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Abstract
Buoyancy-drivenfluids such asmany atmospheric andoceanicflows and theRayleigh–
Bénard convection are modeled by the Boussinesq systems. By rigorously estimating
the large-time behavior of solutions to a special Boussinesq system, this paper reveals a
fascinating phenomenon on buoyancy-driven fluids that the temperature can actually
stabilize the fluids. The Boussinesq system concerned here governs the motion of
perturbations near the hydrostatic equilibrium. When the buoyancy forcing is not
present, the velocity of the fluid obeys the 2D Navier–Stokes equation with only
vertical dissipation and its Sobolev normcould potentially grow even though its precise
large-time behavior remains open. This paper shows that the temperature through the
coupling and interaction tames and regularizes the fluids, and causes the velocity
(measured in Sobolev norms) to decay in time. Optimal decay rates are obtained.
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1 Introduction

The two-dimensional (2D) incompressible Euler equation given by

{
∂t u + u · ∇u = −∇ p,

∇ · u = 0

is the simplest but one of the most frequently used models for incompressible ideal
fluids. Here u denotes the fluid velocity and p the pressure. The precise large-time
behavior of its solution has recently attracted considerable interests. One particular
issue is whether the vorticity gradient can grow double exponentially in time. Here
the vorticity ω = ∇ × u is transported by the velocity field,

∂tω + u · ∇ω = 0, u = ∇⊥�−1ω,

where ∇⊥ = (−∂2, ∂1) and u is recovered from ω from the Biot–Savart law (Majda
and Bertozzi 2002). It is not very difficult to show that ‖∇ω(t)‖Lq with 1 ≤ q ≤ ∞
can grow at most double exponentially, namely

‖∇ω(t)‖Lq ≤ (‖∇ω0‖Lq )e
C‖ω0‖L∞ t

,

where ω0 is the initial vorticity. A significant problem is whether or not the dou-
ble exponential growth rate is sharp (Tao, https://terrytao.wordpress.com/2007/03/
18/why-global-regularity-for-navier-stokes-is-hard/). Kiselev and Sverak were able
to construct an explicit initial vorticity on a unit disk for which the corresponding
vorticity gradient indeed grows double exponentially (Kiselev and Sverak 2014). A
general bounded domain appears to share this property (Xu 2016). Whether or not
such examples can be constructed in R

2 remains an open problem. Other important
results on related issues can be found in several references (see, e.g., Chae et al. 2014;
Denisov 2015; Zlatoš 2015). As a special consequence of these growth results, per-
turbations near the trivial solution of the 2D Euler equation are in general not stable
in the Sobolev setting.

In contrast, the Sobolev norms of solutions to the 2D incompressible Navier–Stokes
equation

{
∂t u + u · ∇u = −∇ p + ν�u, x ∈ R

2, t > 0,

∇ · u = 0
(1.1)

always decay algebraically in time (see, e.g., Schonbek 1985; Schonbek and Wiegner
1996). In particular, perturbations near the trivial solution of (1.1) are always asymp-
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totically stable in the Sobolev space H2(R2). The situation with the partial dissipation
is not well understood. The stability and the large-time behavior problem on the solu-
tions to the 2D Navier–Stokes equations with only vertical or horizontal dissipation,
say

{
∂t u + u · ∇u = −∇ p + ν∂22u, x ∈ R

2, t > 0,

∇ · u = 0
(1.2)

remains unknown. Here ∂1 and ∂2 are abbreviations for ∂x1 and ∂x2 , respectively. The
lack of horizontal dissipation in (1.2) makes it impossible to control the vorticity
gradient. In fact, if we estimate ‖∇ω(t)‖L2 via the standard energy method, namely

d

dt
‖∇ω(t)‖2L2 + 2ν‖∂2∇ω(t)‖2L2 = −2

∫
R2

∇ω · ∇u · ∇ω dx,

the dissipation is no longer sufficient in controlling the nonlinearity on the right-hand
side. If we further decompose the nonlinear term into four terms,

Hard := −
∫
R2

∇ω · ∇u · ∇ω dx

= −
∫
R2

∂1u1 (∂1ω)2 dx −
∫
R2

∂1u2 ∂1ω ∂2ω dx

−
∫
R2

∂2u1 ∂1ω ∂2ω dx −
∫
R2

∂2u2 (∂2ω)2 dx . (1.3)

The two terms in (1.3), due to the lack of the horizontal dissipation, cannot be bounded
suitably.

One goal of this paper is to present an explicit example of partial differential
equation (PDE) systems which consists of the 2D Navier–Stokes with only verti-
cal dissipation as a component equation but exhibits stability and large-time decay
behavior. This example demonstrates that the coupling and interaction between the
component equations in the system can actually stabilize the fluid and drive the fluid
velocity to decay in time, even though the stability and large-time behavior of this
partially dissipated Navier–Stokes itself remains unknown. To give a more precise
account of our study, we shall be more specific. We are concerned with the following
2D Boussinesq system:

⎧⎪⎨
⎪⎩

∂t u + u · ∇u + ∇P = ν∂22u + θe2, x ∈ R
2, t > 0,

∇· u = 0,

∂tθ + u · ∇θ + u2 + ηθ = 0,

(1.4)

where u = (u1, u2) denotes the velocity field, P the pressure, θ the temperature, e2 =
(0, 1), and ν > 0 and η > 0 are the viscosity and damping coefficients, respectively.
(1.4) models the motion of buoyancy-driven fluids. The degenerate Navier–Stokes
equation with only vertical dissipation is relevant in certain physical regimes and
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arises after suitable scaling. The term θ e2 represents the buoyancy forcing generated
due to the temperature variation. The third equation in (1.4) governs the evolution of
the temperature and involves a thermal damping term instead of the thermal diffusion.
The extra term u2 is generated from the convection when we write the equation of
the perturbation near the hydrostatic equilibrium θhe = x2. In fact, when we treat
the temperature as a sum of the equilibrium x2 and a perturbation θ , the standard
convection term becomes u ·∇(x2 + θ), which is u ·∇θ +u2. The hydrostatic balance
is an important equilibrium state in physics in which the fluid is static and the pressure
gradient force is balanced out by the buoyancy.

The Boussinesq equations are important models for geophysical flows as well as for
the Rayleigh–Bénard convection (see, e.g., Constantin andDoering 1996; Doering and
Gibbon 1995; Majda 2003; Pedlosky 1987; Wen et al. 2012). In addition to their wide
applicability in physics and geophysics, the Boussinesq equations are also mathemat-
ically significant. The 2D Boussinesq equations serve as a lower-dimensional model
of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations share some
key features of the 3D Euler and Navier–Stokes equations such as the vortex stretch-
ing mechanism. The inviscid 2D Boussinesq equations can be identified with the 3D
axisymmetric Euler equations with swirl (Majda and Bertozzi 2002). Furthermore, the
Boussinesq systems through coupling and interaction can describe many more phe-
nomena than the hydrodynamic equation alone.Aswe reveal in this paper, the coupling
structure in the Boussinesq system can lead to amazing smoothing and stabilization.

Due to their physical applications and mathematical importance, the Boussinesq
systems have recently attracted a lot of interests. Especially, there have been substantial
developments on the Boussinesq systems with only partial or fractional dissipation,
or no dissipation at all. Significant progress has been made on several fundamental
issues such as the global existence and regularity problem, and the stability problem on
perturbations near several physically important steady states and large-time behavior.
We briefly describe some of the closely related results. The 2D Boussinesq equations
with either Laplacian viscosity or Laplacian thermal diffusion (but not both) are shown
to have global classical solutions in Chae (2006) and Hou and Li (2005). Unique weak
solution of such equations is obtained in Boardman et al. (2019) and Danchin and
Paicu (2009). Danchin and Paicu (2011) and Larios et al. (2013) examined the 2D
Boussinesq equations with either horizontal viscosity or horizontal thermal diffusion
and established their global regularity. For the 2D Boussinesq equations with both
vertical viscosity and vertical thermal diffusion, Cao andWu (2013) solved the global
regularity problem by proving a delicate global bound for the Lr -norm of the vertical
component of the velocity, while (Adhikari et al. 2010, 2011), prior to Cao and Wu
(2013), established several partial results. Li andTiti (2016)weakened the assumptions
of Cao and Wu (2013) on the initial data. Several other partial dissipation cases are
investigated by Adhikari et al. (2016). Partially dissipated Boussinesq equations on
bounded domains with various boundary conditions are studied in Hu et al. (2015,
2018), Lai et al. (2011) and Zhao (2010). Important progress has also beenmade on the
2D Boussinesq equations with fractional dissipation. Global existence and regularity
theory has been developed for various levels of fractional dissipation including the
subcritical case (Miao and Xue 2011; Wu and Xu 2014; Wu et al. 2018; Yang et al.
2014, 2018; Ye and Xu 2016), the critical case (Hmidi et al. 2010, 2011; Jiu et al.
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2014; Stefanov andWu 2019;Wu et al. 2016), and the supercritical case (Chae andWu
2012; Jiu et al. 2015; Kc et al. 2014; Li et al. 2016). The global regularity problem on
the inviscid Boussinesq equations remains a mystery, but a much better understanding
has been obtained (Adhikari et al. 2014; Chae et al. 2014; Choi et al. 2015; Constantin
et al. 2015; Elgindi and Jeong 2020; Elgindi and Widmayer 2015; Kiselev and Tan
2018; Sarria and Wu 2015). More details on the global regularity problem on the
Boussinesq equations can be found in Wu (2016). Rigorous study on the stability
problemconcerning theBoussinesq equations ismore recent. Tao et al. (2020),Doering
et al. (2018) established the stability and large-time behavior of perturbations near the
hydrostatic equilibrium for the 2D Boussinesq with only velocity dissipation. Castro
et al. (2019) obtained the asymptotic stability of the hydrostatic equilibrium for the 2D
Boussinesq systemwith a velocity damping term.More recent work on the hydrostatic
equilibrium can be found in Ben Said et al. (2020), Lai et al. (2021), Wan (2019), Wu
et al. (2019). There are very significant recent developments on the stability of shear
flow to the Boussinesq equations with various partial dissipation (Tao and Wu 2019;
Yang and Lin 2018; Zillinger 2020; Deng et al. 2020; Bianchini et al. 2020).

The primary goal of this paper is to obtain optimal decay rates for solutions of the
Boussinesq system in (1.4). A previouswork (Lai et al. 2021) has established the global
existence and stability of (1.4) in the Sobolev space H2. In addition, the large-time
behavior of ‖∇u(t)‖L2 and ‖∇θ(t)‖L2 is also obtained via energymethods in Lai et al.
(2021). However, important issues on the large-time behavior such as explicit decay
rates for the solution itself and for the high-order derivatives of the solution remain
unresolved in Lai et al. (2021). More importantly, a systematic approach on the large-
time behavior of perturbations obeying a PDE system with only partial dissipation is
still lacking. This paper intends to fill the void by developing an efficient method to
extract the optimal large-time decay rates of partially dissipated PDE systems. For the
convenience of later references, we first provide an accurate account of the stability
result in Lai et al. (2021).

Theorem 1.1 Assume (u0, θ0) ∈ H2 with ∇· u0 = 0. Then, there exists a constant
ε > 0 such that, if

‖(u0, θ0)‖H2 ≤ ε,

then (1.4) has a unique global solution (u, θ) satisfying, for any t > 0,

‖(u, θ)(t)‖2H2 +
∫ t

0

(‖(∂2u, θ)(τ )‖2H2 + ‖(u2, ∂1u2)(τ )‖2L2

)
dτ ≤ C ε2. (1.5)

Furthermore, we obtain the following decay rate

‖∇u(t)‖L2 + ‖∇θ(t)‖L2 ≤ Cε(1 + t)−
1
2 , (1.6)

where C > 0 is a positive constant independent of ε and t.

The decay estimate in (1.6) was obtained by careful energy estimates. However,
energy estimates are not very efficient in dealing with the decay rates of the solution
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itself or its high-order derivatives. This paper intends to provide a systematic approach
to the large-time behavior problem on PDE systems with only partial dissipation. We
obtain the following optimal decay rates by applying this approach to (1.4).

Theorem 1.2 Consider (1.4) with ν > 0 and η > 0. Assume the initial data (u0, θ0) ∈
H2(R2) ∩ L1(R2) satisfy ∇ · u0 = 0. Then, there exists a sufficiently small constant
ε > 0 such that, if

‖(u0, θ0)‖L1 + ‖(u0, θ0)‖H2 ≤ ε, (1.7)

then the corresponding solution (u, θ) of (1.4) obtained in Theorem 1.1 obeys

‖(u, θ)(t)‖L2 ≤ Cε(1 + t)−
1
2 , ‖∂2u(t)‖L2 ≤ Cε(1 + t)−1,

‖∂1u(t)‖L2 ≤ Cε(1 + t)−
3
4 , ‖∂2∇u(t)‖L2 ≤ Cε(1 + t)−

3
4 ,

‖∇θ(t)‖L2 ≤ Cε(1 + t)−
3
4 , ‖∂22u(t)‖L2 ≤ Cε(1 + t)−

5
4 .

The decay rates presented in Theorem 1.2 appear to be sharp for solutions in the
regularity class H2. In addition, these rates also reflect the extra smoothing and damp-
ing due to the coupling in the system. The decay rate for (u, θ) in the L2-norm is
the same as that for the 2D heat equation with an initial data in L1 ∩ L2, and is thus
optimal. The decay rate for ∂2u also coincides with that of the 2D heat equation and is
also sharp. Due to the smoothing and stabilizing effect, we are also able to obtain the

decay estimate for ‖∂1u(t)‖L2 at the rate of (1+ t)− 3
4 . This rate is optimal and cannot

be improved to (1+ t)−1 due to the lack of the horizontal dissipation. The decay rate
for ‖∇θ(t)‖L2 also appears to be sharp. Since our solution is restricted to the regu-
larity class H2, estimating the decay rates of some of the second-order derivatives is
difficult if not impossible when the system is only partially dissipated. Nevertheless,
we managed to obtain the decay rates for ‖∂2∇u(t)‖L2 and for ‖∂22u(t)‖L2 .

Many important methods have been obtained to understand the large-time behavior
of solutions to fully dissipative PDEs or PDE systems such as Schonbek’s Fourier
splitting scheme (see, e.g., Schonbek 1985; Schonbek and Wiegner 1996). Unfortu-
nately, these methods do not appear to apply when the PDE system involves only
partial dissipation. We develop a general approach to extract the large-time behavior
of stable solutions to PDE systems with only partial dissipation. Since the vorticity
ω = ∇ × u is a scalar and the velocity u can be recovered from ω by the Biot–Savart
law u = ∇⊥�−1ω, we mainly work with the equivalent system consisting of the
vorticity equation and the equation of θ ,

⎧⎪⎨
⎪⎩

∂tω + u · ∇ω = ν∂22ω + ∂1θ,

∂tθ + u · ∇θ + u2 + η θ = 0,

u = ∇⊥�−1ω.

(1.8)

The first step of our approach is to exploit the coupling structure in (1.8) to reveal
the smoothness and stabilization hidden in the original system. By differentiating the
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equations in t one more time and making suitable substitutions, we can decouple ω

from θ in the linear parts to obtain

{
∂t tω + (η − ν∂22)∂tω − (νη∂22ω + R2

1ω) = M1,

∂t tθ + (η − ν∂22)∂tθ − (νη∂22θ + R2
1θ) = M2,

(1.9)

where M1 and M2 are the nonlinear terms

M1 = −(∂t + η)(u · ∇ω) − ∂1(u · ∇θ),

M2 = (ν∂22 − ∂t )(u · ∇θ) + (u · ∇u2 − ∂2�
−1∇ · (u · ∇u)).

Here R1 = ∂1

−1 denotes the standard Riesz transform with 
 = (−�)

1
2 , and

the fractional Laplace operator (−�)β with β ∈ R is defined through the Fourier
transform,

̂(−�)β f (ξ) = |ξ |2β f̂ (ξ).

In comparison with (1.8), the wave equations in (1.9) reveal more smoothing and
regularization due to the coupling and interaction. These regularizing properties will
be reflected in the upper bounds on the kernel functions in the integral representation
in Sect. 2. The second step is to separate the linear terms from the nonlinear ones in
(1.8), solve the linearized system in the Fourier space and represent the system in an
integral form via the Duhamel principle. To simplify the calculations, we work with
the equations of ω and ∂1θ (since the right-hand side of ω contains ∂1θ ),

{
∂tω + u · ∇ω = ν∂22ω + ∂1θ,

∂t∂1θ + ∂1(u · ∇θ) + ∂1u2 + η∂1θ = 0.
(1.10)

(1.10) can be converted into the integral form as

ω̂(ξ, t) = K̂1(t)ω̂0 + K̂2(t )̂∂1θ0 +
∫ t

0

(
K̂1(t − τ)N̂1(τ ) + K̂2(t − τ)N̂2(τ )

)
dτ,

∂̂1θ(ξ, t) = K̂3(t)ω̂0 + K̂4(t )̂∂1θ0 +
∫ t

0

(
K̂3(t − τ)N̂1(τ ) + K̂4(t − τ)N̂2(τ )

)
dτ,

where K̂1, K̂2, K̂3 and K̂4 are kernel functions with their explicit formula given in
Sect. 2, and N1 = −u · ∇ω and N2 = −∂1(u · ∇θ). These kernel functions are
frequency dependent and admit different upper bounds in different subdomains of the
frequency space. The third step divides the frequency space into suitable subdomains
and establishes sharp upper bounds for each kernel function in these subdomains. The
details are provided in Proposition 2.1. With these preparations at our disposal, the
fourth step employs a bootstrapping argument to prove the desired upper bounds. An
abstract statement on the bootstrapping argument can be found in Tao (2006, p.21).
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The argument starts with the ansatz that

‖u(t)‖L2 + ‖θ(t)‖L2 ≤ C0 ε (1 + t)−
1
2 ,

‖∂2u(t)‖L2 ≤ C0 ε (1 + t)−1,

‖∂1u(t)‖L2 + ‖∂2∇u(t)‖L2 ≤ C0 ε (1 + t)−
3
4 ,

where C0 will be specified later in the proof. Making use of the integral representation
and the upper bounds in the previous steps, we show that the bounds in the ansatz can
actually be reduced by half, namely

‖u(t)‖L2 + ‖θ(t)‖L2 ≤ C0

2
ε (1 + t)−

1
2 ,

‖∂2u(t)‖L2 ≤ C0

2
ε (1 + t)−1,

‖∂1u(t)‖L2 + ‖∂2∇u(t)‖L2 ≤ C0

2
ε (1 + t)−

3
4 .

(1.11)

Then, the bootstrapping argument assesses that the upper bounds in (1.11) indeed hold
for all time. The verification of (1.11) is a long process involving repeated applications
of various anisotropic inequalities and the upper bounds on the kernel functions. The
estimates for ∇θ and ∂22u are performed independently and take advantage of the
rates in (1.11). More details are presented in Sect. 3.

The rest of the paper provides the details outlined above. Section 2 represents (1.4)
in the integral form and presents the upper bounds for the kernel functions. Section 3
implements the bootstrapping argument to obtain the desired decay rates and thus
finish the proof of Theorem 1.2.

2 Integral Representation

This section achieves two goals. The first is to represent (1.4) in an integral form (in the
Fourier space). This is accomplished by separating the linear parts from the nonlinear
ones, solving the linearized system in the Fourier space and representing the nonlinear
system via Duhamel’s principle. The kernel functions are the crucial components in
this representation. The secondmain task is to obtain sharp upper bounds for the kernel
functions. Since these kernel functions have a strong dependence on the frequency,
we need to divide the frequency space into subdomains in order to obtain the optimal
upper bounds. This is crafted in Proposition 2.1.

To make the calculations simpler, we work with the system of ω and ∂1θ to find
their representations. The representations of u and θ then follow as a consequence.
Taking the Fourier transform of (1.10) yields

∂t

⎛
⎝ ω̂

∂̂1θ

⎞
⎠ = A

⎛
⎝ ω̂

∂̂1θ

⎞
⎠+

⎛
⎝ N̂1

N̂2

⎞
⎠ ,
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where A comes from the linear operators, and N1, N2 are the nonlinear terms,

A =
⎛
⎜⎝

−νξ22 1

− ξ21
|ξ |2 −η

⎞
⎟⎠ , N1 = −u · ∇ω, N2 = −∂1(u · ∇θ).

The characteristic polynomial of A is given by

λ2 +
(
η + νξ22

)
λ +
(

νηξ22 + ξ21

|ξ |2
)

= 0 (2.1)

and thus, the eigenvalues of A are

λ1 = − (η + νξ22

)− √
Γ

2
, λ2 = − (η + νξ22

)+ √
Γ

2
(2.2)

with

Γ :=
(
η + νξ22

)2 − 4

(
νηξ22 + ξ21

|ξ |2
)

.

By computing the corresponding eigenvectors and diagonalizing A, we find

ω̂(ξ, t) = K̂1(t)ω̂0 + K̂2(t )̂∂1θ0

+
∫ t

0

(
K̂1(t − τ)N̂1(τ ) + K̂2(t − τ)N̂2(τ )

)
dτ, (2.3)

∂̂1θ(ξ, t) = K̂3(t)ω̂0 + K̂4(t )̂∂1θ0

+
∫ t

0

(
K̂3(t − τ)N̂1(τ ) + K̂4(t − τ)N̂2(τ )

)
dτ, (2.4)

where the kernel functions K̂1, K̂2, K̂3 and K̂4 are given by

K̂1 = −νξ22G1 + G3, K̂2 = G1, K̂3 = − ξ21

|ξ |2G1, K̂4 = νξ22G1 + G2, (2.5)

with

G1 = eλ2t − eλ1t

λ2 − λ1
, G2 = λ2eλ2t − λ1eλ1t

λ2 − λ1
= eλ1t + λ2G1 = eλ2t + λ1G1,

G3 = λ2eλ1t − λ1eλ2t

λ2 − λ1
= eλ1t − λ1G1.

We now analyze the behavior of K̂1(ξ, t), K̂2(ξ, t), K̂3(ξ, t) and K̂4(ξ, t), which
clearly rely on the Fourier frequencies ξ. The following proposition provides upper
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bounds for the kernel functions in different subdomains of the frequency space. The
notation Re ρ denotes the real part of a complex number ρ.

Proposition 2.1 Let S1 and S2 be the following subsets of R
2,

S1 : =

⎧⎪⎪⎨
⎪⎪⎩ξ ∈ R

2 : 1 −
4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2 ≤ 1

4
or νηξ22 + ξ21

|ξ |2 ≥ 3

16

(
η + νξ22

)2
⎫⎪⎪⎬
⎪⎪⎭ ,

S2 : =

⎧⎪⎪⎨
⎪⎪⎩ξ ∈ R

2 : 1 −
4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2 >
1

4
or νηξ22 + ξ21

|ξ |2 <
3

16

(
η + νξ22

)2
⎫⎪⎪⎬
⎪⎪⎭ .

Then, G1, G2 and G3, and K̂1, K̂2, K̂3 and K̂4 admit the following upper bounds:

(I) There exists some c = c(ν, η) > 0 such that, for any ξ ∈ S1,

Reλ1 ≤ −1

2

(
η + νξ22

)
, Reλ2 ≤ −1

4

(
η + νξ22

)
,

|G1| ≤ te− 1
4

(
η+νξ22

)
t , G2 = eλ1t + λ2G1, G3 = eλ1t − λ1G1,

|K̂1|, |K̂2|, |K̂3|, |K̂4| ≤ Ce−c
(
1+ξ22

)
t . (2.6)

(II) There exists some c = c(ν, η) > 0 such that, for any ξ ∈ S2,

λ1 ≤ −3

4

(
η + νξ22

)
, λ2 ≤ −

νηξ22 + ξ21
|ξ |2

η + νξ22
,

|G1| ≤ 2
(
η + νξ22

)−1 (
eλ1t + eλ2t

)
,

|K̂1| ≤ e−c
(
1+ξ22

)
t + C

(
1 + ξ22

)−1
e
−

νηξ22+ ξ21
|ξ |2

η+νξ22
t
,

|K̂2|, |K̂3| ≤ C
(
1 + ξ22

)−1

⎛
⎜⎜⎝e−c(1+ξ22 )t + e

−
νηξ22+ ξ21

|ξ |2
η+νξ22

t

⎞
⎟⎟⎠ ,

|K̂4| ≤ Ce−c(1+ξ22 )t + Ce
−

νηξ22+ ξ21
|ξ |2

η+νξ22
t
.

We further split S2 into three subdomains as follows:

S21 :=
{
ξ ∈ S2, νξ22 ≥ η

}
,
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S22 :=
{
ξ ∈ S2, νξ22 < η and |ξ1| ≥ |ξ2|

}
,

S23 :=
{
ξ ∈ S2, νξ22 < η and |ξ1| < |ξ2|

}
.

Then, we have the following more concise upper bounds

(a) For ξ ∈ S21,

|K̂1| ≤ Ce−c
(
1+ξ22

)
t + C

(
1 + ξ22

)−1
e−ct ,

|K̂2|, |K̂3| ≤ C
(
1 + ξ22

)−1 (
e−c(1+ξ22 )t + e−ct

)
,

|K̂4| ≤ Ce−c(1+ξ22 )t + Ce−ct .

(2.7)

(b) For ξ ∈ S22,
|K̂1|, |K̂2|, |K̂3|, |K̂4| ≤ Ce−c

(
1+ξ22

)
t . (2.8)

(c) For ξ ∈ S23,

|K̂1|, |K̂2|, |K̂3|, |K̂4| ≤ C
(
e−c(1+ξ22 )t + e−c|ξ |2t) . (2.9)

Proof (I) For ξ ∈ S1, λ1 and λ2 given by (2.2) obviously satisfy

Reλ1 ≤ −1

2

(
η + νξ22

)
, Reλ2 ≤ −1

4

(
η + νξ22

)
.

To further the proof, we divide our consideration into two cases:

1 −
4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2 ≥ 0 and 1 −
4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2 < 0. (2.10)

Both λ1 and λ2 are real in the first case and

|λ1|, |λ2| ≤ 1

2

(
η + νξ22

)
⎛
⎜⎜⎜⎜⎝1 +

√√√√√√1 −
4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2
⎞
⎟⎟⎟⎟⎠ ≤ 3

4

(
η + νξ22

)
.

(2.11)
By the definition of S1, there exists a constant C such that, for any ξ ∈ S1,

|ξ2| ≤ C . (2.12)

By (2.11) and (2.12),
|λ1|, |λ2| ≤ C .
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Furthermore, by the mean-value theorem, there is ζ ∈ (λ1, λ2) such that

G1 = teζ t ≤ te− 1
4

(
η+νξ22

)
t .

By the definitions of K̂1 through K̂4 in (2.5), for c = min{ 18ν, 1
8η} > 0,

|K̂1| = |G3 − νξ22G1| = |eλ1t − λ1G1 − νξ22G1| ≤ Ce−c
(
1+ξ22

)
t ,

|K̂2| ≤ |G1| ≤ Ce−c
(
1+ξ22

)
t , |K̂3| ≤ |G1| ≤ Ce−c

(
1+ξ22

)
t ,

|K̂4| = |G2 + νξ22G1| = |eλ1t + λ2G1 + νξ22G1| ≤ Ce−c
(
1+ξ22

)
t ,

where we have used the simple fact that xe−x ≤ C for any x ≥ 0. For the second case
in (2.10), λ1 and λ2 are a pair of complex conjugates and their norms are

|λ1|, |λ2| =
√

νηξ22 + ξ21

|ξ |2 ≤
√

νηξ22 + 1. (2.13)

As we explained before, |ξ2| ≤ C for any ξ ∈ S1. Therefore, (2.13) implies

|λ1| ≤ C, |λ2| ≤ C .

In addition, since λ1 and λ2 are a pair of complex conjugates,

G1 = eλ2t − eλ1t

λ2 − λ1
= e− 1

2

(
η+νξ22

)
t 2 sin(

1
2Qt)

Q
, (2.14)

where

Q := (η + νξ22 )

√√√√√√4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2 − 1.

By the simple fact that | sin ρ| ≤ |ρ| for any ρ ∈ R, (2.14) implies

|G1| ≤ t e− 1
2

(
η+νξ22

)
t .

The bounds for |K̂1| through |K̂4| then follow as before.
(II) For ξ ∈ S2, λ1 and λ2 are real. The bound for λ1 is obvious. To estimate λ2,

we rewrite it as

λ2 = −1

2

(
η + νξ22

)
⎛
⎜⎜⎜⎜⎝1 −

√√√√√√1 −
4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2
⎞
⎟⎟⎟⎟⎠
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= −1

2

4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)+
√(

η + νξ22

)2 − 4

(
νηξ22 + ξ21

|ξ |2
)

≤ −
νηξ22 + ξ21

|ξ |2
η + νξ22

.

Furthermore,

|λ2| = 1

2

4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)+
√(

η + νξ22

)2 − 4

(
νηξ22 + ξ21

|ξ |2
) ≤ 4

3

νηξ22 + ξ21
|ξ |2

η + νξ22
≤ C .

(2.15)
Due to the lower bound

λ2 − λ1 =
(
η + νξ22

)
√√√√√√1 −

4

(
νηξ22 + ξ21

|ξ |2
)

(
η + νξ22

)2 ≥ 1

2

(
η + νξ22

)
,

the upper bound for G1 then follows:

|G1| ≤ 2
(
η + νξ22

)−1 (
eλ1t + eλ2t

)
.

The upper bounds for K̂2 and K̂3 are trivial by the definition in (2.5). Since λ1 and λ2
are the roots of (2.1), they satisfy

λ1 + λ2 = −(η + νξ22 ).

Invoking the uniform bound for |λ2| in (2.15), we get, for c = min{ 34ν, 3
4η} > 0,

|K̂1| = |G3 − νξ22G1| = |eλ1t − λ1G1 − νξ22G1| = |eλ1t + λ2G1 + ηG1|

≤ e−c
(
1+ξ22

)
t + C

(
1 + ξ22

)−1 (
e−c(1+ξ22 )t + e

−
νηξ22+ ξ21

|ξ |2
η+νξ22

t)

≤ e−c
(
1+ξ22

)
t + C

(
1 + ξ22

)−1
e
−

νηξ22+ ξ21
|ξ |2

η+νξ22
t
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and

|K̂4| = |G2 + νξ22G1| = |eλ1t + λ2G1 + νξ22G1| ≤ Ce−c(1+ξ22 )t + Ce
−

νηξ22+ ξ21
|ξ |2

η+νξ22
t
.

Tomake the upper bound for |K̂1|, |K̂2|, |K̂3| and |K̂4|more concise, we further divide
S2 into S21, S22 and S23. For ξ ∈ S21,

−
νηξ22 + ξ21

|ξ |2
η + νξ22

≤ − νηξ22

η + νξ22
≤ − νηξ22

νξ22 + νξ22
= −η

2
.

Applying this upper bound and taking c = min{ 34ν, 1
2η} > 0 leads to (2.7). For

ξ ∈ S22,

−
νηξ22 + ξ21

|ξ |2
η + νξ22

≤ −
νηξ22 + ξ21

|ξ |2
η + η

= −ν

2
ξ22 − 1

2η

ξ21

|ξ |2 ≤ −ν

2
ξ22 − 1

4η
.

By taking c = min{ 12ν, 3
4η, 1

4η } > 0, we obtain (2.8). For ξ ∈ S23,

−
νηξ22 + ξ21

|ξ |2
η + νξ22

≤ − νηξ22

η + νξ22
≤ − νηξ22

η + η
= −ν

2
ξ22 ≤ −ν

4
|ξ |2,

we can take c = min{ 14ν, 3
4η} > 0 to obtain (2.9). This completes the proof of

Proposition 2.1. ��

3 The Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. For the sake of clarity, we divide
this section into three subsections. The first subsection establishes the desired decay
rates for ‖u(t)‖L2 , ‖θ(t)‖L2 , ‖∂2u(t)‖L2 , ‖∂1u(t)‖L2 and ‖∂2∇u(t)‖L2 . The frame-
work of the proof is the bootstrapping argument. The integral representation in (2.3)
and (2.4) and the upper bounds on the kernel functions obtained in Proposition 2.1
will be used extensively. The second subsection shows that

‖∇θ‖L2 ≤ C ε (1 + t)−
3
4 .

We make use of the upper bounds in the first subsection. The third subsection proves
the upper bound

‖∂22u‖L2 ≤ C ε (1 + t)−
5
4 .
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Several inequalities will be used repeatedly in the proof. For easy references, we list
these inequalities in the following lemmas. The first one is Minkowski’s inequality. It
is an elementary tool that allows us to estimate the Lebesgue norm with larger index
first followed by the Lebesgue norm with a smaller index. The following version is
taken from Bahouri et al. (2011, p. 4), and a more general statement can be found in
Lieb and Loss (2001, p. 47).

Lemma 3.1 Let (X1, μ1) and (X2, μ2) be twomeasure spaces. Let f be a nonnegative
measurable function over X1 × X2. For all 1 ≤ p ≤ q ≤ ∞, we have

∥∥‖ f (·, x2)‖L p(X1,μ1)

∥∥
Lq (X2,μ2)

≤ ∥∥‖ f (x1, ·)‖Lq (X2,μ2)

∥∥
L p(X1,μ1)

.

In particular, for a nonnegative measurable function f over R
m × R

n and for 1 ≤
p ≤ q ≤ ∞, ∥∥‖ f ‖L p(Rm)

∥∥
Lq (Rn)

≤ ∥∥‖ f ‖Lq (Rn)

∥∥
L p(Rm)

.

By combining the basic one-dimensional inequality ‖g‖L∞(R) ≤ √
2‖g‖

1
2
L2(R)

‖g′‖
1
2
L2(R)

with Hölder’s inequality, we have the elementary inequalities in the fol-
lowing two lemmas.

Lemma 3.2 Assume f , ∂1 f , g and ∂2g are all in L2(R2). Then, for a pure constant
C,

‖ f g‖L2(R2) ≤ C‖ f ‖
1
2
L2(R2)

‖∂1 f ‖
1
2
L2(R2)

‖g‖
1
2
L2(R2)

‖∂2g‖
1
2
L2(R2)

.

Lemma 3.3 The following estimate holds when the right-hand sides are all bounded,

‖ f ‖L∞(R2) ≤ C‖ f ‖
1
4
L2(R2)

‖∂1 f ‖
1
4
L2(R2)

‖∂2 f ‖
1
4
L2(R2)

‖∂12 f ‖
1
4
L2(R2)

.

The next lemma provides the exact decay rate for the solution operator associated
with a fractional Laplacian when acting upon Lebesgue spaces. Its proof can be found
in many references (see, e.g., Schonbek and Schonbek 2005; Wu 2001).

Lemma 3.4 Let α ≥ 0 and β > 0 are real numbers, 1 ≤ q ≤ p ≤ ∞. Then, for any
t > 0,

‖(−�)αe−(−�)β t f ‖L p(Rd ) ≤ C t−
α
β
− d

2β ( 1q − 1
p ) ‖ f ‖Lq (Rd ).

The two lemmas below offer upper bounds with optimal decay rates for two special
integrals (see, e.g., Lai et al. 2019; Zhang and Zhao 2010).

Lemma 3.5 If 0 < s1 ≤ s2, then

∫ t

0
(1 + t − τ)−s1(1 + τ)−s2 dτ ≤

⎧⎨
⎩
C(1 + t)−s1 , if s2 > 1;
C(1 + t)−s1 ln(1 + t), if s2 = 1;
C(1 + t)1−s1−s2 , if s2 < 1.

123



   16 Page 16 of 33 Journal of Nonlinear Science            (2021) 31:16 

Lemma 3.6 For any c > 0 and s > 0,

∫ t

0
e−c(t−τ)(1 + τ)−s dτ ≤ C(1 + t)−s .

We are now ready to prove Theorem 1.2.

3.1 Decay Estimates for ‖(u,�)‖L2 , ‖@2u‖L2 and ‖(@1u,@2∇u)‖L2

This subsection establishes the decay rates for ‖(u, θ)‖L2 , ‖∂2u‖L2 and ‖(∂1u,

∂2∇u)‖L2 . The tool is the bootstrapping argument, which starts with the ansatz that

‖u(t)‖L2 + ‖θ(t)‖L2 ≤ C0ε (1 + t)−
1
2 ,

‖∂2u(t)‖L2 ≤ C0ε (1 + t)−1,

‖∂1u(t)‖L2 + ‖∂2∇u(t)‖L2 ≤ C0ε (1 + t)−
3
4 ,

(3.1)

where C0 is a constant to be specified later in the following proof. We show by using
the ansatz and the integral representation in (2.3) and (2.4) that

‖u(t)‖L2 + ‖θ(t)‖L2 ≤ C0

2
ε (1 + t)−

1
2 ,

‖∂2u(t)‖L2 ≤ C0

2
ε (1 + t)−1,

‖∂1u(t)‖L2 + ‖∂2∇u(t)‖L2 ≤ C0

2
ε (1 + t)−

3
4 .

(3.2)

The bootstrapping argument then implies that (3.2) indeed holds for all time t > 0.
The implementation relies crucially on the upper bounds in Proposition 2.1. As a

special consequence of Proposition 2.1, we have

|K̂1|, |K̂2|, |K̂3|, |K̂4| ≤ Ce−ct , if ξ ∈ S1 ∪ S21 ∪ S22, (3.3)

|K̂1|, |K̂2|, |K̂3|, |K̂4| ≤ C
(
e−ct + e−c|ξ |2t) , if ξ ∈ S23. (3.4)

By the Biot–Savart law

u = ∇⊥�−1ω = (−∂2�
−1ω, ∂1�

−1ω) (3.5)

and the integral representation of ω̂ in (2.3), we obtain

‖û‖L2 =
∥∥∥|ξ |−1ω̂

∥∥∥
L2

≤ I1 + I2 + I3 + I4, (3.6)

where

I1 =
∥∥∥|ξ |−1 K̂1(t)ω̂0

∥∥∥
L2

,
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I2 =
∥∥∥|ξ |−1 K̂2(t )̂∂1θ0

∥∥∥
L2

,

I3 =
∫ t

0

∥∥∥|ξ |−1 K̂1(t − τ)N̂1(τ )

∥∥∥
L2

dτ,

I4 =
∫ t

0

∥∥∥|ξ |−1 K̂2(t − τ)N̂2(τ )

∥∥∥
L2

dτ.

By (3.3) and (3.4), Lemma 3.4 and the simple fact that (1+ x)
1
2 e−ax ≤ C(a) for any

constant a > 0,

I1 =
∥∥∥|ξ |−1 K̂1(t)ω̂0

∥∥∥
L2(S1∪S21∪S22)

+
∥∥∥|ξ |−1 K̂1(t)ω̂0

∥∥∥
L2(S23)

≤ Ce−ct‖û0‖L2 + C
∥∥∥e−c|ξ |2t |û0|

∥∥∥
L2

≤ C(1 + t)−
1
2 ‖u0‖L2∩L1 .

Similarly,

I2 ≤ C(1 + t)−
1
2 ‖θ0‖L2∩L1 .

Using (3.3) and (3.4), and writing

N̂1 = û · ∇ω = ∇̂ · (uω) = iξ · ûω (3.7)

and

|N̂1| =
∣∣∣û · ∇ω

∣∣∣ = ∣∣∣ ̂∇ × (u · ∇u)

∣∣∣ = ∣∣∣ ̂∇ × (∇ · (u ⊗ u))

∣∣∣
≤ |ξ1ξ | |ûu2| + |ξ2ξ | |ûu1| ≤ |ξ |2 (|ûu1| + |ûu2|) , (3.8)

we obtain

I3 =
∫ t

0

∥∥∥|ξ |−1 K̂1(t − τ)û · ∇ω(τ)

∥∥∥
L2

dτ

≤ C
∫ t

0
e−c(t−τ) ‖ûω(τ)‖L2 dτ

+ C
∫ t

0

∥∥∥|ξ |−1e−c|ξ |2(t−τ) ̂∇ × (∇ · (u ⊗ u))

∥∥∥
L2(S23)

dτ

:= I31 + I32.

By (1.5) and (1.6), and Lemma 3.6,

I31 ≤ C
∫ t

0
e−c(t−τ) ‖uω‖L2 dτ
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≤ C
∫ t

0
e−c(t−τ)‖u‖L∞‖ω‖L2dτ

≤ Cε2
∫ t

0
e−c(t−τ)(1 + τ)−

1
2 dτ

≤ Cε2(1 + t)−
1
2 .

By the definition of S23, for ξ ∈ S23,

|ξ | ≤ C . (3.9)

By (1.6), (3.1), (3.8), (3.9), Lemma 3.5 and the simple fact that (1+ t)−a ln(1+ t) ≤
C(a) for any a > 0, we have

I32 = C
∫ t

0

∥∥∥|ξ |−1e−c|ξ |2(t−τ) ̂∇ × (∇ · (u ⊗ u))

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0

∥∥∥|ξ |e−c|ξ |2(t−τ)(|ûu2| + |ûu1|)
∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
(1 + t − τ)−1(‖u ⊗ u‖L2 + ‖u ⊗ u‖L1)dτ

≤ C
∫ t

0
(1 + t − τ)−1(‖u‖L2‖∇u‖L2 + ‖u‖2L2)dτ

≤ C
∫ t

0
(1 + t − τ)−1(C0ε

2(1 + τ)−1 + C2
0ε

2(1 + τ)−1)dτ

≤ C(C0 + C2
0 )ε

2(1 + t)−1 ln(1 + t)

≤ C(C0 + C2
0 )ε

2(1 + t)−
1
2 .

As in the estimate of I3, we can bound I4 by

I4 =
∫ t

0

∥∥∥|ξ |−1 K̂2(t − τ) ̂∂1(u · ∇θ)(τ )

∥∥∥
L2

dτ

≤ C
∫ t

0
e−c(t−τ)

∥∥∥û · ∇θ(τ )

∥∥∥
L2

dτ

+ C
∫ t

0

∥∥∥|ξ |−1e−c|ξ |2(t−τ) ̂∂1∇ · (uθ)(τ )

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
e−c(t−τ) ‖u‖L∞ ‖∇θ‖L2dτ + C

∫ t

0

∥∥∥|ξ |e−c|ξ |2(t−τ)ûθ(τ )

∥∥∥
L2(S23)

dτ

≤ Cε2
∫ t

0
e−c(t−τ)(1 + τ)−

1
2 dτ + C

∫ t

0
(1 + t − τ)−1(‖uθ‖L2 + ‖uθ‖L1)dτ

≤ Cε2(1 + t)−
1
2 + C

∫ t

0
(1 + t − τ)−1(C0ε

2(1 + τ)−1 + C2
0ε

2(1 + τ)−1)dτ

≤ C(C2
0 + C0 + 1)ε2(1 + t)−

1
2 .
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Collecting the bounds from I1 to I4 and inserting them in (3.6), we obtain, after
applying Plancherel’s theorem and (1.7),

‖u‖L2 = ‖û‖L2 ≤ Cε(1 + t)−
1
2 + C(C2

0 + C0 + 1)ε2(1 + t)−
1
2 .

The estimate for ‖θ‖L2 using (2.4) is very similar and we omit the details. Therefore,

‖(u, θ)(t)‖L2 = ‖(̂u, θ̂ )‖L2 ≤ C1ε(1 + t)−
1
2 + C2(C

2
0 + C0 + 1)ε2(1 + t)−

1
2 .

If we choose C0 and ε satisfying

C1 ≤ C0

4
, ε ≤ C0

4C2(C2
0 + C0 + 1)

, (3.10)

then

‖(u, θ)(t)‖L2 ≤ C0

2
ε(1 + t)−

1
2 . (3.11)

We now turn to ‖∂2u‖L2 and verify the upper bound for ‖∂2u‖L2 in (3.2). Applying
∂2 to (3.5), we obtain

∂2u = (−∂22�−1ω, ∂2∂1�
−1ω).

By the integral representation of ω̂ in (2.3),

‖∂2u‖L2 = ‖∂̂2u‖L2 =
∥∥∥|ξ2||ξ |−1ω̂

∥∥∥
L2

≤
∥∥∥|ξ2||ξ |−1 K̂1(t)ω̂0

∥∥∥
L2

+
∥∥∥|ξ2||ξ |−1 K̂2(t )̂∂1θ0

∥∥∥
L2

+
∫ t

0

∥∥∥|ξ2||ξ |−1 K̂1(t − τ)N̂1(τ )

∥∥∥
L2

dτ

+
∫ t

0

∥∥∥|ξ2||ξ |−1 K̂2(t − τ)N̂2(τ )

∥∥∥
L2

dτ

:= J1 + J2 + J3 + J4. (3.12)

By the upper bounds for K̂1 in (2.6), (2.7), (2.8) and (2.9) and Lemma 3.4,

J1 =
∥∥∥|ξ2||ξ |−1 K̂1(t)ω̂0

∥∥∥
L2(S1∪S21∪S22)

+
∥∥∥|ξ2||ξ |−1 K̂1(t)ω̂0

∥∥∥
L2(S23)

≤ Ce−ct‖ω0‖L2 + C
∥∥∥|ξ |e−c|ξ |2t |û0|

∥∥∥
L2

≤ C(1 + t)−1‖u0‖L1∩H1 . (3.13)

Similarly,

J2 ≤ C(1 + t)−1‖θ0‖L1∩H1 . (3.14)
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By (2.6), (2.7), (2.8), (2.9), (3.7) and (3.8),

J3 =
∫ t

0

∥∥∥|ξ2||ξ |−1 K̂1(t − τ)û · ∇ω(τ)

∥∥∥
L2

dτ

≤ C
∫ t

0

∥∥∥|ξ2|e−c(1+ξ22 )(t−τ)ûω(τ)

∥∥∥
L2

dτ + C
∫ t

0

∥∥∥∥∥ |ξ2|
|1 + ξ22 |e

−c(t−τ)ûω(τ)

∥∥∥∥∥
L2

dτ

+ C
∫ t

0

∥∥∥e−c|ξ |2(t−τ) ̂∇ × (∇ · (u ⊗ u))

∥∥∥
L2(S23)

dτ

:= J31 + J32 + J33.

We divide J31 into two parts:

J31 := J311 + J312,

where

J311 = C
∫ t

2

0

∥∥∥|ξ2|e−c(1+ξ22 )(t−τ)ûω(τ)

∥∥∥
L2

dτ,

J312 = C
∫ t

t
2

∥∥∥|ξ2|e−c(1+ξ22 )(t−τ)ûω(τ)

∥∥∥
L2

dτ.

By (1.5) and the simple fact that (1 + x)e−ax ≤ C(a) for any constant a > 0,

J311 ≤ C
∫ t

2

0
e−c(t−τ) ‖∂2(uω)(τ)‖L2 dτ

≤ C
∫ t

2

0
e−c(t−τ)

(‖u‖L∞‖∂2ω‖L2 + ‖∂2u‖L4‖ω‖L4
)
dτ

≤ C
t

2
e− t

2 cε2 ≤ Cε2(1 + t)−1. (3.15)

By Lemma 3.3, (1.6) and (3.1),

‖u‖L∞ ≤ C ‖u‖
1
4
L2 ‖∂1u‖

1
4
L2 ‖∂2u‖

1
4
L2 ‖∂1∂2u‖

1
4
L2 ≤ CC

1
4
0 ε(1 + t)−

1
2 . (3.16)

By (1.6), (3.16) and

∫ t

t
2

e−c(t−τ)(t − τ)−
1
2 dτ =

∫ t
2

0
e−css− 1

2 ds ≤ C,

we derive

J312 ≤ C
∫ t

t
2

(t − τ)−
1
2 e−c(t−τ) ‖uω‖L2 dτ
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≤ CC
1
4
0 ε2
∫ t

t
2

(t − τ)−
1
2 e−c(t−τ)(1 + τ)−1dτ

≤ CC
1
4
0 ε2(1 + t

2
)−1
∫ t

t
2

(t − τ)−
1
2 e−c(t−τ)dτ ≤ CC

1
4
0 ε2(1 + t)−1,

which, together with (3.15), yields

J31 ≤ Cε2(1 + t)−1 + CC
1
4
0 ε2(1 + t)−1. (3.17)

Next we proceed to estimate J32. By Lemma 3.6, (1.6) and (3.16),

J32 = C
∫ t

0

∥∥∥∥∥ |ξ2|
|1 + ξ22 |e

−c(t−τ)ûω(τ)

∥∥∥∥∥
L2

dτ ≤ C
∫ t

0
e−c(t−τ) ‖uω‖L2 dτ

≤ CC
1
4
0 ε2
∫ t

0
e−c(t−τ)(1 + τ)−1dτ ≤ CC

1
4
0 ε2(1 + t)−1. (3.18)

By (3.9), the ansatz in (3.1), and Lemma 3.5,

J33 = C
∫ t

0

∥∥∥e−c|ξ |2(t−τ) ̂∇ × (∇ · (u ⊗ u))

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0

∥∥∥|ξ |2e−c|ξ |2(t−τ)(|ûu2| + |ûu1|)
∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 (‖u ⊗ u‖L1 + ‖u ⊗ u‖L2)dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 (‖u‖2L2 + ‖u‖L2‖∇u‖L2)dτ

≤ Cε2
∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−1dτ ≤ Cε2(1 + t)−1. (3.19)

Collecting (3.17), (3.18) and (3.19) leads to

J3 ≤ Cε2(1 + t)−1 + CC
1
4
0 ε2(1 + t)−1. (3.20)

By the definition of S1, S22 and S23, there exists a constant C such that, for any
ξ ∈ S1 ∪ S22 ∪ S23,

|ξ2| ≤ C . (3.21)

By (1.6), (3.9), (3.16), (3.21) and the ansatz in (3.1),

J4 =
∫ t

0

∥∥∥|ξ2||ξ |−1 K̂2(t − τ) ̂∂1(u · ∇θ)(τ )

∥∥∥
L2

dτ

≤ C
∫ t

0
e−c(t−τ)

∥∥∥û · ∇θ(τ )

∥∥∥
L2

dτ + C
∫ t

0

∥∥∥|ξ |2e−c|ξ |2(t−τ)ûθ(τ )

∥∥∥
L2(S23)

dτ
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≤ C
∫ t

0
e−c(t−τ) ‖u‖L∞ ‖∇θ‖L2dτ + C

∫ t

0
(1 + t − τ)−

3
2 (‖uθ‖L2 + ‖uθ‖L1)dτ

≤ CC
1
4
0 ε2
∫ t

0
e−c(t−τ)(1 + τ)−1dτ + Cε2

∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−1dτ

≤ Cε2(1 + t)−1 + CC
1
4
0 ε2(1 + t)−1. (3.22)

Inserting the upper bounds (3.13), (3.14), (3.20) and (3.22) in (3.12), we obtain

‖∂2u‖L2 ≤ C3ε(1 + t)−1 + C4(C
1
4
0 + 1)ε2(1 + t)−1.

By choosing C0 and ε satisfying

C3 ≤ C0

4
, ε ≤ C0

4C4(C
1
4
0 + 1)

, (3.23)

we have

‖∂2u‖L2 ≤ C0

2
ε(1 + t)−1. (3.24)

Next we estimate ‖∂1u‖L2 . By the integral representation of ω̂ in (2.3) and the
Biot–Savart law in (3.5),

‖∂1u‖L2 = ‖∂̂1u‖L2 =
∥∥∥|ξ1||ξ |−1ω̂

∥∥∥
L2

≤
∥∥∥|ξ1||ξ |−1 K̂1(t)ω̂0

∥∥∥
L2

+
∥∥∥|ξ1||ξ |−1 K̂2(t )̂∂1θ0

∥∥∥
L2

+
∫ t

0

∥∥∥|ξ1||ξ |−1 K̂1(t − τ)N̂1(τ )

∥∥∥
L2

dτ

+
∫ t

0

∥∥∥|ξ1||ξ |−1 K̂2(t − τ)N̂2(τ )

∥∥∥
L2

dτ

:= L1 + L2 + L3 + L4. (3.25)

L1 and L2 obey similar bounds as those for J1 and J2 in (3.13) and (3.14),

L1 + L2 ≤ C(1 + t)−1‖(u0, θ0)‖L1∩H1 . (3.26)

By the ansatz in (3.1) and Lemma 3.3,

‖u‖L∞ ≤ C ‖u‖
1
4
L2 ‖∂1u‖

1
4
L2 ‖∂2u‖

1
4
L2 ‖∂1∂2u‖

1
4
L2 ≤ CC

1
2
0 ε(1 + t)−

3
4 . (3.27)

By (1.5), (3.3), (3.4), (3.27), and Lemma 3.6,

L3 =
∫ t

0

∥∥∥|ξ1||ξ |−1 K̂1(t − τ)û · ∇ω(τ)

∥∥∥
L2

dτ
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≤ C
∫ t

0
e−c(t−τ)

∥∥∥û · ∇ω(τ)

∥∥∥
L2

dτ + J33

≤ C
∫ t

0
e−c(t−τ)‖u‖L∞‖∇ω‖L2dτ + Cε2(1 + t)−1

≤ CC
1
2
0 ε2
∫ t

0
e−c(t−τ)(1 + τ)−

3
4 dτ + Cε2(1 + t)−1

≤ C(C
1
2
0 + 1)ε2(1 + t)−

3
4 . (3.28)

By the ansatz in (3.1), (1.5) and Lemma 3.2,

‖∂1u · ∇θ‖L2 ≤ C ‖∂1u‖
1
2
L2 ‖∂2∂1u‖

1
2
L2 ‖∇θ‖

1
2
L2 ‖∂1∇θ‖

1
2
L2 ≤ CC0ε

2(1 + t)−
3
4 .

(3.29)

By the ansatz in (3.1), (1.5), (1.6), (3.3), (3.4), (3.27), (3.29), Lemmas 3.5 and 3.6, we
have

L4 =
∫ t

0

∥∥∥|ξ1||ξ |−1 K̂2(t − τ) ̂∂1(u · ∇θ)(τ )

∥∥∥
L2

dτ

≤ C
∫ t

0
e−c(t−τ)

∥∥∥ ̂∂1(u · ∇θ)(τ )

∥∥∥
L2

dτ

+ C
∫ t

0

∥∥∥|e−c|ξ |2(t−τ) ̂∂1∇ · (uθ)(τ )

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
e−c(t−τ)

(‖u‖L∞‖∂1∇θ‖L2 + ‖∂1u · ∇θ‖L2
)
dτ

+ C
∫ t

0

∥∥∥|ξ |2|e−c|ξ |2(t−τ)ûθ(τ )

∥∥∥
L2(S23)

dτ

≤ C(C
1
2
0 + C0)ε

2
∫ t

0
e−c(t−τ)(1 + τ)−

3
4 dτ

+ C
∫ t

0
(1 + t − τ)−

3
2 (‖uθ‖L1 + ‖uθ‖L2)dτ

≤ C(C
1
2
0 + C0)ε

2(1 + t)−
3
4 + Cε2

∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−1dτ

≤ C(C
1
2
0 + C0 + 1)ε2(1 + t)−

3
4 . (3.30)

Inserting (3.26), (3.28) and (3.30) in (3.25) yields

‖∂1u‖L2 ≤ Cε(1 + t)−
3
4 + C(C

1
2
0 + C0 + 1)ε2(1 + t)−

3
4 . (3.31)

We now tend to ‖∂2∇u‖L2 . By the integral representation of ω̂ in (2.3),

‖∂2∇u‖L2 = ‖̂∂2ω‖L2 = ‖|ξ2|ω̂‖L2
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≤ ∥∥|ξ2|K̂1(t)ω̂0
∥∥
L2 +

∥∥∥|ξ2|K̂2(t )̂∂1θ0
∥∥∥
L2

+
∫ t

0

∥∥|ξ2|K̂1(t − τ)N̂1(τ )
∥∥
L2 dτ +

∫ t

0

∥∥|ξ2|K̂2(t − τ)N̂2(τ )
∥∥
L2 dτ

:= M1 + M2 + M3 + M4. (3.32)

According to Proposition 2.1,

M1 = ∥∥|ξ2|K̂1(t)ω̂0
∥∥
L2

≤ Ce−ct‖∂̂2ω0‖L2 + C
∥∥∥|ξ |e−c|ξ |2t |ω̂0|

∥∥∥
L2

≤ Ce−ct‖∂2ω0‖L2 + C(1 + t)−
3
2 ‖u0‖L1∩H2

≤ C(1 + t)−
3
2 ‖u0‖L1∩H2 . (3.33)

Similarly,

M2 ≤ C(1 + t)−
3
2 ‖θ0‖L1∩H2 . (3.34)

By Proposition 2.1,

M3 =
∫ t

0

∥∥∥|ξ2|K̂1(t − τ)û · ∇ω(τ)

∥∥∥
L2

dτ

≤ C
∫ t

0

∥∥∥|ξ2|e−c(1+ξ22 )(t−τ)û · ∇ω(τ)

∥∥∥
L2

dτ + C
∫ t

0

∥∥∥e−c(t−τ)û · ∇ω(τ)

∥∥∥
L2

dτ

+ C
∫ t

0

∥∥∥|ξ2|e−c|ξ |2(t−τ)û · ∇ω

∥∥∥
L2(S23)

dτ := M31 + M32 + M33.

As in the estimate of J31,

M31 = C
∫ t

0

∥∥∥|ξ2|e−c(1+ξ22 )(t−τ)û · ∇ω(τ)

∥∥∥
L2

dτ

≤ C
∫ t

0
(t − τ)−

1
2 e−c(t−τ)‖u‖L∞‖∇ω‖L2dτ

≤ Cε2
∫ t

2

0
(t − τ)−

1
2 e−c(t−τ)dτ + CC

1
2
0 ε2
∫ t

t
2

(t − τ)−
1
2 e−c(t−τ)(1 + τ)−

3
4 dτ

≤ C

(
t

2

) 1
2

e− c
2 tε2 + CC

1
2
0 ε2(1 + t

2
)−

3
4

∫ t

t
2

(t − τ)−
1
2 e−c(t−τ)dτ

≤ Cε2(1 + t)−
3
4 + CC

1
2
0 ε2(1 + t)−

3
4 . (3.35)
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For M32, it is easy to conclude from (1.5) and (3.27) that

M32 = C
∫ t

0

∥∥∥e−c(t−τ)û · ∇ω(τ)

∥∥∥
L2

dτ ≤ C
∫ t

0
e−c(t−τ) ‖u · ∇ω‖L2 dτ

≤ CC
1
2
0 ε2
∫ t

0
e−c(t−τ)(1 + τ)−

3
4 dτ ≤ CC

1
2
0 ε2(1 + t)−

3
4 . (3.36)

By (1.6), (3.7) and (3.9), and the ansatz (3.1),

M33 = C
∫ t

0

∥∥∥|ξ2|e−c|ξ |2(t−τ)û · ∇ω

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0

∥∥∥|ξ |2e−c|ξ |2(t−τ)|ûω|
∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 (‖uω‖L1 + ‖uω‖L2)dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 (‖u‖L2‖ω‖L2 + ‖u‖

1
2
L2‖ω‖L2‖∇ω‖

1
2
L2)dτ

≤ Cε2
∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−

3
4 dτ ≤ Cε2(1 + t)−

3
4 . (3.37)

Collecting (3.35), (3.36) and (3.37) yields

M3 ≤ C(1 + C
1
2
0 )ε2(1 + t)−

3
4 . (3.38)

Invoking (1.5), (1.6), (3.1), (3.9), (3.21), (3.27) and (3.29), we have

M4 =
∫ t

0

∥∥∥|ξ2|K̂2(t − τ) ̂∂1(u · ∇θ)(τ )

∥∥∥
L2

dτ

≤ C
∫ t

0

∥∥∥e−c(t−τ) ̂∂1(u · ∇θ)

∥∥∥
L2

dτ + C
∫ t

0

∥∥∥|ξ |2e−c|ξ |2(t−τ)û · ∇θ

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
e−c(t−τ)(‖u‖L∞ ‖∂1∇θ‖L2 + ‖∂1u · ∇θ‖L2)dτ

+ C
∫ t

0
(1 + t − τ)−

3
2 (‖u · ∇θ‖L1 + ‖u · ∇θ‖L2)dτ

≤ C(C0 + C
1
2
0 )ε2

∫ t

0
e−c(t−τ)(1 + τ)−

3
4 dτ

+ C
∫ t

0
(1 + t − τ)−

3
2 (‖u‖L2‖∇θ‖L2 + ‖u‖

1
2
L2‖∇u‖

1
2
L2‖∇θ‖

1
2
L2‖∇2θ‖

1
2
L2)dτ

≤ C(C0 + C
1
2
0 )ε2(1 + t)−

3
4 + Cε2

∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−

3
4 dτ

≤ C(C0 + C
1
2
0 + 1)ε2(1 + t)−

3
4 . (3.39)

123



   16 Page 26 of 33 Journal of Nonlinear Science            (2021) 31:16 

Inserting the uppers (3.33), (3.34), (3.38) and (3.39) in (3.32) leads to

‖∂2∇u‖L2 ≤ Cε(1 + t)−
3
4 + C(C0 + C

1
2
0 + 1)ε2(1 + t)−

3
4 . (3.40)

By (3.31) and (3.40), we get

‖∂1u‖L2 + ‖∂2∇u‖L2 ≤ C5ε(1 + t)−
3
4 + C6(C0 + C

1
2
0 + 1)ε2(1 + t)−

3
4 .

If C0 and ε satisfy

C5 ≤ C0

4
, ε ≤ C0

4C6(C0 + C
1
2
0 + 1)

, (3.41)

then

‖∂1u‖L2 + ‖∂2∇u‖L2 ≤ C0

2
ε(1 + t)−

3
4 . (3.42)

In summary, if C0 and ε satisfy (3.10), (3.23) and (3.41), then (u, θ) obeys (3.11),
(3.24) and (3.42), namely (3.2). The bootstrapping argument then assesses the desired
decay estimates.

3.2 Faster Decay Rate for ‖∇�‖L2

By making use of (3.2), we are able to derive a faster decay rate for ‖∇θ‖L2 than
the one in Theorem 1.1. Using the integral form for ∂̂1θ in (2.4) and the fact that

K̂3 = − ξ21
|ξ |2 K̂2 in (2.5), we obtain

‖∇θ‖L2 = ‖|ξ |θ̂‖L2 = ‖|ξ ||ξ1|−1∂̂1θ‖L2

≤ ‖|ξ1||ξ |−1 K̂2ω̂0‖L2 + ‖|ξ ||ξ1|−1 K̂4∂̂1θ0‖L2

+
∫ t

0

∥∥∥|ξ1||ξ |−1 K̂2(t − τ)N̂1(τ )

∥∥∥
L2

dτ

+
∫ t

0

∥∥∥|ξ ||ξ1|−1 K̂4(t − τ)N̂2(τ )

∥∥∥
L2

dτ

:= Q1 + Q2 + Q3 + Q4. (3.43)

We now estimate Q1 through Q4. Q1 and Q2 can be estimated similarly as J1 and J2
in (3.13) and (3.14),

Q1 + Q2 ≤ C(1 + t)−1‖(u0, θ0)‖L1∩H1 ≤ Cε(1 + t)−1. (3.44)
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Thanks to (3.2), (3.3), (3.4), (3.8) and (3.27), we obtain

Q3 =
∫ t

0

∥∥∥|ξ1||ξ |−1 K̂2(t − τ) ̂(u · ∇ω)(τ)

∥∥∥
L2

dτ

≤ C
∫ t

0
e−c(t−τ)‖u · ∇ω‖L2dτ

+ C
∫ t

0

∥∥∥e−c|ξ |2(t−τ) ̂∇ × (∇ · (u ⊗ u))

∥∥∥
L2(S23)

dτ

≤ C
∫ t

0
e−c(t−τ)‖u‖L∞‖∇ω‖L2dτ + J33

≤ Cε2
∫ t

0
e−c(t−τ)(1 + τ)−

3
4 dτ + +Cε2(1 + t)−1 ≤ Cε2(1 + t)−

3
4 . (3.45)

For Q4, applying the upper bound for K̂4 in (3.3) and (3.4), we have

Q4 ≤
∫ t

0

∥∥∥|ξ |K̂4(t − τ)û · ∇θ(τ )

∥∥∥
L2

dτ

≤ C
∫ t

0
e−c(t−τ)‖|ξ |û · ∇θ‖L2dτ + C

∫ t

0
‖|ξ |e−c|ξ |2(t−τ)û · ∇θ‖L2(S23)dτ

:= Q41 + Q42.

By the decay rate in (3.2), the uniform bound in (1.5), Lemmas 3.2 and 3.3 , we have

‖|ξ |û · ∇θ‖L2 = ‖∇(u · ∇θ)‖L2 ≤ ‖∇u · ∇θ‖L2 + ‖u · ∇2θ‖L2

≤ C‖∇u‖
1
2
L2‖∂2∇u‖

1
2
L2‖∇θ‖

1
2
L2‖∂1∇θ‖

1
2
L2

+ C‖u‖
1
4
L2‖∂1u‖

1
4
L2‖∂2u‖

1
4
L2‖∂12u‖

1
4
L2‖∇2θ‖L2 ≤ Cε2(1 + t)−

3
4 ,

which, together with Lemma 3.6, implies

Q41 ≤ Cε2
∫ t

0
e−c(t−τ)(1 + τ)−

3
4 dτ ≤ Cε2(1 + t)−

3
4 .

By Lemma 3.4, (3.2) and (3.9),

Q42 ≤ C
∫ t

0
‖|ξ |2e−c|ξ |2(t−τ)ûθ(τ )‖L2(S23)dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2
(‖uθ‖L1 + ‖uθ‖L2

)
dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2

(
‖u‖L2‖θ‖L2 + ‖u‖

1
2
L2‖∂2u‖

1
2
L2‖θ‖

1
2
L2‖∂1θ‖

1
2
L2

)
dτ

≤ Cε2
∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−1dτ ≤ Cε2(1 + t)−1.
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Therefore,

Q4 ≤ Cε2(1 + t)−
3
4 . (3.46)

Inserting (3.44), (3.45) and (3.46) in (3.43) yields

‖∇θ‖L2 ≤ C7ε(1 + t)−
3
4 + C8ε

2(1 + t)−
3
4 ≤ 2C7ε(1 + t)−

3
4 (3.47)

if ε is small. This completes the decay estimate for ‖∇θ‖L2 .

3.3 Optimal Decay Rate for ‖@22u‖L2

We now turn to the estimate for ‖∂22u(t)‖L2 . Applying ∂22 to (3.5) yields

∂22u = (−∂32�
−1ω, ∂22∂1�

−1ω).

By the integral representation for ω̂ in (2.3),

‖∂22u‖L2 = ‖∂̂22u‖L2 =
∥∥∥|ξ2|2|ξ |−1ω̂

∥∥∥
L2

≤
∥∥∥|ξ2|2|ξ |−1 K̂1ω̂0

∥∥∥
L2

+
∥∥∥|ξ2|2|ξ |−1 K̂2∂̂1θ0

∥∥∥
L2

+
∫ t

0

∥∥∥|ξ2|2|ξ |−1 K̂1(t − τ)N̂1(τ )

∥∥∥
L2

dτ

+
∫ t

0

∥∥∥|ξ2|2|ξ |−1 K̂2(t − τ)N̂2(τ )

∥∥∥
L2

dτ

:= R1 + R2 + R3 + R4.

Invoking the bounds for K̂1 in (2.6), (2.7), (2.8) and (2.9), and Lemma 3.4, we have

R1 = ‖|ξ2|2|ξ |−1 K̂1ω̂0‖L2

≤ Ce−ct‖ξ22 û0‖L2 + C‖|ξ |2e−c|ξ |2t û0‖L2

≤ Ce−ct‖u0‖H2 + (1 + t)−
3
2 ‖u0‖L1∩H2 ≤ Cε(1 + t)−

5
4 .

Similarly

R2 ≤ Cε(1 + t)−
5
4 .

By (3.7),

R3 =
∫ t

0

∥∥∥|ξ2|2|ξ |−1 K̂1(t − τ)û · ∇ω(τ)

∥∥∥
L2

dτ

123



Journal of Nonlinear Science            (2021) 31:16 Page 29 of 33    16 

≤ C
∫ t

0
‖|ξ2|2e−c(1+ξ22 )(t−τ)ûω(τ)‖L2dτ + C

∫ t

0
‖e−c(t−τ)ûω(τ)‖L2(S21)dτ

+ C
∫ t

0
‖|ξ |2e−c|ξ |2(t−τ)ûω(τ)‖L2(S23)dτ

:= R31 + R32 + R33.

Using the bounds (3.2), we have

‖∂2(uω)(t)‖L2 ≤ ‖∂2u‖L4‖ω‖L4 + ‖u‖L∞‖∂2ω‖L2

≤ C‖∂2u‖
1
2
L2‖∂2ω‖

1
2
L2‖ω‖

1
2
L2‖∇ω‖

1
2
L2

+ C‖u‖
1
4
L2‖∂1u‖

1
4
L2‖∂2u‖

1
4
L2‖∂12u‖

1
4
L2‖∂2ω‖L2

≤ Cε2(1 + t)−
5
4 . (3.48)

In addition, due to the uniform bound in (1.5),

‖∂2(uω)(t)‖L2 ≤ Cε2. (3.49)

(3.48), (3.49) and the simple fact that x
1
2 e−x ≤ C imply

R31 = C
∫ t

0
‖|ξ2|2e−c(1+ξ22 )(t−τ)ûω(τ)‖L2dτ

≤ C
∫ t

0
e−c(t−τ)(t − τ)−

1
2 ‖∂2(uω)(τ)‖L2dτ

≤ C
∫ t

2

0
e−c(t−τ)(t − τ)−

1
2 ε2dτ + Cε2

∫ t

t
2

e−c(t−τ)(t − τ)−
1
2 (1 + τ)−

5
4 dτ

≤ Cε2
(
t

2

) 1
2

e− c
2 t + Cε2

(
1 + t

2

)− 5
4
∫ t

t
2

e−c(t−τ)(t − τ)−
1
2 dτ

≤ Cε2(1 + t)−
5
4 . (3.50)

By (3.2) and (3.27),

R32 = C
∫ t

0
e−c(t−τ)‖uω(τ)‖L2dτ ≤ C

∫ t

0
e−c(t−τ)‖u‖L∞‖ω‖L2dτ

≤ Cε2
∫ t

0
e−c(t−τ)(1 + τ)−

3
2 dτ ≤ Cε2(1 + t)−

5
4 . (3.51)

By (3.2), (3.27), Lemmas 3.4 and 3.5,

R33 = C
∫ t

0
‖|ξ |2e−c|ξ |2(t−τ)ûω(τ)‖L2(S23)dτ
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≤ C
∫ t

0
(1 + t − τ)−

3
2
(‖uω‖L1 + ‖uω‖L2

)
dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2
(‖u‖L2‖ω‖L2 + ‖u‖L∞‖ω‖L2

)
dτ

≤ Cε2
∫ t

0
(1 + t − τ)−

3
2

(
(1 + τ)−

5
4 + (1 + τ)−

3
2

)
dτ

≤ Cε2(1 + t)−
5
4 . (3.52)

Combining (3.50), (3.51) and (3.52) yields

R3 ≤ Cε2(1 + t)−
5
4 .

By (3.21), the upper bounds for K̂2 in (2.6), (2.7), (2.8) and (2.9), and (3.2), (3.27)
and (3.47), we obtain

R4 =
∫ t

0

∥∥∥|ξ2|2|ξ |−1 K̂2(t − τ) ̂∂1(u · ∇θ)(τ )

∥∥∥
L2

dτ

≤ C
∫ t

0
‖e−c(t−τ)û · ∇θ(τ )‖L2dτ

+ C
∫ t

0
‖|ξ |2e−c|ξ |2(t−τ)û · ∇θ(τ )‖L2(S23)dτ

≤ C
∫ t

0
e−c(t−τ)‖u‖L∞‖∇θ‖L2dτ

+ C
∫ t

0
(1 + t − τ)−

3
2
(‖u · ∇θ‖L1 + ‖u · ∇θ‖L2

)
dτ

≤ Cε2
∫ t

0
e−c(t−τ)(1 + τ)−

3
2 dτ

+ C
∫ t

0
(1 + t − τ)−

3
2
(‖u‖L2‖∇θ‖L2 + ‖u‖L∞‖∇θ‖L2

)
dτ

≤ Cε2
∫ t

0
(1 + t − τ)−

3
2

(
(1 + τ)−

5
4 + (1 + τ)−

3
2

)
dτ

≤ Cε2(1 + t)−
5
4 .

Collecting the upper bounds for R1 through R4, we obtain

‖∂22u‖L2 ≤ C9ε(1 + t)−
5
4 + C10ε

2(1 + t)−
5
4 ≤ 2C9ε(1 + t)−

5
4

if ε is sufficiently small. This finishes the decay estimate for ‖∂22u‖L2 and thus, the
proof of Theorem 1.2.
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