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Abstract. The two-dimensional (2D) quasi-geostrophic (QG) equation is a 2D model of the
3D incompressible Euler equations, and its dissipative version includes an extra term bearing the
operator (−∆)α with α ∈ [0, 1]. Existing research appears to indicate the criticality of α = 1

2
in

the sense that the issue of global existence for the 2D dissipative QG equation becomes extremely
difficult when α ≤ 1

2
. It is shown here that for any α ≤ 1

2
the 2D dissipative QG equation with

an initial datum in the Besov space Br
2,∞ or Br

p,∞ (p > 2) possesses a unique global solution if the
norm of the datum in these spaces is comparable to κ, the diffusion coefficient. Since the Sobolev
space Hr is embedded in Br

2,∞, a special consequence is the global existence of small data solutions
in Hr for any r > 2 − 2α.
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1. Introduction. This paper is concerned with global existence results for the
two-dimensional (2D) dissipative quasi-geostrophic (QG) equation{

∂tθ + u · ∇θ + κ(−∆)αθ = 0,

u = (u1, u2) = ∇⊥ψ, (−∆)
1
2ψ = θ

(1.1)

supplemented with the initial condition

θ(x, 0) = θ0(x).(1.2)

In (1.1), x ∈ R
2, t ≥ 0, κ > 0 is the diffusion coefficient and α ∈ [0, 1] is a parameter,

θ = θ(x, t) is a scalar representing the temperature, u is the velocity field, and ψ
is the usual stream function. Besides its geophysical applications [11], [12], the 2D
dissipative QG equation serves as a 2D model of the 3D Navier–Stokes equations and
has recently been extensively investigated (see [1], [2], [3], [5], [6], [7], [8], [9], [10],
[13], [14], [15], [16]).

Prior work on the issue of global existence concerning the 2D dissipative QG
equation (1.1) appears to indicate that α = 1

2 is a critical index. In the subcritical
case, namely, α > 1

2 , solutions at several regularity levels, including solutions in the
classical sense, have been shown to be global in time [7], [13], [16]. The theory of global
existence and regularity for this case is thus in a satisfactory state. In the critical
case α = 1

2 , classical solutions are known to be global if their initial L∞-norms are
comparable to κ [6]. For initial data of arbitrary size, the global existence of classical
solutions has not been established. It is hoped that the resolution of this problem will
shed light on the millennium prize problem on the 3D Navier–Stokes equations. The
supercritical case α < 1

2 seems even harder to deal with, and work on this case has
just started to appear. For α ≤ 1

2 , Chae and Lee [3] established a global existence
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result under the assumption that θ0 is small in the Besov space B2−2α
2,1 . In a recent

work [9], A Córdoba and D. Córdoba obtained for any α ∈ [0, 1] a local existence
result for θ0 ∈ Hs with s+α > 2 and a global result for small θ0 in Hs with s > 2 or
in H3/2 in the case of α = 1

2 .
This paper is devoted to establishing global existence results for (1.1) with θ0 in

the Besov space Br
2,∞ or in Br

p,∞ with p > 2. For any α ≤ 1
2 and θ0 ∈ Br

2,∞ with
r > 2 − 2α, we prove that the 2D QG equation (1.1) has a unique global solution
provided that the norm of θ0 in Br

2,∞ is comparable to κ. Because of the embeddings
Br

2,1 ↪→ Hr ↪→ Br
2,∞, a special consequence is the global existence result for small

data in Br
2,1 or Hr with r > 2 − 2α. We defer the precise statement and many more

details to section 3.
The situation for θ0 ∈ Br

p,∞ with p > 2 is more sophisticated and the major
difficulty lies in how to obtain suitable lower bounds for terms generated from the
dissipative part. Thanks to the Lp-decay estimate of A. Córdoba and D. Córdoba [9],
we are able to establish a global existence result for solutions in the Besov space Br

p,∞
with r > 1 + 2

p . Appropriate smallness conditions are imposed on the initial datum
θ0 here. This is accomplished in section 4, which consists of two subsections. The
first subsection provides an a priori bound and the second proves the global existence
result.

2. Preliminaries. This section provides a precise characterization of the Besov
space Br

p,q through the Littlewood–Paley decomposition and gathers several important
estimates involving Br

p,∞. First, we recall two commutator estimates established in
a previous work [17]. Then follows the tame estimate for the usual product of two
functions. Finally, a logarithmic bound for the L∞-norm of a function in terms of
its norms in Besov spaces is stated and proven. We shall also reproduce here the
Lp-decay estimate of A. Córdoba and D. Córdoba for the dissipative QG equation [9].

We start with a dyadic decomposition of R
d, where d > 0 is an integer. It is a

classical result that there exist two radial functions χ ∈ C∞
0 (Rd) and φ ∈ C∞

0 (Rd\{0})
satisfying

suppχ ⊂ {ξ : |ξ| ≤ 4/3}, suppφ ⊂ {ξ : 3/4 < |ξ| < 8/3},

χ(ξ) +
∑
j≥0

φ(2−jξ) = 1 for all ξ ∈ R
d.

For the purpose of isolating different Fourier frequencies, define the operators ∆i for
i ∈ Z as follows:

∆iu =

⎧⎪⎨⎪⎩
0 if i ≤ −2,

χ(D)u =
∫
h(y)u(x− y)dy if i = −1,

φ(2−iD)u = 2id
∫
g(2iy)u(x− y)dy if i ≥ 0,

(2.1)

where h = χ∨ and g = φ∨ are the inverse Fourier transforms of χ and φ, respectively.
We note that ∆i in (2.1) can be defined in other ways. For example, by further
requiring χ(ξ) = 1 for |ξ| ≤ 3

8 and writing

g(x) = 2dh(2x) − h(x), gj(x) = 2djg(2jx),

one can define ∆−1 = h∗ and ∆j = gj∗ for j ≥ 0.
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For i ∈ Z, Si is the sum of ∆j with j ≤ i− 1, i.e.,

Siu = ∆−1u + ∆0u + ∆1u + · · · + ∆i−1u =

∫
Rd

h(2iy)u(x− y)dy.

It can be shown for any tempered distribution f that Sif → f in the distributional
sense, as i → ∞.

For any r ∈ R and p, q ∈ [1,∞], the Besov space Br
p,q consists of all tempered dis-

tributions f such that the sequence {2jr‖∆jf‖Lp}j∈Z belongs to Lq(Z). In particular,
Br

p,∞ contains any function f satisfying

‖f‖Br
p,∞ ≡ sup

j∈Z

2jr‖∆jf‖Lp < ∞.(2.2)

It is easy to check that Br
p,∞ endowed with the norm (2.2) is a Banach space.

The following version of Bernstein’s lemma can be found in [4].
Lemma 2.1 (Bernstein’s lemma). Let d > 0 be an integer and R2 > R1 > 0 be

two real numbers. If p ∈ [1,∞] and suppf̂ ⊂ {ξ ∈ R
d : R12

j ≤ |ξ| ≤ R22
j}, then

C−12jk‖f‖Lp(Rd) ≤ max
|α|=k

‖∂αf‖Lp(Rd) ≤ C2jk‖f‖Lp(Rd),

where C > 0 is a constant depending on k, R1, and R2 only.
We now recall two commutator estimates previously established in [17].
Proposition 2.2. Let j ≥ −1 be an integer, let r ∈ R, and let p ∈ [1,∞]. Then,

‖[u · ∇,∆j ]θ‖Lp ≤ C2−jr
(
‖∇θ‖L∞‖u‖Br

p,∞ + ‖∇u‖L∞‖θ‖Br
p,∞

)
,(2.3)

where C is a pure constant and the brackets [ , ] represent the commutator, namely,

[u · ∇,∆j ]θ = u · ∇(∆jθ) − ∆j(u · ∇θ).

Inequality (2.3) is suitable for situations when u and θ are equally regular. If
∇θ is not known to be bounded in L∞, then (2.3) fails. The following proposition
provides a new estimate which needs no information about ∇θ. As a trade-off, u is
required to be in Br+1

p,∞. The importance of this estimate will be seen in the proofs of
Theorems 3.1 and 4.1.

Proposition 2.3. Let j ≥ −1, let r ∈ R, and let p ∈ [1,∞]. Then, for some
pure constant C,

‖[u · ∇,∆j ]θ‖Lp ≤ C2−jr
(
‖∇u‖L∞‖θ‖Br

p,∞ + ‖θ‖L∞‖u‖Br+1
p,∞

)
.(2.4)

Estimates for the product uv of two functions u and v are handy in dealing with
the quadratic nonlinear term in many partial differential equations. In the context of
Besov spaces, we have the following estimate.

Proposition 2.4. Let r > 0 be a real number and let p ∈ [1,∞]. Then

‖u v‖Br
p,∞ ≤ C

(
‖u‖L∞ ‖v‖Br

p,∞ + ‖u‖Br
p,∞ ‖v‖L∞

)
,

where C is constant depending on r and p only.
In the course of establishing existence results for the QG equation, very often we

need to bound the L∞-norm of a function in terms of its norm in Br
p,∞. The following

logarithmic estimate is very helpful.
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Proposition 2.5. Let p ∈ [1,∞], let rc = d
p , and let r > d

p . Then there exists a
constant C depending on p and r only such that

‖f‖L∞(Rd) ≤ C‖f‖Brc
p,∞(Rd) log2

(
e +

‖f‖Br
p,∞(Rd)

‖f‖Brc
p,∞(Rd)

)
,(2.5)

which, in particular, implies

‖f‖L∞(Rd) ≤ C‖f‖Br
p,∞(Rd).(2.6)

Proof. According to the definition of ∆i’s in (2.1), ∆k∆j = 0 if |k − j| ≥ 2. For
j ≥ 0,

‖∆jf‖L∞ ≤
∑

|k−j|≤1

‖∆k∆jf‖L∞ =
∑

|k−j|≤1

‖2kdg(2k·) ∗ (∆jf)‖L∞

≤
∑

|k−j|≤1

‖2kdg(2k·)‖Lq‖∆jf‖Lp =
∑

|k−j|≤1

2kd
1
p ‖g‖Lq ‖∆jf‖Lp ,

where q is the conjugate of p, or 1/p + 1/q = 1. Thus,

‖∆jf‖L∞ ≤ C 2jrc ‖∆jf‖Lp

for a pure constant C. A similar estimate for the case j = −1 leads to the same
bound. Using this bound, we have

‖f‖L∞ ≤
∑
j≥−1

‖∆jf‖L∞ =

N−1∑
j=−1

‖∆jf‖L∞ +
∑
j≥N

‖∆jf‖L∞

≤ C (N + 1)‖f‖Brc
p,∞ + C ‖f‖Br

p,∞

∑
j≥N

2−j(r−rc)

= C(N + 1)‖f‖Brc
p,∞ + C

2−N(r−rc)

1 − 2−(r−rc)
‖f‖Br

p,∞ .

The desired inequality (2.5) is then obtained by letting

N = 1 +

[
1

r − rc
log2

‖f‖Br
p,∞

‖f‖Brc
p,∞

]
.

Inequality (2.6) is true because of (2.5) and the fact that x → x log2(e+M/x) with a
fixed constant M is an increasing function for x > 0. This completes the proof.

As seen in (1.1) of the introduction, the components of the velocity field u are
Riesz transforms of θ, namely,

u = R⊥(θ) ≡ (−R2(θ),R1(θ)),

where Rk = ∂xk
Λ−1 for k = 1, 2 and Λ ≡ (−∆)1/2. It is a classical result in the

Calderon–Zygmund theory that for any p ∈ (1,∞) and r ∈ R

‖u‖Br
p,∞ ≤ C‖θ‖Br

p,∞ ,(2.7)

where C is a constant depending only on p and r.
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Finally, we recall the Lp-decay result of A. Córdoba and D. Córdoba. In a recent
work [9], A. Córdoba and D. Córdoba skillfully proved a pointwise inequality involving
the operator Λ2α with α ∈ [0, 1] and then derived the Lp-decay result as a special
consequence.

Proposition 2.6. Let α ∈ [0, 1] and let θ ∈ S, the Schwartz class. Then,

2θΛ2αθ(x) ≥ Λ2α θ2(x)

for any x ∈ R
2.

The estimate in the following proposition is slightly different from the correspond-
ing Lp-decay result derived in [9].

Proposition 2.7. Let p = 2k for an integer k ≥ 1. If θ solves (1.1) with
an initial data θ0 ∈ Lp, then the Lp-norm of θ decays algebraically in time. More
precisely,

‖θ(·, t)‖Lp ≤ ‖θ0‖Lp(
1 + κCpγt‖θ0‖−γp

L2 ‖θ0‖γpLp

) 1
γp

,

where γ = α
p−2 and Cp is a constant depending on p and α only.

3. Global existence in Br
2,∞. We shall assume in this section that θ0 is in the

Besov space Br
2,∞. Consider the solution of the 2D dissipative QG equation

∂tθ + u · ∇θ + κΛ2αθ = 0, u = R⊥(θ)(3.1)

with θ(x, 0) = θ0(x). Assuming r > 2 − 2α, our major result states that (3.1) has a
unique global solution if the norm of θ0 in Br

2,∞ is comparable to κ.

Theorem 3.1. Let κ > 0 and let 0 ≤ α ≤ 1
2 . Assume the initial datum θ0 is in

the Besov space Br
2,∞ with r > 2 − 2α. There exists a constant C0 depending on α

and r only such that if

‖θ0‖Br
2,∞

≤ C0κ,(3.2)

then the 2D dissipative QG equation (3.1) with θ(x, 0) = θ0(x) has a unique global
solution θ satisfying

θ ∈ L∞([0,∞);Br
2,∞) ∩ L1([0,∞);Br+2α

2,∞ ) ∩ Lip([0,∞);Br−1
2,∞) ∩ C([0,∞);Bδ

2,∞)

for any δ ∈ [r − 1, r), and

‖θ(·, t)‖Br
2,∞

≤ C0κ for any t ≥ 0.

Remark. Because of the embeddings

Bs
2,1 ↪→ Hs

2 ↪→ Bs
2,∞,

this theorem also implies that (3.1) has global solutions for small data in Bs
2,1 or Hs

with any s > 2 − 2α.
Before proving Theorem 3.1, we first establish an a priori estimate.
Proposition 3.2. Assume that θ solves the 2D dissipative QG equation (3.1)

with κ > 0 and 0 ≤ α ≤ 1. Let r ∈ R and let s > 2. Then

d

dt
‖θ‖Br

2,∞
+ C1 κ‖θ‖Br+2α

2,∞
≤ C2 ‖θ‖Bs

2,∞
‖θ‖Br

2,∞
,(3.3)

where C1 and C2 are constants depending on r only.
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If r > 2 − 2α, we can choose s = r + 2α. Then, (3.3) reduces to

d

dt
‖θ‖Br

2,∞
+ C1 κ‖θ‖Br+2α

2,∞
≤ C2 ‖θ‖Br+2α

2,∞
‖θ‖Br

2,∞
.

This inequality bears two consequences, which we state as a corollary.

Corollary 3.3. Assume that θ solves the 2D dissipative QG equation (3.1) with
κ > 0 and 0 ≤ α ≤ 1. Let r > 2 − 2α be a real number. There exists a constant C0

depending on α and r only such that if

‖θ0‖Br
2,∞

≤ C0κ,

then, for any t ≥ 0,

‖θ(·, t)‖Br
2,∞

≤ ‖θ0‖Br
2,∞

≤ C0κ.

In addition, θ also satisfies the inequality

‖θ(·, t)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(·, τ)‖Br+2α
2,∞

dτ ≤ ‖θ0‖Br
2,∞

exp

(
C2

∫ t

0

‖θ(·, τ)‖Br+2α
2,∞

dτ

)
.

Proof of Proposition 3.2. Let j ≥ −1. Applying ∆j to (3.1), we obtain

∂t∆jθ + u · ∇∆jθ + κΛ2α∆jθ = [u · ∇,∆j ]θ.

Multiplying both sides by 2∆jθ and integrating over R
2 yields

d

dt

∫
|∆jθ|2dx + 2κ

∫
|Λα∆jθ|2dx = 2

∫
∆jθ [u · ∇,∆j ]θ dx.

Applying Lemma 2.1 to the dissipative term and Hölder’s inequality to the right-hand
side, we find that

d

dt
‖∆jθ‖L2 + Cκ22αj‖∆jθ‖L2 ≤ ‖[u · ∇,∆j ]θ‖L2 .

In the above inequality, we have used the fact that Lemma 2.1 is valid for fractional
derivatives when p = 2. For any r ∈ R, Proposition 2.2 applied to the term on the
right-hand side yields

d

dt
‖θ‖Br

2,∞
+ Cκ‖θ‖Br+2α

2,∞
≤ C

(
‖∇u‖L∞ ‖θ‖Br

2,∞
+ ‖∇θ‖L∞ ‖u‖Br

2,∞

)
.(3.4)

Furthermore, Proposition 2.5 applied to ∇u and ∇θ asserts that for any s > 2,

‖∇u‖L∞ ≤ C‖u‖Bs
2,∞

, ‖∇θ‖L∞ ≤ C‖θ‖Bs
2,∞

.

Inserting these estimates in (3.4) and noticing (2.7), we obtain

d

dt
‖θ‖Br

2,∞
+ C1 κ‖θ‖Br+2α

2,∞
≤ C2 ‖θ‖Bs

2,∞
‖θ‖Br

2,∞
.
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Proof of Theorem 3.1. We start with a successive approximation sequence {θ(n)}
satisfying ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ(1) = S2θ0,

∂tθ
(n+1) + u(n) · ∇θ(n+1) + κΛ2αθ(n+1) = 0,

u(n) = R⊥(θ(n)),

θ(n+1)(x, 0) = θ
(n+1)
0 (x) = Sn+2θ0.

The rest of the proof is divided into two major parts. The first part establishes that
{θ(n)} is bounded uniformly in L∞([0,∞);Br

2,∞). The second part verifies that {θ(n)}
is a Cauchy sequence in L∞([0,∞);Br−1

2,∞).
Noticing that r > 2− 2α, we proceed as in the proof of Proposition 3.2 to obtain

d

dt
‖θ(n+1)‖Br

2,∞
+ C1κ‖θ(n+1)‖Br+2α

2,∞

≤ C
(
‖∇u(n)‖L∞ ‖θ(n+1)‖Br

2,∞
+ ‖∇θ(n+1)‖L∞ ‖u(n)‖Br

2,∞

)
≤ C

(
‖u(n)‖Br+2α

2,∞
‖θ(n+1)‖Br

2,∞
+ ‖θ(n+1)‖Br+2α

2,∞
‖u(n)‖Br

2,∞

)
≤ C2

(
‖θ(n)‖Br+2α

2,∞
‖θ(n+1)‖Br

2,∞
+ ‖θ(n+1)‖Br+2α

2,∞
‖θ(n)‖Br

2,∞

)
,(3.5)

where C1 and C2 are constants with dependence on α and r only. Now, we choose
C0 < C1/(4C2). Further restrictions will be imposed on C0 in the second part. We
show that if

‖θ0‖Br
2,∞

≤ C0 κ,

then for any integer n and any t ≥ 0,

sup
τ∈[0,t]

‖θ(n)(·, τ)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(n)(·, τ)‖Br+2α
2,∞

dτ ≤ 2C0 κ.(3.6)

We proceed by induction. If (3.6) holds for n = k, namely,

‖θ(k)(·, t)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(k)(·, τ)‖Br+2α
2,∞

dτ ≤ 2C0 κ,

then, according to (3.5),

sup
τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ

≤ ‖θ(k+1)
0 ‖Br

2,∞
+ C2 sup

τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

∫ t

0

‖θ(k)(·, τ)‖Br+2α
2,∞

dτ

+ C2 sup
τ∈[0,t]

‖θ(k)(·, τ)‖Br
2,∞

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ

≤ ‖θ0‖Br
2,∞

+
2C0C2

C1
sup

τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

+ 2C0C2κ

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ.
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Since 2C0C2 ≤ 1
2C1, the inequality above becomes

sup
τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ ≤ 2‖θ0‖Br
2,∞

≤ 2C0κ.

Thus, (3.6) is verified. This completes the first part of the proof.
Next, we consider the difference

η(n+1) = θ(n+1) − θ(n).

The sequence {η(n)} satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η(1) = S2θ0 − θ0,

∂tη
(n+1) + u(n) · ∇η(n+1) + κΛ2αη(n+1) = w(n) · ∇θ(n),

w(n) = R⊥(η(n)),

η(n+1)(x, 0) = η
(n+1)
0 (x) = ∆n+1θ0.

Starting with the equation for η(n+1) and proceeding as above, we are led to the
following inequality:

d

dt
‖η(n+1)‖Br−1

2,∞
+ C1κ‖η(n+1)‖Br−1+2α

2,∞

≤ 2(r−1)j‖[u(n) · ∇,∆j ]η
(n+1)‖L2 + ‖w(n) · ∇θ(n)‖Br−1

2,∞
.(3.7)

Applying Propositions 2.3 and 2.5 to the first term on the right leads to

2(r−1)j‖[u(n) · ∇,∆j ]η
(n+1)‖L2

≤ C
(
‖∇u(n)‖L∞‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖L∞‖u(n)‖Br

2,∞

)
≤ C

(
‖u(n)‖Br+2α

2,∞
‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞
‖u(n)‖Br

2,∞

)
≤ C

(
‖θ(n)‖Br+2α

2,∞
‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞

)
.

Since α ≤ 1
2 , r − 1 > 1 − 2α > 0 and the same estimate in Proposition 2.4 applies.

Consequently,

‖w(n) · ∇θ(n)‖Br−1
2,∞

≤ C
(
‖w(n)‖L∞‖∇θ(n)‖Br−1

2,∞
+ ‖w(n)‖Br−1

2,∞
‖∇θ(n)‖L∞

)
≤ C

(
‖w(n)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞
+ ‖w(n)‖Br−1

2,∞
‖θ(n)‖Br+2α

2,∞

)
≤ C

(
‖η(n)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞
+ ‖η(n)‖Br−1

2,∞
‖θ(n)‖Br+2α

2,∞

)
.

Inserting these estimates in (3.7) yields

d

dt
‖η(n+1)‖Br−1

2,∞
+ C1κ‖η(n+1)‖Br−1+2α

2,∞

≤ C3

(
‖θ(n)‖Br+2α

2,∞
‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞

)
+ C3

(
‖η(n)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞
+ ‖η(n)‖Br−1

2,∞
‖θ(n)‖Br+2α

2,∞

)
.
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Integrating over [0, t], we obtain

sup
τ∈[0,t]

‖η(n+1)(·, τ)‖Br−1
2,∞

+C1κ

∫ t

0

‖η(n+1)(·, τ)‖Br−1+2α
2,∞

dτ

≤ ‖θ(n+1)
0 ‖Br−1

2,∞
+ C3

(
sup

τ∈[0,t]

‖η(n+1)‖Br−1
2,∞

+ sup
τ∈[0,t]

‖η(n)‖Br−1
2,∞

)∫ t

0

‖θ(n)‖Br+2α
2,∞

dτ

+ C3 sup
τ∈[0,t]

‖θ(n)‖Br
2,∞

∫ t

0

(
‖η(n)‖Br−1+2α

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞

)
dτ.(3.8)

We now show by induction that for any t ≥ 0,

sup
τ∈[0,t]

‖η(n)(·, τ)‖Br−1
2,∞

+ C1κ

∫ t

0

‖η(n)(·, τ)‖Br−1+2α
2,∞

dτ ≤ ‖θ0‖Br
2,∞

2−(n−3).(3.9)

First, we notice that

‖θ(n+1)
0 ‖Br−1

2,∞
= ‖∆n+1θ0‖Br−1

2,∞
≤ ‖θ0‖Br

2,∞
2−n.

Now, we require that C0 further satisfy

2C0C3/C1 ≤ 1/4.

According to (3.6), we have the uniform bounds

C3 sup
τ∈[0,t]

‖θ(n)(·, τ)‖Br
2,∞

≤ 2C0C3κ, C3

∫ t

0

‖θ(n)(·, τ)‖Br+2α
2,∞

dτ ≤ 2C0C3/C1.

If (3.9) is satisfied by n = k, then it follows from (3.8) that

3

4

(
max
τ∈[0,t]

‖η(k+1)(·, τ)‖Br−1
2,∞

+ C1κ

∫ t

0

‖η(k+1)(·, τ)‖Br−1+2α
2,∞

dτ

)
≤ ‖θ0‖Br

2,∞
2−k +

1

4

(
max
τ∈[0,t]

‖η(k)(·, τ)‖Br−1
2,∞

+ C1κ

∫ t

0

‖η(k)(·, τ)‖Br−1+2α
2,∞

dτ

)
≤ 3‖θ0‖Br

2,∞
2−k.

Thus, (3.9) is true for n = k+1. In other words, {η(n)} = {θ(n)−θ(n−1)} is a Cauchy
sequence in L∞([0,∞);Br−1

2,∞).

Therefore, there exists a θ ∈ L∞([0,∞);Br
2,∞) ∩ L1([0,∞);Br+2α

2,∞ ) such that

θ(n) → θ in L∞([0,∞);Br−1
2,∞) ∩ L1([0,∞);Br−1+2α

2,∞ ).

Furthermore, for 0 ≤ α ≤ 1
2 ,

‖∂tθ(n)(·, t)‖Br−1
2,∞

≤ ‖u(n−1) · ∇θ(n)(·, t)‖Br−1
2,∞

+ κ‖Λ2αθ(n)(·, t)‖Br−1
2,∞

≤ C3‖θ(n)(·, t)‖Br
2,∞

‖θ(n−1)(·, t)‖Br−1
2,∞

+ κ‖θ(n)(·, t)‖Br
2,∞

≤ C3(C0κ)2 + C0κ
2 = (C3C0 + 1)C0κ

2.
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Therefore, θ ∈ Lip([0,∞);Br−1
2,∞). Another consequence is θ ∈ C([0,∞);Bδ

2,∞) for any
δ ∈ [r−1, r). Finally, the a priori estimates in Proposition 3.2 and Corollary 3.3 allow
us to conclude that

‖θ(·, t)‖Br
2,∞

≤ C0κ.

This completes the proof.

4. Global existence in Br
p,∞ with p > 2. Attention is now turned to the 2D

dissipative QG equation

∂tθ + u · ∇θ + κΛ2αθ = 0(4.1)

with θ(x, 0) = θ0(x) in the Besov space Br
p,∞. We have the following theorem.

Theorem 4.1. Let κ > 0 and let 0 ≤ α ≤ 1
2 . Consider the solution of the

dissipative QG equation (4.1) corresponding to θ0 ∈ Br
2,∞∩Br

p,∞ with p = 2N (N > 1).
Assume that{

r > 1 + 2
p and ‖θ0‖Br

2,∞
≤ C0κ if (1 − 2α)p ≤ 2,

r > 2 − 2α, ‖θ0‖Br
2,∞

≤ C0κ, and ‖θ0‖Br
p,∞ ≤ C0κ if (1 − 2α)p > 2,

(4.2)

where C0 is a suitably chosen constant with dependence on α, r, and p only. Then the
2D QG equation (4.1) has a unique global solution θ satisfying

θ ∈ L∞([0,∞);Br
p,∞) ∩ L1([0,∞);Br+2α

p,∞ ) ∩ Lip([0,∞);Br−1
p,∞) ∩ C([0,∞);Bδ

p,∞)

for any δ ∈ [r − 1, r), and

‖θ(·, t)‖Br
p,∞ ≤ max{‖θ0‖Br

p,∞ , C̃0κ}

for any t ≥ 0 and some constant C̃0 depending on α, r, and p only.
The rest of this section revolves around the proof of Theorem 4.1 and is divided

into two subsections. The first subsection presents an a priori estimate and the second
subsection proves Theorem 4.1.

4.1. An a priori bound. We state and prove a global a priori bound.
Proposition 4.2. Assume that θ solves the 2D dissipative QG equation (4.1)

with κ > 0 and 0 ≤ α ≤ 1. Let r ∈ R, let p = 2N for an integer N > 1, and let
s > 1 + 2

p . Then

d

dt
‖θ‖Br

p,∞ + C4 p
−1 κ ‖θ‖1+β p

Br
p,∞

‖θ‖−β p
Br

2,∞
≤ C5 ‖θ‖Br

p,∞ ‖θ‖Bs
p,∞ ,(4.3)

where β = 2α
p−2 , and C4 and C5 are constants with possible dependence on α and p

only.
Remark. The case p = 2 is excluded here since this case has been dealt with in

the previous section. The assumption p = 2N is made in order to use Proposition 2.7.
Proof of Proposition 4.2. Applying ∆j to (4.1), multiplying by p|∆jθ|p−2∆jθ,

and integrating over R
2, we obtain

d

dt
‖∆jθ‖pLp + I = II,(4.4)
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where I and II represent the terms

I = κp

∫
|∆jθ|p−2(∆jθ)Λ

2α∆jθ dx,

II = p

∫
|∆jθ|p−2(∆jθ) [u · ∇,∆j ]θdx.

To estimate II, we first apply Hölder’s inequality and then Proposition 2.2 to obtain

|II| ≤ p ‖∆jθ‖p−1
Lp ‖[u · ∇,∆j ]θ‖Lp

≤ p ‖∆jθ‖p−1
Lp

[
2−jr

(
‖∇u‖L∞‖θ‖Br

p,∞ + ‖∇θ‖L∞ ‖u‖Br
p,∞

)]
.

For s > 1 + 2
p , Proposition 2.5 asserts that

‖∇θ‖L∞ ≤ C ‖θ‖Bs
p,∞ , ‖∇u‖L∞ ≤ C ‖u‖Bs

p,∞ ≤ C ‖θ‖Bs
p,∞ .

Therefore, for some constant C,

|II| ≤ C p 2−jr ‖∆jθ‖p−1
Lp ‖θ‖Br

p,∞ ‖θ‖Bs
p,∞ .(4.5)

To obtain a lower bound for I, we use Proposition 2.6 and a basic embedding inequal-
ity,

I ≥ C κ

∫ ∣∣∣Λα
(
|∆jθ|

p
2

)∣∣∣2 dx ≥ C κ

(∫
|∆jθ|

p
1−α dx

)1−α

= C κ‖∆jθ‖p
L

p
1−α

,

where the assumption p = 2N is used in the first inequality. Applying the interpolation
inequality

‖f‖Lp ≤ C ‖f‖
2α

p+2α−2

L2 ‖f‖
p−2

p+2α−2

L
p

1−α

with f = ∆jθ, we finally obtain the lower bound

I ≥ C κ‖∆jθ‖(1+β)p
Lp ‖∆jθ‖−βp

L2 ,(4.6)

where we have set β = 2α
p−2 . Combining (4.4), (4.5), and (4.6) yields

d

dt
‖θ‖Br

p,∞ + C p−1 κ 2jr ‖∆jθ‖1+β p
Lp ‖∆jθ‖−βp

L2 ≤ C ‖θ‖Br
p,∞ ‖θ‖Bs

p,∞

or, equivalently,

d

dt
‖θ‖Br

p,∞ + C p−1 κ ‖θ‖1+β p
Br

p,∞
‖θ‖−β p

Br
2,∞

≤ C ‖θ‖Br
p,∞ ‖θ‖Bs

p,∞ .

We now explore several consequences of Proposition 4.2. If (1 − 2α)p ≤ 2, then
2α + 2/p ≥ 1 or βp ≥ 1. In addition, r > 1 + 2/p implies r > 2 − 2α. It thus follows
from Corollary 3.3 that ‖θ0‖Br

2,∞
≤ C0κ implies

‖θ(·, t)‖Br
2,∞

≤ C0κ
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for all t > 0. Consequently, (4.3) can be reduced to

d

dt
‖θ‖Br

p,∞ ≤ C5 ‖θ‖2
Br

p,∞

(
1 − C−1

5 C4 (pCβp
0 )−1 κ1−βp ‖θ‖β p−1

Br
p,∞

)
.(4.7)

For βp > 1, (4.7) indicates that⎧⎨⎩ ‖θ(·, t)‖Br
p,∞ decreases as a function of t for a big initial norm ‖θ0‖Br

p,∞ ,

‖θ(·, t)‖Br
p,∞ increases up to

(
C4/(pC5 C

β p
0 )

) 1
βp−1 κ for small ‖θ0‖Br

p,∞ .

In other words,

‖θ(·, t)‖Br
p,∞ ≤ max

{
‖θ0‖Br

p,∞ ,
(
C4/(pC5 C

β p
0 )

) 1
βp−1 κ

}
.

For βp = 1 and C0 ≤ C4/(pC5), (4.7) indicates that ‖θ(·, t)‖Br
p,∞ is a decreasing

function of t and thus

‖θ(·, t)‖Br
p,∞ ≤ ‖θ0‖Br

p,∞

for any t ≥ 0.

If (1 − 2α)p > 2, then 1 + βp < 2 and r > 2 − 2α implies that r > 1 + 2
p . In this

case, (4.3) becomes

d

dt
‖θ‖Br

p,∞ ≤ ‖θ‖1+β p
Br

p,∞

(
C5‖θ‖1−β p

Br
p,∞

− C4 (pCβp
0 )−1 κ1−βp

)
.

If θ0 satisfies

‖θ0‖Br
p,∞ ≤

(
C4/(pC5 C

β p
0 )

) 1
1−βp κ,(4.8)

then ‖θ(·, t)‖Br
p,∞ decreases as a function of t and thus

‖θ(·, t)‖Br
p,∞ ≤ ‖θ0‖Br

p,∞

for any t ≥ 0.

In summary, we have established the following corollary.

Corollary 4.3. Let κ > 0 and let 0 ≤ α ≤ 1. Assume that θ solves the 2D
dissipative QG equation (4.1) corresponding to θ0 in Br

2,∞∩Br
p,∞ with p = 2N (N > 1).

If r and θ0 satisfy (4.2), then we have the global bounds

‖θ(·, t)‖Br
2,∞

≤ C̃0κ and ‖θ(·, t)‖Br
p,∞ ≤ max{‖θ0‖Br

p,∞ , C̃0κ}

for some constant C̃0 depending on α, r, and p only.

It is worth mentioning that the argument leading to the above corollary can be
replaced by utilizing explicit formulas given in the following lemma.

Lemma 4.4. Let σ > 0. Assume that y = y(t) satisfies

d

dt
y + g(t)y1+σ ≤ h(t)y(4.9)
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for real-valued functions g and h. Then y = y(t) is bounded pointwise according to

y(t) ≤
y(0) exp

(∫ t

0
h(τ)dτ

)
(
1 + σ yσ(0)

∫ t

0
g(τ) exp

(
σ
∫ τ

0
h(s)ds

)
dτ

) 1
σ

.(4.10)

Proof. It follows easily from (4.9) that z = y exp
(
−
∫ t

0
h(τ)dτ

)
satisfies

d

dt
z ≤ −g(t) exp

(
σ

∫ t

0

h(τ)dτ

)
z1+σ.

Dividing both sides by z1+σ and integrating over [0, t], we obtain

z−σ(t) ≥ z−σ(0) + σ

∫ t

0

g(τ) exp

(
σ

∫ τ

0

h(s)ds

)
dτ,

which can be converted into the following inequality for y:

yσ ≤
yσ(0) exp

(
σ
∫ t

0
h(τ)dτ

)
1 + σyσ(0)

∫ t

0
g(τ) exp

(
σ
∫ τ

0
h(s)ds

)
dτ

.

Raising both sides to 1
σ yields (4.10).

When an extra term f(t) is added to (4.9), the method of variation of constants
still allows us to obtain a formal bound involving a function C(t), which satisfies an
additional ordinary differential equation.

Lemma 4.5. Let σ > 0. Assume that y = y(t) satisfies

d

dt
y + g(t)y1+σ ≤ h(t)y + f(t)(4.11)

for real-valued functions g, h, and f . Then y obeys the bound

y(t) ≤
exp

(∫ t

0
h(τ)dτ

)
(
−σC(t) + σ

∫ t

0
g(τ) exp

(
σ
∫ τ

0
h(s)ds

)
dτ

) 1
σ

,(4.12)

where C(t) satisfies the following ordinary differential equation:

d

dt
C(t) = f(t) exp

(
−
∫ t

0

h(τ)dτ

)

×
(
−σC(t) + σ

∫ t

0

g(τ) exp

(
σ

∫ τ

0

h(s)ds

)
dτ

)1+ 1
σ

(4.13)

with the initial datum C(0) = −1/(σyσ(0)).

Remark. When f = 0, C(t) = C(0) = −1/(σyσ(0)) and (4.12) becomes (4.10).
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4.2. Proof of Theorem 4.1. Assume that {θ(n)} is a successive approximation
sequence satisfying the equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ(1) = S2θ0,

∂tθ
(n+1) + u(n) · ∇θ(n+1) + κΛ2αθ(n+1) = 0,

u(n) = R⊥(θ(n)),

θ(n+1)(x, 0) = θ
(n+1)
0 (x) = Sn+2θ0.

Following the same procedure as in the proof of Proposition 4.2 leads to

d

dt
‖θ(n+1)‖Br

p,∞ + C4 p
−1 κ ‖θ(n+1)‖1+β p

Br
p,∞

‖θ(n+1)‖−β p
Br

2,∞
≤ C5 ‖θ(n)‖Br

p,∞ ‖θ(n+1)‖Br
p,∞ .

(4.14)

If the conditions in (4.2) are met, we know from the proof of Theorem 3.1 that

‖θ(n)(·, t)‖Br
2,∞

≤ C0κ

for any integer n and any t ≥ 0. Inequality (4.14) can then be rewritten as

d

dt
‖θ(n+1)‖Br

p,∞ ≤ ‖θ(n+1)‖Br
p,∞

(
C5 ‖θ(n)‖Br

p,∞ − C4(pC
βp
0 )−1κ1−βp ‖θ(n+1)‖β p

Br
p,∞

)
.

When (4.2) is satisfied, we can argue similarly as in the previous subsection and
conclude that

‖θ(n)(·, t)‖Br
p,∞ ≤

⎧⎪⎨⎪⎩
‖θ0‖Br

p,∞ if βp ≤ 1,

max

{
‖θ0‖Br

p,∞ ,
(
C4/(pC5 C

β p
0 )

) 1
βp−1

κ

}
if βp > 1.

(4.15)

An alternative argument using the explicit formula in Lemma 4.9 also leads to the
same bound.

We now show that {η(n)} = {θ(n)−θ(n−1)} is a Cauchy sequence in C([0,∞);Br−1
p,∞).

The sequence {η(n)} satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η(1) = S2θ0 − θ0,

∂tη
(n+1) + u(n) · ∇η(n+1) + κΛ2αη(n+1) = w(n) · ∇θ(n),

w(n) = R⊥(η(n)),

η(n+1)(x, 0) = η
(n+1)
0 (x) = ∆n+1θ0.

Following the procedures as in the proof of Theorem 3.1 as well as in the first part of
this proof, we obtain

d

dt
‖η(n+1)‖Br−1

p,∞
+ C4 p

−1 κ ‖η(n+1)‖1+β p

Br−1
p,∞

‖η(n+1)‖−β p

Br−1
2,∞

≤ K1 + K2,(4.16)

where K1 and K2 represent

K1 = 2(r−1)j‖[u(n) · ∇,∆j ]η
(n+1)‖Lp , K2 = ‖w(n) · ∇θ(n)‖Br−1

p,∞
.
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To estimate K1 and K2, we assume that (4.2) is satisfied. By Proposition 2.3,

K1 ≤ C
(
‖∇u(n)‖L∞‖η(n+1)‖Br−1

p,∞
+ ‖η(n+1)‖L∞‖u(n)‖Br

p,∞

)
≤ 2C ‖u(n)‖Br

p,∞ ‖η(n+1)‖Br−1
2,∞

≤ 2C ‖θ(n)‖Br
p,∞ ‖η(n+1)‖Br−1

p,∞
.(4.17)

By Proposition 2.4,

K2 ≤ C
(
‖w(n)‖L∞‖∇θ(n)‖Br−1

p,∞
+ ‖w(n)‖Br−1

p,∞
‖∇θ(n)‖L∞

)
≤ 2C‖θ(n)‖Br

p,∞‖w(n)‖Br−1
p,∞

≤ 2C‖θ(n)‖Br
p,∞‖η(n)‖Br−1

p,∞
.(4.18)

Inserting (4.17) and (4.18) in (4.16), we obtain

d

dt
‖η(n+1)‖Br−1

p,∞
+ C4 p

−1 κ ‖η(n+1)‖1+β p

Br−1
p,∞

‖η(n+1)‖−β p

Br−1
2,∞

≤ C7 ‖θ(n)‖Br
p,∞

(
‖η(n+1)‖Br−1

p,∞
+ ‖η(n)‖Br−1

p,∞

)
.(4.19)

According to the proof of Theorem 3.1 and the first part of this proof,

‖η(n+1)‖Br−1
2,∞

≤ ‖θ0‖Br−1
2,∞

2−(n−2), ‖θ(n)‖Br
p,∞ ≤ max{‖θ0‖Br

p,∞ , C̃κ},

where C̃ is a constant. We are now ready to show that

‖η(n+1)(·, t)‖Br−1
p,∞

≤ C̄ 2−(n−2−1/(βp)),

where C̄ is given explicitly by

C̄ = max

{
1

2
,
(
2C7 max{‖θ0‖Br

p,∞ , C̃κ}/(C4p
−1κ)

)1/σ
}

‖θ0‖Br
p,∞ .

To simplify the notation, we set

σ = βp, y(t) = ‖η(n+1)(·, t)‖Br−1
p,∞

, g = C4p
−1 κ 2(n−1) ‖θ0‖−σ

Br−1
2,∞

,

h = C7 max{‖θ0‖Br
p,∞ , C̃κ}, f = C7 max{‖θ0‖Br

p,∞ , C̃κ} C̄ 2−(n−3−1/(βp)).

Inequality (4.19) then becomes

d

dt
y ≤ −g yσ+1 + h y + f.

We further write z(t) for the right-hand side of the inequality above. If y(0) is suffi-
ciently large such that z(0) ≤ 0, then

N ≡ sup
t≥0

y(t) ≤ y(0).
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If, on the other hand, y(0) is small and z(0) ≥ 0, then y(t) initially grows as t increases.
But its growth stops as soon as z(t) becomes zero. Therefore, N obeys

−g N1+σ + hN + f = 0 or N1+σ − h

g
N =

f

g
.(4.20)

The discussion is then divided into two cases: i) Nσ ≤ 2h/g and ii) Nσ > 2h/g. In
the first case,

N ≤
(

2h

g

) 1
σ

.

In the second case, (4.20) implies that

N1+σ <
2f

g
or N ≤

(
2f

g

) 1
1+σ

.

In summary, we have obtained

sup
t≥0

y(t) ≤ max

{
y(0),

(
2h

g

) 1
σ

,

(
2f

g

) 1
1+σ

}
.(4.21)

Returning to the original variable, we find

y(0) = ‖∆n+1θ0‖Br−1
p,∞

≤ ‖θ0‖Br
p,∞ 2−n,

(
2h

g

) 1
σ

≤ C̄ 2−n+2,

(
2f

g

) 1
1+σ

≤ C̄
(
2−n+3+1/σ 2−σ(n−2)

) 1
1+σ ≤ C̄ 2−(n−2−1/σ).

As a consequence, (4.21) yields the desired bound

sup
t≥0

‖η(n+1)(·, t)‖Br−1
p,∞

≤ C̄ 2−(n−2−1/(βp)).

After a similar argument as in the proof of Theorem 3.1, the proof of Theorem 4.1 is
then completed.
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[10] D. Córdoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J.
Amer. Math. Soc., 15 (2002), pp. 665–670.

[11] I. Held, R. Pierrehumbert, S. Garner, and K. Swanson, Surface quasi-geostrophic dynam-
ics, J. Fluid Mech., 282 (1995), pp. 1–20.

[12] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
[13] S. Resnick, Dynamical Problem in Nonlinear Advective Partial Differential Equations, Ph.D.

thesis, University of Chicago, Chicago, 1995.
[14] M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic

flows, SIAM J. Math. Anal., 35 (2003), pp. 357–375.
[15] J. Wu, Inviscid limits and regularity estimates for the solutions of the 2D dissipative quasi-

geostrophic equations, Indiana Univ. Math. J., 46 (1997), pp. 1113–1124.
[16] J. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equa-

tions, 2001 (2001), pp. 1–13.
[17] J. Wu, Solutions of the 2D Quasi-geostrophic Equation in Hölder Spaces, preprint, Oklahoma
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