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Abstract

This paper studies the linear stability of a steady-state solution with the velocity being a shear flow to the 
2D Boussinesq equations with only vertical dissipation. The Boussinesq equations model many fluid phe-
nomena when the Boussinesq approximation applies such as the Rayleigh-Benard convection, atmospheric 
fronts and oceanic circulation. The vertically dissipative 2D Boussinesq equations model geophysical flu-
ids in certain physical regimes. Whether or not the vertical dissipation can damp perturbations near the 
equilibrium with the velocity being a shear and the temperature being zero is an important but difficult 
problem. Assuming the spatial domain is periodic in the horizontal direction and half-line in the vertical 
direction with no flux boundary condition, we show that any perturbation satisfying the linearized equation 
around this equilibrium is infinitely smooth in the x−variable and decays exponentially in time and in the 
horizontal Fourier mode, even though the linearized system involves only vertical dissipation.
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1. Introduction

The Boussinesq equations play an important role in the study of many phenomena in fluids and 
geophysical fluids including atmospheric fronts and oceanic circulation (see, e.g., [10,16,18]). In 
addition, the Boussinesq equations are the foundation for understanding the Rayleigh-Benard 
convection, the most frequently studied convection phenomenon (see, e.g., [7,9]). The standard 
two-dimensional Boussinesq equations can be written as

⎧⎪⎪⎨⎪⎪⎩
∂tu + (u · ∇)u = −∇p + ν�u + θe2,

∇ · u = 0,

∂t θ + (u · ∇)θ = η�θ,

(1.1)

where u denotes the 2D velocity field, p the pressure, θ the temperature in the content of thermal 
convection and the density in the modeling of geophysical fluids, ν the viscosity, η the thermal 
diffusivity, and e2 is the unit vector in the vertical direction. The first equation in (1.1) is the 
Navier-Stokes equation with buoyancy forcing in the vertical direction. The second equation 
reflects the mass conservation while the third equation is a balance of the temperature convection 
and diffusion.

In certain physical regime and under suitable scaling, the kinematic dissipation and thermal 
diffusion may become partial (given by part of Laplacian), as in the notable example of Prandtl 
boundary layer equation, in which the horizontal velocity equation involves only the vertical 
dissipation. This paper focuses on the vertically dissipated Boussinesq equations

⎧⎪⎪⎨⎪⎪⎩
∂tu + (u · ∇)u = −∇p + ν∂yyu + θe2,

∇ · u = 0,

∂t θ + (u · ∇)θ = η∂yyθ.

(1.2)

When the spatial domain is the whole plane R2, the paper of Cao and Wu [6], together with two 
previous papers of Adhikari, Cao and Wu [1] and [2], proved that any H 2 initial data (u0, θ0)

leads to a unique global solution. Li and Titi [12] were able to weaken the initial regularity 
assumption to H 1.

This paper attempts to understand the stability of perturbations near the decaying shear profile 
(ush, θsh) of (1.2), where

ush = (Ū(y, t),0), θsh = 0, Ū (y, t) = eνt∂yy U(y)

with U(y) being a smooth function. Clearly ush represents the standard decaying shear flow (the 
heat evolution of the shear) and Ū(y, t) = U(y) when U(y) is linear. The perturbations

ũ(x, t) = u(x, t) − Ū (y, t), ṽ(x, t) = v(x, t), p̃(x, t) = p(x, t), θ̃ (x, t) = θ(x, t)

then satisfy
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⎧⎪⎪⎨⎪⎪⎩
ũt + Ū∂xũ + ∂yŪ ṽ + ũũx + ṽũy = −p̃x + ν ũyy,

ṽt + Ū∂xṽ + ũṽx + ṽṽy = −p̃y + ν ṽyy + θ̃ ,

ũx + ṽy = 0,

θ̃t + Ū∂x θ̃ + ũθ̃x + ṽθ̃y = η θ̃yy.

(1.3)

The spatial domain � is either the 2D periodic box T2 or the half infinite pipe � = T ×R+ with 
the no flux boundary condition

∂yũ = 0, ∂y ṽ = 0 and ∂y θ̃ = 0 on y = 0. (1.4)

Since (1.3) involves only vertical dissipation, the rationale for imposing the no flux boundary 
condition (or the Neumann boundary condition) is to eliminate the influence of the environ-
ment on the evolution of the perturbation. As we recall, the no flux boundary condition (or the 
Neumann boundary condition) for the half line 1D heat equation represents no heat exchange 
between the environment and the half-line rod. The corresponding vorticity

ω̃ = ∂xṽ − ∂yũ

satisfies

∂t ω̃ + Ū∂xω̃ + ũ · ∇ω̃ = ν ∂yyω̃ + ∂x θ̃ + ṽ∂yyŪ .

In the special case when U(y) is linear, namely U(y) = ay + b, then

Ū (y, t) = U(y) = ay + b

and the vorticity perturbation ω̃, together with ̃θ , satisfies{
∂t ω̃ + U(y)∂xω̃ + ũ · ∇ω̃ = ν ∂yyω̃ + ∂x θ̃ ,

∂t θ̃ + U(y)∂x θ̃ + ũ · ∇ θ̃ = η ∂yy θ̃ .

The full nonlinear stability problem appears to be out of reach at this moment and this paper 
focuses on the linear stability problem. The spatial domain is � = T2 or � = T × R+. For 
the sake of conciseness, all results are presented for � = T × R+, but they are also valid when 
� = T2. The periodic boundary conditions on both directions, namely the case � =T2 may need 
some justification since the shear flow (y, 0) is simply not periodic. One justification is that any 
disturbance or perturbations can be discomposed into frequencies and understanding the stability 
of the periodic frequencies plays a crucial role in the investigation of the stability of more general 
perturbations. For notational convenience, the tilde will be dropped for the rest of the paper.

We set U(y) = y and focus on the initial and boundary-value problem for the linearized 
equations ⎧⎪⎪⎨⎪⎪⎩

∂tω + y∂xω = ν ∂yyω + ∂xθ,

∂t θ + y∂xθ = η ∂yyθ,

∂yω|y=0 = 0, ∂yθ |y=0 = 0,

ω(x,0) = ω (x), θ(x,0) = θ (x).

(1.5)
0 0
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We show that any solution (ω, θ) of (1.5) is stable, smooth in both variables even though (1.5)
involves only vertical dissipation and any non-zero horizontal Fourier modes decay exponentially 
in time and in the modes. More precisely, we obtain the linear stability and regularity results in 
the following two theorems.

Theorem 1.1. Let the spatial domain � =T ×R+. Assume ω0 and θ0 satisfy

ω0 ∈ L2(�), ∂yω0 ∈ L2(�), θ0 ∈ L2(�), ∂yθ0 ∈ L2(�).

Let (ω, θ) be the corresponding solution of (1.5). Then, for any integer k �= 0 and any t > 0,

‖θ̂ (k, ·, t)‖L2
y
≤ C

(
‖θ̂0(k, ·)‖L2

y
+ η2/3k−2/3‖∂yθ̂0(k, ·)‖L2

y

)
e− 2

3 η
1
3 k

2
3 t ,

‖∂yθ̂(k, ·, t)‖L2
y
≤ C

(
η−2/3k2/3‖θ̂0(k, ·)‖L2

y
+ ‖∂y θ̂0(k, ·)‖L2

y

)
e− 2

3 η
1
3 k

2
3 t

and

‖ω̂(k, ·, t)‖L2
y
≤ C 	Combo,ωi,0(0) e− 2

3 ν
1
3 k

2
3 t ,

‖∂yω̂(k, ·, t)‖L2
y
≤ C 	Combo,ω0,0(0) ν− 2

3 k
2
3 e− 2

3 ν
1
3 k

2
3 t ,

where C is a constant independent of k and t . Here 	Combo,ω0,0(t) with any t ≥ 0 is defined as

	Combo,ω0,0(t) = 	ω0,0(t) + (36ν−1/3η−1/3k−4/3 + 18ν1/3η−1k−4/3)	θ1,0(t)

+(27ν−1/3η−1/3k−10/3 + 13.5ν1/3η−1k−10/3)	θ2,0(t),

where 	ω0,0 , 	θ1,0 and 	θ2,0 are given by

	ω0,0 = k2γ ‖ω̂‖2
L2 + αν‖∂yω̂‖2

L2 + kβνRe〈iω̂, ∂yω̂〉,
	θ1,0 = k2γ ‖∂̂xθ‖2

L2 + αη‖∂y∂̂xθ‖2
L2 + kβηRe〈i∂̂xθ, ∂y ∂̂xθ〉,

	θ2,0 = k2γ ‖∂̂2
x θ‖2

L2 + αη‖∂y∂̂2
x θ‖2

L2 + kβηRe〈i∂̂2
x θ, ∂y ∂̂2

x θ〉
with i being the unit imaginary number, and αν , βν , αη , βη and γ given by

αν = 1

3
ν2/3k−2/3, βν = ν1/3k−4/3, αη = 1

3
η2/3k−2/3, βη = η1/3k−4/3, γ = k−2.

In the case when k = 0, ω̂(0, y, t) and ∂yω̂(0, y, t) solve the 1D heat equation

∂tf = ν∂yyf ,

while ̂θ(0, y, t) and ∂yθ̂(0, y, t) solve the 1D heat equation

∂tf = η∂yyf.
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In the statement of Theorem 1.1, ω̂(k, y, t) and θ̂ (k, y, t) are the Fourier transforms of ω
and θ with respect to x, respectively, and ‖f ‖L2

y
denotes the L2-norm with respective to y. 

Theorem 1.1 indicates that, even though initially ω0, θ0, ∂yθ0 and ∂yω0 are only in L2 and (1.5)
does not have any regularization in the horizontal direction, the corresponding solution (ω, θ)

becomes infinitely smooth in the horizontal direction (actually in a Gevrey class). The second 
theorem establishes the decay and regularity for higher-order derivatives of solutions to (1.5).

Theorem 1.2. Let the spatial domain � = T ×R+. Let i ≥ 0 and j > 0 be integers and assume 
ω0 and θ0 satisfy, for 0 ≤ m ≤ j and 0 ≤ l ≤ i + 3,

∂m
y ∂l

xω0 ∈ L2(�), ∂m
y ∂l

xθ0 ∈ L2(�).

Consider the initial and boundary-value problem⎧⎪⎪⎨⎪⎪⎩
∂tω + y∂xω = ν ∂yyω + ∂xθ,

∂t θ + y∂xθ = η ∂yyθ,

∂m
y ω|y=0 = 0, ∂m

y θ |y=0 = 0,

ω(x,0) = ω0(x), θ(x,0) = θ0(x).

Then, for 0 ≤ m ≤ j + 1 and 0 ≤ l ≤ i + 3, any integer k �= 0 and any t > 0,

‖∂m
y ∂l

x θ̂ (k, ·, t)‖L2
y
≤ P

(
t, k− 2

3 , k
2
3

)
e− 2

3 ν1/3k2/3t , (1.6)

‖∂m
y ∂l

xω̂(k, ·, t)‖L2
y
≤ Q

(
t, k− 2

3 , k
2
3

)
e− 2

3 η1/3k2/3t , (1.7)

where P and Q are polynomials of t , k− 2
3 and k

2
3 depending on ν, η and the initial norms. In 

the case when k = 0, ∂m
y ∂l

xθ(0, y, t) and ∂m
y ∂l

xω(0, y, t) solve the 1D heat equations.

This smooth effect shown in the theorems above comes from hypoellipticity [11]. Hypoellip-
ticity and enhanced dissipation have been explored for the Navier-Stokes and other equations, and 
significant results have been obtained (see, e.g., [3–5,8,13–15,17,20]). As explained below, the 
situation with the 2D Boussinesq equations is more complex due to the presence of the buoyancy 
forcing term in the velocity equation. The regularity and decay estimates in Theorems 1.1 and 1.2
do not follow from direct energy estimates. The proof uses the “hypocoercivity” approach devel-
oped by C. Villani [19]. This approach is applicable to linear operators of the form L = A∗A +B

in a Hilbert space X, where B is skew-symmetric. This approach ensures that, under suitable 
assumptions, the spectral properties of L are comparable to those of L̃ = A∗A + C∗C, where 
C = [A, B] is the commutator.

The proofs of Theorem 1.1 and 1.2 are divided into three main steps. The first step is to prove 
the regularity and decay estimates for θ̂ . To do so, we project the equation of θ onto the k−th 
Fourier mode of the x-variable,

∂t θ̂ + y∂x θ̂ = η∂yy θ̂ . (1.8)

(1.8) can be written as
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∂t θ̂ + Lθ̂ = 0,

where

L = AA∗ + B , A = √
η∂y , B = y∂x

with AA∗ being the symmetric part and B being the antisymmetric part. We define C = [A, B] =√
η∂x and seek a functional proportional to ‖Aθ‖L2 , ‖Cθ‖L2 and Re〈Aθ, Cθ〉:

	(t) = k2γ ‖θ̂‖2
L2 + αη‖∂y θ̂‖2

L2 + kβηRe〈i θ̂ , ∂y θ̂〉. (1.9)

Here, 〈f, g〉 = ∫
f ḡdy. α, β and γ are parameters such that

αη = 1

3
η2/3k−2/3 , βη = η1/3k−4/3 , γ = k−2 . (1.10)

The notation k2γ , albeit being 1, is more suitable for the later derivations. For any k �= 0, we are 
able to show that

d

dt
	(t) ≤ −2

3
η2/3k2/3	(t),

which implies the desired exponential decay for θ̂ and ∂yθ̂ . Since ∂i
xθ for any integer i > 0

satisfies the same equation as θ , ∂i
xθ and ∂y∂

i
xθ obey the similar estimates as those for ̂θ and ∂yθ̂ .

The second main step is to prove the regularity and decay estimates for ω. The process is more 
complex due to the presence of the extra term ∂xθ in the vorticity equation,

∂tω + y∂xω = ν∂yyω + ∂xθ.

Since the term ∂xθ can not be incorporated into the operator form, we treat it as an external 
forcing term and the functional construction is more sophisticated. Naturally we attempt a similar 
functional as the one in (1.9),

	ω0,0(t) = k2γ ‖ω̂‖2
L2 + αν‖∂yω̂‖2

L2 + kβνRe〈i ω̂, ∂yω̂〉,

where we have written 	ωi,j
for the functional associated with ∂i

x∂
j
y ω and 	ω0,0 is just the func-

tional for ω. If we differentiate 	ω0,0(t), due to ∂xθ term, ∂t	ω0,0(t) involves the derivatives of 
θ , which makes a closed-form estimate impossible. It appears that we need to construct a com-
bined functional of ω and θ . It is a very tedious process to figure out the exact combination. By 
carefully examining the terms in ∂t	ω0,0(t), we find a combined functional that would serve our 
purpose,

	Combo,ω0,0(t) = 	ω0,0(t) + (36ν−1/3η−1/3k−4/3 + 18ν1/3η−1k−4/3)	θ1,0(t)

+(27ν−1/3η−1/3k−10/3 + 13.5ν1/3η−1k−10/3)	θ (t), (1.11)
2,0



L. Tao, J. Wu / J. Differential Equations 267 (2019) 1731–1747 1737
where 	θ1,0 and 	θ2,0 denote the functionals associated with ∂xθ and ∂2
x θ , respectively, namely 

(1.9) with ∂xθ and ∂2
x θ replacing θ in the formula of 	. Differentiating (1.11) in time and evalu-

ating the terms meticulously, we obtain

d

dt
	Combo,ω0,0(t) � −2

3
ν1/3k2/3	Combo,ω0,0(t),

which yields the desired decay estimates for ω. A similar approach works for ∂i
xω and ∂y∂

i
xω for 

any integer i > 0.
The third step proves the global bounds for ∂j

y ∂i
xθ and ∂j

y ∂i
xω. ∂j

y ∂i
xθ satisfies

∂t (∂
j
y ∂i

xθ) + j∂i+1
x (∂

j−1
y )θ + y∂i+1

x (∂
j
y θ) = η∂yy(∂

j
y ∂i

xθ),

which suggests that we make an induction on j . By constructing suitable combined functionals 
of θ and carefully evaluating each term, we are able to prove the decay bounds for ∂j

y ∂i
xθ . The 

proof for the exponential decay of ∂j
y ∂i

xω involves very tedious evaluations of many terms. More 
details are given in the section that follows. The rest of this paper proves Theorems 1.1 and 1.2.

2. Proof of Theorems 1.1 and 1.2

This section proves Theorems 1.1 and 1.2. For the sake of clarity, we divide the whole section 
into three subsections. The first subsection focuses on the decay estimates for ‖∂i

xθ‖L2
y

and for 

‖∂y∂
i
xθ‖L2

y
for any nonnegative integer i. The second subsection establishes the regularity and 

decay bounds for ‖∂i
xω‖L2

y
and for ‖∂y∂

i
xω‖L2

y
while the last subsection deals with the exponen-

tial decay for derivatives ∂j
y ∂i

xθ and ∂j
y ∂i

xω with j ≥ 1.

2.1. Exponential decay for ∂i
xθ and ∂y∂

i
xθ

This subsection is devoted to proving the decay estimates for ∂i
xθ and ∂y∂

i
xθ for any nonneg-

ative integer i. More precisely, we prove the following proposition.

Proposition 2.1. Let the spatial domain � = T × R+. Let i ≥ 0 be an integer and assume θ0 ∈
L2(�) and ∂i

xθ0 ∈ L2(�). Consider the initial and boundary-value problem

⎧⎨⎩
∂t θ + y∂xθ = η ∂yyθ,

∂yθ |y=0 = 0,

θ(x,0) = θ0(x).

(2.1)

Then, for any integer k �= 0,

‖∂i
x θ̂ (k, ·, t)‖L2

y
≤ C

(
‖∂i

x θ̂0(k, ·)‖L2
y
+ η2/3k−2/3‖∂y∂

i
x θ̂0(k, ·)‖L2

y

)
e− 2

3 η
1
3 k

2
3 t , (2.2)

‖∂y∂
i
x θ̂ (k, ·, t)‖L2 ≤ C

(
η−2/3k2/3‖∂i

x θ̂0(k, ·)‖L2 + ‖∂y∂
i
x θ̂0(k, ·)‖L2

)
e− 2

3 η
1
3 k

2
3 t , (2.3)
y y y
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where C is a constant independent of k and t . In the case when k = 0, ∂i
x θ̂ (0, y, t) and 

∂y∂
i
x θ̂ (0, y, t) solve the 1D heat equation,

∂t ∂
i
x θ̂(0, y, t) = η∂yy∂

i
x θ̂ (0, y, t), ∂t ∂y∂

i
x θ̂(0, y, t) = η∂yy∂y∂

i
x θ̂ (0, y, t).

Proof. We start with the case i = 0. For notational convenience, we simply write ‖f ‖L2 for 
‖f ‖L2

y
to denote the L2-norm in the y-variable. As aforementioned in the introduction, we define 

	(t) as in (1.9), namely

	(t) = k2γ ‖θ̂‖2
L2 + α‖∂yθ̂‖2

L2 + kβRe〈i θ̂ , ∂y θ̂〉
with the parameters α, β and γ given by

α = 1

3
η2/3k−2/3 , β = η1/3k−4/3 , γ = k−2 .

The notation k2γ , albeit being 1, is more suitable for the following derivation. With these choices 
of parameters, we have

kβRe〈i θ̂ , ∂y θ̂〉 =
√

3η1/3k−4/3

η1/3k−1/3 k

∥∥∥∥ 1√
3
η1/3k−1/3∂y θ̂

∥∥∥∥
L2

‖θ̂‖L2

�
√

3

2

∥∥∥∥ 1√
3
η1/3k−1/3∂y θ̂

∥∥∥∥2

L2
+

√
3

2
‖θ̂‖2

L2

=
√

3

2
α‖∂y θ̂‖2

L2 +
√

3

2
k2γ ‖θ̂‖2

L2, (2.4)

which implies the equivalence between 	(t) and ‖θ̂‖2
L2 + α‖∂y θ̂‖2

L2 ,

	(t) ≥
(

1 −
√

3

2

)(
k2γ ‖θ̂‖2

L2 + α‖∂y θ̂‖2
L2

)
and

	(t) ≤
(

1 +
√

3

2

) (
k2γ ‖θ̂‖2

L2 + α‖∂y θ̂‖2
L2

)
.

Therefore, to prove (2.2) and (2.3) with i = 0, it suffices to prove the decay for 	(t).
We estimate the time derivative of 	:

d

dt
	(t) = k2γ

(〈∂t θ̂ , θ̂〉 + 〈θ̂ , ∂t θ̂〉)
+α

(〈∂t ∂y θ̂ , ∂y θ̂〉 + 〈∂y θ̂ , ∂t ∂y θ̂〉)
+kβ

(
Re〈i ∂t θ̂ , ∂y θ̂〉 + Re〈i θ̂ , ∂t ∂y θ̂〉) . (2.5)

Integrating by parts and making use of the boundary condition ∂yθ = 0 on y = 0, we have
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〈∂t θ̂ , θ̂〉 + 〈θ̂ , ∂t θ̂〉 = 〈η∂yy θ̂ − y∂xθ̂ , θ̂〉 + 〈θ̂ , η∂yy θ̂ − y∂x θ̂〉
= −2η‖∂yθ̂‖2

L2 +
∫

−ikyθ̂ ¯̂θ + θ̂ iky ¯̂θ dy

= −2η‖∂yθ̂‖2
L2 .

Due to the equation on ∂yθ̂ :

∂t ∂y θ̂ + ikθ̂ + y∂xy θ̂ = η∂yyy θ̂ ,

we have

〈∂t ∂y θ̂ , ∂y θ̂〉 + 〈∂y θ̂ , ∂t ∂y θ̂〉
= 〈−∂x θ̂ − y∂xy θ̂ + η∂yyy θ̂ , ∂y θ̂〉 + 〈∂y θ̂ ,−∂x θ̂ − y∂xy θ̂ + η∂yyy θ̂〉
= −2η‖∂yy θ̂‖2

L2 +
∫

−ikθ̂∂y
¯̂θ + ∂y θ̂ ik ¯̂θ dy

+
∫

−iky∂y θ̂∂y
¯̂θ + ∂y θ̂ iky∂y

¯̂θ dy

= −2η‖∂yy θ̂‖2
L2 − 2kRe〈i θ̂ , ∂y θ̂〉 .

Similarly,

Re〈i ∂t θ̂ , ∂y θ̂〉 + Re〈i θ̂ , ∂t ∂y θ̂〉
= Re〈iη∂yy θ̂ − iy∂x θ̂ , ∂y θ̂〉 + Re〈iθ̂ ,−∂x θ̂ − y∂xy θ̂ + η∂yyy θ̂〉
= Re

∫
iη∂yy θ̂∂y

¯̂θ dy + Re

∫
−i∂y θ̂η∂yy

¯̂θ dy

+Re

∫
kyθ̂∂y

¯̂θ dy + Re

∫
iθ̂ ik ¯̂θ dy + Re

∫
iθ̂yik∂y

¯̂θ dy

= 2Re〈iη∂yy θ̂ , ∂y θ̂〉 − k‖θ̂‖2
L2 .

Then, (2.5) becomes

d

dt
	(t) = −2η k2γ ‖∂yθ̂‖2

L2 − 2αη‖∂yy θ̂‖2
L2 − 2αkRe〈i θ̂ , ∂y θ̂〉

+2kβηRe〈i ∂yy θ̂ , ∂y θ̂〉 − k2β‖θ̂‖2
L2

� −2η‖∂yθ̂‖2
L2 − 2

3
η5/3k−2/3‖∂yy θ̂‖2

L2 − 2

3
η2/3k−2/3kRe〈i θ̂ , ∂y θ̂〉

+2η4/3k−1/3Re〈∂yy θ̂ , ∂y θ̂〉 − η1/3k2/3‖θ̂‖2
L2

� −2η‖∂yθ̂‖2
L2 − 2

3
η5/3k−2/3‖∂yy θ̂‖2

L2 − 2

3
η2/3k−2/3kRe〈i θ̂ , ∂y θ̂〉

+2
η5/3k−2/3‖∂yy θ̂‖2

L2 + 3
η‖∂yθ̂‖2

L2 − η1/3k2/3‖θ̂‖2
L2
3 2
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= −η1/3k2/3‖θ̂‖2
L2 − 3

2
· 1

3
η‖∂y θ̂‖2

L2 − 2

3
η2/3k−2/3kRe〈i θ̂ , ∂y θ̂〉

= −2

3
η1/3k2/3

(
3

2
‖θ̂‖2

L2 + 9

4
· 1

3
η

2
3 k− 2

3 ‖∂yθ̂‖2
L2 + η

1
3 k− 4

3 kRe〈i θ̂ , ∂y θ̂〉
)

.

Recalling the definitions of α, β and γ in (1.10), we are led to

d

dt
	(t) � −2

3
η1/3k2/3	(t),

which implies the desired exponential decay 	(t) �	(0)e− 2
3 η1/3k2/3t . By the equivalence of the 

norms (2.4), we have that both ‖θ̂‖L2 and ‖∂yθ̂‖L2 decay exponentially,(
1 −

√
3

2

)(
k2γ ‖θ̂ (·, t)‖L2 + α‖∂yθ̂(·, t)‖L2

)
� 	(0)e− 1

3 η1/3k2/3t .

This completes the proof for the case when i = 0. For a general positive integer i, ∂i
xθ satisfies 

the same equation as that of θ ,

∂t ∂
i
xθ + L(∂i

xθ) = 0, ∂i
xθ(x, y,0) = ∂i

xθ0(x, y).

As a consequence, ‖∂i
xθ‖L2 and ‖∂y∂

i
xθ‖L2 obey the same decay rate in k and in t . When k = 0, 

∂i
x θ̂ (0, y, t) and ∂y∂

i
x θ̂ (0, y, t) satisfy the 1D heat equation,

∂t ∂
i
x θ̂ (0, y, t) = η∂yy∂

i
x θ̂ (0, y, t), ∂t ∂y∂

i
x θ̂ (0, y, t) = η∂yy∂y∂

i
x θ̂ (0, y, t),

which yields the desired representations for k = 0. This completes the proof of Proposi-
tion 2.1. �
2.2. Exponential decay for ω

This subsection proves the decay estimates for ω̂ and ∂yω̂, as stated in Theorem 1.1. The 
precise statement is provided in the following proposition.

Proposition 2.2. Let the spatial domain � =T ×R+. Let i ≥ 0 be an integer. Assume ω0 and θ0
satisfy

∂i
xω0 ∈ L2(�), ∂y∂

i
xω0 ∈ L2(�), ∂i+1

x θ0 ∈ L2(�), ∂y∂
i+1
x θ0 ∈ L2(�),

∂i+2
x θ0 ∈ L2(�), ∂y∂

i+2
x θ0 ∈ L2(�).

Consider the initial and boundary-value problem⎧⎪⎪⎨⎪⎪⎩
∂tω + y∂xω = ν ∂yyω + ∂xθ,

∂t θ + y∂xθ = η ∂yyθ,

∂yω|y=0 = 0, ∂yθ |y=0 = 0,

ω(x,0) = ω (x), θ(x,0) = θ (x).
0 0
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Then, for any integer k �= 0 and any t > 0,

‖∂i
xω̂(k, ·, t)‖L2

y
≤ C 	Combo,ωi,0(0) e− 2

3 [min(ν,η)] 1
3 k

2
3 t ,

‖∂y∂
i
xω̂(k, ·, t)‖L2

y
≤ C 	Combo,ωi,0(0) ν− 2

3 k
2
3 e− 2

3 [min(ν,η)] 1
3 k

2
3 t ,

where C is a constant independent of k and t . Here 	Combo,ωi,0(t) with any t ≥ 0 is defined as

	Combo,ωi,0(t) = 	ω0,0(t) + (36ν−1/3η−1/3k−4/3 + 18ν1/3η−1k−4/3)	θi+1,0(t)

+(27ν−1/3η−1/3k−10/3 + 13.5ν1/3η−1k−10/3)	θi+2,0(t),

where 	ωi,0 , 	θi+1,0 and 	θi+2,0 are given by

	ωi,0 = k2γ ‖∂̂ i
xω‖2

L2 + αν‖∂y∂̂i
xω‖2

L2 + kβνRe〈i ∂̂ i
xω, ∂y ∂̂i

xω〉,

	θi+1,0 = k2γ ‖̂∂i+1
x θ‖2

L2 + αη‖∂y
̂
∂i+1
x θ‖2

L2 + kβηRe〈î∂i+1
x θ, ∂y

̂
∂i+1
x θ〉,

	θi+2,0 = k2γ ‖̂∂i+2
x θ‖2

L2 + αη‖∂y
̂
∂i+2
x θ‖2

L2 + kβηRe〈î∂i+2
x θ, ∂y

̂
∂i+2
x θ〉

with αν , βν , αη , βη and γ specified as before. In the case when k = 0, ∂i
xω̂(0, ·, t) and 

∂y∂
i
xω̂(0, ·, t) solve the 1D heat equations.

As mentioned in the introduction, the proof of Proposition 2.2 is more complex than that of 
Proposition 2.1. The equation of ω,

∂tω = −y∂xω + ν∂yyω + ∂xθ

contains an extra term ∂xθ and can not be combined into the linear operator L in the previous 
analysis. Instead ∂xθ is treated as a forcing term and we are forced to construct suitable combined 
functionals of ω and θ .

Proof of Proposition 2.2. We define the combined functional 	Combo,ω0,0 as

	Combo,ω0,0(t) = 	ω0,0(t) + (36ν−1/3η−1/3k−4/3 + 18ν1/3η−1k−4/3)	θ1,0(t)

+(27ν−1/3η−1/3k−10/3 + 13.5ν1/3η−1k−10/3)	θ2,0(t),

where 	ω0,0 , 	θ1,0 and 	θ2,0 are as provided in the statement of Proposition 2.2. We differentiate 
	Combo,ω0,0 and start with 	ω0,0 .

d

dt
	ω0,0 = k2γ (〈∂t ω̂, ω̂〉 + 〈ω̂, ∂t ω̂〉)

+αν

(〈∂t ∂yω̂, ∂yω̂〉 + 〈∂yω̂, ∂t ∂yω̂〉)
+βν

(
kRe〈i ∂t ω̂, ∂yω̂〉 + kRe〈i ω̂, ∂t ∂yω̂〉) .
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Clearly,

〈∂t ω̂, ω̂〉 + 〈ω̂, ∂t ω̂〉 = −2ν‖∂yω̂‖2
L2 + 2kRe〈i θ̂ , ω̂〉 ,

〈∂t ∂yω̂, ∂yω̂〉 + 〈∂yω̂, ∂t ∂yω̂〉 = −2ν‖∂yyω̂‖2
L2 − 2kRe〈i ω̂, ∂yω̂〉 + 2Re〈i k∂yθ̂ , ∂yω̂〉 ,

kRe〈i ∂t ω̂, ∂yω̂〉 + kRe〈i ω̂, ∂t ∂yω̂〉 = 2Re〈i kν∂yyω̂, ∂yω̂〉 − k2‖ω̂‖2
L2

+ Re〈−k2θ̂ , ∂yω̂〉 + Re〈i kω̂, ∂xy θ̂〉 .

Some of the terms can be similarly estimated as in the previous subsection. Those terms related 
to θ are handled differently.

d

dt
	ω0,0(t) ≤ −2

3
ν1/3k2/3

(
3

2
‖ω̂‖2

L2 + 9

4

1

3
ν2/3k−2/3‖∂yω̂‖2

L2

+ν1/3k−4/3kRe〈i ω̂, ∂yω̂〉
)

+ 2

3
ν1/3k2/3

(
18ν−2/3k−4/3‖θ̂x‖2

L2 + 1

8
‖ω̂‖2

L2

)
+ 2

3
ν1/3k2/3

(
18ν−2/3k−4/3 1

3
ν2/3k−2/3‖∂yθ̂x‖2

L2

+1

8
· 1

3
ν2/3k−2/3‖∂yω̂‖2

L2

)
+ 2

3
ν1/3k2/3

(
13.5ν−2/3k−10/3‖θ̂xx‖2

L2 + 1

8
· 1

3
ν2/3k−2/3‖∂yω̂‖2

L2

)
+ 2

3
ν1/3k2/3

(
13.5ν−2/3k−10/3 1

3
ν2/3k−2/3‖∂yθ̂xx‖2

L2 + 1

8
‖ω̂‖2

L2

)
.

We then differentiate 	θ1,0 and 	θ2,0 to obtain

d

dt
	Combo,ω0,0(t)

� −2

3
ν1/3k2/3

(
5

4
‖ω̂‖2

L2 + 2
1

3
ν2/3k−2/3‖∂yω̂‖2

L2 + ν1/3k−4/3kRe〈i ω̂, ∂yω̂〉
)

−36ν−1/3η−1/3k−4/3 2

3
η1/3k2/3

(
‖θ̂x‖2

L2 + 9

4

1

3
ν2/3k−2/3‖∂yθ̂x‖2

L2

+ν1/3k−4/3kRe〈i θ̂x , ∂y θ̂x〉
)

−18ν1/3η−1k−4/3 2

3
η1/3k2/3

(
3

2
‖θ̂x‖2

L2 + 5

4

1

3
ν2/3k−2/3‖∂y θ̂x‖2

L2

+ν1/3k−4/3kRe〈i θ̂x , ∂y θ̂x〉
)

−27ν−1/3η−1/3k−10/3 2
η1/3k2/3

(
‖θ̂xx‖2

L2 + 9 1
ν2/3k−2/3‖∂yθ̂xx‖2

L2
3 4 3
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+ν1/3k−4/3kRe〈i θ̂xx, ∂y θ̂xx〉
)

−13.5ν1/3η−1k−10/3 2

3
η1/3k2/3

(
3

2
‖θ̂xx‖2

L2 + 5

4

1

3
ν2/3k−2/3‖∂yθ̂xx‖2

L2

+ν1/3k−4/3kRe〈i θ̂xx, ∂y θ̂xx〉
)

� −2

3
[min(ν, η)]1/3k2/3	Combo,ω0,0(t).

Therefore,

	Combo,ω0,0(t)� 	Combo,ω0,0(0)e− 2
3 [min(ν,η)]1/3k2/3t .

Especially,

	ω0,0(t) � e− 2
3 [min(ν,η)]1/3k2/3t(

	ω0,0(t) + (36ν−1/3η−1/3k−4/3 + 18ν1/3η−1k−4/3)	θ1,0(t)

+(27ν−1/3η−1/3k−10/3 + 13.5ν1/3η−1k−10/3)	θ2,0(t)
)

.

Since both 	θ1,0 and 	θ2,0 are positive definite, we combine this bound with the equivalence of 
norms to obtain the desired decay bounds for ‖ω̂‖L2 and ‖∂yω̂‖L2 . One remark we would like to 
make is that we have deliberately left a 1

4‖ω̂‖2
L2 gap in this estimate, i.e. coefficient of 5

4 instead 
of 1. The purpose is to make room for the induction argument in Subsection 2.3.

Since ∂i
xω satisfies a similar equation as ω,

∂t ∂
i
xω = −y∂x∂

i
xω + ν∂yy∂

i
xω + ∂x∂

i
xθ,

the same method can be applied to these equations for ∂i
xω. This generalization concludes that

‖∂̂ i
xω(t)‖L2 + αν‖∂y ∂̂i

xω(t)‖L2 � C 	Combo,ωi,0(0) e− 2
3 [min(ν,η)]1/3k2/3

,

where C is a pure constant and 	Combo,ωi,0 is defined as before. This completes the proof of 
Proposition 2.2. �
2.3. Decay involving higher derivatives in y

This subsection proves the exponential decay for higher y-derivatives of θ and ω, as stated in 
Theorem 1.2.

Proof of Theorem 1.2. We first estimate ‖∂j
y ∂i

xθ(t)‖L2 . This is done by induction on j . For all 
i and j = 0, the case has been proved in Subsection 2.1. Suppose that ‖∂m

y ∂i
xθ(t)‖L2 satisfies the 

decay estimates of Theorem 1.2 for all i and for all 0 � m � j − 1, we prove the exponential 
decay for ‖∂j

y ∂i
xθ(t)‖L2 . We start with the equation of ∂j

y ∂i
xθ

∂t (∂
j
y ∂i θ) + j∂i+1(∂

j−1
y )θ + y∂x(∂

j
y ∂i θ) = η∂yy(∂

j
y ∂i θ).
x x x x
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Due to the presence of the extra term j∂i+1
x (∂

j−1
y )θ , we need to construct a suitable combination 

of functionals. To shed light on the combination, we define

	θi,j
= ‖∂j

y ∂̂i
xθ‖2

L2 + αη‖∂j+1
y ∂̂i

xθ‖2
L2 + kβηRe〈i ∂j

y ∂̂i
xθ, ∂

j+1
y ∂̂i

xθ〉

and compute its time-derivative,

d

dt
	θi,j

(t)� −η1/3k2/3
(

‖∂j
y ∂̂i

xθ‖2
L2 + 3

2
αη‖∂j+1

y ∂̂i
xθ‖2

L2

+ 2

3
kβηRe〈i ∂j

y ∂̂i
xθ, ∂

j+1
y ∂̂i

xθ〉
)

+η1/3k2/3
(

12 j2 η−1/3k−2/3‖∂j−1
y

̂
∂i+1
x θ‖2

L2 + 1

12
‖∂j

y ∂̂i
xθ‖2

L2

)
+η1/3k2/3

(
12 j2 η−1/3k−2/3α‖∂j

y
̂
∂i+1
x θ‖2

L2 + 1

12
αη‖∂j+1

y ∂̂i
xθ‖2

L2

)
+η1/3k2/3

(
9 j2 η−2/3k−10/3‖∂j−1

y
̂
∂i+2
x θ‖2

L2 + 1

12
αη‖∂j+1

y ∂̂i
xθ‖2

L2

)
+η1/3k2/3

(
9 j2 η−2/3k−10/3α‖∂j

y
̂
∂i+2
x θ‖2

L2 + 1

12
‖∂j

y ∂̂i
xθ‖2

L2

)
.

This calculation indicates that we should work with the combination

	Combo,θi,j
= 	θi,j

+ 72 j2 η−1/3k−2/3 	Combo,θi+1,j−1

+54 j2 η−2/3k−10/3 	Combo,θi+2,j−1 ,

where the coefficients 72 and 54 are chosen to be 6 times the coefficient of the third and the 
fourth terms above (or 12) and 6 times the coefficient of the fifth and the sixth terms above (or 9), 
respectively. The magic number 6 comes from the fact that the time derivatives of 	Combo,θi+1,j−1

and 	Combo,θi+2,j−1 will each be able to spare 1
6 of the negative parts to cancel the corresponding 

positive parts in the time derivatives of 	θi,j
(t). We then differentiate 	Combo,θi,j

in time and 
make use of the cancelations we just mentioned to obtain

d

dt
	Combo,θi,j

≤ −2

3
η1/3k2/3	Combo,θi,j

+ E, (2.6)

where E contains terms of the form ‖∂m
y ∂l

xθ(t)‖L2 with j − 3 ≤ m ≤ j − 1 and i + 1 ≤ l ≤ i + 6. 
Integrating (2.6) in time and invoking the inductive assumption, we obtain

	Combo,θi,j
(t) ≤ 	Combo,θi,j

(0) e− 2
3 η1/3k2/3t +

t∫
0

e− 2
3 η1/3k2/3(t−τ) E(τ) dτ

= P
(
t, k− 2

3 , k
2
3

)
e− 2

3 η1/3k2/3t ,
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where P denotes a polynomial of its variables and 	Combo,θi,j
(0) can be figured out by the 

induction on the index:

	Combo,θi,j
(0) = 	θi,j

(0)

+
j∑

n=1

[(
�n

l=1(j + 1 − l)2
) n∑

m=0

Cm
n (72η−1/3k−2/3)m(54η−2/3k−10/3)n−m	θi+m+n,j−n

(0)
]
.

Consequently,

‖∂j
y ∂̂i

xθ‖2
L2 + αη‖∂j+1

y ∂̂i
xθ‖2

L2 ≤ C 	θi,j
(t) ≤ C 	Combo,θi,j

(t),

where leads to the desired estimate in (1.6).
We now turn to the proof for the exponential decay of ∂j

y ∂i
xω by an induction argument on 

j . Subsection 2.2 shows the desired decay for all i and j = 0, which initiates the induction. We 
assume that (1.7) is true for all i and for 0 � m � j −1. Applying ∂j

y ∂i
x to the original ω equation, 

we have

∂t (∂
j
y ∂i

xω) + j∂
j−1
y ∂i+1

x ω + y∂x(∂
j
y ∂i

xω) = ν∂yy(∂
j
y ∂i

xω) + ∂
j
y ∂i+1

x θ.

We seek a combined functional in terms of several levels of derivatives of ω and θ . To determine 
a suitable combination, we define

	ωi,j
= ‖∂j

y ∂̂i
xω‖2

L2 + αν‖∂j+1
y ∂̂i

xω‖2
L2 + κ βνRe〈i ∂j

y ∂̂i
xω, ∂

j+1
y ∂̂i

xω〉
and find its time derivative. It is clear that

〈∂t ∂
j
y ∂̂i

xω, ∂
j
y ∂̂i

xω〉 + 〈∂j
y ∂̂i

xω, ∂t ∂
j
y ∂̂i

xω〉
= −2ν‖∂j+1

y ∂̂i
xω‖2

L2 + 2Re〈∂i
y
̂
∂

j+1
x θ, ∂

j
y ∂̂i

xω〉 + 2 j Re〈∂j−1
y

̂
∂i+1
x ω, ∂

j
y ∂̂i

xω〉,
〈∂t ∂

j+1
y ∂̂i

xω, ∂
j+1
y ∂̂i

xω〉 + 〈∂j+1
y ∂̂i

xω, ∂t ∂
j+1
y ∂̂i

xω〉
= −2ν‖∂j+2

y ∂̂i
xω‖2

L2 − 2kRe〈i ∂j
y ∂̂i

xω, ∂
j+1
y ∂̂i

xω〉
+2Re〈∂j+1

y
̂
∂i+1
x θ, ∂

j+1
y ∂̂i

xω〉 + 2 j Re〈∂j
y ∂̂i

xω, ∂
j+1
y

̂
∂i+1
x ω〉

and

kRe〈i ∂t ∂
j
y ∂̂i

xω, ∂
j+1
y ∂̂i

xω〉 + k Re〈i ∂j
y ∂̂i

xω, ∂t ∂
j+1
y ∂̂i

xω〉
= 2Re〈ikν∂

j+2
y ∂̂i

xω, ∂
j+1
y ∂̂i

xω〉 − k2‖∂j
y ∂̂i

xω‖2
L2

+Re〈−k2∂
j
y ∂̂i

xθ, ∂
j+1
y ∂̂i

xω〉 + Re〈ik∂
j
y ∂̂i

xω, ∂
j+1
y

̂
∂i+1
x θ〉

+Re〈ikj∂
j−1
y ∂i+1

x ω, ∂
j+1
y ∂̂i

xω〉 + Re〈ik∂
j
y ∂̂i

xω, (j + 1) ∂
j
y
̂
∂i+1
x ω〉 .

Collecting the terms and estimating them suitably, we have
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d

dt
	ωi,j

(t) � −ν1/3k2/3
(

‖∂j
y ∂̂i

xω‖2
L2 + 3

2
α‖∂j+1

y ∂̂i
xω‖2

L2

+2

3
kβRe〈i ∂j

y ∂̂i
xω, ∂

j+1
y ∂̂i

xω〉
)

+ν1/3k2/3
(

24 j2 ν−2/3k−4/3‖∂j−1
y

̂
∂i+1
x ω‖2

L2 + 1

24
‖∂j

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
24 j2 ν−2/3k−4/3αν‖∂j

y
̂
∂i+1
x ω‖2

L2 + 1

24
αν‖∂j+1

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
18 j2 ν−2/3k−10/3‖∂j−1

y
̂
∂i+2
x ω‖2

L2 + 1

24
αν‖∂j+1

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
18 (j + 1)2 ν−2/3k−10/3αν‖∂j

y
̂
∂i+2
x ω‖2

L2 + 1

24
‖∂j

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
24ν−2/3k−4/3‖∂j

y
̂
∂i+1
x θ‖2

L2 + 1

24
‖∂j

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
24ν−2/3k−4/3αν‖∂j+1

y
̂
∂i+1
x θ‖2

L2 + 1

24
αν‖∂j+1

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
18ν−2/3k−10/3‖∂j

y
̂
∂i+2
x θ‖2

L2 + 1

24
αν‖∂j+1

y ∂̂i
xω‖2

L2

)
+ν1/3k2/3

(
18ν−2/3k−10/3αν‖∂j+1

y
̂
∂i+2
x θ‖2

L2 + 1

24
‖∂j

y ∂̂i
xω‖2

L2

)
.

Thus, we choose the combination

	Combo,ωi,j
= 	ωi,j

+ 144 j2 ν−2/3k−4/3 	Combo,ωi+1,j−1

+108 (j + 1)2 ν−2/3k−10/3 	Combo,ωi+2,j−1

+ (144ν−1/3η−1/3k−4/3 + 72ν1/3η−1k−4/3)	Combo,θi+1,j

+ (108ν−1/3η−1/3k−10/3 + 54ν1/3η−1k−10/3)	Combo,θi+2,j
.

Using the estimates on the time derivative of 	ωi,j
and previous combinations, we can reach the 

inequality

d

dt
	Combo,ωi,j

� −2

3
[min(ν, η)]1/3k2/3	Combo,ωi,j

+ F,

where F collects all the terms with of ‖∂k
y∂l

xω‖L2
y

and ‖∂k
y ∂l

xθ‖L2
y

for k ≤ j − 1. Integrating in 
time, invoking the inductive assumption and the decay estimates for θ in (1.6), we obtain the 
desired exponential decay in (1.7),

‖∂j
y ∂̂i

xω‖2
2 + αν‖∂j+1

y ∂̂i
xω‖2

2 � Q
(
t, k− 2

3 , k
2
3

)
e− 1

3 [min(ν,η)]1/3k2/3t ,

L L
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where Q is a polynomial of its variables and depends on the L2-norms of ω0 and θ0. This com-
pletes the proof of Theorem 1.2. �
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