
L∞t B̊

1+ d
2
−α

2,1

)
‖ũ‖

L1
t B̊

d
2
2,1

. (4.7)

Using a basic fact from real analysis (stated as a lemma below), we can choose T0

(smaller than the maximal existence time T ) such that, for any 0<t≤T0,

C
(
‖u(1)‖

L1
t B̊

1+ d
2

2,1

+‖u(2)‖
L1
t B̊

1+ d
2

2,1

)
≤ 1

2
.

It then follows from (4.6) and (4.7) that

1

2
‖ũ‖

L∞t B̊
d
2
−2α

2,∞

+‖ũ‖
L̃1
t B̊

d
2
2,∞

≤ C
∫ t

0

(
‖b(1)‖

B̊
1+ d

2
−α

2,1

+‖b(2)‖
B̊

1+ d
2
−α

2,1

)
‖b̃‖

B̊
d
2
−α

2,∞

dτ,

1

2
‖b̃‖

L∞t B
d
2
−α

2,∞

≤ C
(
‖b(1)‖

L∞t B̊
1+ d

2
−α

2,1

+‖b(2)‖
L∞t B̊

1+ d
2
−α

2,1

)
‖ũ‖

L1
t B̊

d
2
2,1

.
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Inserting the second inequality into the first one and invoking the fact that, for any
0<t≤T0,

‖b(1)‖
L∞t B̊

1+ d
2
−α

2,1

+‖b(2)‖
L∞t B̊

1+ d
2
−α

2,1

≤C(T ),

we obtain

‖ũ‖
L̃1
t B̊

d
2
2,∞

≤ C
∫ t

0

‖ũ‖
L1
τ B̊

d
2
2,1

dτ.

Invoking the logarithmic Besov-type inequality (see Lemma 4.2 below)

‖ũ‖
L1
t B̊

d
2
2,1

≤C ‖ũ‖
L̃1
t B̊

d
2
2,∞

log

e+

‖ũ‖
L1
t B̊

1+ d
2
−2α

2,1

+‖ũ‖
L1
t B̊

1+ d
2

2,1

‖ũ‖
L̃1
t B̊

d
2
2,∞

,
we obtain

‖ũ‖
L̃1
t B̊

d
2
2,∞

≤ C
∫ t

0

‖ũ‖
L̃1
t B̊

d
2
2,∞

log

e+

‖ũ‖
L1
t B̊

1+ d
2
−2α

2,1

+‖ũ‖
L1
t B̊

1+ d
2

2,1

‖ũ‖
L̃1
t B̊

d
2
2,∞

 dτ.

Due to the boundedness

‖ũ‖
L1
t B̊

1+ d
2
−2α

2,1

+‖ũ‖
L1
t B̊

1+ d
2

2,1

<∞,

Osgood’s inequality then implies that, for any t≤T0,

‖ũ‖
L̃1
t B̊

d
2
2,∞

= 0 and ‖ũ‖
L1
t B̊

d
2
2,1

= 0.

Therefore,

‖b̃‖
L∞t B

d
2
−α

2,∞

= 0.

In particular, ũ= b̃= 0 almost everywhere for t≤T0. Repeating this process yields the
uniqueness on the whole time interval [0,T ]. This completes the proof of the uniqueness
part of Theorem 1.1 for the case when α≥1.

In the proof above, we have used two facts stated in the following lemmas. The
first lemma can be found in [35].

Lemma 4.1. Let (X,B,µ) be a complete measure space. Let f be an integrable function
with respect to the measure µ. Then, given any ε>0, there is δ>0 such that, if A∈B
and µ(A)<δ, then ∣∣∣∣∫

A

fdµ

∣∣∣∣<ε.
The second lemma states a logarithmic Besov-type inequality, which generalizes

Lemma 3.1 of [43]. The proof is parallel, but we provide it for the convenience of
readers.
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Lemma 4.2. Let α≥1. If F satisfies, for t>0,

‖F‖
L1
t B̊

1+ d
2
−2α

2,1 (Rd)
+‖F‖

L1
t B̊

1+ d
2

2,1 (Rd)
<∞,

then

‖F‖
L1
t B̊

d
2
2,1

≤C ‖F‖
L̃1
t B̊

d
2
2,∞

log

e+

‖F‖
L1
t B̊

1+ d
2
−2α

2,1

+‖F‖
L1
t B̊

1+ d
2

2,1

‖F‖
L̃1
t B̊

d
2
2,∞

 .
Proof. The proof relies on the definition of Besov spaces in terms of the Littlewood-

Paley decomposition. For an integer N >0 to be specified later,

‖F‖
L1
t B̊

d
2
2,1

=
∑
j∈Z

2
d
2 j ‖∆jF‖L1

tL
2

=

 ∑
j≤−N

+
∑

−N≤j<N

+
∑
j≥N

2
d
2 j ‖∆jF‖L1

tL
2 .

For α≥1, the low frequency part can be controlled by∑
j≤−N

2
d
2 j ‖∆jF‖L2 =

∑
j≤−N

2(2α−1)j 2(1+ d
2−2α)j‖∆jF‖L1

tL
2

≤2−(2α−1)N ‖F‖
L1
t B̊

1+ d
2
−2α

2,1

≤2−N ‖F‖
L1
t B̊

1+ d
2
−2α

2,1

.

The high frequency part can be bounded by∑
j≥N

2
d
2 j ‖∆jF‖L1

tL
2 =

∑
j>N

2−j 2(1+ d
2 )j ‖∆jF‖L1

tL
2 ≤2−N ‖F‖

L1
t B̊

1+ d
2

2,1

.

Therefore,

‖F‖
L1
t B̊

d
2
2,1

≤2−N
(
‖F‖

L1
t B̊

1+ d
2
−2α

2,1

+‖F‖
L1
t B̊

1+ d
2

2,1

)
+2N ‖F‖

L̃1
t B̊

d
2
2,∞

.

If we take N to be the integer part of

log

e+

‖F‖
L1
t B̊

1+ d
2
−2α

2,1

+‖F‖
L1
t B̊

1+ d
2

2,1

‖F‖
L̃1
t B̊

d
2
2,∞

 ,
then we obtain the desired inequality. This completes the proof of Lemma 4.2.

5. Conclusion and discussions
We have established that, for α≥1, any initial data (u0,b0) with

u0∈ B̊
d
2 +1−2α
2,1 (Rd), b0∈ B̊

d
2 +1−α
2,1 (Rd),

and, for α<1, any initial data (u0,b0) with

u0∈Bσ2,∞(Rd), b0∈Bσ2,∞,(Rd), σ>
d

2
+1−α (5.1)
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leads to a unique local weak solution of (1.1). The purpose of this section is to explain
in some detail why these regularity assumptions may be optimal. The optimality for the
case α≥1 can be easily explained. The index d

2 +1−2α is minimal for the velocity in

order to achieve the uniqueness. As we know, the velocity u should obey
∫ T

0
‖∇u‖L∞ dt<

∞ or a slightly weaker version in order to guarantee the uniqueness. In the Besov setting
here, we need

‖u‖
L1(0,T ;B̊

1+ d
2

2,1 (Rd))
<∞,

which, in turn, requires that

u∈ L̃∞(0,T ;B̊
1+ d

2−2α
2,1 (Rd)).

This is how the index d
2 +1−2α arises. Once the Besov space for u0 is set, the functional

setting for b0 is determined correspondingly.

We now explain why the initial setup for the case α<1 may be optimal. We have
attempted to replace (5.1) by several weaker assumptions, but we failed to establish the
desired existence and uniqueness. We now describe the difficulties associated with those
weaker initial data.

5.1. Can we replace (5.1) by u0∈B
d
2 +1−2α
2,1 (Rd) and b0∈B

d
2
2,1(Rd)? We

would have difficulty proving the uniform boundedness of the successive approximation
sequence in the existence proof part. If we assume that

u0∈B
d
2 +1−2α
2,1 (Rd) and b0∈B

d
2
2,1(Rd),

then the corresponding functional space for (u,b) would be

Y ≡
{

(u,b)
∣∣‖u‖

L̃∞(0,T ;B
d
2
+1−2α

2,1 )
≤M, ‖b‖

L̃∞(0,T ;B
d
2
2,1)
≤M,

‖u‖
L1(0,T ;B

d
2
+1

2,1 )
≤ δ, ‖u‖

L̃2(0,T ;B
d
2
+1−α

2,1 )
≤ δ
}
.

Suppose we construct the successive approximation sequence by (1.7). We can obtain
suitable bounds for

‖u(n+1)‖
L̃∞(0,T ;B

d
2
+1−2α

2,1 )
, ‖b(n+1)‖

L̃∞(0,T ;B
d
2
2,1)

.

We would have difficulty controlling ‖u(n+1)‖
L1(0,T ;B

d
2
+1

2,1 )
due to the term b(n) ·∇b(n)

in (1.7). A quick way to see the difficultly is to count the derivatives needed and the
derivatives allowed,(

d

2
+1

)
+

(
d

2
+1

)
−2α= 2

(
d

2
+1−α

)
>2 · d

2
.

We explain the meaning of this inequality. The left-hand side 2
(
d
2 +1−α

)
represents the

derivative imposed and the right-hand side 2 · d2 denotes the derivatives allowed on the

two b(n)’s. The first d
2 +1 comes from B

d
2 +1
2,1 , the second d

2 +1 represents the derivative

when we estimate ‖b(n) ·∇b(n)‖L2 and −2α is due to the dissipation. When α<1, the
derivatives imposed are more than the derivatives allowed and we can not close the
estimates in Y .
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5.2. Can we replace (5.1) by u0∈B
d
2 +1−2α
2,1 (Rd) and b0∈B

d
2 +1−α
2,1 (Rd)? Even

though we increased the regularity of b0 to the level that would allow us to overcome one
difficulty mentioned in the previous subsection, we would still have trouble proving the
uniform boundedness of the successive approximation sequence in the existence proof
part. If we assume that

u0∈B
d
2 +1−2α
2,1 (Rd) and b0∈B

d
2 +1−α
2,1 (Rd),

then the corresponding functional space for (u,b) would be

Y ≡
{

(u,b)
∣∣‖u‖

L̃∞(0,T ;B
d
2
+1−2α

2,1 )
≤M, ‖b‖

L̃∞(0,T ;B
d
2
+1−α

2,1 )
≤M,

‖u‖
L1(0,T ;B

d
2
+1

2,1 )
≤ δ, ‖u‖

L̃2(0,T ;B
d
2
+1−α

2,1 )
≤ δ
}

Suppose we construct the successive approximation sequence by (1.7). We can obtain
suitable bounds for

‖u(n+1)‖
L̃∞(0,T ;B

d
2
+1−2α

2,1 )
, ‖u(n+1)‖

L1(0,T ;B
d
2
+1

2,1 )
.

But this new setup would make it impossible to control

‖b(n+1)‖
L̃∞(0,T ;B

d
2
+1−α

2,1 )
.

The difficulty comes from bounding the term b(n) ·∇u(n) in the equation of b(n+1) in
(1.7). In order to bound ‖∆j(b

(n) ·∇u(n))‖L2 , one naturally decomposes it by paraprod-
ucts as in (2.7),

‖∆j(b
(n) ·∇u(n))‖L2 ≤ C 2j ‖∆ju

(n)‖L2

∑
m≤j−1

2
d
2 m‖∆mb

(n)‖L2

+C ‖∆jb
(n)‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mu

(n)‖L2

+C 2j
∑
k≥j−1

2
d
2 k ‖∆kb

(n)‖L2 ‖∆̃ku
(n)‖L2 .

The trouble arises in the first term on the right-hand side. For α<1, we can no longer
bound

2(1−α)j
∑

m≤j−1

2
d
2 m‖∆mb

(n)‖L2

by ∑
m≤j−1

2( d2 +1−α)m‖∆mb
(n)‖L2

and, as a consequence, we are not able to control b(n) ·∇u(n) by the desired bound
‖u(n)‖

L1(0,T ;B
d
2
+1

2,1 )
‖b(n)‖

L̃∞(0,T ;B
d
2
+1−α

2,1 )
. This problem arises when u and b are in dif-

ferent functional settings. We can no longer estimate u and b simultaneously and the
good structure of combining the terms b ·∇b and b ·∇u can no longer be taken advantage
of.
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5.3. Can we replace (5.1) by u0∈B
d
2 +1−α
2,1 (Rd) and b0∈B

d
2 +1−α
2,1 (Rd)? Even

u0 and b0 are now in the same functional setting, but we are still not able to prove the
uniform boundedness of the successive approximation sequence in the existence proof
part. We now explain the difficulty. Naturally the corresponding functional setting for
(u,b) is

Y ≡
{

(u,b)
∣∣‖(u,b)‖

L̃∞(0,T ;B
d
2
+1−α

2,1 )
≤M,

‖u‖
L1(0,T ;B

d
2
+1

2,1 )
≤ δ, ‖u‖

L̃2(0,T ;B
d
2
+1−α

2,1 )
≤ δ
}

Suppose we construct the successive approximation sequence by (1.9). In order to make
use of the cancellation in the combination of b ·∇b and b ·∇u, we have to add the
estimates at the L2-level as in (3.1). However, if we add them at the L2-level, it is then

impossible to control the norm of (u,b) in B
d
2 +1−α
2,1 . This is exactly why we have selected

the functional setting Bσ2,∞ with σ> d
2 +1−α when α<1, as in the proof in Section 3.

In conclusion, the regularity assumptions on the initial data in Theorem 1.1 may
be optimal.
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Appendix. Besov spaces and related tools. This appendix provides the defi-
nition of the Besov spaces and related facts that have been used in the previous sections.
Some of the materials are taken from [2]. More details can be found in several books
and many papers (see, e.g., [2, 4, 34, 39, 42]). In addition, we also prove several bounds
on triple products involving Fourier localized functions. These bounds have been used
in the previous sections.

We start with the partition of unit. Let B(0,r) and C(0,r1,r2) denote the standard
ball and the annulus, respectively,

B(0,r) =
{
ξ∈Rd : |ξ|≤ r

}
, C(0,r1,r2) =

{
ξ∈Rd : r1≤|ξ|≤ r2

}
.

There are two compactly supported smooth radial functions φ and ψ satisfying

suppφ⊂B(0,4/3), suppψ⊂C(0,3/4,8/3),

φ(ξ)+
∑
j≥0

ψ(2−jξ) = 1 for all ξ∈Rd, (6.1)

∑
j∈Z

ψ(2−jξ) = 1 for ξ∈Rd \{0} .

We use h̃ and h to denote the inverse Fourier transforms of φ and ψ respectively,

h̃=F−1φ, h=F−1ψ.
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In addition, for notational convenience, we write ψj(ξ) =ψ(2−jξ). By a simple property
of the Fourier transform,

hj(x) :=F−1(ψj)(x) = 2dj h(2jx).

The inhomogeneous dyadic block operators ∆j are defined as follows

∆jf = 0 for j≤−2,

∆−1f = h̃∗f =

∫
Rd
f(x−y)h̃(y)dy,

∆jf =hj ∗f = 2dj
∫
Rd
f(x−y)h(2jy)dy for j≥0.

The corresponding inhomogeneous low frequency cut-off operator Sj is defined by

Sjf =
∑
k≤j−1

∆kf.

For any function f in the usual Schwarz class S, (6.1) implies

f̂(ξ) =φ(ξ) f̂(ξ)+
∑
j≥0

ψ(2−jξ) f̂(ξ) (6.2)

or, in terms of the inhomogeneous dyadic block operators,

f =
∑
j≥−1

∆jf or Id =
∑
j≥−1

∆j ,

where Id denotes the identity operator. More generally, for any F in the space of
tempered distributions, denoted S ′, (6.2) still holds but in the distributional sense.
That is, for F ∈S ′,

F =
∑
j≥−1

∆jF or Id =
∑
j≥−1

∆j in S ′. (6.3)

In fact, one can verify that

SjF :=
∑
k≤j−1

∆kF → F in S ′.

Equation (6.3) is referred to as the Littlewood-Paley decomposition for tempered dis-
tributions.

In terms of the inhomogeneous dyadic block operators, we can write the standard
product in terms of the paraproducts, namely the Bony decomposition,

F G=
∑
|j−k|≤2

Sk−1F∆kG+
∑
|j−k|≤2

∆kF Sk−1G+
∑
k≥j−1

∆kF ∆̃kG,

where ∆̃k = ∆k−1 +∆k+∆k+1.

The inhomogeneous Besov space can be defined in terms of ∆j specified above.
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Definition 6.1. The inhomogeneous Besov space Bsp,q with 1≤p,q≤∞ and s∈R
consists of f ∈S ′ satisfying

‖f‖Bsp,q ≡‖2
js‖∆jf‖Lp‖lq <∞.

The concepts defined above have their homogeneous version. The homogeneous
dyadic block and the homogeneous low frequency cutoff operators are defined by, for
any j∈Z,

∆̊jf =hj ∗f = 2dj
∫
Rd
f(x−y)h(2jy)dy,

S̊jf =
∑
k≤j−1

∆̊kf = 2jd
∫
Rd
h̃(2jy)f(x−y)dy.

For any function f in the usual Schwarz class S, (6.1) implies

f̂(ξ) =
∑
j∈Z

ψ(2−jξ) f̂(ξ) for all ξ∈Rd

when f satisfies, for any xβ in the set of all polynomials P,∫
Rd
xβ f(x)dx= 0.

In order to write the Littlewood-Paley decomposition for F ∈S ′, we need to restrict to
the subspace S ′h consisting of f ∈S ′ satisfying

lim
j→−∞

S̊jf = 0 in S ′.

Any f ∈S ′ that has a locally integrable Fourier transform is in S ′h.

The homogeneous Besov space can be defined in terms of ∆̊j specified above.

Definition 6.2. The homogeneous Besov space B̊sp,q with 1≤p,q≤∞ and s∈R
consists of f ∈S ′h satisfying

‖f‖B̊sp,q ≡‖2
js‖∆̊jf‖Lp‖lq <∞.

In terms of the homogeneous dyadic blocks, we can also write the standard products
in terms of the paraproducts.

The following space-time spaces introduced in [13] have been used in the previous
sections.

Definition 6.3. Let s∈R and 1≤p,q,r≤∞. Let T ∈ (0,∞]. The space-time space

L̃r(0,T ;Bsp,q) consists of tempered distributions satisfying

‖f‖L̃r(0,T ;Bsp,q)
≡‖2js‖‖∆jf‖Lp‖Lr(0,T )‖lq <∞.

L̃r(0,T ;B̊sp,q) is similarly defined.

By Minkowski’s inequality, the standard space-time space Lr(0,T ;Bsp,q) is related

to L̃r(0,T ;Bsp,q) as follows

Lr(0,T ;Bsp,q)( L̃r(0,T ;Bsp,q) if r<q,
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L̃r(0,T ;Bsp,q)(Lr(0,T ;Bsp,q) if r>q,

Lr(0,T ;Bsp,q) = L̃r(0,T ;Bsp,q) if r= q.

Bernstein’s inequality is a useful tool on Fourier localized functions and these
inequalities trade derivatives for integrability. The following proposition provides
Bernstein-type inequalities for fractional derivatives.

Lemma 6.1. Let α≥0. Let 1≤p≤ q≤∞.
1) If f satisfies

supp f̂ ⊂{ξ∈Rd : |ξ|≤K2j},

for some integer j and a constant K>0, then

‖(−∆)αf‖Lq(Rd)≤C1 22αj+jd( 1
p−

1
q )‖f‖Lp(Rd).

2) If f satisfies

supp f̂ ⊂{ξ∈Rd : K12j≤|ξ|≤K22j}

for some integer j and constants 0<K1≤K2, then

C1 22αj‖f‖Lq(Rd)≤‖(−∆)αf‖Lq(Rd)≤C2 22αj+jd( 1
p−

1
q )‖f‖Lp(Rd),

where C1 and C2 are constants depending on α,p and q only.

We now state and prove bounds for the triple products involving Fourier localized
functions. These bounds have been used in the previous sections in the proof of Theorem
1.1.

Lemma 6.2. Let j∈Z be an integer. Let ∆j be a dyadic block operator (either
inhomogeneous or homogeneous).

(1) Let F be a divergence-free vector field. Then there exists a constant C independent
of j such that ∣∣∣∣∫

Rd
∆j(F ·∇G) ·∆jHdx

∣∣∣∣
≤ C ‖∆jH‖L2

(
2j

∑
m≤j−1

2
d
2m‖∆mF‖L2

∑
|j−k|≤2

‖∆kG‖L2

+
∑
|j−k|≤2

‖∆kF‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mG‖L2

+
∑
k≥j−1

2j 2
d
2 k ‖∆kF‖L2‖∆̃kG‖L2

)
. (6.4)

(2) Let F be a divergence-free vector field. Then there exists a constant C independent
of j such that ∣∣∣∣∫

Rd
∆j(F ·∇G) ·∆jGdx

∣∣∣∣
≤ C ‖∆jG‖L2

( ∑
m≤j−1

2(1+ d
2 )m‖∆mF‖L2

∑
|j−k|≤2

‖∆kG‖L2



Q. JIU, X. SUO, J. WU, AND H. YU 1019

+
∑
|j−k|≤2

‖∆kF‖L2

∑
m≤j−1

2(1+ d
2 )m‖∆mG‖L2

+
∑
k≥j−1

2j 2
d
2 k ‖∆kF‖L2‖∆̃kG‖L2

)
(6.5)

(3) Let F be a divergence-free vector field. Then there exists a constant C independent
of j such that∣∣∣∣∫

Rd
∆j(F ·∇H) ·∆jGdx+

∫
Rd

∆j(F ·∇G) ·∆jHdx

∣∣∣∣
≤ C ‖∆jG‖L2

( ∑
m≤j−1

2(1+ d
2 )m‖∆mF‖L2

∑
|j−k|≤2

‖∆kH‖L2

+
∑
|j−k|≤2

‖∆kF‖L2

∑
m≤k−1

2(1+ d
2 )m‖∆mH‖L2

+
∑
k≥j−1

2j 2
d
2 k ‖∆kF‖L2‖∆̃kH‖L2

)
+C ‖∆jH‖L2

( ∑
m≤j−1

2(1+ d
2 )m‖∆mF‖L2

∑
|j−k|≤2

‖∆kG‖L2

+
∑
|j−k|≤2

‖∆kF‖L2

∑
m≤k−1

2(1+ d
2 )m‖∆mG‖L2

+
∑
k≥j−1

2j 2
d
2 k ‖∆kF‖L2‖∆̃kG‖L2

)
. (6.6)

Proof. The proof of these inequalities essentially follow from the paraproduct
decomposition. By the paraproduct decomposition,

∆j(F ·∇G) =
∑
|j−k|≤2

∆j(Sk−1F ·∆k∇G)+
∑
|j−k|≤2

∆j(∆kF ·Sk−1∇G)

+
∑
k≥j−1

∆j(∆kF ·∇∆̃kG).

By Hölder’s inequality and Bernstein’s inequality in Lemma 6.1,∣∣∣∣∫
Rd

∆j(F ·∇G) ·∆jHdx

∣∣∣∣
≤‖∆jH‖L2

( ∑
|j−k|≤2

2k ‖Sk−1F‖L∞ ‖∆kG‖L2 +
∑
|j−k|≤2

‖∆kF‖L2 ‖Sk−1∇G||L∞

+
∑
k≥j−1

2j ‖∆kF‖L2‖∆̃kG‖L∞
)
,

where we have used ∇·F = 0 in the last part. Equation (6.4) then follows if we invoke
the inequalities of the form

‖Sk−1F‖L∞ ≤
∑

m≤k−2

2
d
2m‖∆mF‖L2 . (6.7)
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To prove (6.5), we further write the first term as the sum of a commutator and two
correction terms,

∆j(F ·∇G) =
∑
|j−k|≤2

[∆j ,Sk−1F ·∇]∆kG

+
∑
|j−k|≤2

(Sk−1F −SjF ) ·∆j∆k∇G

+SjF ·∇∆jG+
∑
|j−k|≤2

∆j(∆kF ·Sk−1∇G)

+
∑
k≥j−1

∆j(∆kF ·∇∆̃kG).

As ∇·F = 0, ∫
Rd
SjF ·∇∆jG ·∆jGdx= 0.

By Hölder’s inequality, Bernstein’s inequality and a commutator estimate,∣∣∣∣∫
Rd

∆j(F ·∇G) ·∆jGdx

∣∣∣∣≤‖∆jG‖L2

( ∑
|j−k|≤2

‖∇Sk−1F‖L∞‖∆kG‖L2

+C 2(1+ d
2 )j

∑
|j−k|≤2

‖∆kF‖L2 ‖∆jG‖L2

+
∑
|j−k|≤2

‖∆kF‖L2 ‖Sk−1∇G‖L∞

+
∑
k≥j−1

2j 2
d
2 k ‖∆kF‖L2 ‖∆̃kG‖L2

)
.

(6.5) then follows when we invoke similar inequalities as (6.7). The proof of (6.6) is very
similar. This completes the proof of Lemma 6.2.
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[4] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-

Heidelberg-New York, 1976. 5.3
[5] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993. 1
[6] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione

Matematica Italiana, Springer, 20, 2016. 1
[7] L. Caffarelli, J. Roquejoffre, and Y. Sire, Variational problems for free boundaries for the fractional

Laplacian, J. Eur. Math. Soc., 12:1151–1179, 2010. 1
[8] L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-

geostrophic equation, Ann. Math., 171:1903–1930, 2010. 1
[9] Y. Cai and Z. Lei, Global well-posedness of the incompressible magnetohydrodynamics, Arch. Ra-

tion. Mech. Anal., 228:969–993, 2018. 1
[10] C. Cao, D. Regmi, and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal

magnetic diffusion, J. Diff. Eqs., 254:2661–2681, 2013. 1

https://www.nature.com/articles/150405d0
https://link.springer.com/book/10.1007%2F978-3-642-16830-7
https://doi.org/10.1090/S0002-9947-1988-0920153-5 
https://link.springer.com/book/10.1007%2F978-3-642-66451-9
https://doi.org/10.1063/1.2808675
https://rd.springer.com/book/10.1007/978-3-319-28739-3
https://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=12&iss=5&rank=4
http://doi.org/10.4007/annals.2010.171.1903
https://link.springer.com/article/10.1007/s00205-017-1210-4
https://doi.org/10.1016/j.jde.2013.01.002


Q. JIU, X. SUO, J. WU, AND H. YU 1021

[11] C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and
magnetic diffusion, Adv. Math., 226:1803–1822, 2011. 1

[12] C. Cao, J. Wu, and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only
magnetic diffusion, SIAM J. Math. Anal., 46:588–602, 2014. 1

[13] J. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-
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