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Abstract
Whether or not classical solutions to the surface quasi-geostrophic (SQG) 
equation  can develop finite time singularities remains an outstanding open 
problem. This paper constructs a class of large global-in-time classical 
solutions to the SQG equation with supercritical dissipation. The construction 
process presented here implies that any solution of the supercritical SQG 
equation must be globally regular if its initial data is sufficiently close to a 
function (measured in a Sobolev norm) whose Fourier transform is supported 
in a suitable region away from the origin.
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1. Introduction

The goal of this paper is to construct a class of large solutions to the surface quasi-geostrophic 
(SQG) equation with supercritical dissipation. The SQG equation concerned here is given by

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0, x ∈ R2, t > 0,
u = ∇⊥ψ := (−∂x2ψ, ∂x1ψ) , (−∆)

1
2 ψ = θ,

 (1.1)

where the scalar function θ represents the potential temperature, u the fluid velocity and κ > 0 
and α � 0 are real parameters. Here the nonlocal operator (−∆)α is determined through the 
Fourier transform

̂(−∆)αf (ξ) = |ξ|2α f̂ (ξ),

where f̂  denotes the Fourier transform of f ,

f̂ (ξ) =
∫

R2
e−ix·ξf (x) dx.

The SQG equation has attracted enormous attention recently due to its applications in mod-
eling geophysical fluids and its significance in the theory of partial differential equations (see, 
e.g. [1, 16, 22]). As detailed in the paper of Constantin et al [5], the behavior of its strongly 
nonlinear solutions are strikingly analogous to that of the potentially singular solutions of 
the 3D incompressible Navier–Stokes and Euler equations. The study of this 2D model may 
shed light on the mystery surrounding the 3D hydrodynamics equations. Significant progress 
has been made on the global well-posedness and related problems on the SQG equation. Our 
attention will be focused on the SQG equation with supercritical dissipation or damping.

The level of difficulty involved in the global existence and smoothness issue on the dis-
sipative QG equation is dictated by the parameter α. In the subcritical case α > 1

2, the SQG 
equation has been shown to possess a unique global smooth solution for every sufficiently 
smooth initial data (see [7, 23]). Furthermore, smooth solutions are shown to be real analytic 
and their wave numbers are known to decay exponentially [27]. When α � 1

2, the issue of 
global existence and smoothness becomes extremely difficult. The investigation of the critical 
case α = 1

2 started with the paper of Constantin, Córdoba and Wu [3], in which they proved 
the global existence and uniqueness of classical solutions corresponding to any initial data 
with L∞-norm comparable to or less than the diffusion coefficient κ. The critical case α = 1

2 
was successfully solved by Kiselev et al [19] and by Caffarelli and Vasseur [2]. Important 
nonlinear inequalities involving the fractional Laplace operator and several different proofs 
were also developed ([6, 10, 20]).

The global existence and smoothness issue for the supercritical case α < 1
2 remains open. 

The two papers of Constantin and Wu [8, 9] assert that any Leray–Hopf weak solution of 
the supercritical SQG equation is actually essentially bounded and any weak solution in the 
Hölder class C1−2α is actually a smooth solution of the SQG equation. Dong and Pavlovic 
extended the Hölder space C1−2α to more general Besov setting [15]. Therefore, to com-
pletely resolve the global existence and smoothness issue for the supercritical SQG equation, 
it remains to show that any L∞-weak solution of the supercritical SQG equation is actually in 
the Hölder class C1−2α. There are substantial more recent developments on the slightly super-
critical SQG equation and the supercritical SQG equation (see, e.g. [11–13, 24, 25]).
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This paper examines the open global regularity problem on the supercritical SQG equa-
tion from a different perspective. Our goal here is to construct a class of large solutions of 
(1.1) with α in the supercritical regime 0 � α < 1

2. The solutions constructed here belong to 
the Sobolev space Hs(R2) with s + α > 2, a natural setup for the SQG equation. The require-
ment s > 2 − α appears to be the minimal in order to insure the local wellposedness. When 
α = 0, the term κ(−∆)αθ is reduced to the damping term κθ. We remark that this process is 
also valid for the cases when α � 1

2, even though our focus is on the case α < 1
2. As can be 

seen from the description below, the process of construction presented here actually states that 
any solution of the supercritical SQG equation close to that of the corresponding fractional 
heat equation with Fourier transform supported away from the origin must be globally regular 
in time. The closeness is measured in the norm of the Sobolev space Hs(R2) with s + α > 2.

The large solution of (1.1) we are seeking has the form

θ := Θ+ h (1.2)

with Θ solving the linear part of (1.1), namely
{
∂tΘ+ κ(−∆)αΘ = 0,
Θ(x, 0) = Θ0(x).

 (1.3)

The initial data Θ0 is in the Schwartz class S  and has the following properties

Θ̂0(ξ) ∈ C∞
0 (R2), supp Θ̂0 ⊂

{
ξ ∈ R2, 1 − δ � |ξ| � 1 + δ

}
,

where 0 < δ < 1
2  is a small parameter depending on κ only. More precise information on δ 

will be specified later. A particular example of Θ̂0 is given by

Θ̂0(ξ) =
(
δ−

1
2 log δ

)
γ(ξ) (1.4)

with γ ∈ C∞
0 (R2) being a smooth cutoff, namely

γ(ξ) =

{
0 if |ξ| � 1 − δ or |ξ| � 1 + δ,
1 if 1 − 3

2δ � |ξ| � 1 + 1
2δ.

The norm ‖Θ0‖Hs is not small. In fact,

‖Θ0‖Hs :=
[∫

R2
(1 + |ξ|2)s|Θ0(ξ)|2 dξ

] 1
2

� δ−
1
2 |log δ|

[∫

1− 3
2 δ�|ξ|�1+ 1

2 δ

(1 + |ξ|2)s dξ

] 1
2

� δ−
1
2 |log δ| [2πδ(2 − δ)]

1
2

� C |log δ| ,

which can be really big when δ > 0 is small. The solution Θ of (1.3) is given by

Θ̂(ξ, t) = e−κt|ξ|2α Θ̂0(ξ), (1.5)

which, due to the support of Θ̂0, satisfies

|Θ̂(ξ, t)| � e−C0 t|Θ̂0(ξ)|, C0 := κ4−α.

We can easily find the equation of h by substituting (1.2) in (1.1),

J Liu et alNonlinearity 32 (2019) 5049
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∂th + v · ∇h + κ(−∆)αh = −U · ∇h − v · ∇Θ− U · ∇Θ,
v = ∇⊥Λ−1h,
h(x, 0) = h0(x),

 (1.6)

where Λ =
√
−∆ and U is the corresponding velocity associated with Θ, namely

U = ∇⊥Λ−1Θ. (1.7)

The main effort is devoted to establishing the small data global well-posedness for (1.6) in the 
aforementioned functional setting Hs(R2). We are able to prove the following theorem.

Theorem 1.1. Assume Θ0, Θ and U are given by (1.4), (1.5) and (1.7), respectively. Let 
0 � α < 1

2. Let s > 2 − α. Assume h0 ∈ Hs(R2). Then there exists a pure constant C1 depend-
ing on α only such that, if

‖h0‖Hs � C1κ,

then (1.6) has a unique global solution h satisfying

h ∈ C([0,∞); Hs(R2)) ∩ L2(0,∞; Hs+α(R2)),
‖h(t)‖Hs � C2κ,

where C2 is a pure constant independent of κ.

We make a remark on the possibility of replacing the functional space Hs with s > 2 − α in 
our Theorem 1.1 by the scaling invariant space Ḣ2−2α. The Sobolev space Hs with s > 2 − α 
arises naturally from the energy estimates. When we perform the L2-based energy estimates 

on Hs-norm of h (as in the proof of theorem 1.1), the dissipative term becomes ‖Λα+sh‖2
L2(R2) 

and the bound for the nonlinear term in general contains ‖∇h‖L∞(R2). To bound the nonlinear 
term suitably by the dissipative term, we need α+ s > 2 or s > 2 − α. This is why we need 
Hs with s > 2 − α. In order to lower the functional setting to the critical space Ḣ2−2α(R2), 
we need to employ some heavy machinery such as the Littlewood–Paley decomposition and 
Besov type space techniques (see [14]). We may have difficulty in implementing this method 
here due to the presence of three extra terms involving Θ or U, in addition to the standard 
nonlinear term v · ∇h. These terms do not share the same properties as v · ∇h.

Coti Zelati and Vicol in [11] were able to establish the continuity of the solution map of the 
supercritical SQG equation (1.1) with respect to α as α → 1

2. Their result involves a scaling 
invariant quantity and a natural issue is whether or not we could replace the norm ‖h‖Hs in 

theorem 1.1 with the corresponding scaling invariant quantity ‖h‖a
L2 ‖h‖1−a

Ḣ2 ? After reviewing 
the estimates on the terms in (2.2), we find that it would be extremely difficult to do so. The 
reason is that three terms in (2.2) each contains U or Θ and it appears hard to bound them by 

the combined quantity ‖h‖a
L2 ‖h‖1−a

Ḣ2 .
In the proof of theorem 1.1, the support of the Fourier transform of Θ is taken to be near 

the unit circle. The construction process still works even when the unit circle is changed to any 
curve away from the origin. Therefore a slight modification of the proof presented here allows 
us to reach the following conclusion.

Corollary 1.2. Let 0 � α < 1
2. Let Θ denote a solution of the corresponding fractional 

heat equation of (1.1), namely ∂tΘ+ κ(−∆)αΘ = 0. Assume that the Fourier transform of 
Θ is supported in a suitable region away from the origin. Then any solution of (1.1) with 
0 � α < 1

2 that is close to Θ in the space Hs(R2) with s > 2 − α is globally regular in time.

J Liu et alNonlinearity 32 (2019) 5049



5053

We remark that theorem 1.1 and corollary 1.2 can be extended to the generalized SQG 
equation (see, e.g. [4, 21])

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0, x ∈ R2, t > 0,
u = (u1, u2) = (−∂x2ψ, ∂x1ψ) , (−∆)βψ = θ,

where α � 0 and β ∈ [1, 2] are real parameters. We omit further details due to the similarities. 
The rest of this paper proves theorem 1.1.

2. Proof of theorem 1.1

This section proves theorem 1.1. To prepare for the proof, we state several bounds for Θ and 
U.

Lemma 2.1. Assume Θ and U are given by (1.5) and (1.7) with Θ0 defined by (1.4). Then, 
for any b  >  0 and any 0 < σ < 1

2,

‖ΛbΘ(t)‖L∞ � C δ
1
2 −σ e−C0t

‖ΛbΘ(t)‖L2 � C δ−σ e−C0t,

‖Λb(U −∇⊥Θ)‖L2 � C δ1−σ e−C0t.

Proof of lemma 2.1. By (1.4) and (1.5),

‖ΛbΘ‖L∞ �
∫

R2
|ξ|b|Θ(ξ)| dξ

� δ−
1
2 |log δ| e−C0t

∫

1−δ�|ξ|�1+δ

|ξ|bξ

� δ−
1
2 |log δ| e−C0t 4πδ(1 + δ)b

� C δ
1
2 |log δ| e−C0t

� C δ
1
2 −σ e−C0t,

where we have used the fact that δσ| log δ| � C. The proof of the second bound is similar. In 
fact, we can show that

‖ΛbΘ‖L2 � C |log δ| e−C0t � C δ−σ e−C0t.

By (1.4), (1.5) and (1.7),

‖Λb(U −∇⊥Θ)‖2
L2 = ‖Λb(∇⊥Λ−1Θ−∇⊥Θ)‖2

L2

=

∫

R2
|ξ|2b|ξ⊥|ξ|−1Θ̂(ξ)|2(1 − |ξ|)2 dξ

� (1 + δ)2b δ2 δ−1| log δ|2 e−2C0t 4πδ

= C δ2 | log δ|2 e−2C0t

� C δ2−2σ e−2C0t.

J Liu et alNonlinearity 32 (2019) 5049
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This completes the proof of lemma 2.1. □ 

Lemma 2.2. Assume Θ and U are given by (1.5) and (1.7) with Θ0 defined by (1.4). Let 
b � 0. Let 2 � q � ∞. Then, for any 0 < σ < 1

2,

‖ΛbΘ‖Lq � C δ
1
2 −

1
q −σ e−C0t, ‖ΛbU‖Lq � C δ

1
2 −

1
q −σ e−C0t.

The proof of lemma 2.2 is very similar to that of lemma 2.1. In addition, the following com-
mutator and bilinear estimates involving fractional derivatives will be used (see, e.g. [17, 18]).

Lemma 2.3. Let s  >  0. Let p, p1, p3 ∈ (1,∞) and p2, p4 ∈ [1,∞] satisfy

1
p
=

1
p1

+
1
p2

=
1
p3

+
1
p4

.

Then there exist two constants C1 and C2,

‖[Λs, f ]g‖L p � C1
(
‖Λsf‖L p1 ‖g‖L p2 + ‖Λs−1g‖L p3 ‖∇f‖L p4

)
,

‖Λs( f g)‖L p � C2 (‖Λsf‖L p1 ‖g‖L p2 + ‖Λsg‖L p3 ‖f‖L p4 ) .

We are now ready to prove theorem 1.1.

Proof of theorem 1.1. The local-in-time well-posedness of (1.6) can be obtained by fol-
lowing a standard procedure (see, e.g. [28]). This proof focuses on the global uniform bound 
via a bootstrap argument.

We estimate the Hs-norm in two steps. The first step estimates the L2-norm while the sec-
ond step bounds the homogeneous Ḣs-norm. Taking the inner product of the first equation in 
(1.6) with h and integrating by parts, we have

1
2

d
dt
‖h‖2

L2 + κ‖Λαh‖2
L2 = −

∫
v · ∇Θ h dx −

∫
U · ∇Θ h dx

:= I1 + I2.

By Hölder’s inequality and lemma 2.1,

|I1| � ‖∇Θ‖L∞ ‖v‖L2‖h‖L2 � C δ
1
2 −σ e−C0t ‖h‖2

L2 ,

where we have used the fact that

‖v‖L2 = ‖∇⊥Λ−1h‖L2 = ‖h‖L2 .

Due to ∇Θ · ∇⊥Θ = 0,

I2 = −
∫

(U −∇⊥Θ) · ∇Θ h dx.

By lemma 2.1,

|I2| � ‖U −∇⊥Θ‖L2 ‖∇Θ‖L∞ ‖h‖L2

� C δ
3
2 −2σ e−2C0t ‖h‖L2 .

J Liu et alNonlinearity 32 (2019) 5049
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By taking σ = 1
4 , we find

d
dt
‖h‖2

L2 + 2κ‖Λαh‖2
L2 � C δ

1
4 e−C0t ‖h‖2

L2 + C δ e−2C0t ‖h‖L2 . (2.1)

We now estimate the homogeneous Ḣs-norm of h. Applying Λs to the equation of h in (1.6) 
and then taking the inner product with Λsh, we find

1
2

d
dt
‖Λsh‖2

L2 + κ‖Λα+sh‖2
L2 = J1 + J2 + J3 + J4, (2.2)

where

J1 = −
∫

ΛshΛs(v · ∇h) dx,

J2 = −
∫

ΛshΛs(v · ∇Θ) dx,

J3 = −
∫

ΛshΛs(U · ∇h) dx,

J4 = −
∫

ΛshΛs(U · ∇Θ) dx.

J1, J2, J3 and J4 can be estimated as follows. Using the fact that ∇ · v = 0, we rewrite the int-
egral in the form of a commutator,

J1 = −
∫

Λsh [Λs, v · ∇]h dx,

where [Λs, v · ∇]h = Λs(v · ∇h)− v · ∇Λsh. By lemma 2.3,

|J1| � C ‖Λsh‖L2 (‖Λsv‖L2‖∇h‖L∞ + ‖∇v‖L∞ ‖Λsh‖L2) .

By Gagliardo–Nirenberg’s inequality,

‖∇h‖L∞ � C ‖Λαh‖
α+s−2

s
L2 ‖Λα+sh‖

2−α
s

L2 ,

‖Λsh‖L2 � C ‖Λαh‖
α
s

L2 ‖Λα+sh‖1−α
s

L2 .

Similar inequalities hold for v. Therefore,

|J1| � C ‖Λsh‖L2 ‖Λαh‖
α+s−2

s +α
s

L2 ‖Λα+sh‖
2−α

s +1−α
s

L2

� C ‖Λsh‖L2

(
‖Λαh‖2

L2 + ‖Λα+sh‖2
L2

)
,

where we have used the simple facts that ‖Λαv‖L2 = ‖Λαh‖L2 and ‖Λα+sv‖L2 = ‖Λα+sh‖L2. 

By lemmas 2.1–2.3, for 1
p + 1

q = 1
2 with p   >  2 but close to 2,

|J2| � ‖Λsh‖L2 (‖Λsv‖L2‖∇Θ‖L∞ + ‖v‖L p ‖Λs∇Θ‖Lq)

� C ‖Λsh‖2
L2 δ

1
2 −σ e−C0t + C ‖Λsh‖L2 ‖v‖Hs δ

1
2 −

1
q −σ e−C0t

J Liu et alNonlinearity 32 (2019) 5049
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where we have used the embedding inequality ‖v‖L p � C ‖v‖Hs. By setting q  =  8 and σ = 1
4 , 

we find

|J2| � C δ
1
8 e−C0t ‖h‖2

Hs .

Due to ∇ · U = 0,

J3 = −
∫

Λsh [Λs, U · ∇]h dx.

As in the estimate of J2, by lemmas 2.1–2.3,

|J3| � C ‖Λsh‖2
L2 ‖∇U‖L∞ + C ‖Λsh‖L2 ‖∇h‖L p ‖ΛsU‖Lq

� C δ
1
8 e−C0t ‖h‖2

Hs .

By lemmas 2.1–2.3,

|J4| � ‖Λsh‖L2 ‖Λs((U −∇⊥Θ) · ∇Θ)‖L2

� C ‖Λsh‖L2 ‖Λs(U −∇⊥Θ)‖L2 ‖∇Θ‖L∞

+ C ‖Λsh‖L2 ‖∇(U −∇⊥Θ)‖L p‖Λs∇Θ‖Lq

� C ‖Λsh‖L2 δ
3
2 −2σ e−2C0t + C ‖Λsh‖L2 ‖∇(U −∇⊥Θ)‖Hs δ

1
2 −

1
q −σ e−C0t

� C ‖Λsh‖L2 δ
3
2 −2σ e−2C0t + C ‖Λsh‖L2 δ2−σ− 1

q −
1
2 −σ e−2C0t.

By setting q  =  8 and σ = 1
4 , we have

|J4| � C ‖Λsh‖L2 δ
7
8 e−2C0t.

Inserting the bounds for J1 through J4 above in (2.2), we obtain

d
dt
‖Λsh‖2

L2 + 2κ‖Λα+sh‖2
L2 � C ‖Λsh‖L2

(
‖Λαh‖2

L2 + ‖Λα+sh‖2
L2

)

+ C δ
1
8 e−C0t ‖h‖2

Hs + C δ
7
8 e−2C0t‖Λsh‖L2 .

 (2.3)

Adding (2.1) and (2.3) leads to

d
dt
‖h‖2

Hs + (2κ− C3 ‖Λsh‖L2)
(
‖Λαh‖2

L2 + ‖Λα+sh‖2
L2

)

� C4 δ
1
8 e−C0t ‖h‖2

Hs + C5 δ
7
8 e−2C0t‖Λsh‖L2 .

 (2.4)

We apply the bootstrap argument to (2.4) to establish that ‖h(t)‖Hs remains uniform bounded 
if ‖h0‖Hs  is taken to be sufficiently small. The bootstrap argument starts with an ansatz that 
‖h(t)‖Hs is bounded, say

‖h(t)‖Hs � M

and shows that ‖h(t)‖Hs actually admits a smaller bound, say

‖h(t)‖Hs �
1
2

M

J Liu et alNonlinearity 32 (2019) 5049
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when ‖h0‖Hs is sufficiently small. A rigorous statement of the abstract bootstrap principle can 
be found in Tao’s book (see [26, p 21]). To apply the bootstrap argument to (2.4), we assume 
that

‖h(t)‖Hs � M :=
2κ
C3

or 2κ− C3 ‖Λsh‖L2 � 0.

It then follows from (2.4) that

d
dt
‖h‖2

Hs � C4 δ
1
8 e−C0t ‖h‖2

Hs + C5 δ
7
8 e−2C0t‖Λsh‖L2 .

By Gronwall’s inequality,

‖h(t)‖Hs � eC4 δ
1
8
∫ t

0 e−C0τ dτ
(
‖h0‖Hs +

∫ t

0
C5 δ

7
8 e−2C0τ dτ

)

� M1 ‖h0‖Hs + M1 δ
7
8 ,

 (2.5)

where

M1 = max

{
eC4C−1

0 δ
1
8 ,

1
2

C5C−1
0 eC4C−1

0 δ
1
8

}
.

If h0 and δ satisfies

‖h0‖Hs �
κ

2M1C3
, δ �

(
κ

2M1C3

) 8
7

, (2.6)

then (2.5) implies

‖h(t)‖Hs � M1
κ

2M1C3
+ M1

κ

2M1C3
=

κ

C3
=

M
2

.

The bootstrap argument then implies that, for all t  >  0,

‖h(t)‖Hs �
κ

C3

when h0 and δ satisfy (2.6). This completes the proof of theorem 1.1. □ 
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