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Abstract

This paper concerns itself with Besov space solutions of the 2-D quasi-geostrophic (QG) equation with dissipation induced by
a fractional Laplacian (−1)α . The goal is threefold: first, to extend a previous result on solutions in the inhomogeneous Besov
space Br

2,q [J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal.
36 (2004–2005) 1014–1030] to cover the case when r = 2 − 2α; second, to establish the global existence of solutions in the
homogeneous Besov space B̊r

p,q with general indices p and q; and third, to determine the uniqueness of solutions in any one of

the four spaces: Bs
2,q , B̊r

p,q , Lq ((0, T ); B
s+ 2α

q
2,q ) and Lq ((0, T ); B̊

r+
2α
q

p,q ), where s ≥ 2 − 2α and r = 1 − 2α +
2
p .

c© 2006 Elsevier Ltd. All rights reserved.

MSC: 35Q35; 76B03

Keywords: 2-D quasi-geostrophic equation; Besov space; Existence and uniqueness

1. Introduction

The 2-D dissipative quasi-geostrophic (QG) equation concerned here assumes the form

∂tθ + u · ∇θ + κ(−1)αθ = 0, (1.1)

where κ > 0 and α ≥ 0 are parameters, θ = θ(x, t) is a scalar function of x ∈ R2 and t ≥ 0, and u is a 2-D velocity
field determined by θ through the relations

u = (u1, u2) = (−∂x2ψ, ∂x1ψ) and (−1)
1
2ψ = θ. (1.2)

The fractional Laplacian operator (−1)β for a real number β is defined through the Fourier transform, namely

̂(−1)β f (ξ) = (2π |ξ |)2β f̂ (ξ)
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where the Fourier transform f̂ is given by

f̂ (ξ) =

∫
R2

f (x) e−2π ix ·ξ dx .

For notational convenience, we write Λ for (−1)
1
2 and combine the relations in (1.2) into

u = ∇
⊥Λ−1θ,

where ∇
⊥

= (−∂x2 , ∂x1). Physically, (1.1) models the temperature evolution on the 2-D boundary of a 3-D quasi-
geostrophic flow and is sometimes referred to as the surface QG equation [8,13].

Fundamental mathematical issues concerning the 2-D dissipative QG equation (1.1) include the global existence
of classical solutions and the uniqueness of solutions in weaker senses. In the subcritical case α > 1

2 , these issues
have been more or less resolved [9,14]. When α ≤

1
2 , the issue on the global existence of classical solutions becomes

extremely difficult. For the critical case α =
1
2 , this issue was first dealt with by Constantin et al. [7] and later studied

in [3,6,10,11,17] and other works. A recent work of Kiselev et al. [12] appears to have resolved this issue (in the
periodic case) by removing the L∞-smallness condition of [7]. Another recent progress on the critical dissipative QG
equation was given in the work by Caffarelli and Vasseur [1]. We also mention other interesting investigations on
related issues (see cf. [2,15,16]). The supercritical case α < 1

2 remains a big challenge. This paper is mainly devoted
to understanding the behavior of solutions of (1.1) with α < 1

2 . Although our attention is mainly focused on the case
when α < 1

2 , the results presented here also hold for α ≥
1
2 . We attempt to accomplish three major goals that we now

describe.
In [17], we established the global existence of solutions of (1.1) in the inhomogeneous Besov space Br

2,q with
1 ≤ q ≤ ∞ and r > 2 − 2α when the corresponding initial data θ0 satisfies

‖θ0‖Br
2,q

≤ Cκ

for some suitable constant C . Our first goal is to extend this result to cover the case when r = 2−2α. For this purpose,
we derive a new a priori bound on solutions of (1.1) in B2−2α

2,q . When combined with a procedure detailed in [17], this

new bound yields the global existence of solutions in B2−2α
2,q . As a special consequence of this result, the 2-D critical

QG equation ((1.1) with α =
1
2 ) possesses a global H1-solution if the initial datum is comparable to κ .

Our second goal is to explore solutions of (1.1) in the homogeneous Besov space B̊r
p,q with general indices

2 ≤ p < ∞ and 1 ≤ q ≤ ∞. This study was partially motivated by the lower bound∫
Rd

| f |
p−2 f · (−1)α f dx ≥ C22α j

‖ f ‖
p
L p (1.3)

valid for any function f that decays sufficiently fast at infinity and satisfies

supp f̂ ⊂ {ξ ∈ Rd
: K12 j

≤ |ξ | ≤ K22 j
},

where 0 < K1 ≤ K2 are constants and j is an integer. This inequality, recently established in [5,18], provides a lower
bound for the integral generated by the dissipative term when we estimate solutions of (1.1) in B̊r

p,q . Combining this
lower bound with suitable upper bounds for the nonlinear term, we are able to derive a priori estimates for solutions
of (1.1) in B̊r

p,q . Applying the method of successive approximation, we then establish the existence and uniqueness of
solutions emanating from initial data θ0 satisfying

‖θ0‖B̊r
p,q

≤ Cκ,

where 2 ≤ p < ∞, 1 ≤ q ≤ ∞ and r = 1 − 2α +
2
p . Setting q = p, we obtain as a special consequence the global

solutions in the homogeneous Sobolev space W̊ p,r , where 2 ≤ p < ∞ and r = 1 − 2α +
2
p .

The third goal is to determine the uniqueness of solutions of (1.1) in the spaces

Bs
2,q , B̊r

p,q , Lq
(
(0, T ); B

s+ 2α
q

2,q

)
and Lq

(
(0, T ); B̊

r+
2α
q

p,q

)
(1.4)
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where s ≥ 2 − 2α and r = 1 − 2α +
2
p . For two solutions in any one of these spaces, we establish suitable bounds

for their difference which yield as a special consequence the uniqueness. We conclude that two solutions θ and θ̃
emanating from the same initial datum must coincide if they satisfy

‖θ‖Br
2,q

≤ Cκ and ‖θ̃‖Br
2,q

≤ Cκ (1.5)

for some constant C . A parallel result holds for solutions in B̊r
p,q . In addition, we prove that any two solutions in

the space Lq((0, T ); B
r+

2α
q

2,q ) must be identical if they satisfy the same initial condition. The same conclusion can be

drawn for solutions in Lq((0, T ); B̊
r+

2α
q

p,q ). A special consequence is the uniqueness of H1 (or H̊1) solutions of the
critical QG equation if their norms are comparable to κ . A more significant corollary is the uniqueness of solutions
of the critical QG equation in L2((0, T ); H

3
2 ) (or L2((0, T ); H̊

3
2 )). Since H1 (or H̊1) solutions of the critical QG

equation are in general also in L2((0, T ); H
3
2 ) (or L2((0, T ); H̊

3
2 )), this corollary indicates the uniqueness of H1 (or

H̊1) solutions that do not necessarily satisfy (1.5).
The rest of this paper is divided into four sections and an Appendix A. Section 2 is further divided into three

subsections. Section 2.1 recalls the definitions of Besov spaces, Section 2.2 presents the definitions of two spaces
involving time and the relations between them, and Section 2.3 provides the lower bound (1.3). Section 3 focuses on
solutions in Br

2,q while Section 4 is devoted to solutions in B̊r
p,q . Section 5 deals with the uniqueness of solutions

in the spaces in (1.4). The Appendix A proves a Bernstein inequality involving fractional Laplacians and derives a
commutator estimate that is used in Sections 3 through 5.

We finally remark that after the completion of this manuscript, we learned that a result related to Theorem 4.2 in
Section 4 was obtained by Chen et al. [5].

2. Function spaces and a lower bound

This section makes necessary preparations for the subsequent sections. It is divided into three subsections.
Section 2.1 provides the definition of Besov spaces. Section 2.2 presents two spaces involving time and their relations.
The last subsection recalls a lower bound for an integral involving fractional Laplacians.

2.1. Besov spaces

We start with several notations. S denotes the usual Schwarz class and S ′ its dual, the space of tempered
distributions. S0 denotes a subspace of S defined by

S0 =

{
φ ∈ S :

∫
Rd
φ(x)xγ dx = 0, |γ | = 0, 1, 2, . . .

}
and S ′

0 denotes its dual. S ′

0 can be identified as

S ′

0 = S ′/S⊥

0 = S ′/P

where P denotes the space of multinomials.
To introduce the Littlewood–Paley decomposition, we write for each j ∈ Z

A j = {ξ ∈ Rd
: 2 j−1

≤ |ξ | < 2 j+1
}. (2.1)

The Littlewood–Paley decomposition asserts the existence of a sequence of functions {Φ j } j∈Z ∈ S such that

suppΦ̂ j ⊂ A j , Φ̂ j (ξ) = Φ̂0(2− jξ) or Φ j (x) = 2 jdΦ0(2 j x),

and
∞∑

j=−∞

Φ̂ j (ξ) =

{
1, if ξ ∈ Rd

\ {0},

0, if ξ = 0.
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Therefore, for a general function ψ ∈ S, we have
∞∑

j=−∞

Φ̂ j (ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd
\ {0}.

In addition, if ψ ∈ S0, then
∞∑

j=−∞

Φ̂ j (ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ Rd .

That is, for ψ ∈ S0,
∞∑

j=−∞

Φ j ∗ ψ = ψ

and hence
∞∑

j=−∞

Φ j ∗ f = f, f ∈ S ′

0

in the sense of weak-∗ topology of S ′

0. For notational convenience, we define

1 j f = Φ j ∗ f, j ∈ Z. (2.2)

For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space B̊s
p,q consists of f ∈ S ′

0 satisfying

‖ f ‖B̊s
p,q

≡ ‖2 js
‖1 j f ‖L p ‖lq < ∞.

We now choose Ψ ∈ S such that

Ψ̂(ξ) = 1 −

∞∑
j=0

Φ̂ j (ξ), ξ ∈ Rd .

Then, for any ψ ∈ S,

Ψ ∗ ψ +

∞∑
j=0

Φ j ∗ ψ = ψ

and hence

Ψ ∗ f +

∞∑
j=0

Φ j ∗ f = f (2.3)

in S ′ for any f ∈ S ′.
To define the inhomogeneous Besov space, we set

1′

j f =

0, if j ≤ −2,
Ψ ∗ f, if j = −1,
Φ j ∗ f, if j = 0, 1, 2, . . . .

(2.4)

The inhomogeneous Besov space Bs
p,q with 1 ≤ p, q ≤ ∞ and s ∈ R consists of functions f ∈ S ′ satisfying

‖ f ‖Bs
p,q ≡ ‖2 js

‖1′

j f ‖L p ‖lq < ∞.

For notational convenience, we will write 1 j for 1′

j . There will be no confusion if we keep in mind that 1 j ’s
associated with the homogeneous Besov spaces is defined in (2.2) while those associated with the inhomogeneous
Besov spaces are defined in (2.4).
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We will need the following characteristic properties of the 1 j ’s defined in (2.2) or in (2.4)

1 j11 j2 = 0 if | j1 − j2| ≥ 2,

Sk ≡

k−1∑
j>−∞

1 j → I as k → ∞,

1 j (Sk f 1k f ) = 0 if | j − k| ≥ 3. (2.5)

In addition, the following embedding relations of Besov spaces will be useful.

Proposition 2.1. Let s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞.

(1) If s > 0, then Bs
p,q ⊂ B̊s

p,q and

‖ f ‖Bs
p,q = ‖ f ‖L p + ‖ f ‖B̊s

p,q
.

(2) If s1 ≤ s2, then Bs2
p,q ⊂ Bs1

p,q . This inclusion relation is false for the homogeneous Besov spaces.
(3) If 1 ≤ q1 ≤ q2 ≤ ∞, then Bs

p,q1
⊂ Bs

p,q2
and B̊s

p,q1
⊂ B̊s

p,q2
.

(4) If 1 ≤ p1 ≤ p2 ≤ ∞ and s1 = s2 + d( 1
p1

−
1
p2
), then

Bs1
p1,q(R

d) ⊂ Bs2
p1,q(R

d), B̊s1
p1,q(R

d) ⊂ B̊s2
p1,q(R

d).

Finally, we remark that many frequently used function spaces are special cases of Besov spaces. The Sobolev
spaces H̊ s and H s defined by

H̊ s
= { f ∈ S ′

: |ξ |s | f̂ (ξ)| ∈ L2
}, H s

= { f ∈ S ′
: (1 + |ξ |2)

s
2 | f̂ (ξ)| ∈ L2

}

can be identified as

H̊ s
= B̊s

2,2, H s
= Bs

2,2.

For 0 < s < 1, Bs
∞,∞ and B̊s

∞,∞ are the same as the usual Hölder spaces Cs and C̊s , respectively, where C̊s is a
subspace of continuous functions with a seminorm. B1

∞,∞ is bigger than the space of Lipschitz functions and can be
identified with the Zygmund class Z yg characterized by the inequality

| f (x − h)− 2 f (x)+ f (x + h)| ≤ c|h| for some constant c and all x .

2.2. Two types of spaces involving time and their relations

In this subsection, we analyze the relationship between two types of function spaces that map time to Besov spaces.
For 1 ≤ ρ ≤ ∞, −∞ ≤ a < b ≤ ∞ and a real Banach space X , the space Lρ(a, b; X) consists of measurable
functions f : (a, b) → X with

‖ f ‖Lρ ((a,b);X) = ‖‖ f ‖X‖Lρ (a,b) ≡

(∫ b

a
‖ f (·, t)‖ρX dt

) 1
ρ

< ∞.

We are mainly interested in the cases when X = Bs
p,q or B̊s

p,q .
In [4], Chemin introduced the space L̃ρ((a, b); Bs

p,q), which consists of functions f for which the norm

‖ f ‖L̃ρ ((a,b);Bs
p,q )

≡ ‖2 js
‖1 j f ‖Lρ ((a,b);L p

x )
‖lq

in finite. The space L̃ρ((a, b); B̊s
p,q) is similarly defined. For notational convenience, we sometimes write L̃ρt (B

s
p,q)

for L̃ρ((0, t); Bs
p,q), Lρt (B

s
p,q) for Lρ((0, t); Bs

p,q), etc.
We investigate how Lρ((a, b); B̊s

p,q) is related to L̃ρ((a, b); B̊s
p,q) and how Lρ((a, b); Bs

p,q) is related to
L̃ρ((a, b); Bs

p,q). We start with some elementary facts.
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Lemma 2.2. Let { f j } be a sequence of measurable functions on an interval (a, b). Assume f j ≥ 0 on (a, b) for each
j . Then

∑
j

∫ b

a
f j (τ ) dτ =

∫ b

a

∑
j

f j (τ )dτ, (2.6)

sup
j

∫ b

a
f j (τ ) dτ ≤

∫ b

a
sup

j
f j (τ ) dτ. (2.7)

Proof. (2.6) can be obtained by applying the Monotone Convergence theorem to the sequence {gk}, where

gk =

∑
j≤k

f j .

(2.7) also follows from the Monotone Convergence theorem. In fact,

sup
j

∫ b

a
f j (τ ) dτ = lim

k→∞
max
j≤k

∫ b

a
f j dτ ≤ lim

k→∞

∫ b

a
max
j≤k

f j dτ =

∫ b

a
sup

j
f j (τ ) dτ. �

The following proposition is a consequence of (2.6).

Proposition 2.3. Let s ∈ R and ρ, p, q ∈ [1,∞]. If ρ = q, then

Lρ((a, b); B̊s
p,q) = L̃ρ((a, b); B̊s

p,q), Lρ((a, b); Bs
p,q) = L̃ρ((a, b); Bs

p,q).

Proof. In the case when 1 ≤ ρ = q < ∞,

‖ f ‖Lρ ((a,b);B̊s
p,q )

= ‖ f ‖L̃ρ ((a,b);B̊s
p,q )

=

(∫ b

a

∑
j

2 jsq
‖1 j f ‖

q
L p dτ

) 1
q

according to (2.6). In the case when ρ = q = ∞,

‖ f ‖L∞((a,b);B̊s
p,∞)

= ‖ f ‖L̃∞((a,b);B̊s
p,∞)

= sup
j

sup
t∈(a,b)

2 js
‖1 j f ‖L p . �

The inclusion relation in the following proposition follows from (2.7).

Proposition 2.4. For any s ∈ R and p ∈ [1,∞],

L1((a, b); B̊s
p,∞) ⊂ L̃1((a, b); B̊s

p,∞), L1((a, b); Bs
p,∞) ⊂ L̃1((a, b); Bs

p,∞).

Proof. By (2.7),

‖ f ‖L̃1((a,b);B̊s
p,∞)

= sup
j

2 js
∫ b

a
‖1 j f ‖L p dτ

≤

∫ b

a
sup

j
2 js

‖1 j f ‖L p dτ = ‖ f ‖L1((a,b);B̊s
p,∞)

.

The proof for L1((a, b); Bs
p,∞) ⊂ L̃1((a, b); Bs

p,∞) is the same. �
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2.3. A lower bound for an integral of fractional Laplacians

When we estimate solutions to partial differential equations with fractional Laplacian dissipation in L p-related
spaces, we often encounter an integral of the form

Dp( f ) ≡

∫
Rd

| f |
p−2 f · (−1)α f dx .

For α = 1, lower bounds for this integral can be derived through integration by parts. For a general fraction α > 0,
(−1)α is a nonlocal operator and lower bounds no longer follow from integration by parts. The following lower bound
was recently established in [5,18].

Proposition 2.5. Assume either α ≥ 0 and p = 2 or 0 ≤ α ≤ 1 and 2 < p < ∞. Assume f decays sufficiently fast
at infinity and f̂ satisfies

supp f̂ ⊂ {ξ ∈ Rd
: K12 j

≤ |ξ | ≤ K22 j
}

for some integer j and real numbers 0 < K1 ≤ K2. Then we have the lower bound

Dp( f ) ≥ C22α j
‖ f ‖

p
L p

for some constant C depending on d, α, K1 and K2.

3. Solutions in Br
2,q for r ≥ 2 − 2α

This section is concerned with solutions of the initial-value problem (IVP) for the 2-D dissipative QG equation
∂tθ + u · ∇θ + κ(−1)αθ = 0, x ∈ R2, t > 0,
u = ∇

⊥Λ−1θ, x ∈ R2, t > 0,
θ(x, 0) = θ0(x), x ∈ R2

(3.1)

in the inhomogeneous Besov space Br
2,q . The major results are presented in Theorem 3.2, which asserts the global

existence and uniqueness of solutions in Br
2,q . The proof of this theorem relies on several a priori estimates, which are

stated in Theorem 3.1.

Theorem 3.1. Let α > 0. Let θ solve the IVP (3.1). Then θ satisfies the following a priori estimates.

(1) In the case when r = 2 − 2α and q = ∞, we have

‖θ(t)‖B2−2α
2,∞

+ Cκ‖θ‖
L̃1

t (B
2
2,∞)

≤ ‖θ0‖B2−2α
2,∞

+ C‖θ‖L∞
t (B

2−2α
2,∞ )

‖θ‖
L̃1

t (B
2
2,∞)

. (3.2)

(2) In the case when r > 2 − 2α and q = ∞, we have for any s ∈ R,

‖θ(t)‖Bs
2,∞

+ Cκ‖θ‖
L̃1

t (B
s+2α
2,∞ )

≤ ‖θ0‖Bs
2,∞

+ C‖θ‖L∞
t (B

s
2,∞)

‖θ‖
L̃1

t (B
r+2α
2,∞ )

. (3.3)

In particular, we have by setting s = r ,

‖θ(t)‖Br
2,∞

+ Cκ‖θ‖
L̃1

t (B
r+2α
2,∞ )

≤ ‖θ0‖Br
2,∞

+ C‖θ‖L∞
t (B

r
2,∞)

‖θ‖
L̃1

t (B
r+2α
2,∞ )

.

(3) In the case when r ≥ 2 − 2α and 1 ≤ q < ∞, we have

‖θ(t)‖q
Br

2,q
+ Cqκ‖θ‖q

L̃q
t (B

r+
2α
q

2,q )

≤ ‖θ0‖
q
Br

2,q
+ Cq‖θ‖L∞

t (B
r
2,q )

‖θ‖
q

L̃q
t (B

r+
2α
q

2,q )

. (3.4)

Remark. Because of Proposition 2.3, the norm L̃q
t (B

r+
2α
q

2,q ) in (3.4) can be replaced by Lq
t (B

r+
2α
q

2,q ).

Proof of Theorem 3.1. For j ∈ Z, we apply 1 j to the first equation in (3.1) to obtain

∂t1 jθ + u · ∇1 jθ + κ(−1)α1 jθ = [u · ∇,1 j ]θ, (3.5)
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where the brackets [ ] represent the commutator operator, namely

[u · ∇,1 j ]θ ≡ u · ∇(1 jθ)−1 j (u · ∇θ).

Multiplying both sides by 21 jθ and integrating over R2, we obtain

d
dt

‖1 jθ‖
2
L2 + 2κ

∫
R2
1 jθ(−1)

α1 jθ dx = 2
∫
R2
1 jθ [u · ∇,1 j ]θ dx . (3.6)

By Bernstein’s inequality (Theorem A.1),∫
R2
1 jθ(−1)

α1 jθ dx =

∫
R2

|Λα1 jθ |
2 dx ≥ 22α j

‖1 jθ‖
2
L2 . (3.7)

By Hölder’s inequality,

2
∫
R2
1 jθ [u · ∇,1 j ]θ dx ≤ C ‖1 jθ‖L2‖[u · ∇,1 j ]θ‖L2 . (3.8)

Inserting (3.7) and (3.8) in (3.6), we find

d
dt

‖1 jθ‖L2 + Cκ22α j
‖1 jθ‖L2 ≤ C‖[u · ∇,1 j ]θ‖L2 .

Applying Proposition A.2 to the right-hand side yields

d
dt

‖1 jθ‖L2 + Cκ22α j
‖1 jθ‖L2 ≤ C

(
22 j

‖1 jθ‖
2
L2 + ‖1 jθ‖L2

∑
k≤ j−1

22k
‖1kθ‖L2 + 22 j

∑
k≥ j−1

‖1kθ‖
2
L2

)
.

(3.9)

We now prove (1). Multiplying (3.9) by 2(2−2α) j , integrating over [0, t] and taking supremum over j ≥ −1, we obtain

‖θ(t)‖B2−2α
2,∞

+ Cκ‖θ‖
L̃1

t (B
2
2,∞)

≤ ‖θ0‖B2−2α
2,∞

+ I1 + I2 + I3, (3.10)

where I1 and I2 are given by

I1 = sup
j

∫ t

0
2(2−2α) j 22 j

‖1 jθ‖
2
L2 dτ,

I2 = sup
j

∫ t

0
2(2−2α) j

‖1 jθ‖L2

∑
k≤ j−1

22k
‖1kθ‖L2 dτ,

I3 = sup
j

∫ t

0
2(2−2α) j 22 j

∑
k≥ j−1

‖1kθ‖
2
L2 dτ.

Clearly,

I1 ≤ sup
j

sup
0≤τ≤t

{2(2−2α) j
‖1 jθ‖L2}

∫ t

0
22 j

‖1 jθ‖L2 dτ

≤ sup
0≤τ≤t

sup
j

2(2−2α) j
‖1 jθ‖L2 sup

j
22 j

∫ t

0
‖1 jθ‖L2 dτ

= ‖θ‖L∞
t (B

2−2α
2,∞ )

‖θ‖
L̃1

t (B
2
2,∞)

. (3.11)

I2 ≤ sup
j

∫ t

0
22 j

‖1 jθ‖L2

∑
k≤ j−1

22α(k− j) 2(2−2α)k
‖1kθ‖L2 dτ

≤ sup
j

sup
0≤τ≤t

∑
k≤ j−1

22α(k− j)2(2−2α)k
‖1kθ‖L2 sup

j

∫ t

0
22 j

‖1 jθ‖L2 dτ
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≤ C sup
0≤τ≤t

sup
j

2(2−2α) j
‖1 jθ‖L2‖θ‖L̃1

t (B
2
2,∞)

= C‖θ‖L∞
t (B

2−2α
2,∞ )

‖θ‖
L̃1

t (B
2
2,∞)

(3.12)

I3 ≤ sup
j

∫ t

0

∑
k≥ j−1

2(2−2α)k
‖1kθ‖L2 22k

‖1kθ‖L2 2(4−2α)( j−k) dτ

≤ sup
0≤τ≤t

sup
k

2(2−2α)k
‖1kθ‖L2 sup

j

∑
k≥ j−1

∫ t

0
22k

‖1kθ‖L2 dτ2(4−2α)( j−k).

By Young’s inequality for the convolution of sequences,

I3 ≤ C‖θ‖L∞
t (B

2−2α
2,∞ )

sup
j

∫ t

0
22 j

‖1 jθ‖L2 dτ
∑
j≤0

2(4−2α) j

= C‖θ‖L∞
t (B

2−2α
2,∞ )

‖θ‖
L̃1

t (B
2
2,∞)

. (3.13)

Combining (3.10)–(3.13) yields the estimate (3.2).
To prove (2), we multiply both sides of (3.9) by 2s j , integrate with respect to t and take the supremum over all

j ≥ −1 to obtain

‖θ(t)‖Bs
2,∞

+ Cκ‖θ‖
L̃1

t (B
s+2α
2,∞ )

≤ ‖θ0‖Bs
2,∞

+ I4 + I5 + I6, (3.14)

where

I4 = sup
j

∫ t

0
2s j 22 j

‖1 jθ‖
2
L2 dτ,

I5 = sup
j

∫ t

0
2s j

‖1 jθ‖L2

∑
k≤ j−1

22k
‖1kθ‖L2 dτ,

I6 = sup
j

∫ t

0
2s j 22 j

∑
k≥ j−1

‖1kθ‖
2
L2 dτ.

We bound I4 and I5 as follows

I4 ≤ sup
j

sup
0≤τ≤t

{2s j
‖1 jθ‖L2}

∫ t

0
22 j

‖1 jθ‖L2 dτ

≤ sup
0≤τ≤t

sup
j

2s j
‖1 jθ‖L2 sup

j
2(r+2α) j

∫ t

0
‖1 jθ‖L2 dτ

= ‖θ‖L∞
t (B

s
2,∞)

‖θ‖
L̃1

t (B
r+2α
2,∞ )

for any r ≥ 2 − 2α. (3.15)

I5 ≤ sup
j

∫ t

0
2s j

‖1 jθ‖L2

∑
k≤ j−1

22k
‖1kθ‖L2 dτ

≤ sup
j

sup
0≤τ≤t

2s j
‖1 jθ‖L2 sup

j

j−1∑
k=−1

22k
∫ t

0
‖1kθ‖L2 dτ

≤ sup
0≤τ≤t

sup
j

2s j
‖1 jθ‖L2 sup

j
max

−1≤k≤ j−1
2(r+2α)k

∫ t

0
‖1kθ‖L2 dτ

j−1∑
k=−1

2(2−2α−r)k

= C‖θ‖L∞
t (B

s
2,∞)

‖θ‖
L̃1

t (B
r+2α
2,∞ )

for any r > 2 − 2α. (3.16)

I6 can be similarly bounded. Putting these bounds together gives the estimate (3.3).
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To prove (3), we multiply both sides of (3.9) by q2rq j
‖1 jθ‖

q−1
L2 , integrate over [0, t] and sum over j to obtain

‖θ(t)‖q
Br

2,q
+ Cqκ‖θ‖q

L̃q
t (B

r+
2α
q

2,q )

≤ ‖θ0‖
q
Br

2,q
+ I7 + I8 + I9, (3.17)

where

I7 = q
∑

j

∫ t

0
2rq j+2 j

‖1 jθ‖
q+1
L2 dτ,

I8 = q
∑

j

∫ t

0
2rq j

‖1 jθ‖
q
L2

∑
k≤ j−1

22k
‖1kθ‖L2 dτ,

I9 = q
∑

j

∫ t

0
2rq j 22 j

∑
k≥ j−1

‖1kθ‖
2
L2 dτ.

We bound I7 and I8 as follows

I7 = q
∑

j

∫ t

0
2r j

‖1 jθ‖L2 2(r+
2−r

q )q j
‖1 jθ‖

q
L2 dτ

≤ q
∑

j

sup
0≤τ≤t

2r j
‖1 jθ‖L2

∫ t

0
2(r+

2−r
q )q j

‖1 jθ‖
q
L2 dτ

≤ q sup
j

sup
0≤τ≤t

2r j
‖1 jθ‖L2

∑
j

2(r+
2−r

q )q j
∫ t

0
‖1 jθ‖

q
L2 dτ

≤ Cq sup
0≤τ≤t

sup
j

2r j
‖1 jθ‖L2

∑
j

2(r+
2α
q )q j

∫ t

0
‖1 jθ‖

q
L2 dτ

≤ Cq sup
0≤τ≤t

(∑
j

2r jq
‖1 jθ‖

q
L2

)1/q

‖θ‖
q

L̃q
t (B

r+
2α
q

2,q )

= Cq‖θ‖L∞
t (B

r
2,q )

‖θ‖
q

L̃q
t (B

r+
2α
q

2,q )

.

I8 = q
∑

j

∫ t

0
22α j+rq j

‖1 jθ‖
q
L2

∑
k≤ j−1

22α(k− j)2(2−2α)k
‖1kθ‖L2 dτ

≤ q sup
j

sup
0≤τ≤t

∑
k≤ j−1

22α(k− j) 2(2−2α)k
‖1kθ‖L2

∑
j

∫ t

0
2(r+

2α
q )q j

‖1 jθ‖
q
L2 dτ

≤ Cq sup
0≤τ≤t

sup
j

2(2−2α) j
‖1 jθ‖L2 ‖θ‖

q

L̃q
t (B

r+
2α
q

2,q )

≤ Cq sup
0≤τ≤t

sup
j

2r j
‖1 jθ‖L2‖θ‖

q

L̃q
t (B

r+
2α
q

2,q )

= Cq‖θ‖L∞
t (B

r
2,q )

‖θ‖
q

L̃q
t (B

r+
2α
q

2,q )

.

I9 is similarly bounded. After inserting these estimates in (3.17), we obtain (3.4). �

As in the proof of Theorem 3.1 of [17], we can establish the following theorem concerning solutions of the IVP
(3.1) in the inhomogeneous Besov space Br

2,q . The proof combines the a priori estimates of Theorem 3.1 and the
method of successive approximation. We omit the details of the proof.
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Theorem 3.2. Let κ > 0 and α > 0. Let 1 ≤ q ≤ ∞ and r ≥ 2 − 2α. Consider the IVP (3.1) with θ0 ∈ Br
2,q(R

2).
There exists a constant C0 depending on α, r and q only such that if

‖θ0‖Br
2,q

≤ C0κ,

then the IVP (3.1) has a unique solution θ ∈ Br
2,q(R

2) satisfying

‖θ(·, t)‖Br
2,q

≤ C1κ

for any t > 0 and some constant C1 depending on α, r and q. In addition, θ ∈ L̃1((0,∞); Br+2α
2,∞ ) in the case when

q = ∞ and θ ∈ Lq((0,∞); B
r+

2α
q

2,q ) in the case when q < ∞.

Setting q = 2 and α =
1
2 in Theorem 3.2, we obtain the following corollary on H1-solutions of the 2-D critical

QG equation.

Corollary 3.3. Consider the IVP (3.1) with α =
1
2 and θ0 ∈ H1(R2). There exists a constant C2 such that if

‖θ0‖H1 ≤ C2κ,

then the IVP (3.1) has a unique solution θ satisfying

θ ∈ C([0,∞); H1) ∩ L2((0,∞); H
3
2 )

and, for some constant C3,

‖θ(·, t)‖H1 ≤ C3κ for any t > 0.

4. Solutions in B̊r
p,q

In this section we study solutions of the IVP (3.1) in the homogeneous Besov space B̊
1−2α+

2
p

p,q for p ∈ [2,∞) and
q ∈ [1,∞]. We start with the following a priori estimates.

Theorem 4.1. Assume either α > 0 and p = 2 or 0 < α ≤ 1 and 2 < p < ∞. Let 1 ≤ q ≤ ∞, and −∞ < r < ∞.
Consider the IVP (3.1) with θ0 ∈ B̊r

p,q(R2). Then the corresponding solution θ of (3.1) obeys the following a priori
estimates.

(1) In the case when q < ∞, we have

‖θ(t)‖q
B̊r

p,q
+ C1κ‖θ‖

q

Lq
t (B̊

r+
2α
q

p,q )

≤ ‖θ0‖
q
B̊r

p,q
+ C2‖θ‖

L∞
t (B̊

1−2α+
d
p

p,q )

‖θ‖
q

Lq
t (B̊

r+
2α
q

p,q )

.

(2) In the case when q = ∞, we have

‖θ(t)‖B̊r
p,∞

+ C1κ‖θ‖L̃1
t (B̊

r+2α
p,∞ )

≤ ‖θ0‖B̊r
p,∞

+ C2‖θ‖
L∞

t (B̊
1−2α+

d
p

p,∞ )

‖θ‖
L̃1

t (B̊
r+2α
p,∞ )

.

Proof. We first consider the case when 1 ≤ q < ∞. Multiplying (3.5) by p|1 jθ |
p−21 jθ and integrating over R2,

we obtain

d
dt

‖1 jθ‖
p
L p + κpJ1 = pJ2, (4.1)

where J1 and J2 are given by

J1 =

∫
R2

|1 jθ |
p−21 jθ(−1)

α1 jθ dx,

J2 =

∫
R2

|1 jθ |
p−21 jθ [u · ∇,1 j ]θ dx .
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Applying the lower bound in Proposition 2.5, we have

J1 ≥ C 22α j
‖1 jθ‖

p
L p . (4.2)

By Hölder’s inequality,

J2 ≤ C ‖1 jθ‖
p−1
L p ‖[u · ∇,1 j ]θ‖L p . (4.3)

Inserting (4.2) and (4.3) in (4.1), we get

d
dt

‖1 jθ‖L p + Cκ22α j
‖1 jθ‖L p ≤ C‖[u · ∇,1 j ]θ‖L p .

Applying Proposition A.2 to the right-hand side yields

d
dt

‖1 jθ‖L p + Cκ22α j
‖1 jθ‖L p ≤ C

(
2(1+

2
p ) j

‖1 jθ‖
2
L p + ‖1 jθ‖L p

∑
−∞<k≤ j−1

2(1+
2
p )k‖1kθ‖L p

)
. (4.4)

For the sake of brevity, we have intentionally omitted the interaction term of high–high frequencies. As we have
seen in the previous section, this term can be similarly dealt with. Multiplying this inequality by q2rq j

‖1 jθ‖
q−1
L p ,

integrating over [0, t] and summing over j ∈ Z, we obtain

‖θ(t)‖q
B̊r

p,q
+ Cκq‖θ‖

q

Lq
t (B̊

r+
2α
q

p,q )

≤ ‖θ0‖
q
B̊r

p,q
+ J3 + J4,

where J3 and J4 are given by

J3 = C q
∑

j

∫ t

0
2rq j 2(1+

2
p ) j

‖1 jθ‖
q+1
L p dτ,

J4 = C q
∑

j

∫ t

0
2rq j

‖1 jθ‖
q
L p

∑
−∞<k≤ j−1

2(1+
2
p )k‖1kθ‖L p dτ.

To bound J3, we first rewrite it as

J3 = Cq
∑

j

∫ t

0
2(1−2α+

2
p ) j

‖1 jθ‖L p 2rq j+2α j
‖1 jθ‖

q
L p dτ.

According to Lemma 2.2,

J3 ≤ Cq
∫ t

0

∑
j

‖θ(τ )‖
B̊

1−2α+
2
p

p,q

2(r+
2α
q )q j

‖1 jθ‖
q
L p dτ

≤ Cq sup
τ∈[0,t]

‖θ(τ )‖
B̊

1−2α+
2
p

p,q

∫ t

0

∑
j

2(r+
2α
q )q j

‖1 jθ‖
q
L p dτ

= Cq‖θ‖
L∞

t (B̊
1−2α+

2
p

p,q )

‖θ‖
q

Lq
t (B̊

r+
2α
q

p,q )

.

To bound J4, we start by writing it as

J4 = Cq
∑

j

∫ t

0
2(r+

2α
q )q j

‖1 jθ‖
q
L p

∑
k≤ j−1

22α(k− j) 2(1−2α+
2
p )k‖1kθ‖L p dτ.

Since

∑
k≤ j−1

22α(k− j) 2(1−2α+
2
p )k‖1kθ‖L p ≤ C

( ∑
k≤ j−1

[2(1−2α+
2
p )k‖1kθ‖L p ]

q

) 1
q

≤ C ‖θ‖
B̊

1−2α+
2
p

p,q

,
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we have

J4 ≤ C q‖θ‖
L∞

t (B̊
1−2α+

2
p

p,q )

‖θ‖
q

Lq
t (B̊

r+
2α
q

p,q )

.

This completes the proof for (1).
In the case when q = ∞, we multiply (4.4) by 2r j , integrate over [0, t] and take the supremum over j ∈ Z. This

results in the inequality

‖θ(t)‖B̊r
p,∞

+ Cκ‖θ‖
L̃1

t (B̊
r+2α
p,∞ )

≤ ‖θ0‖B̊r
p,∞

+ C J5 + C J6,

where J5 and J6 are given by

J5 = sup
j

∫ t

0
2r j 2

(
1+

2
p

)
j
‖1 jθ‖

2
L p dτ,

J6 = sup
j

∫ t

0
2r j

‖1 jθ‖L p
∑

k≤ j−1

2(1+
2
p )k‖1kθ‖L p dτ.

J5 is bounded by

J5 ≤ sup
j

sup
τ∈[0,t]

2(1−2α+
2
p ) j

‖1 jθ(τ )‖L p ‖θ‖
L̃1

t (B̊
r+2α
p,∞ )

= ‖θ‖
L∞

t (B̊
1−2α+

2
p

p,∞ )

‖θ‖
L̃1

t (B̊
r+2α
p,∞ )

.

J6 can be bounded as follows

J6 = sup
j

∫ t

0
2(r+2α) j

‖1 jθ‖L p
∑

k≤ j−1

22α(k− j) 2(1−2α+
2
p )k‖1kθ‖L p dτ

≤ sup
j

∫ t

0
2(r+2α) j

‖1 jθ‖L p sup
k

2(1−2α+
2
p )k‖1kθ‖L p

∑
k≤ j−1

22α(k− j) dτ

= C ‖θ‖
L∞

t (B̊
1−2α+

2
p

p,∞ )

‖θ‖
L̃1

t (B̊
r+2α
p,∞ )

.

This completes the proof for the case q = ∞ and thus the proof of Theorem 4.1. �

Combining these a priori estimates with the method of successive approximation allows us to prove the following
existence and uniqueness result.

Theorem 4.2. Assume either α > 0 and p = 2 or 0 < α ≤ 1 and 2 < p < ∞. Let 1 ≤ q ≤ ∞ and r = 1 − 2α+
2
p .

Consider the IVP (3.1) with θ0 ∈ B̊r
p,q . Then there exists a constant C0 such that if

‖θ0‖B̊r
p,q

≤ C0κ,

then the IVP (3.1) has a unique solution θ satisfying

‖θ‖
q
L∞([0,∞);B̊r

p,q )
+ C1κ‖θ‖

q

Lq ((0,∞),B̊
r+

2α
q

p,q )

≤ C2 κ
q

in the case when 1 ≤ q < ∞, and

‖θ‖L∞([0,∞);B̊r
p,∞)

+ C1κ‖θ‖L̃1((0,∞),B̊r+2α
p,∞ )

≤ C2 κ

in the case when q = ∞, where C1 and C2 are constants depending on α, p and q only.

Remark. Although Theorem 4.2 does not cover the case when 1 ≤ p < 2, the global existence of solutions for
θ0 ∈ B̊r

p,q with 1 ≤ p < 2 can be established by combining this theorem with the Besov embedding stated in
Proposition 2.1. In fact, for any 1 ≤ p1 < 2 and r1 = 1 − 2α+

2
p1

, we can choose p2 ≥ 2 and r2 = 1 − 2α+
2
p2

such

that r1 −
2
p1

= r2 −
2
p2

. By the Besov embedding,

θ0 ∈ B̊r1
p1,q(R

2) ⊂ B̊r2
p2,q(R

2).
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Theorem 4.2 then concludes that θ0 leads to a global solution.

Proof of Theorem 4.2. We sketch the proof of this theorem very briefly. It consists of two major steps. The first step
is to consider a successive approximation sequence {θ (n)}∞n=1 satisfying

θ (1) = S2 θ0,

u(n) = ∇
⊥Λ−1 θ (n),

∂tθ
(n+1)

+ u(n) · ∇θ (n+1)
+ κ(−1)αθ (n+1)

= 0,
θ (n+1)(x, 0) = θ

(n+1)
0 (x) = Sn+2θ0(x)

and show that {θ (n)}∞n=1 is bounded uniformly in L∞([0,∞); B̊r
p,q). More precisely, we show that if ‖θ0‖B̊r

p,q
≤ C0κ ,

then

‖θ (n)‖
q
L∞([0,∞);B̊r

p,q )
+ C1κ‖θ

(n)
‖

q

Lq ((0,∞),B̊
r+

2α
q

p,q )

≤ C2 κ
q

in the case when 1 ≤ q < ∞, and

‖θ (n)‖L∞([0,∞);B̊r
p,∞)

+ C1κ‖θ
(n)

‖L̃1((0,∞),B̊r+2α
p,∞ )

≤ C2 κ

in the case when q = ∞, where C1 and C2 are constants independent of κ and n.
The second step proves that {θ (n)} is a Cauchy sequence in L∞([0,∞); B̊r−1

p,q ). That is, we show the sequence
{η(n)} with η(n) = θ (n) − θ (n−1) satisfies

‖η(n)‖L∞([0,∞);B̊r−1
p,q )

≤ C ‖θ0‖B̊r
p,q

2−n .

For this purpose, we consider the equations that {η(n)} satisfies
η(1) = S2θ0 − θ0,

w(n) = ∇
⊥Λ−1 η(n),

∂tη
(n+1)

+ u(n) · ∇η(n+1)
+ κ(−1)αη(n+1)

= w(n) · ∇θ (n),

η(n+1)(x, 0) = η
(n+1)
0 (x) = 1n+1θ0

and prove that

‖η(n)‖
q
L∞([0,∞);B̊r−1

p,q )
+ C1κ‖η

(n)
‖

q

Lq ((0,∞),B̊
r−1+

2α
q

p,q )

≤ C2 κ
q 2−qn

in the case when 1 ≤ q < ∞, and

‖η(n)‖L∞([0,∞);B̊r−1
p,∞)

+ C1κ‖η
(n)

‖L̃1((0,∞),B̊r−1+2α
p,∞ )

≤ C2 κ2−n

in the case when q = ∞. Therefore, there exists

θ ∈ L∞([0,∞); B̊r
p,q) ∩ Lq

(
(0,∞), B̊

r+
2α
q

p,q

)
for 1 ≤ q < ∞ and

θ ∈ L∞([0,∞); B̊r
p,∞) ∩ L̃1

(
(0,∞), B̊r+2α

p,∞

)
for q = ∞ such that

θ (n) → θ in L∞([0,∞); B̊r−1
p,q ) ∩ Lq

(
(0,∞), B̊

r−1+
2α
q

p,q

)
for 1 ≤ q < ∞,

θ (n) → θ in L∞([0,∞); B̊r−1
p,∞) ∩ L̃1

(
(0,∞), B̊r−1+2α

p,∞

)
for q = ∞.

One can then easily verify that θ satisfies the 2-D QG equation

∂tθ + u · ∇θ + κ(−1)αθ = 0

in B̊r−1
p,q , where u = ∇

⊥Λ−1 θ . We omit further details. �
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5. Uniqueness

This section addresses the issue of the uniqueness of solutions to the IVP (3.1) in Besov spaces. The major results
are presented in four theorems.

Theorem 5.1. Let α > 0. Let r ≥ 2 − 2α and 1 ≤ q ≤ ∞. Let T > 0 and let

θ ∈ L∞([0, T ); Br
2,q(R

2)) and θ̃ ∈ L∞([0, T ); Br
2,q(R

2))

be the solutions of the IVP (3.1) corresponding to the initial data

θ0 ∈ Br
2,q(R

2) and θ̃0 ∈ Br
2,q(R

2),

respectively. Let s < 1 −
2α
q . If η0 = θ̃0 − θ0 is in Bs

2,q , then the difference

η = θ̃ − θ

satisfies for 1 ≤ q < ∞

‖η‖
q
L∞

t (B
s
2,q )

+ C κ‖η‖q

Lq
t (B

s+ 2α
q

2,q )

≤ ‖η0‖
q
Bs

2,q
+ C

(
‖θ‖L∞

t (B
2−2α
2,q )

+ ‖θ̃‖L∞
t (B

2−2α
2,q )

)
‖η‖

q

Lq
t (B

s+ 2α
q

2,q )

(5.1)

and for q = ∞

‖η‖L∞
t (B

s
2,∞)

+ C κ‖η‖
L̃1

t (B
s+2α
2,∞ )

≤ ‖η0‖Bs
2,∞

+ C
(
‖θ‖L∞

t (B
2−2α
2,∞ )

+ ‖θ̃‖L∞
t (B

2−2α
2,∞ )

)
‖η‖

L̃1
t (B

s+2α
2,∞ )

(5.2)

for any t ≤ T . In particular, if θ0 = θ̃0 and

‖θ‖L∞
T (B

2−2α
2,q )

≤ C κ, ‖θ̃‖L∞
T (B

2−2α
2,q )

≤ C κ

for some suitable constant C, then θ = θ̃ .

In the special case when α =
1
2 and r = 1, this theorem reduces to a corollary on the uniqueness of H1 solutions

of the 2-D critical QG equation.

Corollary 5.2. Let α =
1
2 and T > 0. Assume that

θ ∈ L∞([0, T ); H1(R2)) and θ̃ ∈ L∞([0, T ); H1(R2))

are solutions of the IVP (3.1) corresponding to the initial data θ0 ∈ H1(R2) and θ̃0 ∈ H1(R2), respectively. Then
there exists a constant C such that if

‖θ‖L∞
T (H

1) ≤ C κ and ‖θ̃‖L∞
T (H

1) ≤ C κ,

then θ0 = θ̃0 implies θ = θ̃ .

Proof of Theorem 5.1. Let u and ũ be the corresponding velocities, namely

u = ∇
⊥Λ−1θ and ũ = ∇

⊥Λ−1θ̃ .

The difference η = θ̃ − θ satisfies the equation

∂tη + ũ · ∇η + w · ∇θ + κ(−1)αη = 0,

where w = ũ − u. Applying 1 j to this equation, we have

∂t1 jη + ũ · ∇1 jη + κ(−1)α1 jη = [̃u · ∇,1 j ]η −1 j (w · ∇θ).

Multiplying by1 jη, integrating over R2, bounding the dissipative term from below and applying the Hölder inequality
to the terms on the right, we find

d
dt

‖1 jη‖L2 + Cκ22α j
‖1 jη‖L2 ≤ C‖[̃u · ∇,1 j ]η‖L2 + C‖1 j (w · ∇θ)‖L2 . (5.3)
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For 1 ≤ q < ∞, we multiply this inequality by 2s jq
‖1 jη‖

q−1
L2 , integrate over [0, t] and sum over j to obtain

‖η(t)‖q
Bs

2,q
+ C κ‖η‖q

Lq
t (B

s+ 2α
q

2,q )

≤ K1 + K2,

where K1 and K2 are given by

K1 = C
∑

j

∫ t

0
2s jq

‖1 jη‖
q−1
L2 ‖[̃u · ∇,1 j ]η‖L2 dτ,

K2 = C
∑

j

∫ t

0
2s jq

‖1 jη‖
q−1
L2 ‖1 j (w · ∇θ)‖L2 dτ.

To estimate K1, we first change the order of summation and time integration and then apply Proposition A.2 to obtain

K1 ≤

∫ t

0
(K11 + K12 + K13) dt

with K11, K12 and K13 being given by

K11 = C
∑

j

2s jq
‖1 jη‖

q
L2

∑
m≤ j−1

22m
‖1m ũ‖L2 ,

K12 = C
∑

j

2s jq
‖1 jη‖

q−1
L2 ‖1 j ũ‖L2

∑
m≤ j−1

22m
‖1mη‖L2 ,

K13 = C
∑

j

2s jq
‖1 jη‖

q−1
L2 ‖1 j ũ‖L2 22 j

‖1 jη‖L2 .

For K11, we have

K11 = C
∑

j

2(s+
2α
q ) jq

‖1 jη‖
q
L2

∑
m≤ j−1

22α(m− j) 2(2−2α)m
‖1m ũ‖L2

≤ C
∑

j

2(s+
2α
q ) jq

‖1 jη‖
q
L2

( ∑
k≤ j−1

22α(m− j)q/(q−1)

)1−
1
q

‖ũ‖B2−2α
2,q

= C ‖η‖
q

B
s+ 2α

q
2,q

‖ũ‖B2−2α
2,q

. (5.4)

For s < 2 −
2α
q , K12 can be bounded as follows

K12 = C
∑

j

2(s+
2α
q ) j (q−1)

‖1 jη‖
q−1
L2 2(2−2α) j

‖1 j ũ‖L2

∑
m≤ j−1

2(2−s− 2α
q )(m− j) 2(s+

2α
q )m‖1mη‖L2

≤ C ‖η‖
q−1

B
s+ 2α

q
2,q

‖ũ‖B2−2α
2,q

( ∑
k≤ j−1

2(2−s− 2α
q )(m− j)q/(q−1)

)1−
1
q
( ∑

k≤ j−1

2(s+
2α
q )mq

‖1mη‖
q
L2

) 1
q

≤ C ‖η‖
q

B
s+ 2α

q
2,q

‖ũ‖B2−2α
2,q

.

K13 =

∑
j

2
(

s+ 2α
q

)
jq

‖1 jη‖
q
L2 2(2−2α) j

‖1 j ũ‖L2 ≤ C ‖η‖
q

B
s+ 2α

q
2,q

‖ũ‖B2−2α
2,q

.

To bound K2, we obtain after applying Proposition A.2

K2 ≤ C
∫ t

0
(K21 + K22 + K23) dτ,
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where K21, K22 and K23 are given by

K21 =

∑
j

2s jq
‖1 jη‖

q−1
L2 ‖S j−1w‖L∞‖∇1 jθ‖L2 ,

K22 =

∑
j

2s jq
‖1 jη‖

q−1
L2 ‖1 jw‖L2 ‖∇S j−1θ‖L∞ ,

K23 =

∑
j

2s jq
‖1 jη‖

q−1
L2 ‖1 jw‖L2 ‖∇1 jθ‖L∞ .

For s < 1 −
2α
q , K21 is bounded by

K21 ≤

∑
j

2s jq
‖1 jη‖

q−1
L2 2 j

‖1 jθ‖L2

∑
m≤ j−1

2m
‖1mw‖L2

=

∑
j

2(s+
2α
q ) j (q−1)

‖1 jη‖
q−1
L2 2(2−2α) j

‖1 jθ‖L2

∑
m≤ j−1

2(1−s− 2α
q )(m− j) 2(s+

2α
q )m‖1mw‖L2

≤ C ‖η‖
q−1

B
s+ 2α

q
2,q

‖θ‖B2−2α
2,q

‖w‖
B

s+ 2α
q

2,q

.

For K22 and K23, we have

K22 ≤

∑
j

2(s+
2α
q ) j (q−1)

‖1 jη‖
q−1
L2 2(s+

2α
q ) j

‖1 jw‖L2

∑
m≤ j−1

22α(m− j)2(2−2α)m
‖1mθ‖L2

≤ C ‖η‖
q−1

B
s+ 2α

q
2,q

‖w‖
B

s+ 2α
q

2,q

‖θ‖B2−2α
2,q

,

K23 ≤

∑
j

2(s+
2α
q ) j (q−1)

‖1 jη‖
q−1
L2 2(s+

2α
q ) j

‖1 jw‖L2 2(2−2α) j
‖1 jθ‖L2

≤ C ‖η‖
q−1

B
s+ 2α

q
2,q

‖w‖
B

s+ 2α
q

2,q

‖θ‖B2−2α
2,q

.

Combining the estimates for K1 and K2, we obtain

‖η(t)‖q
Bs

2,q
+ C κ‖η‖q

Lq
t (B

s+ 2α
q

2,q )

≤ ‖η0‖
q
Bs

2,q
+ C

∫ t

0
‖η‖

q

B
s+ 2α

q
2,q

‖ũ‖B2−2α
2,q

dτ

+ C
∫ t

0
‖η‖

q−1

B
s+ 2α

q
2,q

‖w‖
B

s+ 2α
q

2,q

‖θ‖B2−2α
2,q

dτ. (5.5)

Since ũ = ∇
⊥Λ−1θ̃ and w = ∇

⊥Λ−1η are Riesz transforms of θ̃ and η, respectively,

‖ũ‖B2−2α
2,q

≤ ‖θ̃‖B2−2α
2,q

and ‖w‖
B

s+ 2α
q

2,q

≤ ‖η‖
B

s+ 2α
q

2,q

according to the boundedness of Riesz transforms on L2. Inserting these estimates in (5.5), we establish (5.1).
In the case when q = ∞, we integrate (5.3) with respect to t , multiply by 2s j and take the supremum over j to

obtain

‖η(t)‖Bs
2,∞

+ C κ‖η‖
L̃1

t (B
s+2α
2,∞ )

≤ K3 + K4,

where K3 and K4 are given by

K3 = sup
j

2s j
∫ t

0
‖[̃u · ∇,1 j ]η‖L2 dτ, K4 = C sup

j
2s j

∫ t

0
‖1 j (w · ∇θ)‖L2 dτ.
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As in the estimates for K1 and K2, we split each of K3 and K4 into three terms. For the sake of brevity, we shall only
provide the details for K31, a term in K3.

K31 = C sup
j

2s j
∫ t

0
‖1 jη‖L2

∑
m≤ j−1

22m
‖1m ũ‖L2 dτ

= C sup
j

2(s+2α) j
∫ t

0
‖1 jη‖L2

∑
m≤ j−1

22α(m− j) 2(2−2α)m
‖1m ũ‖L2 dτ

≤ C sup
0≤τ≤t

sup
m

2(2−2α)m
‖1m ũ‖L2 sup

j
2(s+2α) j

∫ t

0
‖1 jη‖L2 dτ

= C ‖ũ‖L∞
t (B

2−2α
2,∞ )

‖η‖
L̃1

t (B
s+2α
2,∞ )

.

(5.2) is then established after combining the estimates for K3 and K4. �

Theorem 5.3. Let α > 0. Let r ≥ 2 − 2α and 1 ≤ q < ∞. Let T > 0 and let

θ ∈ Lq
(
(0, T ); B

r+
2α
q

2,q (R2)

)
and θ̃ ∈ Lq

(
(0, T ); B

r+
2α
q

2,q (R2)

)
be the solutions of the IVP (3.1) corresponding to the initial data θ0 and θ̃0, respectively. Let s < 2. If η0 = θ̃0 − θ0
is in Bs

2,q , then the difference

η = θ̃ − θ

satisfies, for any t ≤ T ,

‖η(t)‖q
Bs

2,q
≤ ‖η0‖

q
Bs

2,q
+ C

∫ t

0

‖θ(τ )‖
q

B
2−2α+

2α
q

2,q

+ ‖θ̃ (τ )‖
q

B
2−2α+

2α
q

2,q

 ‖η(τ)‖
q
Bs

2,q
dτ. (5.6)

In particular, if θ0 = θ̃0, then

θ = θ̃ . (5.7)

For the sake of brevity, we did not include the case when q = ∞ in this theorem. We now state as a corollary a
special consequence of this theorem.

Corollary 5.4. Let α =
1
2 and T > 0. Let θ and θ̃ satisfying

θ ∈ L2((0, T ); H
3
2 (R2)) and θ̃ ∈ L2((0, T ); H

3
2 )

be two solutions of the IVP for the 2-D critical QG equation (3.1) corresponding to the initial data θ0 and θ̃0,
respectively. If θ0 = θ̃0, then θ = θ̃ .

Proof of Theorem 5.3. We estimate the difference η = θ̃ − θ in Bs
2,q . We start with the inequality

d
dt

‖1 jη‖L2 + Cκ22α j
‖1 jη‖L2 ≤ C‖[̃u · ∇,1 j ]η‖L2 + C‖1 j (w · ∇θ)‖L2 .

Integrating with respect to t , we obtain

‖1 jη‖L2 ≤ E j (t)‖1 jη0‖L2 + C
∫ t

0
E j (t − τ)‖[̃u · ∇,1 j ]η‖L2 dτ + C

∫ t

0
E j (t − τ)‖1 j (w · ∇θ)‖L2 dτ,

where E j (t) = exp(−C κ22α j t). Multiplying both sides by 2s j , raising them to the qth power and summing over j ,
we obtain

‖η(t)‖q
Bs

2,q
≤ ‖η0‖

q
Bs

2,q
+ L1 + L2, (5.8)
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where

L1 = C
∑

j

2s jq
(∫ t

0
E j (t − τ)‖[̃u · ∇,1 j ]η‖L2 dτ

)q

,

L2 = C
∑

j

2s jq
(∫ t

0
E j (t − τ)‖1 j (w · ∇θ)‖L2 dτ

)q

.

Applying Proposition A.2, we have

L1 ≤ L11 + L12 + L13,

where

L11 = C
∑

j

2s jq

(∫ t

0
E j (t − τ)‖1 jη‖L2

∑
m≤ j−1

22m
‖1m ũ‖L2 dτ

)q

,

L12 = C
∑

j

2s jq

(∫ t

0
E j (t − τ)‖1 j ũ‖L2

∑
m≤ j−1

22m
‖1mη‖L2 dτ

)q

,

L13 = C
∑

j

2s jq
(∫ t

0
E j (t − τ)‖1 j ũ‖L2 22 j

‖1 jη‖L2 dτ
)q

.

We now provide the estimate for L11. By Hölder’s inequality,

L11 ≤ C
∑

j

2s jq
(∫ t

0
E

q
q−1
j (t − τ)ds

)q−1 ∫ t

0

(
‖1 jη‖L2

∑
m≤ j−1

22m
‖1m ũ‖L2

)q

dτ

= C
∑

j

2s jq−2α j (q−1)
∫ t

0

(
‖1 jη‖L2

∑
m≤ j−1

22m
‖1m ũ‖L2

)q

dτ

= C
∫ t

0

∑
j

2s jq
‖1 jη‖

q
L2

( ∑
m≤ j−1

2(2α−
2α
q )(m− j)2(2−2α+

2α
q )m‖1m ũ‖L2

)q

dτ

≤ C
∫ t

0
‖η(τ)‖

q
Bs

2,q
‖ũ(τ )‖q

B
(2−2α+

2α
q )

2,q

dτ.

For L12 and L13, we have

L12 ≤ C
∑

j

2s jq 2−2α j (q−1)
∫ t

0

(
‖1 j ũ‖L2

∑
m≤ j−1

22m
‖1mη‖L2

)q

dτ

= C
∫ t

0

∑
j

2(2−2α+
2α
q ) jq

‖1 j ũ‖
q
L2

( ∑
m≤ j−1

2(2−s)(m− j)2sm
‖1mη‖L2

)q

dτ

≤ C
∫ t

0
‖ũ(τ )‖q

B
(2−2α+

2α
q )

2,q

‖η(τ)‖
q
Bs

2,q
dτ.

L13 ≤ C
∑

j

2s jq 2−2α j (q−1)
∫ t

0

(
‖1 j ũ‖L2 22 j

‖1 jη‖L2

)q
dτ

= C
∫ t

0

∑
j

2(2−2α+
2α
q ) jq

‖1 j ũ‖
q
L2 2s jq

‖1 jη‖
q
L2 dτ

≤ C
∫ t

0
‖ũ(τ )‖q

B
(2−2α+

2α
q )

2,q

‖η(τ)‖
q
Bs

2,q
dτ.
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L2 can be similarly estimated and is bounded by

L2 ≤ C
∫ t

0
‖θ(τ )‖

q

B
(2−2α+

2α
q )

2,q

‖w(τ)‖
q
Bs

2,q
dτ.

Combining (5.8) with the estimates for L1 and L2 and using the fact that

‖ũ(τ )‖q

B
(2−2α+

2α
q )

2,q

≤ ‖θ̃ (τ )‖
q

B
(2−2α+

2α
q )

2,q

and ‖w(τ)‖
q
Bs

2,q
≤ ‖η(τ)‖

q
Bs

2,q
,

we establish (5.6). (5.7) is obtained by applying Gronwall’s inequality to (5.6). �

The following two theorems assert the uniqueness of solutions of the 2-D QG equation in homogeneous Besov
spaces. We omit their proofs since they are similar to those of Theorems 5.1 and 5.3.

Theorem 5.5. Assume either α > 0 and p = 2 or 0 < α ≤ 1 and 2 < p < ∞. Let 1 ≤ q ≤ ∞ and r = 1 − 2α+
2
p .

Let T > 0. Let

θ ∈ L∞([0, T ); B̊r
p,q(R

2)) and θ̃ ∈ L∞([0, T ); B̊r
p,q(R

2))

be the solutions of the IVP (3.1) corresponding to the initial data

θ0 ∈ B̊r
p,q(R

2) and θ̃0 ∈ B̊r
p,q(R

2),

respectively. Let s < 1 −
2α
q . If η0 = θ̃0 − θ0 is in B̊s

p,q(R2), then the difference

η = θ̃ − θ

satisfies for 1 ≤ q < ∞

‖η‖
q
L∞

t (B̊
s
B̊,q
)
+ C κ‖η‖q

Lq
t (B̊

s+ 2α
q

p,q )

≤ ‖η0‖
q
B̊s

p,q
+ C

(
‖θ‖L∞

t (B̊r
p,q )

+ ‖θ̃‖L∞
t (B̊r

p,q )

)
‖η‖

q

Lq
t (B̊

s+ 2α
q

p,q )

(5.9)

and for q = ∞

‖η‖L∞
t (B̊

s
p,∞)

+ C κ‖η‖
L̃1

t (B̊
s+2α
p,∞ )

≤ ‖η0‖B̊s
p,∞

+ C
(
‖θ‖L∞

t (B̊r
p,∞)

+ ‖θ̃‖L∞
t (B̊r

p,∞)

)
‖η‖

L̃1
t (B̊

s+2α
p,∞ )

(5.10)

for any t ≤ T . In particular, if θ0 = θ̃0 and

‖θ‖L∞
T (B̊

r
2,q )

≤ C κ, ‖θ̃‖L∞
T (B̊

r
2,q )

≤ C κ

for some suitable constant C, then

θ = θ̃ .

Theorem 5.6. Assume either α > 0 and p = 2 or 0 < α ≤ 1 and 2 < p < ∞. Let 1 ≤ q < ∞ and r = 1 − 2α+
2
p .

Let T > 0. Let

θ ∈ Lq
(
(0, T ); B̊

r+
2α
q

p,q (R2)

)
and θ̃ ∈ Lq

(
(0, T ); B̊

r+
2α
q

p,q (R2)

)
be the solutions of the IVP (3.1) corresponding to the initial data θ0 and θ̃0, respectively. Let s < 2. If η0 = θ̃0 − θ0
is in B̊s

p,q(R2), then the difference

η = θ̃ − θ

satisfies, for any t ≤ T ,

‖η(t)‖q
B̊s

p,q
≤ ‖η0‖

q
B̊s

p,q
+ C

∫ t

0

(
‖θ(τ )‖

q

B̊
r+

2α
q

p,q

+ ‖θ̃ (τ )‖
q

B̊
r+

2α
q

p,q

)
‖η(τ)‖

q
B̊s

p,q
dτ.
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In particular, if θ0 = θ̃0, then

θ = θ̃ .
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Appendix A

This appendix proves a Bernstein type inequality for fractional derivatives and a commutator estimate that has been
used in the previous sections.

Theorem A.1. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

(1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd
: |ξ | ≤ K 2 j

},

for some integer j and a constant K > 0, then

‖(−1)α f ‖Lq (Rd ) ≤ C1 22α j+ jd( 1
p −

1
q )‖ f ‖L p(Rd ).

(2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd
: K12 j

≤ |ξ | ≤ K22 j
} (A.1)

for some integer j and constants 0 < K1 ≤ K2, then

C1 22α j
‖ f ‖Lq (Rd ) ≤ ‖(−1)α f ‖Lq (Rd ) ≤ C2 22α j+ jd( 1

p −
1
q )‖ f ‖L p(Rd ),

where C1 and C2 are constants depending on α, p and q only.

Proof. We prove (2) and the proof of (1) is similar. To prove (2), it suffices to show

‖ f ‖Lq ≤ C2 jd( 1
p −

1
q )‖ f ‖L p (A.2)

and

C22α j
‖ f ‖L p ≤ ‖(−1)α f ‖L p ≤ C22α j

‖ f ‖L p . (A.3)

Because of (A.1), there exists a Φ j such that

f̂ = Φ̂ j f̂ , (A.4)

where Φ j is as defined in Section 2. That is, f = Φ j ∗ f . By Young’s inequality

‖ f ‖Lq ≤ ‖Φ j‖L p1 ‖ f ‖L p ,

where 1
p1

= 1 +
1
q −

1
p . Noticing that Φ j (x) = 2 jdΦ0(2 j x), we have

‖Φ j‖L p1 = 2 jd( 1
p −

1
q )‖Φ0‖L p1

and this proves (A.2).
To prove (A.3), we choose Φ j such that

̂(−1)α f (ξ) = (2π |ξ |)2α f̂ (ξ) = Φ̂ j (ξ)(2π |ξ |)2α f̂ (ξ). (A.5)

That is,

(−1)α f = K j ∗ f, (A.6)
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where

K j (x) =

∫
Rd

e2π ix ·ξ Φ̂ j (ξ)(2π |ξ |)2α dξ.

Since Φ̂ j (ξ) = Φ̂0(2− jξ), we have

K j (x) = 22α j 2d j (2π)2α
∫
Rd

e2π i2 j x ·ξ Φ̂0(ξ)|ξ |
2α dξ.

By repeated integration by parts, we obtain

|K j (x)| ≤ C 22α j 2d j
|2 j x |

−s

for any s > 0. Therefore,

‖K j‖L1 ≤ C 22α j . (A.7)

Applying Young’s inequality to (A.6) and using (A.7), we prove the right half of (A.3). To prove the left half of (A.3),
we have from (A.5) that

f̂ (ξ) = (Φ̂ j (ξ)(2π |ξ |)2α)−1 ̂(−1)α f (ξ), ξ ∈ A j

where A j is defined in (2.1). This, in turn, implies

f = L j ∗ (−1)α f with L j (x) =

∫
A j

e2π ix ·ξ (Φ̂ j (ξ)(2π |ξ |)2α)−1 dξ.

The rest is then similar to the proof for the right half of (A.3). This completes the proof of Theorem A.1. �

We now state and prove the commutator estimate.

Proposition A.2. Let j be an integer. Let 1 ≤ p < ∞ and 1 ≤ r ≤ ∞. Let u be a divergence free vector field. Then

‖[u · ∇,1 j ]θ‖L p ≤ C

(
2(1+

d
r ) j

‖1 j u‖L p ‖1 jθ‖Lr + ‖1 jθ‖L p
∑

k≤ j−1

2(1+
d
r )k‖1ku‖Lr

+ ‖1 j u‖L p
∑

k≤ j−1

2(1+
d
r )k‖1kθ‖Lr + 2(1+

d
r ) j

∑
k≥ j−1

‖1ku‖Lr ‖1kθ‖L p

)
, (A.8)

where the brackets [ ] represent the commutator operator, namely

[u · ∇,1 j ]θ ≡ u · ∇(1 jθ)−1 j (u · ∇θ).

In particular, if d = 2, 2 ≤ p < ∞ and u = ∇
⊥Λ−1θ , then

‖[u · ∇,1 j ]θ‖L p ≤ C

(
2(1+

2
p ) j

‖1 jθ‖
2
L p + ‖1 jθ‖L p

∑
k≤ j−1

2(1+
2
p )k‖1kθ‖L p

+ 2(1+
2
p ) j ∑

k≥ j−1

‖1kθ‖
2
L p

)
. (A.9)

Proof. Splitting [u · ∇,1 j ]θ into paraproducts, we have

[u · ∇,1 j ]θ = I1 + I2 + I3 + I4 + I5,

where

I1 =

∑
k

Sk−1u · ∇1 j1kθ −1 j (Sk−1u · ∇1kθ),

I2 =

∑
k

1ku · ∇1 j Sk−1θ,
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I3 =

∑
k

1 j (1ku · ∇Sk−1θ),

I4 =

∑
k

∑
|k−l|≤1

1ku · ∇1 j1lθ,

I5 =

∑
k

∑
|k−l|≤1

1 j (1ku · ∇1lθ).

We bound the L p-norms of these terms. According to (2.5), the summation in I1 is only over k satisfying |k − j | ≤ 2.
Using the definition of 1 j , we can write

I1 =

∑
|k− j |≤2

∫
Rd

Φ j (x − y)(Sk−1u(x)− Sk−1u(y)) · ∇1kθ(y) dy.

We integrate by parts and use the fact that ∇ · u = 0 to obtain

I1 = −

∑
|k− j |≤2

∫
Rd

∇Φ j (x − y) · (Sk−1u(x)− Sk−1u(y))1kθ(y) dy.

By Young’s inequality,

‖I1‖L p ≤ C
∑

|k− j |≤2

‖∇Sk−1u‖L∞ ‖1kθ‖L p

∫
Rd

|x ||∇Φ j (x)| dx

= C
∑

|k− j |≤2

‖1kθ‖L p ‖∇Sk−1u‖L∞ .

Similarly, the summation in I2, I3 and I4 are also only over k satisfying |k − j | ≤ 2. The estimates for these terms are
simple and their L p-norms are both bounded by

‖I2‖L p , ‖I3‖L p ≤ C
∑

|k− j |≤2

‖1ku‖L p‖∇Sk−1θ‖L∞ ,

‖I4‖L p ≤ C
∑

|k− j |≤2,|k−l|≤1

‖1ku‖L p‖∇1lθ‖L∞ .

The estimates for I5 are slightly different. The summation is over all k ≥ j − 1, namely

I5 =

∑
k≥ j−1,|k−l|≤1

1 j (1ku · ∇1lθ).

Since u is divergence free, we obtain after applying Bernstein’s inequality

‖I5‖L p ≤ C2(1+
d
r ) j

∑
k≥ j−1,|k−l|≤1

‖1 j (1ku1lθ)‖Lq ,

where q satisfies 1
r +

1
p =

1
q . By Hölder’s inequality

|I5| ≤ C 2(1+
d
r ) j

∑
k≥ j−1,|k−l|≤1

‖1ku‖Lr ‖1lθ‖L p .

Since the summations in the bounds for I1 through I4 are only over a finite number of k’s, it suffices to consider the
typical term with k = j in our further estimates. It follows from Bernstein’s inequalities that

‖∇1 jθ‖L∞ ≤ C 2(1+
d
r ) j

‖1 jθ‖Lr ,

‖∇S j−1θ‖L∞ ≤

∑
k≤ j−1

‖∇1kθ‖L∞ ≤ C
∑

k≤ j−1

2(1+
d
r )k ‖1kθ‖Lr .

(A.9) is a consequence of (A.8) since ‖1 j u‖L p ≤ C ‖1 jθ‖L p . �
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