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1. Introduction

This paper establishes the stability and large-time behavior of perturbations near a
background magnetic field of the 2D MHD equations with vertical dissipation and hor-
izontal magnetic diffusion. The motivation for this study is twofold. First, there are
extensive experimental and numerical investigations on the influence of an external
magnetic field on the behavior of electrically conducting fluids (see, e.g., [2-5,13,14]).
Mathematically rigorous stability results would help gain insight into these rich numer-
ical and experimental observations. Second, existing tools and techniques designed for
fully dissipative partial differential equations (PDEs) may not be applicable to models
with only partial dissipation. This study aims at developing new approaches and meth-
ods that are effective for partially dissipated systems. PDEs with only partial dissipation
arise naturally in the modeling of many phenomena and there have been substantial re-
cent developments on some of the most fundamental problems concerning these PDEs.
This paper focuses on a very important partial dissipation case of the 2D incompressible
MHD equations.

The MHD equations govern the motion of electrically conducting fluids in the presence
of a magnetic field such as plasmas, liquid metals and electrolytes (see, e.g., [8,19]). They
are the centerpiece of the magneto-hydrodynamics initiated by Hannes Alfvén [4]. The
MHD equations are a combination of the Navier—Stokes equations of fluid dynamics and
Maxwell’s equations of electro-magnetism. Besides their wide physical applicability, the
MHD equations are also of great interest in mathematics. As a coupled system, the MHD
equations contain much richer structures than the Navier-Stokes equations. They are not
merely a combination of two parallel Navier-Stokes type equations but an interactive and
integrated system. Their distinctive features make analytic studies a great challenge but
offer new opportunities.

Foundational work on the well-posedness of the fully dissipative MHD equations has
long been laid by Duvaut and Lions [12] and Sermange and Temam [26]. There are
substantial recent developments on the global well-posedness problem as well as on the
stability problem for the MHD equations with only partial or fractional dissipation. Some
of the results can be found in a recent review paper [30]. This paper aims at the stability
problem on the following 2D MHD equations with vertical dissipation and horizontal
magnetic diffusion,

Ou+u-Vu=v0pu—VP+B-VB, zcR? t>0,
B+u-VB=n01B+B-Vu, z€R? t>0, (1.1)
V-u=V-B=0, z€R? t>0,

where u represents the velocity field of the fluid, B the magnetic field and P the pressure,
and v > 0 denotes the kinematic viscosity and n > 0 the magnetic diffusivity. For
notational convenience, we have written 0; and 0 for the partial derivatives 0,, and
Ox,, respectively. The global existence and regularity problem on (1.1) was successfully
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solved by Cao and Wu [7]. Their result states that any initial data (ug, By) € H?(R?)
yields a unique global solution (u, B) of (1.1) satisfying, for any T' > 0,

(u, B) € L>=(0,T; H*(R?)), 0ou, 0;B € L*(0,T; H*(R?)).

In spite of this result, many interesting problems on (1.1) remain open. Among them
are the stability problem on perturbations near the trivial steady state (u, B) = (0,0)
and their precise large-time behavior. The upper bound for ||(u(t), B(¢))||g2 in [7] is
obtained via Gronwall’s inequality and depends exponentially on t. Here for simplicity,
we have written ||(u(t), B(t))||% for ||u(t)||%2+]|B(t)|/%-. A different approach is needed
in order to understand the stability and large-time behavior problem on (1.1). It is worth
mentioning a very interesting special case of (1.1). When B = 0, (1.1) reduces to the 2D
Navier-Stokes equations with only vertical dissipation

Owu+u-Vu=rvdyu— VP,
(1.2)
V-u=0.

The H?2-stability problem on perturbations near the trivial solution u = 0 of (1.2) appears
to be open. In particular, the precise large-time behavior of Vw(t) is unknown, where
w = V X u denotes the corresponding vorticity. When v = 0, (1.2) becomes the 2D Euler
equation and Vw(t) could grow double exponentially, according to several beautiful work
(see [10,18,37]). In contrast, when daou is replaced by the full dissipation Au, then Vw(t)
actually decays algebraically (see, e.g., [25]).

The focus of this paper is the stability of perturbations near a background magnetic
field. Clearly, (u(?), B(®)) with

u® =0, B =¢ :=(1,0)
is a steady solution of (1.1). The perturbation (u,b) with
b:=B-BO
solves the MHD system

Ou+ (u-Vu=vdpu—VP+(b-V)b+db, ze€R? t>0,
3fb+(uV)b:n811b+(bV)u+81u, J’JERQ, t >0, (13)
V-u=V-b=0, z€R? t>0.

(1.3) supplemented with the initial data

u(z,0) = up(x), b(x,0) = bo(x)
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will be the focus in the rest of our paper. (1.3) differs from (1.1) only by two extra
terms 01b and 0;u. These two terms seemingly would make no difference on the stability
problem, but they do give us more maneuver. In comparison with (1.2), the magnetic
field in (1.3) actually stabilizes the fluid. This can be seen from the linearization of (1.3),

Oru = v Oz2u + O1b,
Btb = naub + 81u.

(1.4)

Differentiating (1.4) in time and making suitable substitutions, we can convert (1.4) into

Ogu — (V02 + 1011)0su + vndiiz2u — Or1u = 0,
Oub — (vOaz + n011)0b + v1di120b — 0116 = 0.

(1.5)

(1.5) provides much more regularization and damping effect than the linearized part of
(1.2), namely dyu = v dxou can give. It is the stabilization and regularization effect of the
magnetic field that allows us to establish the global stability for (1.3). More precisely,
we obtain the following theorem.

Theorem 1.1. Suppose that (ug,by) € H*(R?) satisfies V -ug = 0 and V - by = 0. Then
there exists § = §(v,m) > 0 such that, if

luollzz2 + [Ibol| 12 < 0, (1.6)

then (1.3) has a unique global solution (u,b) € C([0,00); H*(R?)) satisfying

t t
10 O3+ 2 [ 102u(s) e s +20 [ 010(5) s < C6°
0 0

for any t > 0 and some uniform constant C.

We explain the challenges we encounter in the proof of Theorem 1.1. The framework
of the proof is the bootstrap argument. The centerpiece is the following global energy
inequality, for any ¢t > 0,

E(t) < E(0) + Cy E(0)2 + Cy B(t)? + Cs E(t)?, (1.7)
where C7, Cy and C5 are positive constants, and

B(t) = sup (Jlu()%e + [6(r)I%)

0<r<t

t t
+2u/\|azu(s)||§p ds+2n/|\alb(s>||§,2 ds. (1.8)
0 0
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Once (1.7) is established, an application of the bootstrap argument would imply the
desired global stability. The details are given in Section 2. The main efforts are devoted to
proving (1.7). Due to the presence of the anisotropic dissipation and magnetic diffusion,
we make use of anisotropic estimates for triple products and for the L>°-norms involving
2D functions (see Lemma 2.1 and Lemma 2.2 in Section 2). The global H'-bound is
relatively easy to obtain compared to the estimates of the second-order derivatives,
which is difficult and extremely tedious. To illustrate the difficulty, we consider the 2D
Navier-Stokes equation with only vertical dissipation again, namely

ou+u-Vu=v0pu—VP, V-u=0. (1.9)

As aforementioned, in contrast to the 2D Navier-Stokes equations with full dissipation,
the problem of whether or not ug € H? (even small) leads to a global solution u with
a uniform-in-time H2-bound remains open. The difficulty is how to obtain a uniform
bound for the L2?-norm of the second-order derivatives of u, or equivalently, the first-
order derivative of the corresponding vorticity w = V X u, which obeys

Ow + u - Vw = vdgow.

If we estimate Vw in L? by the energy method, namely

4
dt

N =

IVw(t)||32 + v||0a Vw22 = —/Vw -Vu - Vwdz,
the trouble is then how to bound the first two terms in

/Vw-Vu-dex (1.10)
R2

= /31u1 (81111)2 dx + /81u281w82w dr + /(%u - Vwdw dz.
R? R2 R?

Due to the lack of the horizontal dissipation, we do not know how to obtain a suitable
bound for the first two terms. As a consequence, the HZ2-stability problem for (1.9)
is open. This is also why the global stability problem for (1.1) remains open. (1.3)
differs from (1.1) only in two terms 91b and Oju, but they give us extra maneuver. We
explain why we can bound the H?-norm of solutions to (1.3) suitably. To control the
homogeneous H2-norm, we still have to bound the same term as in (1.10). Bounding the
first two terms in (1.10) is still highly non-trivial, but we can replace 0;u; and duq via
the second equation in (1.3), namely

0w =0+ (u-V)b—nd11b— (b-V)u.

With this substitution, the first term in (1.10) is then given by
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/31u1 (O1w)? dar = /(@bl + (- V)bt — 002y — (b- V)uy)(Byw)2de (111
R2

This makes the estimating process more complicated, but this substitution does allow us
to obtain a suitable bound for this seemingly impossible term. The actual process is very
tedious. For example, in order to handle the first term in (1.11), we further integrate by
parts and use the equation of w. That is,

/3tb1(81w)2dx = % b1 (81w)2dx — Q/blalw 8t81wdx

and
/blalwatalwda: - /blf)lw [ — 8y (u- V) + 201w + A (b- Vj) + afj] dz.

These substitutions allow us to rewrite the seemingly impossible term [ ;b1 (dw)*dz
into eight terms. The details of how these terms are further controlled are complex and
left to Section 3.

The global stability result stated in Theorem 1.1 is among one of the very few stability
results on the ideal or partially dissipated MHD equations that are currently available.
The stability problem on the ideal MHD equations near a background magnetic field
was successfully solved by several celebrated papers [5,6,15,29]. The stability problem
for the MHD equations with no magnetic diffusion was first studied in [20], which in-
spired many further investigations. The stability has now been successfully established
by several authors via different approaches (see, e.g., [1,9,16,17,20-23,27,31,32,34-36]).
Very recently, Wu and Zhu were able to solve the stability problem for the 3D MHD
equations with horizontal dissipation and vertical magnetic diffusion [33].

The second goal of this paper is to obtain the precise large-time behavior of the
solution established in Theorem 1.1. It is generally understood that, for a partially
dissipated system, we need to assume that the initial data is in Sobolev spaces of suitable
negative indices in order to obtain the precise decay rates of the solutions. In addition,
for a system with degenerate dissipation such as (1.3), we need to make higher regularity
assumption on the initial data in order to obtain the decay rates on the H2-norm of the
solution. Here we assume (ug,by) € H*(R?), which appears to be necessary. We recall
the definition of the fractional Laplacian, for any real number 8 and k =1, 2,

ALF© = 16T, €= (&.&).
We use || fl|lLz, with k =1,2 to denote the LP-norm with respect to ) only, and

1Allze, Lg,, = Mg, NIz, -

The decay estimate can then be stated as follows.
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Theorem 1.2. Let (ug,by) € H*(R?) with V -ug = V - by = 0. Assume that, for some
sufficiently small constant § > 0,

[uollms <6, [lbollars <6, (1.12)
and, foro >5/2, k=1,2 and m =0,1,2,

108" AT Tuoll Lz, L1, <6, 108" Ay “uollzz Ly, <6,

107 AT bolle, 1 <6, 1107 A bolluz 11, < 4. (1.13)

Let (u,b) be the corresponding global solution of (1.3) obtained in Theorem 1.1. Then
(u, b) obeys the following decay estimate

where C' is a pure constant independent of 6 and t.

Due to the degeneracy in the viscous dissipation and also in the magnetic diffusion,
classical approaches such as Schonbek’s Fourier splitting method [24,25] no longer apply.
Furthermore, since the velocity equation in (1.3) contains the linear term 0;b while the
equation of b contains 0,u, it appears to be fruitless to rewrite each of the equations in
(1.3) in an integral form via the one-dimensional heat operator. The efficient approach is
to separate the linear terms in (1.3) from the nonlinear ones, solve the linearied system
and then represent the full system into an integral form via the Duhamel’s principle. The
desired decay estimate are based on this integral representation and obtained through
the bootstrapping argument. We reveal the key steps here but leave the details to the
proof of Theorem 1.2.

Taking the Fourier transform of (1.3), we find

a i M,
o <3> —A <3> + (@) : (1.14)

where we have projected the velocity equation onto the divergence-free vector fields

—v& &
A= . 5 | M, =P(b-Vb—u-Vu), My =0b-Vu—u-Vb.
&1 —néi

Here P is the Leray projection onto the divergence-free vector fields. By Duhamel’s
principle, (1.14) can be represented in the integral form

E = At ?0 teA(t_T) ]/VII(T) T
(8= () [ (i) -
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The spectra of A, given by

—(G e VL 8 ) £ VT

A= 2 : 2

with

= (V&3 +1€7)? — A€l & — 487 = (V€3 —n€l)* — 4§

play a crucial role in the large-time behavior. Clearly, they are both anisotropic and
strongly frequency dependent. By computing the corresponding eigenvectors, we can
make the representation more explicit, namely

¢
(e, t) = Q1 (D)o + Qa(t) 0+/ Q t_TMl( )+@2(t—7)]/\4\2(7')>d7'7
0

5(5775)2@2( t)do + Qs(t) 0+/ Qs t_TMl( )+@3(t—7')]\72(7'))d7'-
0

The kernel functions @1, @2 and @3 are all explicit in terms of A; and Ag,

Q1(t) = —vE3G1 + G, @2(75) —i6G1, Qs(t) = V€3G + G

and
6)\2t _ e)\lt A26>\1t _ )\1€>\2t ot
G=———- Go=—"——"—=¢e"1" - NG,
Ao — A1 Aoy — A ’
2 /M 2— A
)\26>\2t _ )\1€>\1t

Gg = = €A1t + )\gGl = 6/\2t + /\1G1.

Aa — g

Due to the degeneracy in the viscous dissipation and in the magnetic diffusion, @1, @2
and @3 are very anisotropic and their behavior depends strongly on the Fourier frequency.
By dividing the Fourier space into sub-domains, we can make the behavior of @1, @2 and
@3 in each sub-domain definite and transparent. The detailed division into subdomains
and the precise behavior of these kernel functions are provided in Proposition 4.1.

The proof of Theorem 1.2 starts with the proof that, when (1.12) holds, the solution
(u,b) in H* remains uniformly small, namely

1(u(®), b(@)[[ g+ < C'6

for a constant C' independent of §. The proof of the desired decay estimate is obtained
via the bootstrapping argument applied to the integral representation of w and b. This
argument starts with the ansatz that
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a2 < Cod (L+8)"573,  [b(t)]|s2 < Cod (L +)"373,  (L.15)

where (Y is a suitably selected pure constant and will be specified in the proof of Theo-
rem 1.2. We then show by using the ansatz in (1.15) and the integral representation of
u and b that

C _1_3 C _1_s
lu(®laz < 6 +0727%, [b(0)laz < 5 6A+HTEE (116)

Then the bootstrapping argument would imply that (1.16) indeed holds and the desired
decay estimate is then achieved. The proof for (1.16) is technical and involves many
optimal estimates in order to make up for the loss of decay due to the anisotropicity and
the inhomogeneity of the kernel functions. The details are provided in Section 4.

The rest of this paper is divided into three sections. Section 2 applies the bootstrap
argument to prove Theorem 1.1 and prepares several anisotropic inequalities to be used
subsequently. Section 3 proves the major estimate in (1.7). Section 4 presents the proof
of Theorem 1.2.

2. Proof of Theorem 1.1 and anisotropic estimates

This section applies the bootstrap argument to prove Theorem 1.1. In addition, we
provide several anisotropic inequalities to be used in the proof of (1.7) in the subsequent
section.

Proof of Theorem 1.1. Roughly speaking, the bootstrap argument starts with an ansatz
that E(t) is bounded, say

Et)<M
and shows that F(t) actually admits a smaller bound, say

E(t)< =M

N | =

when the initial condition is sufficiently small. A rigorous statement of the abstract
bootstrap principle can be found in T. Tao’s book (see [28, p.21]). To apply the bootstrap
argument to (1.7), we assume that

1 1
< := mi —, - .
Eit)y<M mm{lGCQQ’Zng} (2.1)

When (2.1) holds, we have

CoEz(t) <= and C3E(t) <

=
=
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It then follows from (1.7) that
E(t) < E(0) + C1E(0)2 +
If we choose § > 0 sufficiently small such that
ﬁ+qﬁs%,

then (1.6) and (2.2) imply that

B(t) < =M.

DN | =

The bootstrap argument then leads to the desired global bound

1 1 11
E(t)< -M:= -mind ——, b
W=3 2mm{16022’403}

This completes the proof of Theorem 1.1. O

The rest of this section provides several anisotropic Sobolev type inequalities. The
MHD system examined in this paper has anisotropic dissipation. Anisotropic inequalities
appears to be necessary to deal with such partially dissipated systems. The following

anisotropic inequality introduced in [7] has proven to be extremely useful.

Lemma 2.1. Assume f,g,h,01g,92h € L?*(R?). Then, for a constant C > 0,

/ / fohdedzs < C|flzllgllE 191911 11 102013

We prove two additional anisotropic Sobolev inequalities to be used in the subsequent
section.

Lemma 2.2. Suppose that v, 01v,ev are all in H'(R?). Then, for some constant C' > 0,
TaE $ ook
[vlloe < Cllolizn o1l llvlle < Cllollza |02l 7 -
Proof. To prove the first inequality, we start with the elementary bound
1 1
lollazy < Vol 10:,01%,

By Minkowski’s inequity, Hélder’s inequality and Sobolev’s inequity |[|v|pem®) <

Cllvll g ),
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1 1
Jolloo = ez gy < V2 el ool
1 1
<Clelles |, [1orwloz |
- L L2, 1RNEE, L2,
1 1
2 9 2
SCHIIvIIH;2 L HH i, |,
xq r1

1 1
< Cllvll g 10vol £

This completes the proof of the first inequality. The proof for the second one is similar.
This completes the proof of Lemma 2.2. O

3. Proof of (1.7)

This section proves the major estimate in (1.7), namely
E(t) < E(0) + C1 E(0)? + Cy E(t)? + C3E(1),

where E(t) is defined in (1.8). The core of the proof is to bound the H2-norm of (u, b)
suitably. This process involves many terms and is very lengthy. For the sake of clarity, we
divide the whole proof into two parts. The first part estimates the H'-norm of (u, b) while
the second part works with the second-order derivatives of (u,b). The H'-estimates are
relatively simple, but the estimates of the second-order derivatives are extremely com-
plex. They involve taking advantage of the special structure of (1.3), making quite a few
substitutions and repeatedly applying anisotropic inequalities provided in the previous
section.
In what follows we will use the notation ||VZu||2 defined by

2

IV2ul3 = > 110:05unl3.

ij, k=1

In addition, the following simple facts will also be used repeatedly. For V-u =V -b =0,
w=Vxuandj=V xb,

IVulls = [[wll2, [[02Vullz = [|92w]|2,
IV2ulla = [[Aullz = [[Vwll2, [[0:Vull2 = [|028u]l2 = [|8: Vw2,
IVbll2 = lljll2, 161Vb]l2 = [|91]]l2,
IV2bl|2 = | Ablla = [ Vill2, [[0:1V%0]la = [[014b]l2 = |81V 2.
These identities can be easily proven by integration by parts. The rest of this section is

divided into two subsections with the first devoted to the H' bound while the second to
the second-order derivatives.
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3.1. The H'-estimate

We estimate ||(u, )| 1. First we have the L?-estimate

t t
||(u,b)(t)||§+2V/||52U(S)H§d5+277/||31b(5)||§d5: (o, o) 13, 3.1
0 0

which follows from the inner product of (1.3) with (u,b) and integration by parts. To
estimate |Vul|2 and ||Vb||2, we will resort to the equations of the vorticity w = V x u
and the current density j =V x b,

{ Ow + (u - V)w = visw + (b- V)j + 017, (3.2)

Ot + (u-V)j=n011j+ (b-V)w+ 1w+ Q,

where
Q = 201b; (81U2 + 82u1) — 281u1(81b2 + 82b1).

Taking the L? inner product of (3.2) with (w, j) yields

d ) . :
Sl DI + viowwl + nloul = [ Qido

N | =

= 2/ [81b1(81ﬂ2 + azul) Jj— 81U181b2j] dr — 2/81u182b1jdx, (33)
where we have used the facts
/(b-V)jwdw+/(b~V)wjdx:0, /81jwdx+/81wjdx:0.

By Lemma 2.1, the first integral in (3.3) can be bounded by
/2[81b1(81UQ + 82u1) ] — 81u181b2j] dx

g2/|81b1||Vu|\j\d:c+2/|81u1|\81b2||j|da:

< CJl01ba o | Vull 2110273 117113 101112
+ C|@zus | ol|Orbsll3 192010213 11513 1943113
< C(IVulls + 1]12) (19:b1 % + |9zull%)
< C(IVulls + [712)V (), (3.4)

where, for notational convenience, we have written
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V(1) == 2v]|02u(t) 32 + 20| 01b(t) 17>

In order to bound the second integral term, we first rewrite it by inserting j = 91bo —02b1,
and then integrate by parts in the second term and apply Lemma 2.1 to obtain

— 2/81U162[)1jd$ = 72/6111,1821)1(81[)2 - ﬁgbl)dx
= —2/81U182b1(91b2d.73—4/U182b18231b1d1‘

< C||Ogusl|2]|02b1 |5 |0201b1]]5 [|01b2]|3 (|01 022 |

Nl= N

+ C||0102b1 ||2][ut |15 (021 |3 |02b1 1|3 |010201 ||
< C(|ullz + [Vbll2)(||02ull + [1818:20]3)
< C([lullz + IVDl[2)V (). (3.5)

Substituting (3.4), (3.5) in (3.3) and using ||w|l2 = ||Vull2 and ||j]j2 = ||Vb||2, we have

1d
§E||(VU, Vb)|I5 + v[|02Vul)3 + ]|y Vb3
< C([Jullgr + |VO]|2)V (2). (3.6)

Integrating (3.6) over [0,¢] and combining with (3.1) yield
¢ ¢
80+ 20 [ 102u(s) s + 20 [ or0()lpds
0 0

< o, bl + € [ (o)l + [V8(5)[2)V (s} 1)
0

3.2. Estimates for the second-order derivatives of u and b

Taking the inner product of (3.2) with (—Aw, —Aj) and integrating by parts, we find

| =

1(Vw, V)3 + w02V wl3 + nllor Vi3

DN | =
IS

t
:/(u~V)wAwdac—/(b-V)jAwdw+/(u~V)jAjdx—/(b~V)wAjda:
—2/81b1(81U2+82U1)A]d$+2/81”1(81b2+8261)A]d$
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Here we have used the fact that
/Blewd:v—l— /BlwAjdx =0.
To estimate I, we decompose it into three terms,
I =— /(Vu - Vw)Vwdx = f/ﬁlul(alw)zdx
- /81u232w81wdx - /(Ebu - Vw)dhwdz
= I + I1o + I13. (3.9)
By Hoélder’s inequality and Sobolev’s embedding,

Iis < [[Oaul| Lo || Vwll2]|O2w]| s < Cl|Ozul| 1 [[Vw]|2]|O2w]|
< O[|Vwll2[0zullz < C[V2ull2V (). (3.10)
As aforementioned in the introduction, I1; and I;5 are the two most difficult terms due
to the lack of full dissipation. It does not appear possible to bound them directly. The
trick is to replace diu by the other terms in the equation of the magnetic field,
O1u =0+ (u-V)b—ndib— (b-V)u.

Then I{; becomes

Ill = — /(8tb1 —+ (’LL . V)bl — ﬁa%bl — (b . V>U1)(81w)2d$

= f% by (81w)2d:v + 2/1)13111) 0 O1wdx — /(u . V)bl(alw)2dm
+17/8%b1(31w)2dx+ /(b'V)ul(alw)2dx (3.11)

By the vorticity equation in (3.2), the second term in (3.11) can be written as

/blalwatalwdx = /blalw [ —O1(u-Vw) 4+ vd201w + 01(b- Vj) + 025 | da.

Therefore,

d
I+ E/bl (81w)2d:c

= —2/b181w 01 (u - Vw)dz + 21//1)18111) 020 wdx
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+ 2/b181w 81(b~Vj)das—|—2/b161w 0ijdx
— /(u-V)bl(alw)de+n/3fb1(81w)2da:+/(b-V)ul(alw)zdx
=K1+ Ko+ -+ Ky. (3.12)
Now we bound K; through K7 one by one. First,
K= —2/6181w (Ayu - V)wdr — 2/b181w (u- V) wdz.
By integration by parts,

/blalw (u-V)orwdx = —/blalw (u-V)oywdx — /(u - Vby)(01w)?dx

or
/6131w (u- V)o,wdx = f% /(u - Vb)) (01w)?da.
Thus, by integration by parts,
K, = —2/b181w (O1u - V)wdx + /(u Vb)) (01w)?dx
= —Z/blalw A ur O wdz — 2/b181w O ugOowdr
+/ulalbl(ﬁlw)zdx+/uQ82b1(81w)2dx
= —2/b181w 31u181wdx—2/b161w O ugOwdzx +/u161b1(31w)2d:13
- /b1 [D2u2(01w)? + 2u20,wd Dow)|da
= /blﬁgug(alw)de—2/b181w O1ugOwdx
+ / u101b1 (Oyw)2dx — 2 / b1ug Oy wd) Dowdz.
By Lemma 2.1 and Lemma 2.2,

1 1 1 1
K1 < C|lbal|ne= (Halw||2||32u2||§ [[0102uz |5 [|O1w]|3 [|0102w]|5

1 1 1 1
+ [|01w]|2][O1uz |5 [|0102uz |3 [|02w||5 [|0102w][3

1 1 1 3
+ [Juzl|3 [|01uz]|3 |01wll3 Half')‘zwllf)
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1 1 1 1
+ Cllus || o< [1w]2[10101 |13 1970113 012013 |01 0203

1 1 1 1 1 1
< C|lbal| Fal[01b1 | 7o (||31w||2||32u2||22 [0102usz]|3 [[O1w]|3 [|0102w]|5

1 1 1 1
+ [[O1w|l2]|Oruzl|3 [|0102uz |3 [|O2w]|3 [|0102w||5

1 1 1 3
+ luzll3 01wzl |81w]|3 H5‘132w||§>

+ Cllur |7 |02us |72 O1w]l2[| 0161113 |07 01 1|3 (|01 w013 [|0105w]|3
< C(I1blF + llulz) ([010]|7: + 1102ull2)
< (ol + lullz:) V(). (3.13)

By integration by parts and applying Lemma 2.1,

Ky = —2u/(62b181w + b 8182w)8182wdm

< C|0102w||2]|82b1(|3 (01026113 |01 w]|3 [|0102w]|5 + [[b1]] oo |01 2w |3
< C([Ibll a2 + [|Vwl|2) (/|01 d2w||3 + [|0102b113)
< C([[bll g2 + |Vwll2) V (¢). (3.14)

To bound K35, we first write it as

K5 = —/Ulalbl(alw)zdl'—/Ugagbl(alw)2dl'
:—/ulalbl(alw)2da:—|—/(2u281w8182w+32uQ(81w)2)b1d:c.

By Lemma 2.1 and Lemma 2.2,
1 2 1 1 1
K5 < Cllul[ze<[|O1w][2]|01b1 |5 [|07b1 |5 |01 5 (|01 O2w]| 3
1 1 1 1
+ C(||3152w||2\|uz||22 [O1uz]|3 |01w]|3 [|0102w][5
1 1 1 1
+ [[01w]|2]|O2uz |3 [|0102uz |3 |01w]|3 ||5132w|\22)|\b1||m°
3 3 Sia2n 113 3 3
< Cllull 7 l102u]| 72 (10161 |13 107b1 (|5 [ O1w]|3 |01 02w |3
1 1 1 1
+ C(||3152w||2\|u2||22 [O1uz]|3 1010|135 |0102w][5
1 1 1 1 1 1
+ [[01w]|2]|O2uz |3 [|0102uz |3 |01w]|3 ||8182w|\§)|\b1||§{1|\81b1\|;{1

< Cllullzr + 1Bl1E ) (10207 + 110151 ]70)
< C(llullfzz + BlF)V (0. (3.15)
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Similarly, K¢ can be bounded by

K(; = —77/8182172((9110)20[:10 = 277/81b281w8182wdx

< C|0102wl|2[|01b213 1971213 |01wl13 |01 82wl 3
< C(IVbllz + [ Vewll2) (101 02wl[3 + 10701 ]13)
< C(IVollz + [ VZull2) V(1) (3.16)

Again, by Lemma 2.1 and Lemma 2.2,

Ky = 2/b161w (81b- V)jdx + 2/b181w (b- V)0 jda
< Ol o< 03 01003 (191813 19613 1972 + B113 191613190151
< Ol 0161l 9105 01003
S CUHEHNZ PR HEHACNTS
< CIbl3= + IV lB) 121613 + londaw] + 0V 3)
< Ol + I92ulB)V (1) (3.17)

We combine the estimates of K, and K7 in (3.12). Due to ||Vuy||2 = ||O2ul|2,

Ky + K7 < C|l02412]1b113 10151113 181]13 1010213
+ bl [ Vur |13 V0 [ 1wl 0r w13 19,0503
< C02512lIbo 113 18101112 01201} 101820 3
+ Clbl 03] o [ a1 V0t 13 1110 101 Dol §
< C(Iblla + Vw2 + bl + [V2w]3) (19112 + 92ul%-)
< O(Ibllz + [ Vwllo + b2 + [Vw|3)V(2). (3.18)

Combining all the estimates (3.13) through (3.18) yields

d
Lo+ = [ by (Ovw)?de < C(lfullgz + [Bllmz + llullfe + [1bl7:) V(). (3.19)

We proceed to bound I15. As in the estimates of I;1, we utilize the equation of b to
rewrite it as

112 = — /(8tb2 +u- ng — n@%bg —b- Vug)ﬁlw(‘)gwdx
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d
=-= by 01 whywdz —I—/bz O1wlywdx

+/b2 OhwiOswdx — /u - Vby0h1woywdx
+77/5‘fb281w82wdx + /b - Vug i wswdzx.
That is,

Iio + %/bg hwdhwdr = /b2 0: 1 wdrwdx
+/b2 O woOrywdx — /u~Vb281w62wdx
+77/8fb281w(92wdx+/b-Vugé)lw@gwdx
=H, +Hy+---+ Hs. (3.20)

The estimates for Hs, Hy and H5 are not too difficult. By Holder’s inequality, Sobolev’s
inequality and the fact ||Vba| g1 = ||010|| g1,

Hy + Hy < |[ul| o< [[Vba 4 ]| 01w]|2]|82w]|a + 1| 872 | ]| 01w]|2]|021w]l4
< Cllulla: Vs g [[01w]2]|02w] a1 + Cll0Fba | ]| O1w]|2 | d2w]| an
< C([Vwllz + [[ullF2) (|02wll7 + [1016]12)
< C(IV2ullz + [ull32) 12V (2). (3.21)

By Lemma 2.1 and Lemma 2.2,

Hs = /b181UQalw(92wdx+/bg@g’dgalwagwdx
< ClIbll o (110rualla w3 9102w |03 010200113
+ 0zuslla| Dl 9w )
< Ol l1nbl s (I9ruzllz |93 010500 |2 D5

+ [0zl |90

< C(llwliFn + 1bl72) (102ull7= + 1018117
< C([lullfe + b1 Z2)V (). (3.22)

Next we deal with H; and Hs. Invoking the equation of w in (3.2), H; can be written as
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Hy = /bg@gw [~ or(u- Vo) +vB0yw + 01 (b- V) + 335 d
= —/bgagwal(u - Vw)dx + V/bgagwagalwdx
—I—/bgagw@l(b-Vj)da:—i—/bg@gwa%jdm
= Hy1 + Hig + Hiz + Hya.

By integration by parts, Holder’s inequality and Sobolev’s inequality,

H11 = /(811928211) + b28281w)u - Vwdz

< Jull Lo [|01b2]] 4[| O2w]|4][ Vw2
+ [Jull Lo [[b2]| o< | Vw]|2[|0102w]|2

< Jullg2 0102 g1 || O2w]] 1 [ Vw][2
- lall g 9l B oo 19152 3y (1202101 B
< Cluliye + 1bl3) (1918130 + 1920l
< O([ully + 1813V (1) (3.23)

Similarly,

H13 = — /(811)20210 + bg@g@lw)b . VJdI

< (Il 2o 1916214102l Vi ]l2 + [1BlI7o 10102202 V]2
< [bllz2 10102l s [0zl 12 [Vl + (1Dl a1 [|010]] 2 181 02w 2|V |2
< Clelize (Ion8l3 + 1023 ) < ClolE=V (). (3.24)

Again, by integration by parts, Holder’s inequality and Sobolev’s inequality,

Hiy = —v / (D1b202w + b2920yw)D3wdx

< v]|01balal|Oowlal|03w]2 + b2l Lo 9201 w]|2]| 03w
< C|01ba]l 1 [|02w]| 111 |03 wll2 + Clb2 ]| 12|02V 3
< Clpll =l 02w s < Cllbll =V (1) (3.25)

By Lemma 2.1,

Hyy < C)|075]12]1b213 1010213 [102wll3 105w 3
< C([Ibll2 + [IVwll2) (1916172 + 105w][3)
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< C([bllz + IVwl[2)V (). (3.26)
In summary, we have from (3.23) through (3.26)
Hy < C([bll= + [V?ull2 + lullZe + [0172)V (2). (3.27)

The estimates of Hs bear some similarities to Hy, but there are differences. Invoking the
equation of w in (3.2), we have

Hy = /anlw [~ Ba(u- V) 4+ w03 + (b V) + 0105 d
= —/bg@lwﬁz(u -Vw)dx + V/bg@lwagwdx
+/b281w82(bV])dx+/b281w8182jdx
= Hoy + Hop + Hoz + Hoy.

By Lemma 2.1 and Lemma 2.2,

Hy = —/bg@lw(agu - V)wdx — /bg@lw(u - V)Owdzx
< Cllball i~ (IVwlallonwll} 1030203 |0aul3 1Dl
+ lful o< 110l VO]l )
< Cllball 9102 s (19015 1010203 |02l 3 11Dl

1 1
+ IIUH}‘}l||52UI|}‘£11Halwlleazwllz)

< C(IBlI + lluliFrz) (102ull 2 + 191b]17:)
< C(Ibl7 + lull=)V (). (3.28)

By integration by parts, Lemma 2.1 and Lemma 2.2,

Hyg = —/821)281111 b-Vjdr — /b28162w (b-V)jdx
< el (V3219202113 1920211 w3 101 dauwl 5
+ [130swlallballf 102013 17515 1049515 )
< bl 1030l s (I197112005Ds 15 119202115 9120115 01

S C RN INHESNHNTHERZTE
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< C([Iblz2 + IVwlI3) (10101172 + 0102w]3)
< C([Ibllz= + IV2ull3)V (1). (3.29)

To bound Has and Hay, we make use of the bounds (3.25) and (3.26) for Hy and Hiy
to get

H22 + H24 = —V/(agbgalw + bg@g@lw)ﬁgwdx + /bg 81w8162jda:
< C([|92ba| L [[Orwll2 + [[b2| Lo | 0201w]|2) |05 w2

+1101023 [|21lb2|3 1010215 [|01w]|3 |01 02w |3
<Ol gz + (IVwll2)V (1) (3.30)

(3.28), (3.29) and (3.30) yield
Hy < C([bllrz + [V?ull2 + [lull = + [[0172)V (2). (3.31)
Combining (3.21), (3.22), (3.27) and (3.31), we deduce
d

Iio + pn /bg N wdswdr < C(||b]| gz + HVQ'LLHQ + ||’U,||%12 + Hb”%z)V(t) (3.32)

Substituting (3.10), (3.19) and (3.32) into (3.9), we find
d 9 d
I + — by (8110) dz + E by D1wdwdx

dt
< Cllullzz + Il zr2 + [lullZrz + [101Z2)V (2). (3.33)

This completes the estimate for I;. Now we turn back to handle the other terms in (3.8).
We first bound I and I together. By integration by parts and V-b = 0, we write I+ Iy
as

L+1,= /(Vb -V)j Vwdz + /(Vb -V)w Vjdzx
= /Olblﬁljalwdx+/81b282j81wdx+/82b181j82wdm
+2/6‘2b232j82wd3:+/alb-Vw&ljda:Jr/agbl@lwagjdm
= /81b181j81wdx—/(812b202j+81b28182j)wdx+/agblaljagwdx
+2/5‘2b262j82wdx+/(91b-Vw81jd:c

—/(8182b182j+62b18162j)wd1‘.
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Thus,

L+1, < 2/ |01b]|015][Vw|dz + 2/ |Oow| (| VD][017] + |O1b1]|V]) da
+ 2/|w|(|81VbHVj| + |Vb|\8182j|)dx.
By Holder’s inequality and Sobolev’s inequality,

2 [ 10ubl0aj[Vulds + 2 [ 00wl (V10131 + |0104]| V31 d

< 2[|01b[al|O1 |4l Vewllz + 2]|Baw]l 4 ([|017]|4][ Voll2 + (|01l V5 12)

< Cllowd]| (|01 | Vwlle + Clldaw] g (10151 2 (V0|2 + 016] a1 [V ]2)
< C([[Vwlla + [Vl 1) ([|1910]| 72 + [|02w]1F1)

< C(IV2ull2 + ([ VOl 1)V (2).

For the last term, we apply Lemma 2.1 to obtain
2 [ 0l (0981931 + 0012241}

1 1 L it L 1 .
< Clwl3 |22wll3 (75131101 V713 191 90ll2 + [Vbl13 10190113 11010212

< Clllwll2 + 151l ) (102w]3 + [1016]72)
< C(IVaullz + Vbl )V (7).

Consequently,
I+ I < C(|Vullar + IV0] 1) V(1) (3.34)
By integration by parts, Hélder’s inequality, Sobolev’s inequality and Lemma 2.1,
I3 = —/(Vu-V)j Vidx
= —/61u1(81j)2dx— /81u282j81jdx
- /32u151j32jd$ - /32U2(52j)2dl“
= /32u2(31j)2d$+/u2(3182j51j+32j612j)d33

—/Ogulﬁljagjdx—2/u182j8182jdx
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<2 / Oyl 00]|V jldr + 4 / |0, V51Vl da

1 1 i i
< 200ull 410131415z + 410 Vi lollulld [92l3 V5113 10,7413
1 1 L 2
< Closullan 101l [l + CllallE [Baulld (V512 187512
< C(Jlulla + 1V3112) (190ll3rs + 1015113 )

< C(l[ull2 + [[V20]|2)V (2). (3.35)
For Iy, we first split it into three terms and then estimated similarly as I3 to obtain
Is = —2/8161(81u2 + Oouy )0t jdr — 2/81191 (Orug + Oauy )O3 jdx
= —2/31b1(81uQ + 82u1)612jdx
+2 / (010551 (@15 + Brur) + D101 (Bodrus + 3ur) |
<2 [ 0wty [Vul|o2ildo + 2 [ 010207l Vlds + 2 [ |orba]| 02Vl V1o

< 2|0ub]l4|Vulla| 02 12 + C10102bll2 1V ul3 [02Vull3 V3113 16, V313
+ 2011bl1a/|82 V][V
< 2(00b 1 |Vl 2 1825 2 + C 101 Babl|2 | Va3 |05 ul]3 V112 16, V113
+ 211600 11 02V 11| V2
< C(IVull s + V5 12) (1027l % + 10:b]1%2)
< C(IVull + [V2]2)V (1), (3.36)

It remains to estimate Is. The handling for Is is subtle. We rewrite it as
Is = 2/81u1(81b2 + ob1)0%jdx + 2/61u1(81b2 + Dob1)03jda
= 2/81u1(81b2 + O2b1) 0% jdx — 2/82j8281u181b2dx
— 2/82j8281u182b1dz —2/62j81u18281b2da: — 2/82j81u18§b1dz
= 2/81u1(01b2 + Ooby)0Fjidw — 2/82j8281u181b2dx
+2 / Dty (910j0oby + Dj010by ) do

— 2/82j81U16281b2d$ + 2/u1 (8182]8%[)1 + 82]62261b1)dl‘
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= Ig1 + lo2 + Loz + Loa + Ios.
The first four terms Iy + Igo + Ig3 + Ig4 are bounded by
Is1 + T2 + I3 + Ig4
< C/|62u|\Vb||81Vj|d:v+2/|Vj||82Vu||c’)1b\dx+C/|82u||81Vb\|Vj|dx

< Cl|02ull4||VO[|4]|01Vil[2 + C[[Vill2]02Vul|4]|01b][4 + C[[O2ul|4]| 01 V|4 ]| V]|2
< O 02ul[ 1 VO |01V |2 + C[V jl|2]|02Vul| r1{[010]| 71

+ C||0zul| 2 (|01 V|| 111 [V |2
< C|IVb]| a1 (102wl 32 + 1010]|72) < CI V| 1 V().

For the last term Ig5, we have, by Lemma 2.1,

Iss < Cllusll3 ||O2ur]3 [||3132j||2|\8§b1||§ 100036113 + 11024113 110201513 1019501 ||
< C(|lullz + [IV2bl2) ([|02ull3 + [|0102413) < C(|lull2 + [[V2bll2)V (¢).

Therefore,
< C(llullz + (VB[ 1)V (2). (3.37)

Inserting (3.33) through (3.37) in (3.8), we obtain

d
3l (Vw. VB + 5 [ b @uopde + 5 [ b2 drwosuds

+ 0|8 Vwll3 +nl|01Vill5 < Cllull = + 16l 2 + ullF2 + [[BlI72) V(1) (3-38)

Integrating (3.38) over [0, ¢] leads to

[(Vw, Vj)||§+2/bl (81w)2dx+2/b2 Orworwdz

t t
ey / 102V w(s)|3ds + 20 / 10, V5(s) |3ds
0

IIU Mz +116(s)llzz2 + u(s)[1 72 + IIb(S)H?p)V(S)dS

o\&

+ ||(Vwo,V]0)||§ =+ 2/b01 (81w0)2dx =+ 2/b02 811008211}06133. (339)

Combining (3.39) with (3.7) gives
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|, b||22 + 2/b1 (O1w)?dx + 2/b2 A wwdz

t t
+2V/||82U(S)H%I2d8+277/||81b(8)||§_12d8
0 0

/ lu(s)llz2 + 16(s) [l 22 + [lu(s) |l + IIb(S)IIfqz)V(S)dS

+m%wmﬁﬁa/muamfm+z/mamwwwm

By Sobolev’s inequality,
bl + 20 [ [oaulo) ads + 20 [ ox(s) s
0 0

t
< [ (Il + 102 + [a(6) By + [8G6) e )V (s
0
o+ 4)Jbll oo [ Fwl3 + | (o, b0) 372 + 4o 2= [ o 3
< [ (Il + 16 + [u(6) By + [6G6) e )V (s
0

+ C [[Bllzz2 |l 7= + [1 (w0, bo) |2 + C llboll 2| Vol
< [I(u0, bo) |2 + C llbollz= w0l 72 + C 10 2 [[ull 72

t

+C [ (Il + 166 = + (o) s + [8(6) s ) Vshds, (340
0

where C’s are constants. (3.40) is the desired inequality in (1.7). This completes the
proof of the key energy inequality in (1.7).

4. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. As explained in the introduction,
due to the degeneracy of the viscous dissipation and the magnetic diffusion in (1.3),
classical approaches designed for fully dissipated systems no longer work here. It also
appears fruitless if we separately write the velocity equation and the magnetic field
equation into integral forms via the one-dimensional heat operators due to the presence
of the linear terms 01b and 0;u.
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The strategy here is to separate the linear and the nonlinear parts in (1.3), solve
the linearized system and represent the nonlinear systems in an integral form via the
Duhamel’s principle. Taking the Fourier transform of (1.3), we find

m a M,
al~|=a~)+{=),
b b M,
where A comes from the linear operators, and M; and M are nonlinear terms,

L2 j
A=<.V£2 2512>, My =P(b-Vb—u-Vu), My =1b-Vu—u-Vb.
&1 —néi

The spectra of A, given by

)\1: _(V€§+g£%)_\/f’ )\2: —(Vfg-f—gf%)-i-\/f (41)
with
= (&) +n&})? — el & — A€} = (v€F —ned)? — 4t (4.2)

play a crucial role in the large-time behavior. Clearly, they are both anisotropic and
strongly frequency dependent. By computing the corresponding eigenvectors and diago-
nalizing A, we obtain

U, t) = Qu(t)ho + Qa(t)bo + [ (Qi(t — T)Mi(7) + Qa(t — 7)Mo(7)) dr, (4.3)

o\»ﬁ

B(E,t) = Qo(t)To + Q5(1) 0+/ Qa(t — )My (1) + Qs(t — 7)My(1)) dr, (4.4)
0

where the kernel functions @1, @2 and @3 depend crucially on A\; and Ao,

Qi(t) = —vE3G1 + Ga,  Qa(t) =i&1Gr,  Qs(t) = vE3Gy + Gs (4.5)
with

6)\2t _ e)\lt /\2€>‘1t _ /\1€>‘2t

G = G = " = At - )\ G

1 )\2 — )\1 ) 2 )\2 — )\1 € 141,

)\ )\2t _ )\ )\1t

Gg = —26 1€ = €A1t + )\2G1 = 6/\2t + )\1G1. (46)

Ao — A\

We explain the framework of the proof of Theorem 1.2. We first show that, when
(1.12) holds, the solution (u,b) in H* remains uniformly small, namely
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[(u(®), b(@E)lgs < C6

for a constant C' independent of §. The proof of the desired decay estimate is obtained
via the bootstrapping argument applied to the integral representation. This argument
starts with the ansatz that

u(®)[ > < Cod (1487572, ||b(t)[la> < Cob (1+18)"173, (4.7)

where () is a suitably selected pure constant and will be specified in the proof of Theo-
rem 1.2. We then show by using the ansatz in (1.15) and the integral representation of
u and b that

C _1_s C _1_s
lu(®laz < 6QA+07372, b(0)laz < FEA+HTEE (48)

The proof of (4.8) is not trivial due to the degeneracy, anisotropicity and inhomogeneity
of the kernel functions. In particular, @1(5,15), @g(f,t) and @3(5,1&) behave differently
for different frequencies &. As a preparation for the estimates, we need to divide the
frequency space into subdomains and classify the behavior of the kernel functions in
each subdomain.

Proposition 4.1. Let T' be defined as in (/.2). We split R? into two domains
vé +n&t 16
0 = {§ eR* VT < % ie, (v +n€))’ < FE G + 1)},

Qp = {5 €R* VT > % e, (v +ngy)” > 1—365%@775% + 1)}-

Let A1 and A2 be given by (4.1), G1, G2 and Gs by (4.6) and Q1, Q2 and Qs by (4.5).
Then the behavior of A1 and A2, G1, G2 and G3, and QQ1, Q2 and Q3 can be classified
as follows.

(a) For any & € Qq, we have

v 2_|_ 2 v 2_|_ 2
_5227751, )\2§_§2477§17
|G1| < Cte @& +EDt ¢ e (1/4,1/2),

A <

Gy = eMt — A Gy, G3 = erat + MGy,
01| < C e—covesned)t Q5] < Cemco&nEdt o5 0,

Q2| = |£1G1| < C e EsnENt,
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(b) For any & € Qo,

WIS ekl SPRR 1 Ul 1S b))
> 2 ’ — Vf%‘i‘??f% )
Gil < 2 (8 + ) 2N + ),
"5%+’75%t _5%(V"1£§+1)t

Q1] 1Qal |Qsl S C(em— = T he vErEd ),

We further split Qy into three subdomains. a1 denotes the subdomain when |\/n1|
is comparable to |\/v&s|, Qo1 denotes the subdomain when |\/v&s| is far bigger than
|v/né1| while Qa3 is the remaining part. That is,

Q21 — {E € 927 |\/ﬁ§1‘ ~ |\/;£2|}a
Qop = {6 € Qy, |VV&a| >> |Vnéil},
Qog ={€€Qy, |VV&| << |Vnil}.

Then, for some ¢y > 0,

~ ~ ~ 2 .
1l 20 3 = e X ) ? 21,
Q1l,1Qa, Qs < Ce kI if ¢eq

~ ~ ~ 2 .

1], |Q2], |{3] < Ce ™17, 4 22,
1Q1],1Q2], Q3| < Cem %t if £eQ
o~ ~ -~ 2

1, |Q2], |Q3| < Ce , g 23.
1Q1],1Q2],|Qs] < Ce @&t if £eq

Proof of Proposition 4.1. We start with the case when £ € Q. (4.1) obviously implies

v +néf
2

Vg +n&f

A1 < 1

) )\2§

The upper bound for G; follows from the definition of G; in (4.6) and the mean-value
property. The estimates for |Q1| and |Q3]| are not difficult,

101 = |Ga — VEEGy| = | — MGy — v€2Gy| < CemoWeaTnedt
Q3] = [N + MGy + vE2Gy| < e 2WETNEDE 4 g2 ema(vEtneD)t
< Ce—covEtned)t

where we have used the simple fact that xe™ < C for any > 0. The estimate for
Q2(&,t) with &€ € 4 is more elaborate. Recall that

D= (v&3 +1€7)* — 465 (1 + vné3).
To obtain the desired bound, we divide the consideration into two cases:

IVT| > |&1] or  [VT| < [&].
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In the case when |v/T| > |£1], we have

Aot e/\lt‘

VT

le < 9o HwEned,

@2\ =[&4G1| = &

In the case when |v/T| < || or, by the definition of T,
|(v€3 + &) — 46 (1 +vngd)| < &1,
which is equivalent to either
467 (1 +vned) < (€3 +n€d)? < 43 (L +vned) + &
or
(V€5 +n&))? <A (1 +wng3) < (v&; +n€d)* +&7.

Any one of them, (4.10) or (4.11), implies that

(V€5 +n&3)? = 3&7 +4vmEi&s o vl +n&t > |G/ 3 + dvnés.

Therefore,

Qs < |&1[t e 8ETnEDT o= 5 (E+nedt
< e[t e BlaltVEHIME =g (veineDe

< CesWE et

29

(4.10)

(4.11)

(4.12)

where we have used the simple fact that xe™™ < C for any > 0. It then follows from

(4.9) and (4.12) that, for cg = min{1/4,a/2} > 0,
|©2| < C e oW +nEdt.

We now turn to the case when & € Q5. Trivially,

NPt
For £ € Q,, we have VT > % and
Ay = —(v +neh) +VT 263 (nés +1) o G+
2 VI + v +ng2 —  vEE+ngt
|G| = M <2(1/§2+ 52)—1(6,\1t+6,\2t)
! VT = 2 TNS1 .
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As a consequence,

2. ,¢2 £2(vned+1)
_ v&3+mET —=l b2 g
p) t +e vEtned )

Q1] = |Ga — vE2GH| = |eMt — MGy — vE2GH| < Cle
Clearly,
1Qa] = [i€1G1] < 2061|(vE3 + nEd) H (X + M),

2 2
Furthermore, since vT > L;"El, we have

3
T+ ned)? > gl + 487 > 4t
and consequently

=N 24,2 €2 (vned+1)
10s] < Cle= " 55" Ft o7 vegened 1),

We finally bound |@3| For £ € Q4, we have

gom3+1) _ 3
(v + i) 16

Therefore,

Q3] = |vE3G 1 + G| = [eM! + NGy + VESGY |

veZ _ &f(wmed+1) 2 2
P T AT S C%
(V§2 + 7751)

_&fwned+n

ved+ne?
—t ot e vedtndd )

<C(e” (e”

_gemed+n,

2 2
véa+néy s iys-ae
—Tt ot e vedtned ).

<(C(e

The further division of €5 into Q91, Q292 and Qa3 is to make the upper bound for |@1 l, |@2|
and |Q3| more definite. For & € Qay, €2 ~ v€2 and

E(wned +1)

P41
Vs +nét g

The behavior for £ € Qg5 and £ € o3 can be similarly identified. This completes the
proof of Proposition 4.1. O

We shall also make use of the following decay estimate for the solution operator
associated with a fractional Laplacian (see, e.g., [11]). Recall that the fractional Laplacian
operator A? with any real number p is defined via the Fourier transform,

~

APf(E) = |7 F(€).
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Lemma 4.2. Assume o > 0 and 8 > 0 are real numbers. Let 1 < p < q < oo. Then there
is a constant C' > 0 such that, for anyt > 0,

o A8 _a_d(1_1
[A%e 2| ey < C5 7o) £l Lo (ray-

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The first step is to show that, when é > 0 is sufficiently small
and (ug, by) satisfies (1.12), the solution (u, b) satisfies

[[(uw(®),b()|lms < Co (4.13)

for a constant C' independent of §. When (1.12) holds, Theorem 1.1 asserts that (u,b) €
H? and

(), b)) |z < C'6.
To show (4.13), it suffices to bound (u,b) in the homogeneous spaces H? and H*. The
process of showing the uniform boundedness of ||(u,b)| ;s and ||(u,b)|| ;54 is similar to
the proof of Theorem 1.1. We shall only supply the proof for

(), b))l grs < C'6. (4.14)

We define the energy functional

F(t) = sup (Jlu(r)Fe + [6(r)]%)

0<7<t
t t
Yy / 102u(s) s ds + 21 / 1815(5) 25 ds,
0 0

and show that
F(t) < F(0)+ CF(0)2 + C F(t)? + C F(t)*. (4.15)
Due to the norm equivalence
1F s~ 107 fNZ2 + 105 f112s,
it suffices to consider
107 (w, ) 122 + 1193 (u, ) |72

Clearly, we have
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%(H@f’(ua O) 17> + 1103 (u, b)|172) + 2010207 ul| 7> + 201 05ull7
+217]|01b] 72 + 2v(|01050]122 = Ly + -+ + L,
where the terms on the right-hand side are given by
L, = —/8f(u-Vu) cO3udr, Ly = —/ag(u-Vu) - O3u d,
Lz = 7/8f(u-Vb) -03bdr, L4= 7/8§(u~Vb)~8§’bdx,
14:/$wvw@@m+/$@wmy@w%
Ls = /8§(b-Vb) .agudx+/a§(b.vu) - 03bd.
The estimates for the terms are very similar to those in the proof of Theorem 1.1. To

avoid unnecessary repetitions, we shall only look at one of the most difficult terms in
Ly, namely

Ly, = */af'uQaquaf’uQ dr = /alul (8;’11,2)2 dx.
As in the estimate of I;; in (3.11), we replace d1u; by the equation
O1uy = O¢by +u - Vby —nd3by — b - Vuy

and rewrite Lq; as in (3.12),

d
L11 — %/bl (8?1@)2(1‘@
= Q/blﬁfuz 93 (u - Vug)dx — 21//b1810’uQ D203 uydx
—z/bla§u2 07 (b- Vby)dx — 2/bla§>u2 Oybodx

- /(u -V)b1 (B ug)?dr — 1 / 02by (B3 ug)?dx + /(b V)i (Buz)?dx

All the terms above can be bounded in a very similar way as in the estimates of K;
through K7 in the proof of Theorem 1.1. For example,

—2u/b18f’u2 8%8?’&2d1‘ = 2V/b1 (828?’&2)2 d$+21//82b1 anQ (928%1@ dr

1 1 1 3
< C|lby[| o [|0207uz |72 + C [|02b1 |72 1010201 |72 |07 us | 72 [|0207 ual| 7.
< CF(t)3.
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We shall not provide more details on the estimates of the terms to avoid unnecessary
repetitions. It then follows that (4.15) holds. A bootstrapping argument then establishes
the global uniform bound stated in (4.14). Similarly we obtain the global bound for (u, b)
in H*. This proves (4.13).

Next we derive the desired decay estimate. As described at the beginning of this
section, we employ the bootstrapping argument. We assume (4.7) and show (4.8) via
the integral representation in (4.3) and (4.4). The kernel functions @1, Q2 and Q3 are
inhomogeneous and anisotropic. We make use of the detailed analysis obtained in Propo-
sition 4.1. As Proposition 4.1 indicates, @1(5,15),@2(571&) and @3({,1&) with £ € ; are
bounded by e—co(VESTED for some cg > 0. Therefore they behave like the heat operator
in this part of the frequency domain. For £ € (251, all of them still behave like the heat
operator. For £ € 295, the upper bound for all of them is e~0&it and for & € a3, the
upper bound is e~c08t That is, the kernel functions behave like one-dimensional heat
operators in either Q9o or Qa3.

We estimate ||u(t)|| = and [|b(t)|| > in each subdomain. We start with [u(t)| g2 (0,)-
For k =1,2 and m = 0, 1, 2, according to (4.3),

Ou(t) = Q1 * Of"ug + Q2 * 95"y

t
+/ Qu(t — ) % I My (7) + Qs(t — 7) % O Mo (7)) dr-
0

We take the L?(22)-norm to obtain

0% u() | L2 (0222) < 11Q1 O w0 || L2 (2n) + Q2 O b0 || L2 (022

t
+ / 101 (t — 7T B (7) | 1220y
0

t
+ [ 1@t = DI 12001 (4.10
0

The terms on the right can be bounded as follows. We make use of the assumption that
the solution (u, b) remains uniformly bounded in the setting of (1.13). By Proposition 4.1
and for s = t/2,

~ — _ 2, —
Q10 uo| £2(050) < C lle™ 51 0 uo]| £2(02s0)
< O J|€1|7 e S g AT uo | 2 (re)

2y o
= C |leate it AT Tuollus,

2
LI2

<CA+t) "

mA;UUOHL}Tl 1
z2
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<C6(1+t)" 5%, (4.17)
where we have used Lemma 4.2 and the condition (1.13) on the initial data. Similarly,
1Q2 3 bol 20y < CO(L+1) 575 (4.18)

Recalling that M; = P(—u-Vu+b-Vb) with P being the Leray projection onto divergence-
free vector fields and using the fact that P is bounded on L2, we have

¢ t
/ 1Q1(t = TV Mi(7)| 22,0 T < / 1Q1(t = )5 (- Va) (7) | 12 (0250 A
0 0
¢
+ [ 1@t = DogB 00120 dr
0
Applying the bound for Q1 (§,t — 7) with £ € Qg9 in Proposition 4.1, we find
t t
/ 101 (t — ) (- Vu) ()| L2(00,) dT < C / \|e*cof?<f*7>a,gn(u -Vu) (1) L2(r2) dT.
0 0
By Lemma 4.2,

t
/ ||e—co€f<t—f>apﬁu)(7)||L2(R2) dr
0

t
gc/(1+t—7)—% ‘|\a,;”(u.vu)||Li dr. (4.19)
0 i
By Minkowski’s inequality,
TRl S [CAURIN

To proceed, we need to distinguish the order of the derivatives. For m = 0, by the
one-dimensional Sobolev inequality and then the Hélder inequality,

16z - V) 2z,

g = ulaz, |, < [y, 19ule,

1
Lzl

3 1
< C ||lulify, 19ullez, I Aul

1
L

3 1
< Cllulls IVl 2 [[Aull 2.
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Inserting this bound in (4.19) and invoking the ansatz in (4.7), we find

t
/ 101 (t — )07 (- V) (1) 22 6200) I
0

t
1 3 1
<C /(1 +t=7)" 1 u(r)l g2 [Vu(r)l L2 |Au(r)] 12 d7
0

t

<CG e /(1 +t—7)TE (147D dr

0
<CCP(1+1)ie. (4.20)
Form =1,
o Seitss |, =00 Tusu- Vo,
< |1Vl b +C HIIUIILg;IIAUIILzQ L
<[t [, + €tz nauiz, |,

< Clullye +C |llulluz, |1 8ul 2,

1
LL,

< ClullZ-

Again inserting this bound in (4.19) and invoking the ansatz in (4.7), we find
¢
J1@1tt = 0T T ()20 d
0

t
<c /(1 bt — ) () |Ze dr
0

t
<0050 /(14‘t_7')_i (1+7)201"8)dr
0

<CC2%(141)i. (4.21)

The handling of the case when m = 2 is slightly different. For m = 2,
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103 - wllzz,

L= |0 Vs VoR s 20 Voulz,

1
L

< |[CIvullss, IaulLs,

+ |lullzzs 199l 22,

1

T

‘L;

Since the ansatz in (4.7) does not contain the decay rate for the solution in H®, we
need to interpolate the H3-norm between H? and H*. This is exactly where we need the
uniform boundedness of H*-norm on the solutions. Invoking the following estimates

7 1
IVullie, < Cllullz,, |Aulug, < ClAulfy ul, .
1 1
lulizy < C iz 190Rulis, < lullh el -

By Holder’s inequality,

15 1 3 1
105 - V|| < Cllalg Iy, + C lulle Jull

‘ 1
LL,

Inserting this bound in (4.19), invoking the ansatz in (4.7) and also making use of the
uniform bound for ||u|| 74, namely (4.13), we find, for m = 2,

t
/ 104 (t — 70y (- Vu)(7)| 2 i
0

<c [ t=n (@I @l + la e ) dr
0

0

<CC2S%(141t)571°, (4.22)

Here the second to the last integral contains two terms and the second one gives the rate
on the last line since the second one is bigger. Combining the bounds in (4.20), (4.21)
and (4.22), we obtain, for k = 1,2 and m =0, 1,2,

¢
/ 191t~ T)al?lru'\vu)(ﬂﬂm(mz) dr < CC28%(14t): 47,
0

Very similarly,

t
/Hél(t = )R (b V) (1) | 12(0ss) dr < CCF 6% (141374,
0
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Therefore,
t
/ 1Q1(t = )T M (7) | (20 dr < € C3 0% (14 1)3 727 (4.23)
Similarly,
t
[ 1Gs(t = IR 0y dr < €G3 (14 )30, (4.24)

Combining (4.16), (4.17), (4.18), (4.23) and (4.24), we obtain

3

107 u(t) || 2 (20e) < CO(L+1)"17F 4 CC2 8% (1 + )37 4. (4.25)

The L?-norm of 07 u(t) on other domains, 21, Q21 and 223 can be bounded very similarly.
In fact, as stated in Proposition 4.1, the kernel functions @1, @2 and Q3 all behave like
the heat kernel on Q; and €9;. The bound for ||0 u(t)||r2(q,) and [0 u(t)| L2(q,,)
actually has a faster decay rate. On the subdomain (253, the kernel functions @1, Q2 and
Q3 all behave like the one-dimensional heat kernel and the L%-norm of 9*u(t) on this
domain admits pretty much the same bound as in (4.25). Combining the bounds for all
these subdomains, we obtain, for £k = 1,2 and m = 0,1, 2,

18 u(t) || 2rey < C1o(1+6)717% + CoC282 (1 +1)5717, (4.26)
where Cy and Csy are pure constants. [|9;"b(t)|z2(r2) can be similarly shown to obey the

same bound

3

18 B(t) || 2mzy < C16(14+)"175 + Cy C2 6% (1+ )37 17, (4.27)
(4.26) and (4.27) are obtained under the ansatz in (4.7). Since 0 > 5/2,
(1+t)3757 < (1+1)75 5.

If Cy is suitably selected and § is sufficiently small, say

Co 1
< — <
Gisgp GGIsH
then (4.26) and (4.27) would imply
), 6O < S 01 +074 % + S50+ piir < Lo+t
which is the desired bound in (4.8). The bootstrapping argument then allows us to
conclude the desired decay estimate. This completes the proof of Theorem 1.2. 0O
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