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Abstract

This paper furthers our studies on the stability problem for perturbations near
hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffu-
sion and solves some of the problems left open in Doering et al. (Physica D
376(377):144–159, 2018). We focus on the periodic domain to avoid the com-
plications due to the boundary. We present several results at two levels: the linear
stability and the nonlinear stability levels. Our linear stability results state that the
velocity field u associated with any initial perturbation converges uniformly to 0
and the temperature θ converges to an explicit function depending only on y as t
tends to infinity. In addition, we obtain an explicit algebraic convergence rate for
the velocity field in the L2-sense. Our nonlinear stability results state that any initial
velocity small in L2 and any initial temperature small in L2 lead to a stable solution
of the full nonlinear perturbation equations in large time. Furthermore, we show
that the temperature is eventually stratified and converges to a function depending
only on y if we know it admits a certain uniform-in-time bound. An explicit decay
rate for the velocity in L2 is also ensured if we make assumption on the high-order
norms of u and θ .

1. Introduction

1.1. Overview

This paper is concernedwith the two-dimensionalBoussinesq equationswithout
thermal diffusion:

⎧
⎪⎨

⎪⎩

∂tu + u · ∇u + ∇P = ν�u + θe2,

∂tθ + u · ∇θ = 0,

∇ · u = 0.

(1.1)
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In [21], the authors studied the global well-posedness and large-time behavior of
large-data classical solutions to (1.1) on 2D non-smooth domains subject to the
stress-free boundary conditions. In particular, the global stability of the hydrostatic
equilibrium associated with (1.1) was investigated (explained in more details later).
Themain purpose of this paper is to further develop the stability problemconcerning
(1.1) near the hydrostatic equilibrium through studying the explicit decay rate of
the velocity field towards the zero equilibrium state and identifying the thermal
structure of the final state.

1.2. Background and Literature Review

System (1.1) is a special (limiting) case of the 2D incompressible Boussinesq
equations ⎧

⎪⎨

⎪⎩

∂tu + u · ∇u + ∇P = ν�u + θe2,

∂tθ + u · ∇θ = κ�θ,

∇ · u = 0,

(1.2)

when κ = 0, which have a wide range of applications in geophysics and fluid
mechanics, such as the modeling of large scale atmospheric and oceanic flows that
are responsible for cold fronts and jet stream [25,43,45], and the study of Rayleigh–
Bénard convection [15,20,24], just to mention a few. In (1.2), the unknown func-
tions u and P denote the velocity field and pressure of the flow, respectively; θ is the
deviation of density from the bottom density (which is taken to be 1 for simplicity)
in the context of geophysical flows, or the temperature deviation in the study of
Rayleigh–Bénard convection; ν � 0 and κ � 0 stand for the kinematic viscosity
and thermal (buoyancy) diffusivity, respectively; and e2 = (0, 1)T.

Besides physical applications, the 2D model (1.2) is also known to retain some
key features of the 3D Euler and Navier–Stokes equations, such as the vortex
stretching mechanism. Indeed, it has been commonly recognized that the growth
of the vorticity associated with (1.2) depends on the temporal accumulation of ∇u,
which is a scenario similar to the vortex stretching effect in 3D incompressible flows
[44]. Another important feature of the 2D Boussinesq equations is that when ν =
κ = 0, the model can be identified with the 3D Euler equations for axisymmetric
swirling flows when the radius r > 0 [44].

Collectively, the physical background and mathematical features of (1.2) make
the model a rich area for mathematical investigations. Studies of the qualitative
behavior of themodel have been carried out for nearly half a century.Major concerns
are oriented around the global well-posedness (GWP)/finite-time blowup (FTB) of
large-data classical solutions (LDCS) under general initial and/or boundary con-
ditions, which has a rather long history starting from the work of Rabinowitz
[46]. On one hand, when the dissipation coefficients, ν and κ , are all equal to zero,
the GWP of LDCS to the model still largely remains open. We refer the reader to
[5,12,13,16,22,31,48,50] for recent (analytical and numerical) studies concerning
the localwell-posedness and FTBofLDCS.On the other hand,when the parameters
are not all equal to zero, the GWP of LDCS has been established in a systematic
fashion by considering both the isotropic and anisotropic dissipations. We refer
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the reader to [1–4,8,9,11,14,17–19,27,28,30,32–34,37–39,41,42,58] for a non-
exhaustive list of results in this direction. There are also works investigating the
well-posedness and regularity of solutions to the model with critical and supercrit-
ical dissipation, and we refer the reader to [35,36,40,49,55–57] and the references
therein.

Compared with the magnitude of research conducted on the GWP of the model,
the large-time behavior (LTB) of solutions, especially the stability of physically
relevant hydrostatic equilibria, has been studied relatively little. To the best of the
authors’ knowledge, the following results have been established in the literature:

• exponential decay of θ to constant states and uniform boundedness of kinetic
energy of LDCS on bounded smooth domains when ν = 0, κ > 0 [58],

• uniform boundedness of kinetic energy of LDCS on bounded smooth domains
when ν > 0, κ = 0 [37],

• algebraic decay of small-data classical solutions to constant ground states in R
3

when ν > 0, κ > 0 [7],
• long time averaged heat transport sustained by thermal boundary conditions,
i.e., bounds for Rayleigh–Bénard convection [52,53],

• existence of a global attractor containing infinitely many invariant manifolds
on periodic domains when ν > 0, κ = 0 [6].

Nevertheless, we note that the above list does not provide any information about the
global asymptotic stability of hydrostatic equilibria associatedwith (1.2), especially
the partially dissipative systems. Until very recently, such an issue is partially
resolved in [21], where the authors studied the large-time behavior of LDCS to
an initial-boundary value problem of the partially dissipative system when κ = 0,
which arises naturally as a relevant system in geophysics [29,47,51]. We briefly
summarize the main results of [21].

First, [21] establishes the GWP of LDCS to the following IBVP:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u + ∇P = ν�u + θe2,

∂tθ + u · ∇θ = 0,

∇ · u = 0,

(u, θ)(x, 0) = (u0, θ0)(x),

u · n|∂� = 0, ω|∂� = 0,

(1.3)

where � ⊂ R
2 is either a rectangle or more general Lipschitz domain with minor

constraints (see [21] for more details), n is the unit outward normal to ∂�, and
ω = ∂xv − ∂yu is the 2D vorticity. Secondly, [21] obtains the global stabil-
ity and large-time behavior of the perturbation near the hydrostatic equilibrium
[uhe, Phe(y), θhe(y)] given by

uhe = 0, θhe(y) = βy + θ̄ , Phe(y) = 1

2
βy2 + θ̄ y.

More precisely, it is proven, forβ > 0, that the L2 norms of the velocity perturbation
(not necessarily small) and its first order spatial and temporal derivatives converge
to zero as t → ∞. Consequently it is found that the pressure and temperature
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functions stratify in the vertical direction in a weak topology. Remarkably, the
second order spatial derivatives of the velocity perturbation (not necessarily small)
are shown to be bounded uniformly in time for all time. In addition, [21] contains
extensive numerical simulations illustrating the analytic results and investigating
unsolved problems. It is worth mentioning several closely related recent works
[10,23,54]. [23] examined the stability and large-time behavior near the hydrostatic
equilibrium of the inviscid Boussinesq system and obtained a sharp decay rate and
stability results via dispersive type estimates. [54] studied the stability of special,
stratified solutions of a 3D inviscid Boussinesq system and established that, as
the strength of the gravity tends to infinity, the 3D system of equations tends to
a stratified system of 2D Euler equations with stratified density. [10] investigated
the stability of the 2D Boussinesq equations with a velocity damping term near
the hydrostatic equilibrium and proved an asymptotic stability with explicit decay
rates when the spatial domain is a strip.

1.3. Motivation and Goals

Now we would like to point out the facts that motivate the current work. Along
with the aforementioned results established in [21], the authors proposed several
open problems. The first is to find explicit decay rates for the velocity perturbation
and its derivatives. The numerical simulation in [21] indicates that the velocity
field might converge to zero as a power law. The second is to provide a precise
description of the final buoyancy distribution in case of general initial conditions.
The numerical test in [21] and an intuitive argument suggest that the final state of
the relaxation problem should generically be the unique stably stratified distribution
θ̂ (y) which is the inverse of a height function determined by the initial temperature
[see (6.1) in [21]].

This paper intends to solve these open problems. To simplify the problem, we
take the spatial domain � to be the periodic box

� = T
2 := [0, 2π ] × [0, 2π ],

and consider the initial-value problem,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + u · ∇u + ∇P = ν�u + θe2,

∂tθ + u · ∇θ = 0,

∇ · u = 0,

(u, θ)(x, 0) = (u0, θ0)(x).

(1.4)

The corresponding vorticity ω = ∇ × u satisfies

∂tω + u · ∇ω = ν�ω + ∂xθ.

We take the hydrostatic equilibrium

uhe = 0, θhe = βy, Phe = 1

2
βy2,
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and consider the perturbation

ũ = u − uhe, θ̃ = θ − θhe, P̃ = P − Phe,

which satisfies ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t ũ + (ũ · ∇)ũ = −∂x p̃ + ν�ũ,

∂t ṽ + (ũ · ∇)ṽ = −∂y p̃ + ν�ṽ + θ̃ ,

∂t θ̃ + (ũ · ∇)θ̃ + βṽ = 0,

∇ · ũ = 0.

(1.5)

The corresponding perturbation in the vorticity ω̃ = ∇ × ũ satisfies

∂t ω̃ + (ũ · ∇)ω̃ = ν�ω̃ + ∂x θ̃ . (1.6)

We separate the linear and the nonlinear parts in (1.5). To do so, we eliminate the
pressure term. Taking the divergence of the velocity equation in (1.5), we find

−� p̃ = ∇ · ((ũ · ∇)ũ) − ∂y θ̃

or
−∇ p̃ = ∇�−1∇ · ((ũ · ∇)ũ) − ∇�−1∂y θ̃ . (1.7)

Inserting (1.7) in (1.5) yields
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t ũ + (ũ · ∇)ũ − ∂x�
−1∇ · ((ũ · ∇)ũ) = ν�ũ − �−1∂xy θ̃ ,

∂t ṽ + (ũ · ∇)ṽ − ∂y�
−1∇ · ((ũ · ∇)ũ) = ν�ṽ + �−1∂xx θ̃ ,

∂t θ̃ + (ũ · ∇)θ̃ + β ṽ = 0,

∇ · ũ = 0.

(1.8)

For notational convenience, we ignore the tilde and further write (1.8) as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u = ν�u − �−1∂xyθ + N1,

∂tv = ν�v + �−1∂xxθ + N2,

∂tθ = −β v + N3,

∇ · u = 0,

(1.9)

where N1, N2 and N3 are the nonlinear terms
⎧
⎪⎨

⎪⎩

N1 = −(u · ∇)u + ∂x�
−1∇ · ((u · ∇)u),

N2 = −(u · ∇)v + ∂y�
−1∇ · ((u · ∇)u),

N3 = −(u · ∇)θ.

(1.10)

The goal of this paper is to study the large-time behavior of large-data classical
solutions to (1.9) and its linearization on the 2D periodic domain T

2 subject to
various initial conditions. Specifically, we aim to identify the explicit decay rate of
u, and describe the profile of the equilibrium state of θ .
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1.4. Challenges

We begin the investigation with the linearization of (1.4), which, according to
(1.9), is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tU = ν�U − ∂xy�
−1�,

∂t V = ν�V + ∂xx�
−1�,

∂t� + β V = 0,

∂xU + ∂yV = 0,

U (x, 0) = U0(x), V (x, 0) = V0(x), �(x, 0) = �0(x).

(1.11)

We remark that the main results of [21] are proved by using pure energy methods.
However, because of the nature of the energy methods, such an approach does not
allow us to extract any decay rate out of the perturbation, even for the linearized
system (1.11). Indeed, it is easy to check that (1.11) admits the following global
and uniform Sobolev bound, for s � 0,

‖(U (t), V (t))‖2Hs + 1

β
‖�(t)‖2Hs + 2ν

∫ t

0
‖(∇U (τ ),∇V (τ ))‖2Hs dτ

= ‖(U0, V0)‖2Hs + 1

β
‖�0‖2Hs .

In Section2 we show that the Hs norm of the linearized velocity field tends to zero
and the temperature converges to a definite limit, as time goes to infinity. However,
because of the absence of thermal dissipation and the coupling of the temperature
with the velocity equation, it does not seem possible to derive any explicit decay
rate of the velocity perturbation by using energy methods. On the other hand, by
differentiating (1.11) with respect to t and making suitable substitutions, we can
convert (1.11) into a system of degenerate wave type equations,

⎧
⎪⎨

⎪⎩

∂t tU − ν�∂tU − β(−�)−1∂xxU = 0,

∂t t V − ν�∂t V − β(−�)−1∂xx V = 0,

∂t t� − ν�∂t� − β(−�)−1∂xx� = 0,

(1.12)

which allows us to extract different global energy bounds, but explicit decay rates
still do not follow from direct energy estimates.

In order to gain a better understanding of the stability problem, here we resort to
the spectral method, that is to first solve the linearized system in the Fourier space,
and then represent the solution of the full nonlinear system in an integral form
via the Duhamel principle. These explicit representations, provided in Section 2,
make it possible for the study of precise large-time behavior. First of all, by direct
calculations, we can show that the Fourier transform of (1.9) is given by

∂tψ = Aψ + F,
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where

ψ =
⎡

⎣
û
v̂

θ̂

⎤

⎦ , A =
⎡

⎢
⎣

−ν|k|2 0 − k1k2
|k|2

0 −ν|k|2 k21
|k|2

0 −β 0

⎤

⎥
⎦ , F =

⎡

⎣
N̂1

N̂2

N̂3

⎤

⎦ .

The eigenvalues of A are

λ1 = −ν|k|2,

λ2 = −1

2
ν|k|2

⎛

⎝1 +
√

1 − 4βk21
ν2|k|6

⎞

⎠ ,

λ3 = −1

2
ν|k|2

⎛

⎝1 −
√

1 − 4βk21
ν2|k|6

⎞

⎠ .

Clearly, for β > 0 and k1 �= 0, the real parts of λ1, λ2, λ3 are all negative. However,
when k1 = 0 or when k21 � |k|4,

λ3 = −
2βk21
ν|k|4

1 +
√

1 − 4βk21
ν2|k|6

≈ 0. (1.13)

Although we are able to identify the explicit decay rates of the linearized velocity
field, such a spectral property makes it considerably difficult to extract explicit
convergence rates for solutions of the full nonlinear equations. We also observe
that more regular initial perturbations here could lead to higher decay rates due

to the fact that λ3 behaves like − 2βk21
ν|k|4 for some frequencies k. This is reflected

in the statement of Theorem 1.3. This phenomenon is different from the behavior
of solutions to standard parabolic partial differential equations (PDEs). In general
more regular perturbations generate slower decay rates in standard parabolic PDEs
with the Laplacian operator or fractional Laplacian operator. This new phenomenon
is due to the partial dissipation in the Boussinesq equations studied here.

1.5. Statement of Results

Wepresent several results at two levels: level one for the linearized system (1.11)
and level two for the full nonlinear system (1.9). We obtain three main results for
the linearized system. The first result states that if the initial profile (U0, V0,�0) is
in the Sobolev space Hs for any s � 0, then the Sobolev norm of the corresponding
velocity field in Hs converges to zero and the Hs-norm of� converges to a definite
limit. More precisely, we have the following theorem:

Theorem 1.1. Let s � 0. Assume that (U0, V0,�0) ∈ Hs(T2) satisfies ∂xU0 +
∂yV0 = 0 and ∫

T2
U0(x) dx = 0 and

∫

T2
V0(x) dx = 0. (1.14)
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Let (U, V,�) be the corresponding solution of (1.11). Then, as t → ∞,

‖U (t)‖Hs → 0, ‖V (t)‖Hs → 0,

‖�(t)‖2Hs → ‖(U0, V0,�0)‖2Hs − 2ν
∫ ∞

0
‖(∇U,∇V )(τ )‖2Hs dτ.

Our second result for the linearized system (1.11) assesses that, if the Fourier
series of the initial data is summable, then the velocity field (U, V ) converges
uniformly to zero and, more importantly, the temperature � converges pointwise
to an explicit function that depends only on the vertical variable. This points to the
stratification of the temperature.

Theorem 1.2. Assume that (U0, V0,�0) satisfies ∂xU0 + ∂yV0 = 0 and
∑

k

|Û0(k)| < ∞,
∑

k

|k2||V̂0(k)| < ∞,
∑

k

|�̂0(k)| < ∞. (1.15)

Assume U0 and V0 satisfy the mean-zero condition (1.14). Let (U, V,�) be the
corresponding solution of (1.11). Then, as t → ∞,

‖U (t)‖L∞(T2) → 0, ‖V (t)‖L∞(T2) → 0, (1.16)

�(x, y, t) → �̃(y) :=
∑

k2

eik2 y
(

β

νk22
V̂0(0, k2) + �̂0(0, k2)

)

. (1.17)

The third result for the linearized system provides explicit bounds on the Hs-
norm of the velocity field (U, V ). In particular, these bounds give us the precise
decay rates of the velocity perturbation.

Theorem 1.3. Assume thatU0, V0 and�0 are in L2(T2), and satisfy ∂xU0+∂yV0 =
0 and the mean-zero condition (1.14). Let (U, V,�) be the corresponding solution
of (1.11). Then the following L2-estimates hold, for a pure constant c0 > 0:

‖U (t)‖L2 � C e−c0 νt ‖U0‖L2 + C

(

e−c0 νt + 1

(νt)3/4

)

‖V0‖L2

+C

(

e−c0 νt + 1√
νt

)

‖�0‖L2 , (1.18)

‖V (t)‖L2 � C

(

e−c0 νt + 1

νt

)

‖V0‖L2 + C

(

e−c0 νt + 1√
νt

)

‖�0‖L2 ,

(1.19)

where C is a constant independent of ν and t. If ∂yV0 ∈ L2(T2) instead of
V0 ∈ L2(T2), the decay rate in the second part of the bound for ‖U (t)‖L2 can
be improved,

‖U (t)‖L2 � C e−c0 νt ‖U0‖L2 + C

(

e−c0 νt + 1

νt

)

‖∂yV0‖L2

+C

(

e−c0 νt + 1√
νt

)

‖�0‖L2 . (1.20)
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For the full nonlinear system (1.9), we remark that the stability results of [21]
remain valid in the periodic setting. Our first theorem presents stability and large-
time behavior results similar to those in Theorem 1.2 of [21], but with a weakened
assumption on θ0. The results are obtained by combining Theorem 1.2 of [21] with
a uniqueness result of [26,38] on the Boussinesq equations in a weak setting. We
conclude that any initial data u0 ∈ H2(T2) and θ0 ∈ L2(T2) ∩ L∞(T2) lead to a
unique, global (in time) solution with the velocity, its time derivative, its first-order
spatial derivatives all tend to zero, and its second-order spatial partials uniformly
bounded. As a special consequence, if the L2-norm of the initial data (u0, θ0) is
small, then the second-order spatial partials of the velocity becomes small in large
time.

Theorem 1.4. Assume u0 ∈ H2(T2) is divergence-free and mean-zero, and θ0 ∈
L2(T2) ∩ L∞(T2). Then (1.9) has a unique global solution (u, θ) satisfying,

u ∈ L∞(0,∞; H2), θ ∈ L∞(0,∞; L2).

More importantly, u, θ and the corresponding pressure P satisfy, as t → ∞,

‖u(t)‖L2 → 0, ‖∇u(t)‖L2 → 0, ‖∂tu(t)‖L2 → 0,

‖θ(t)‖2L2 → ‖u0‖2L2 + ‖θ0‖2L2 − 2ν
∫ ∞

0
‖∇u(t)‖2L2 dt,

‖∇P(t) − θ(t)e2‖H−1 → 0.

In addition, the second-order spatial partials of u admit the uniform global bound,
for an absolute constant C,

‖�u(t)‖L2 � C (‖θ(t)‖L2 + ‖∂tu(t)‖L2 + ‖u(t)‖L2 ‖∇u(t)‖2L2)

for any t > 0. Especially, if the L2-norm of the initial data is small, namely
‖u0‖L2 + ‖θ0‖L2 is small, then the L2-norm of the temperature θ remains small
and the H2-norm of the velocity u becomes small in large time, namely,

‖u0‖L2 + ‖θ0‖L2 � ε 
⇒ ‖θ(t)‖L2 � ε, for all t > 0,

‖u(t)‖H2 � C ε, when t is large,

where the constant C is independent of time.

We emphasize that the first part of Theorem 1.4 requires no smallness on the
initial data and the global stability part follows as a special consequence. One
interesting point about the global stability result is that the initial closeness to the
hydrostatic equilibrium is only in the L2-norm, but the velocity becomes close to
the equilibrium in H2-norm in large time.

The second result for the nonlinear system (1.9) assesses the large-time behavior
of the Fourier frequencies of u and θ .
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Theorem 1.5. Assume that u0 ∈ H2(T2) is divergence-free and mean-zero,

∇ · u0 = 0,
∫

T2
u0(x) dx = 0.

Assume that θ0 satisfies

∑

k∈Z2

|θ̂0(k)| < ∞.

Let (u, θ) be the solution of (1.9). Then, for any k,

û(k, t) → 0 as t → ∞,

and, for k = (k1, k2) with k1 �= 0,

θ̂ (k, t) → 0 as t → ∞.

Moreover, if there is a constant independent of t , such that

∑

k∈Z2

|θ̂ (k, t)| � C,

then θ(x, t) converges to a function depending on y only. More precisely, the large
time asymptotics of θ(x, t) is determined by S(y, t), which satisfies

S(y, t) = θ0(y) − β(ν∂yy)
−1(eνt ∂yy − 1) v0(y) + ∂y(vθ)(y, t).

Here the bar denotes the horizontal average, namely

F(y) = 1

2π

∫

T

F(x, y) dx .

We remark that the aim of Theorem 1.5 has been to understand the large-time
behavior and the eventual profile of the temperature. Theorem 1.5 indeed provides
a large-time asymptotics that is independent of the horizontal variable. The earlier
part of Theorem 1.5 is a special consequence of Theorem 1.4, which is based on
energy estimates. However, the large-time asymptotics part is established using the
explicit integral representation derived in Section 2.

Our third result for the nonlinear system (1.9) intends to provide an explicit
decay rate for the velocity field. As we mentioned before, it is extremely difficult to
obtain any decay rate, due to the fact that the third eigenvalue λ3(k, t) is of the order
−k21/|k|4 and is close to zero when k21 � |k|4. It appears to be necessary to make
some assumptions on the solution in order to obtain the desired decay rate. Our
investigation indicates that no assumption on the decay of the temperature itself
is needed. We find that if the difference between the temperature θ and its large-
time asymptotics S(y, t) decays at certain rate and if the large-time asymptotics
obey some uniform bounds, then the L2-norm of the velocity decays at the rate of

(1 + t)− 1
2 for large t .
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Theorem 1.6. Assume that u0 ∈ H2(T2) is divergence-free and mean-zero,

∇ · u0 = 0,
∫

T2
u0(x) dx = 0.

Assume θ0 ∈ Hs(T2) with s > 2. Let (u, θ) be the corresponding solution of (1.9)
and let S denote the large-time asymptotics defined in Theorem 1.5. If (u, θ) obeys,
for some small ε > 0 and a constant C > 0,

lim
t→∞ tε‖u(t)‖H1 = 0,

lim
t→∞ t

1
4 ‖∇(θ − S)(t)‖L2 = 0, ‖∂y S(t)‖L2 + ‖∂yy S(t)‖L2 � C, (1.21)

then

‖u(t)‖L2 � C√
t + 1

, (1.22)

for some constant C which is independent of t .

The rest of the paper is divided into three sections. The second section derives
the integral representation of (1.9). The third section proves the three theorems for
the linearized system (1.11), while the fourth section presents the proofs of three
theorems for the nonlinear system (1.9). The paper is finished with concluding
remarks.

2. Integral Representation

This section converts (1.9) into an integral form. The Fourier transform of (1.9)
can be written as

∂tψ = Aψ + F, (2.1)

where

ψ =
⎡

⎣
û
v̂

θ̂

⎤

⎦ , A =
⎡

⎢
⎣

−ν|k|2 0 − k1k2
|k|2

0 −ν|k|2 k21
|k|2

0 −β 0

⎤

⎥
⎦ , F =

⎡

⎣
N̂1

N̂2

N̂3

⎤

⎦ . (2.2)

Therefore, ψ can be represented as

ψ(t) = eAtψ0 +
∫ t

0
eA(t−τ) F(τ ) dτ. (2.3)

In order to obtain a more explicit representation, we need to diagonalize A. To do
so, we compute the eigenvalues and eigenvectors of A. The associated characteristic
polynomial of A is given by

p(λ) = (λ + ν|k|2)
(

λ2 + ν|k|2λ + β
k21
|k|2

)
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and the eigenvalues are

λ1 = −ν|k|2,

λ2 = −1

2
ν|k|2 − 1

2

√

ν2 |k|4 − 4βk21
|k|2 = −1

2
ν|k|2

⎛

⎝1 +
√

1 − 4βk21
ν2|k|6

⎞

⎠ ,

(2.4)

λ3 = −1

2
ν|k|2 + 1

2

√

ν2 |k|4 − 4βk21
|k|2 = −1

2
ν|k|2

⎛

⎝1 −
√

1 − 4βk21
ν2|k|6

⎞

⎠ .

(2.5)

Clearly, for β > 0 and k1 �= 0, the real parts of λ1, λ2, λ3 are all negative:

λ1 < 0, Reλ2 < 0, Reλ3 < 0.

When λ2 �= λ3 or 4βk21 �= ν2|k|6, the eigenvectors corresponding to λ1, λ2 and λ3
are given by

η1 =
⎡

⎣
1
0
0

⎤

⎦ , η2 =
⎡

⎣

βk1k2
λ3|k|2
−λ2
β

⎤

⎦ , η3 =
⎡

⎣

βk1k2
λ2|k|2
−λ3
β

⎤

⎦ .

Consequently we can write

AW = WD or A = WDW−1,

where D is the diagonal matrix andW denotes the matrix with η1, η2 and η3 being
the column vectors, namely

D =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ , W = [η1, η2, η3] =
⎡

⎣
1 βk1k2

λ3|k|2
βk1k2
λ2|k|2

0 −λ2 −λ3
0 β β

⎤

⎦ .

For k1 �= 0, the inverse of W , denoted W−1, is given by

W−1 =
⎡

⎢
⎣

1 k2
k1

0

0 1
λ3−λ2

λ3
β(λ3−λ2)

0 − 1
λ3−λ2

− λ2
β(λ3−λ2)

⎤

⎥
⎦ ,

where we have used λ2λ3 = βk21
|k|2 to simplify the calculations. Therefore,

ψ(t) = W

⎡

⎣
eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

⎤

⎦ W−1ψ(0) +
∫ t

0
W

⎡

⎣
eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

⎤

⎦W−1 F(τ ) dτ.
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More explicitly,

W

⎡

⎣
eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

⎤

⎦ W−1 =
⎡

⎢
⎣

eλ1t k2
k1

(eλ1t − G1) − k1k2
|k|2 G2

0 G1
k21
|k|2G2

0 −βG2 G3

⎤

⎥
⎦

where

G1(t) = λ2eλ2t − λ3eλ3t

λ2 − λ3
, G2(t) = eλ2t − eλ3t

λ2 − λ3
, G3(t) = λ3eλ2t − λ2eλ3t

λ3 − λ2
.

(2.6)

Therefore, for λ2 �= λ3 and k1 �= 0,

û(k, t) = eλ1t û0(k) + k2
k1

(eλ1t − G1(t)) v̂0(k) − k1k2
|k|2 G2(t) θ̂0(k)

+
∫ t

0

(
eλ1(t−τ) N̂1(k, τ ) + k2

k1
(eλ1(t−τ) − G1(t − τ)) N̂2(k, τ )

−k1k2
|k|2 G2(t − τ) N̂3(k, τ )

)
dτ, (2.7)

v̂(k, t) = G1(t) v̂0(k) + k21
|k|2G2(t) θ̂0(k)

+
∫ t

0

(
G1(t − τ) N̂2(k, τ ) + k21

|k|2G2(t − τ) N̂3(k, τ )
)
dτ, (2.8)

θ̂ (k, t) = −βG2(t) v̂0(k) + G3(t) θ̂0(k)

+
∫ t

0

(
− βG2(t − τ) N̂2(k, τ ) + G3(t − τ) N̂3(k, τ )

)
dτ. (2.9)

For k1 = 0,

λ2 = −ν|k|2, λ3 = 0, G1 = eλ2t , G2 = 1

λ2
(eλ2t − 1), G3 = 1

and

W−1 =
⎡

⎢
⎣

1 0 0
0 − 1

λ3−λ2
− λ3

β(λ3−λ2)

0 1
λ3−λ2

λ2
β(λ3−λ2)

⎤

⎥
⎦ =

⎡

⎣

1 0 0
0 − 1

λ2
0

0 − 1
λ2

1
β

⎤

⎦

and

W

⎡

⎣
eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

⎤

⎦ W−1 =
⎡

⎣
eλ1t 0 0
0 G1 0
0 −βG2 G3

⎤

⎦ .

Therefore, for k1 = 0, the integral representation of (1.9) is given by

û(k, t) = eλ1t û0(k) +
∫ t

0
eλ1(t−τ) N̂1(k, τ ) dτ, (2.10)
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v̂(k, t) = G1(t) v̂0(k) +
∫ t

0
G1(t − τ) N̂2(k, τ ) dτ, (2.11)

θ̂ (k, t) = −βG2(t) v̂0(k) + θ̂0(k)

+
∫ t

0

(
− βG2(t − τ) N̂2(k, τ ) + N̂3(k, τ )

)
dτ. (2.12)

We remark this representation is actually the limit of (2.7), (2.8) and (2.9) as k1 → 0,
due to the fact that

lim
k1→0

eλ1t − G1(t)

k1
= 0.

For the sake of conciseness, we sometimes still use the representation in (2.7), (2.8)
and (2.9) even for k1 = 0.

In the case when λ2 = λ3, the eigenvectors associated with the eigenvalues
are different from those for λ2 �= λ3. Fortunately the representation formula in
(2.7), (2.8) and (2.9) remain valid if G1, G2 and G3 in (2.6) are interpreted as their
corresponding limits,

G1 = lim
λ2→λ3

λ2eλ2t − λ3eλ3t

λ2 − λ3
= (1 + λ2t)e

λ2t , (2.13)

G2 = lim
λ2→λ3

eλ2t − eλ3t

λ2 − λ3
= teλ2t , (2.14)

G3 = lim
λ2→λ3

λ3eλ2t − λ2eλ3t

λ3 − λ2
= (1 − λ2t)e

λ2t . (2.15)

That is, when λ2 = λ3 or 4βk21 = ν2|k|6, the integral representation of (1.9) is
given by (2.7), (2.8) and (2.9) with G1, G2 and G3 being specified in (2.13), (2.14)
and (2.15).

To prepare for the proofs in the subsequent sections, we provide some prelim-
inary bounds on G1, G2 and G3. They admit different bounds for different k’s.
When k = (k1, k2) satisfies

4βk21 > ν|k|6, (2.16)
√

1 − 4βk21
ν2|k|6 is a pure imaginary number and λ2 given by (2.4) and λ3 given by (2.5)

behave like their real parts − 1
2ν|k|2. In order to make our presentation concise, we

shall ignore the case (2.16) sinceG1,G2 andG3 admit very similar bounds as those
for the case k ∈ S1, as provided in the following lemma.

Lemma 2.1. Let S1 and S2 be subsets of Z
2 (the set of all pairs of integers),

S1 :=
⎧
⎨

⎩
k ∈ Z

2 : k21 � 3ν2

16β
|k|6 or

√

1 − 4βk21
ν2|k|6 � 1

2

⎫
⎬

⎭
, (2.17)

S2 :=
⎧
⎨

⎩
k ∈ Z

2 : k21 <
3ν2

16β
|k|6 or

√

1 − 4βk21
ν2|k|6 >

1

2

⎫
⎬

⎭
. (2.18)

Then the following estimates hold:
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(1) for any k ∈ S1,

λ2 � −1

2
ν|k|2, λ3 � −1

4
ν|k|2,

|G1(t)| � e− 1
2 ν|k|2t + 1

2
ν|k|2t e− 1

4 ν|k|2t ,

|G2(t)| � t e− 1
4 ν|k|2t � C

ν|k|2 for a constant C independent of k and t,

|G3(t)| � e− 1
2 ν|k|2t + ν|k|2t e− 1

4 ν|k|2t ;
(2) for any k ∈ S2,

λ2 < −1

2
ν|k|2, λ3 � − 4βk21

3ν|k|4 , λ3 − λ2 � 1

2
ν|k|2,

|G1(t)| � 4βk21
ν2|k|6 e

− 4k21
3ν|k|4 t + 2e− 1

2 ν|k|2t � C,

|G2(t)| � 2

ν|k|2 e
λ2t + 2

ν|k|2 e
λ3t � C

ν|k|2 ,

|G3(t)| � 2e
− 4k21

3ν|k|4 t + 4βk21
ν2|k|6 e

− 1
2 ν|k|2t � C.

Proof. We start with the first case, k ∈ S1. As we remarked before the statement

of this lemma, we shall always assume

√

1 − 4βk21
ν2|k|6 is real-valued, without loss of

generality. For k ∈ S1, λ2 given by (2.4) and λ3 given by (2.5) obviously satisfy

λ2 � −1

2
ν|k|2, λ3 � −1

4
ν|k|2.

By the mean-value theorem, there is ρ ∈ (λ2, λ3) such that

G1 = eλ2t + λ3te
ρt � e− 1

2 ν|k|2t + 1

2
ν|k|2t e− 1

4 ν|k|2t .

The bounds for G2 and G3 are similarly obtained. We now turn to the case k ∈ S2.
Obviously, λ2 < − 1

2ν|k|2. We write λ3 as

λ3 = −1

2
ν|k|2

⎛

⎝1 −
√

1 − 4k21
ν2|k|6

⎞

⎠ = −
2βk21
ν|k|4

1 +
√

1 − 4βk21
ν2|k|6

� − 4βk21
3ν|k|4 .

We have the difference

λ3 − λ2 = ν|k|2
√

1 − 4βk21
ν2|k|6 � 1

2
ν|k|2.
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The bound for G2 follows directly from the lower bound of this difference. To
bound G1, we have

|G1(t)| � |λ3|
|λ3 − λ2|e

λ3t + |λ2|
|λ3 − λ2|e

λ2t � 4βk21
ν2|k|6 e

− 4k21
3ν|k|4 t + 2e− 1

2 ν|k|2t .

The estimate for G3 is similar. This completes the proof of Lemma 2.1. ��

3. Proofs for the Linear Stability Results

This section proves Theorems 1.1, 1.2 and 1.3 stated in the introduction. For
the convenience of the reader, we recall the linearized system (1.11):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tU = ν�U − ∂xy�
−1�,

∂t V = ν�V + ∂xx�
−1�,

∂t� + βV = 0,

∂xU + ∂yV = 0,

U (x, 0) = U0(x), V (x, 0) = V0(x), �(x, 0) = �0(x),

(3.1)

and its explicit representation in the Fourier space given by the linearization of
(2.7), (2.8) and (2.9):

⎧
⎪⎪⎨

⎪⎪⎩

Û (k, t) = eλ1t Û0(k) + k2
k1

(G1(t) − eλ1t ) V̂0(k) + k1k2
|k|2 G2(t) �̂0(k),

V̂ (k, t) = G1(t) V̂0(k) + k21
|k|2G2(t) �̂0(k),

�̂(k, t) = −βG2(t) V̂0(k) + G3(t) �̂0(k).

(3.2)

To prove Theorem 1.1, we recall the following lemma (see [21]). It assesses
that a uniformly continuous and integrable function must vanish at infinity. A proof
of this simple fact is provided in [21].

Lemma 3.1. Assume f ∈ L1(0, ∞) is a nonnegative and uniformly continuous
function. Then,

f (t) → 0 as t → ∞.

Especially, if f ∈ L1(0, ∞) is nonnegative and satisfies, for a constant C and any
0 � s < t < ∞,

| f (t) − f (s)| � C |t − s|,

then f (t) → 0 as t → ∞.

For the conciseness of the presentation, we set β = 1 from now on. We start
with the proof of Theorem 1.1.
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Proof of Theorem 1.1. Due to the linearity of (3.1), it suffices to prove the result
for s = 0. Dotting (3.1) with (U, V,�) and integrating by parts, we have

d

dt
‖(U, V,�)‖2L2 + 2ν‖(∇U,∇V )‖2L2 = 0,

which implies, for any 0 � s � t ,

‖(U, V,�)(t)‖2L2 + 2ν
∫ t

s
‖(∇U,∇V )(τ )‖2L2 dτ = ‖(U, V,�)(s)‖2L2 . (3.3)

Therefore, ‖(U, V,�)(t)‖L2 is a decreasing function of t and it must have a limit
as t → ∞. In fact, as t → ∞,

‖(U, V,�)(t)‖2L2 → ‖(U0, V0,�0)‖2L2 − 2ν
∫ ∞

0
‖(∇U,∇V )(τ )‖2L2 dτ.

(3.4)
Next we show that, as t → ∞,

‖(U (t), V (t))‖L2 → 0.

Taking the inner product of (U, V ) with the first two equations in (3.1) yields

d

dt
‖(U, V )‖2L2 + 2ν‖(∇U,∇V )‖2L2 = 2

∫

� V dx

� ‖V ‖2L2 + ‖�‖2L2 � ‖(U0, V0,�0)‖2L2 ,

which implies
∣
∣
∣‖(U (t), V (t))‖2L2 − ‖(U (s), V (s))‖2L2

∣
∣
∣

� 2ν
∫ t

s
‖(∇U,∇V )(τ )‖2L2dτ + ‖(U0, V0,�0)‖2L2 |t − s|. (3.5)

Note that (3.3) implies ‖(∇U,∇V )(t)‖2
L2 ∈ L1(0,∞). Hence, (3.5) implies that

‖(U (t), V (t))‖2
L2 is absolutely (and so is uniformly) continuous with respect to

time. Moreover, the periodic setting and the mean-zero condition (1.14) allow the
Poincaré type inequality

‖(U, V )‖L2 � C0 ‖(∇U,∇V )‖L2 .

It then follows from (3.3) that
∫ ∞

0
‖(U (t), V (t))‖2L2 dt < ∞.

Lemma 3.1 then implies, as t → ∞, that

‖U (t)‖L2 → 0, ‖V (t)‖L2 → 0,

which, together with (3.4), implies the desired limits. This completes the proof of
Theorem 1.1. ��
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The key components of the proof of Theorem 1.2 are stated in the following
two lemmas. The first lemma provides the limit of Û (k, t), V̂ (k, t) and �̂(k, t) as
t → ∞ while the second lemma establishes the uniform summability of Û (k, t),
V̂ (k, t) and �̂(k, t).

Lemma 3.2. Under the assumptions of Theorem 1.2, Û (k, t), V̂ (k, t) and �̂(k, t)
obey the following large-time behavior:

for any k, Û (k, t), V̂ (k, t) → 0 as t → ∞,

for any k = (k1, k2) with k1 �= 0, �̂(k, t) → 0 as t → ∞,

for any k = (0, k2), �̂(k, t) → 1

νk22
V̂0(0, k2) + �̂0(0, k2) as t → ∞.

Lemma 3.3. Under the assumptions of Theorem 1.2, Û (k, t), V̂ (k, t) and �̂(k, t)
are uniformly summable, in the sense that the series converge uniformly in time
t ∈ (0,∞),

∑

k

|Û (k, t)| < ∞,
∑

k

|V̂ (k, t)| < ∞,
∑

k

|�̂(k, t)| < ∞.

Proof of Theorem 1.2. With the preparations of the two lemmas above, we can
easily prove Theorem 1.2. Lemmas 3.2 and 3.3 allow us to use the Dominated
Convergence Theorem. Therefore,

lim
t→∞U (x, y, t) = lim

t→∞
∑

k

ei(k1x+k2 y)Û (k, t) =
∑

k

ei(k1x+k2 y) lim
t→∞ Û (k, t) = 0,

lim
t→∞ V (x, y, t) = lim

t→∞
∑

k

ei(k1x+k2 y)V̂ (k, t) =
∑

k

ei(k1x+k2 y) lim
t→∞ V̂ (k, t) = 0,

lim
t→∞ �(x, y, t) = lim

t→∞
∑

k

ei(k1x+k2 y)�̂(k, t) =
∑

k

ei(k1x+k2 y) lim
t→∞ �̂(k, t)

=
∑

k2

eik2 y
(

1

νk22
V̂0(0, k2) + �̂0(0, k2)

)

.

This completes the proof of Theorem 1.2. ��
We now prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. We invoke the representation of Û (k, t), V̂ (k, t) and �̂(k, t)
in (3.2). For each k = (k1, k2) with k1 �= 0, the eigenvalues all have negative real
parts,

λ1 = −ν|k|2 < 0, λ2 = −1

2
ν|k|2

⎛

⎝1 +
√

1 − 4k21
ν2|k|6

⎞

⎠ < 0,

λ3 = −1

2
ν|k|2

⎛

⎝1 −
√

1 − 4k21
ν2|k|6

⎞

⎠ < 0
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and, for λ2 �= λ3 or 4k21 �= ν2|k|6, as t → ∞,

G1(t) = λ3eλ3t − λ2eλ2t

λ3 − λ2
→ 0, G2(t) = eλ3t − eλ2t

λ3 − λ2
→ 0,

G3(t) = λ3eλ2t − λ2eλ3t

λ3 − λ2
→ 0.

In the case when 4k21 = ν2|k|6, we have λ2 = λ3. Then G1, G2 and G3 are given
by the limit form and, as t → ∞,

G1(t) = lim
λ2→λ3

λ3eλ3t − λ2eλ2t

λ3 − λ2
= (1 + λ2t)e

λ2t → 0,

G2(t) = lim
λ2→λ3

eλ3t − eλ2t

λ3 − λ2
= teλ2t → 0,

G3(t) = lim
λ2→λ3

λ3eλ2t − λ2eλ3t

λ3 − λ2
= (1 − λ2t)e

λ2t → 0.

Therefore, for k = (k1, k2) with k1 �= 0, as t → ∞,

Û (k, t) = eλ1t Û0(k) + k2
k1

(G1(t) − eλ1t ) V̂0(k) + k1k2
|k|2 G2(t) �̂0(k) → 0,

V̂ (k, t) = G1(t) V̂0(k) + k21
|k|2G2(t) �̂0(k) → 0,

�̂(k, t) = −G2(t) V̂0(k) + G3(t) �̂0(k) → 0.

When k1 = 0, or k = (0, k2) with k2 �= 0,

λ1 = −νk22 < 0, λ2 = −νk22 < 0, λ3 = 0

and

G1(t) = eλ2t , G2(t) = 1

λ2
(eλ2t − 1), G3(t) = 1.

According to the representation for the case k1 = 0, namely in (2.10), (2.11) and
(2.12), we have, as t → ∞,

Û (k, t) = eλ1t Û0(k) → 0,

V̂ (k, t) = G1(t) V̂0(k) → 0,

�̂(k, t) = −G2(t) V̂0(k) + G3(t) �̂0(k) → 1

νk22
V̂0(0, k2) + �̂0(0, k2).

This completes the proof of Lemma 3.2. ��
We now turn to the proof of Lemma 3.3.
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Proof of Lemma 3.3. The proof is devoted to establishing the following uniform-
in-time bounds, for k = (k1, k2) with k1 �= 0,

|Û (k, t)| � |Û0(k)| + C |k2||V̂0(k)| + C

ν|k|2 |�̂0(k)|,

|V̂ (k, t)| � C |V̂0(k)| + C

ν|k|2 |�̂0(k)|,

|�̂(k, t)| � C

ν|k|2 |V̂0(k)| + C |�̂0(k)|

and, for k = (0, k2),

|Û (k, t)| � |Û0(k)|,
|V̂ (k, t)| � C |V̂0(k)|,
|�̂(k, t)| � C

ν|k|2 |V̂0(k)| + C |�̂0(k)|,

whereC is a pure constant. As a consequence, forU0, V0 and�0 satisfying (1.15),
∑

k

|Û (k, t)|,
∑

k

|V̂ (k, t)|,
∑

k

|�̂(k, t)|

� C
∑

k

(|Û0(k)| + |k2||V̂0(k)| + |�̂0(k)|) < ∞.

The rest of this proof shows the aforementioned uniform bounds. As our first step,
we prove the following bounds for G1, G2 and G3:

|G1(t)| � C, |G2(t)| � C

ν|k|2 , |G3(t)| � C, (3.6)

where C is a pure constant. For k = (k1, k2) with k1 �= 0, by the Mean-Value
Theorem, there exists A satisfying λ2 � A � λ3 < 0 such that

G1(t) = (1 + At)eAt � C.

For k = (0, k2), λ2 = −ν|k|2 and λ3 = 0, and

G1(t) = eλ2t � 1.

Furthermore, for k = (k1, k2) with k1 �= 0,
∣
∣
∣
∣
k2
k1

(G1(t) − eλ1t )

∣
∣
∣
∣ � 1

|k1|
(|k2||G1(t) − eλ1t |) � C |k2|, (3.7)

where we have used the fact that, for k1 �= 0, 1
|k1| � C . In the case when k1 = 0,

as we have explained before, G1(t)−eλ1t

k1
is defined by the limit

G1(t) − eλ1t

k1
= lim

k1→0

G1(t) − eλ1t

k1
= 0.
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Now we turn to bounding G2(t). For k1 = 0 and k = (0, k2), λ2 = −ν|k|2 and
λ3 = 0, and

G2(t) = eλ2t − eλ3t

λ2 − λ3
= 1

λ2
(eλ2t − 1) � 1

ν|k|2 .

We consider k = (k1, k2) with k1 �= 0. We invoke the bounds from Lemma 2.1.
By Lemma 2.1,

G2(t) � C

ν|k|2 .

Due to

G3(t) = λ3eλ2t − λ2eλ3t

λ3 − λ2
= eλ2t − λ2 G2(t),

G3 is bounded by

|G3(t)| � 1 + ν|k|2 · C

ν|k|2 � 1 + C.

We thus have established the bounds in (3.6). Inserting these bounds in (3.2) yields
the desired bounds for Û , V̂ and �̂. This completes the proof of Lemma 3.3. ��

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Since U and V are mean zero,

Û (0, t) = 0, V̂ (0, t) = 0.

By Plancherel’s theorem,

‖U (t)‖2
L2

=
∑

k �=0

|Û (k, t)|2

� 3
∑

k �=0

e2λ1t |Û0(k)|2 + 3
∑

k1 �=0

k22
k21

(G1(t) − eλ1t )2|V̂0(k)|2 + 3
∑

k1 �=0,k2 �=0

k21k
2
2

|k|4 G2
2|�̂0|2

:= I1 + I2 + I3. (3.8)

Since λ1 = −ν|k|2, there is c0 > 0 such that

I1 � 3 e−c0 νt ‖U0‖2L2 .

Wenowestimate I3. Thekey is to boundG2 andwe invoke thebounds inLemma2.1.
According to Lemma 2.1,

for k=(k1, k2) ∈ S1 or k
2
1 � 3ν2

16
|k|6, G2(t)=t eρt , −1

2
ν|k|2 � ρ � −1

4
ν|k|2

and

for k = (k1, k2) ∈ S2 or k
2
1 <

3ν2

16
|k|6, |G2(t)| � 2

ν|k|2 e
λ2t + 2

ν|k|2 e
λ3t .
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The summation in I3 is naturally divided into two summations:

I3 = 3
∑

k∈S1

k21k
2
2

|k|4 G
2
2 |�̂0|2 + 3

∑

k∈S2

k21k
2
2

|k|4 G
2
2 |�̂0|2

� 3
∑

k∈S1

k21k
2
2

|k|4 t2e2ρt |�̂0(k)|2 + C
∑

k∈S2

k21k
2
2

|k|4
1

ν2|k|4 e
2λ2t |�̂0(k)|2

+C
∑

k∈S2

k21k
2
2

|k|4
1

ν2|k|4 e
2λ3t |�̂0(k)|2

� C (t2 + 1) e−c0νt ‖�0‖2L2 + C
∑

k∈S2

k21k
2
2

|k|4
1

ν2|k|4 e
2λ3t |�̂0(k)|2.

The estimate of the last term in I3 is slightly more complex. As in Lemma 2.1, for
k ∈ S2 and k1 �= 0,

λ3 = −
2k21
ν|k|4

1 +
√

1 − 4k21
ν2|k|6

� − 4k21
3ν|k|4 ,

and thus,

∑

k∈S2

k21k
2
2

|k|4
1

ν2|k|4 e
2λ3t |�̂0(k)|2 �

∑

k∈S2

1

ν2|k|4 e
− 8k21

3ν|k|4 t |�̂0(k)|2

�
∑

k∈S2

1

ν2|k|4 e
− 8

3ν|k|4 t |�̂0(k)|2

� 1

νt

∑

k∈S2

t

ν|k|4 e
− 4t

3ν|k|4 |�̂0(k)|2

� C

νt
‖�0‖2L2 ,

where we have used k1 �= 0 and the simple fact xe−x � C for any x � 0. We now
turn to I2 in (3.8). The key is to boundG1(t)−eλ1t . Again we split the consideration
into two cases: k ∈ S1 and k ∈ S2. We invoke the bounds for G1 in Lemma 2.1.
For k ∈ S1,

|G1(t)| = |(1 + ρt) eρt | �
(

1 + 1

2
ν|k|2t

)

e− 1
4 ν|k|2t .

For k ∈ S2,

|G1(t)| � 4k21
ν2|k|6 e

− 4k21
3ν|k|4 t + 2e− 1

2 ν|k|2t .
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To bound I2, we split the summation in I2 into two pieces and use the bounds
above for G1. We emphasize that the summation does not involve k1 = 0 and 1

|k1|
is bounded above:

I2 � C
∑

k∈S1
k22 (|G1(t)|2 + e2λ1t )|V̂0(k)|2 + C

∑

k∈S2
k22 (|G1(t)|2 + e2λ1t )|V̂0(k)|2

� C
∑

k∈S1
k22

(

(1 + 1

2
ν|k|2t)2 e− 1

2 ν|k|2t + e−2ν|k|2t
)

|V̂0(k)|2

+C
∑

k∈S2
k22

⎛

⎝

(
4k21

ν2|k|6 e
− 4k21

3ν|k|4 t + 2e− 1
2 ν|k|2t

)2

+ e−2ν|k|2t
⎞

⎠ |V̂0(k)|2.

For V0 ∈ L2(T2), we further bound I2 as follows:

I2 � C e−c0νt‖V0‖2L2 + C
∑

k∈S2

(
4k21k2
ν2|k|6 e

− 4k21
3ν|k|4 t

)2

|V̂0(k)|2

� C e−c0νt‖V0‖2L2 + C
1

(νt)3/2
∑

k∈S2

(
t
3
4

ν|k|3 e
− 4

3ν|k|4 t
)2

|V̂0(k)|2

� C e−c0νt‖V0‖2L2 + C
1

(νt)3/2
‖V0‖2L2 ,

where again we have used the fact that xe−x � C for all x � 0. If we have
∂yV0 ∈ L2 instead of V0 ∈ L2, the decay rate in this part can be improved. For any
t > 0, we have

I2 � C e−c0νt‖∂yV0‖2L2 + C
∑

k∈S2

(
4k21

ν2|k|6 e
− 4k21

3ν|k|4 t
)2

k22 |V̂0(k)|2

� C e−c0νt‖∂yV0‖2L2 + C
1

(νt)2
∑

k∈S2

(
t

ν|k|4 e
− 4

3ν|k|4 t
)2

k22 |V̂0(k)|2

� C e−c0νt‖∂yV0‖2L2 + C
1

(νt)2
‖∂yV0‖2L2 .

Combining the bounds for I1, I2 and I3 leads to the desired bound for ‖U (t)‖L2

in (1.18) and (1.20). The bound for ‖V (t)‖L2 in (1.19) can be similarly obtained.
This completes the proof of Theorem 1.3. ��

4. Proofs of the Theorems for the Nonlinear System (1.9)

This section proves the three theorems concerning the nonlinear system (1.9).
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Proof of Theorem 1.4. Theorem 1.4 is very close to the statement of Theorem 1.2
in [21]. The main difference here is that the assumption on θ0 is weaker than
in Theorem 1.2 in [21]. The weaker setting makes the proof for the uniqueness
harder. By adopting the approach of [26,38], we can still prove the uniqueness when
θ0 ∈ L2 (no need for θ0 ∈ L∞). [26,38] introduced the new unknown η satisfying
�η = θ and proved the uniqueness by considering the difference ‖∇η1 −∇η2‖L2 .
This approach still works here and more details can be found in [26,38].

The proof for the large-time behavior, as t → ∞,

‖u(t)‖L2 → 0, ‖∇u(t)‖L2 → 0, ‖∂tu(t)‖L2 → 0,

‖θ(t)‖2L2 → ‖u0‖2L2 + ‖θ0‖2L2 − 2ν
∫ ∞

0
‖∇u(t)‖2L2 dt,

‖∇P(t) − θ(t)e2‖H−1 → 0

is very similar to the proof of Theorem 1.2 in [21]. We now provide a proof for the
global bound on the second-order spatial partials of u, for t > 0:

‖�u(t)‖L2 � C (‖θ(t)‖L2 + ‖∂tu(t)‖L2 + ‖u(t)‖L2 ‖∇u(t)‖2L2). (4.1)

Recall that u satisfies (1.9). We rewrite the velocity equation in (1.9) as

ν�u − ∇(
�−1∇ · (u · ∇u) + �−1∂yθ

) = ∂tu + u · ∇u − θe2. (4.2)

Taking the L2-norm each side yields

ν2‖�u‖2L2 + ‖∇(
�−1∇ · (u · ∇u) + �−1∂yθ

)‖2L2

� C ‖∂tu‖2L2 + C ‖u · ∇u‖2L2 + ‖θ‖2L2 , (4.3)

where, due to ∇ · u = 0, we have used the fact that �u and ∇(
�−1∇ · (u · ∇u) +

�−1∂yθ
)
are perpendicular in L2, or

∫

�u · ∇(
�−1∇ · (u · ∇u) + �−1∂yθ

)
dx = 0.

For the nonlinear term on the right-hand side of (4.3), we can show that

C ‖u · ∇u‖2L2 � C ‖u‖2L4‖∇u‖2L4

� C ‖u‖L2‖∇u‖2L2‖�u‖L2

� ν2

2
‖�u‖2L2 + C ‖u‖2L2‖∇u‖4L2 . (4.4)

Substituting (4.4) into (4.3) leads to (4.1).
In particular, since ‖θ(t)‖L2 � ‖(u0, θ0)‖L2 , when ‖(u0, θ0)‖L2 is small, taking

into account of the large-time behavior of ‖u(t)‖H1 and ‖∂tu(t)‖L2 , we conclude
from (4.1) that ‖u‖H2 becomes small in large time. This completes the proof of
Theorem 1.4. ��

We now turn to the proof of Theorem 1.5. We make use of the representation
formula derived in Section 2.
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Proof of Theorem 1.5. We recall the equation of θ̂ (k, t) in (2.9),

θ̂ (k, t) = �̂(k, t) +
∫ t

0

(
− G2(t − τ) N̂2(k, τ ) + G3(t − τ) N̂3(k, τ )

)
dτ,

(4.5)

where �̂(k, t) denotes the corresponding linear part, namely

�̂(k, t) = −G2(t) v̂0(k) + G3(t) θ̂0(k).

As shown in Lemma 3.2, for k = (k1, k2) with k1 �= 0,

�̂(k, t) → 0 as t → ∞.

We focus on the last two terms in (4.5),

I1 =
∫ t

0
(−G2(t − τ) N̂2(k, τ )) dτ, I2 =

∫ t

0
G3(t − τ) N̂3(k, τ dτ.

We recall the bounds for G2 and G3 obtained Lemma 2.1. For k ∈ S1,

λ2 � −1

2
ν|k|2, λ3 � −1

4
ν|k|2,

|G2(t)| � t eρt , −1

2
ν|k|2 � ρ � −1

4
ν|k|2;

G3(t) = eλ2t − λ2G2(t), |G3(t)| � eλ2t + |λ2|tebt . (4.6)

For k ∈ S2,

λ2 � −1

2
ν|k|2, λ3 = −

2k21
ν|k|4

1 +
√

1 − 4k21
ν2|k|6

� − 4k21
3ν|k|4 ,

|G2(t)| � 2

ν|k|2 e
λ2t + 2

ν|k|2 e
λ3t , (4.7)

|G3(t)| � 3eλ2t + 2eλ3t . (4.8)

Recalling the definitions of N2 and N3 in (1.10), we have, for any |k| �= 0,

|N̂2| � 2 | ̂(u · ∇)u(k, t)|, |N̂3| � | ̂(u · ∇)θ(k, t)|.
Assume k = (k1, k2) with k1 �= 0. We now estimate I1 and I2 for k ∈ S1. We split
the time integral into two parts:

|I1| � 2
∫ t

0
(t − τ) e− 1

4 ν|k|2(t−τ)| ̂(u · ∇)u(k, τ )| dτ

= 2
∫ t

2

0
(t − τ) e− 1

4 ν|k|2(t−τ)| ̂(u · ∇)u(k, τ )| dτ
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+2
∫ t

t
2

(t − τ) e− 1
4 ν|k|2(t−τ)| ̂(u · ∇)u(k, τ )| dτ

:= I11 + I12. (4.9)

By Hölder’s inequality and Poincaré’s inequality, for a pure constant C ,

|I11| � C t e− 1
8 ν|k|2t

∫ t
2

0
‖(u · ∇)u(τ )‖L1 dτ

� C t e− 1
8 ν|k|2t

∫ t
2

0
‖u(τ )‖L2 ‖∇u(τ )‖L2 dτ

� C t e− 1
8 ν|k|2t

∫ ∞

0
‖∇u(τ )‖2L2 dτ, (4.10)

where we have used the simple fact that ‖ f̂ (k)‖l∞ � ‖ f ‖L1 with l∞ denoting the
space of bounded sequences. Therefore, I11 → 0 as t → ∞, and we have

|I12| � C
∫ t

t
2

|k| (t − τ) e− 1
4 ν|k|2(t−τ) ‖u(τ )‖2L2 dτ

� C sup
t
2�τ�t

‖u(τ )‖2L2

∫ t

t
2

|k| (t − τ) e− 1
4 ν|k|2(t−τ) dτ

� C sup
t
2�τ�t

‖u(τ )‖2L2 (ν|k|)−1(1 − e− 1
8 ν|k|2t ). (4.11)

Using the fact that

lim
t→∞ sup

t
2�τ�t

‖u(τ )‖2L2 = 0,

we conclude that I12 → 0 as t → ∞. Therefore,

I1 → 0 as t → ∞.

I2 can be similarly estimated. In fact, by the bound for G3 in (4.6),

|I2| �
∫ t

0
(1 + ν|k|2(t − τ))e− 1

4 ν|k|2(t−τ) |k|‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

� C |k|(1 + ν|k|2t) e− 1
8 ν|k|2t

∫ t
2

0
‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

+C sup
t
2�τ�t

‖u(τ )‖L2 ‖θ(τ )‖L2

∫ t

t
2

(1 + ν|k|2(t − τ)) e− 1
8 ν|k|2(t−τ) dτ

� C ‖(u0, θ0)‖L2 |k|(1 + ν|k|2t) e− 1
8 ν|k|2t√t

(∫ t
2

0
‖∇u‖2L2 dτ

) 1
2

+C ‖(u0, θ0)‖L2 sup
t
2�τ�t

‖u(τ )‖L2

(
C

ν|k| (1 − e− 1
8 ν|k|2t ) + C |k| t e− 1

8 ν|k|2t
)

,

where we have invoked Poincaré’s inequality and the global bound
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‖θ(t)‖L2 � ‖(u0, θ0)‖L2 .

Due to the facts that

sup
t
2�τ�t

‖u(τ )‖L2 → 0, 2ν
∫ ∞

0
‖∇u(τ )‖2L2 dτ � ‖(u0, θ0)‖2L2 ,

it is easy to see from the bound for I2 that, as t → ∞,

I2 → 0.

We now turn to the case k ∈ S2 and use the bounds in (4.7) and (4.8) to bound I1
and I2. For any k = (k1, k2) with k1 �= 0 and k ∈ S2,

|I1| � 1

ν|k|2
∫ t

0

(

e− 1
2 ν|k|2(t−τ) + e

− 4k21
3ν|k|4 (t−τ)

)

‖u(τ ) · ∇u(τ )‖L2 dτ

� C

ν|k|2
(

e− 1
4 ν|k|2t + e

− 2k21
3ν|k|4 t

) ∫ t
2

0
‖∇u(τ )‖2L2 dτ

+ C

ν|k| sup
t
2�τ�t

‖u(τ )‖2L2

∫ t

t
2

(

e− 1
2 ν|k|2(t−τ) + e

− 4k21
3ν|k|4 (t−τ)

)

dτ

� C

ν|k|2
(

e− 1
4 ν|k|2t + e

− 2k21
3ν|k|4 t

) ∫ t
2

0
‖∇u(τ )‖2L2 dτ

+ C

ν|k| sup
t
2�τ�t

‖u(τ )‖2L2

(
1

ν|k|2 + 3ν|k|4
4k21

)

.

It is then clear that, as t → ∞,

I1 → 0.

For any k = (k1, k2) with k1 �= 0 and k ∈ S2, the bound for G3 in (4.8) implies

|I2| �
∫ t

0

(

e− 1
2 ν|k|2(t−τ) + e

− 4k21
3ν|k|4 (t−τ)

)

|k|‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

� |k|
(

e− 1
4 ν|k|2t + e

− 2k21
3ν|k|4 t

) ∫ t
2

0
‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

+ sup
t
2�τ�t

‖u(τ )‖L2‖θ(τ )‖L2

∫ t

t
2

(

e− 1
2 ν|k|2(t−τ) + e

− 4k21
3ν|k|4 (t−τ)

)

dτ

� |k| ‖(u0, θ0)‖L2

(

e− 1
4 ν|k|2t + e

− 2k21
3ν|k|4 t

) √
t

(∫ ∞

0
‖u(τ )‖2L2 dτ

) 1
2

+C |k| ‖(u0, θ0)‖L2 sup
t
2�τ�t

‖u(τ )‖L2

(
1

ν|k|2 + 3ν|k|4
4k21

)

.
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Therefore, as t → ∞,

I2 → 0.

In summary, we have shown in either cases that, as t → ∞, I1 and I2 both converge
to 0. As a consequence, for any k = (k1, k2) with k1 �= 0,

θ̂ (k, t) → 0

as t → ∞. Therefore, for large time t > 0, θ(x, y, t) is mainly determined by

S(y, t) =
∑

k2

eik2 y θ̂ (0, k2, t) = 1

2π

∫

T

θ(x, y, t) dx .

We derive an equation for S(y, t). Recall from (2.12) that, for k = (0, k2),

θ̂ (k, t) = −βG2(t) v̂0(k) + θ̂0(k)

+
∫ t

0

(
− βG2(t − τ) N̂2(k, τ ) + N̂3(k, τ )

)
dτ. (4.12)

Multiplying each side of (4.12) by eik2 y and summing over k2 yields

S(y, t) = S(y, 0) − β
∑

k2

eik2 yG2(t) v̂0(0, k2)

−β

∫ t

0

∑

k2

eik2 yG2(t − τ) N̂2(0, k2, τ ) dτ

+
∫ t

0

∑

k2

eik2 y N̂3(0, k2, τ ) dτ.

Recall the definition of N2 in (1.10):

N2 = −(u · ∇)v + ∂y�
−1∇ · ((u · ∇)u).

We find, by a direct calculation, that the identity holds, for any k2 and τ , such that

N̂2(0, k2, τ ) = 0.

Invoking the definitions of G2 and N3 and identifying

∑

k2

eik2 y F̂(0, k2) = 1

2π

∫

T

F(x, y) dx,

we have

S(y, t) = S(y, 0) − β

2π
(ν∂yy)

−1(eνt ∂yy − 1)
∫

T

v0(x, y) dx

+ 1

2π

∫

T

u · ∇θ(x, y, t) dx . (4.13)
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Writing u · ∇θ = u∂xθ + v∂yθ and applying the periodic boundary condition, we
find

∫

T

u · ∇θ(x, y, t) dx = ∂y

∫

T

v(x, y, t) θ(x, y, t) dx .

We introduce the notation

F(y) = 1

2π

∫

T

F(x, y) dx .

Then (4.13) becomes

S(y, t) = θ0(y) − β(ν∂yy)
−1(eνt ∂yy − 1) v0(y) + ∂y(vθ)(y, t).

This completes the proof of Theorem 1.5. ��
We now prove Theorem 1.6.

Proof of Theorem 1.6. Let k = (k1, k2) with k1 �= 0. Taking the l2-norm of the
sequences on each side of (2.7) yields

‖û(k, t)‖l2 � ‖Û (k, t)‖l2 +
∥
∥
∥
∥

∫ t

0
eλ1(t−τ) N̂1(k, τ ) dτ

∥
∥
∥
∥
l2

+
∥
∥
∥
∥

∫ t

0

k2
k1

(G1(t − τ) − eλ1(t−τ))N̂2(k, τ ) dτ

∥
∥
∥
∥
l2

+
∥
∥
∥
∥

∫ t

0

k1k2
|k|2 G2(t − τ)N̂3(k, τ ) dτ

∥
∥
∥
∥
l2

:= I1 + I2 + I3 + I4, (4.14)

where Û (k, t) denotes the linear part,

Û (k, t) = eλ1t û0(k) + k2
k1

(G1(t) − eλ1t ) v̂0(k) + k1k2
|k|2 G2(t) θ̂0(k).

We can directly use the result of Theorem 1.3 to obtain

I1 = ‖U (t)‖L2

� C e−c0 νt ‖U0‖L2 + C

(

e−c0 νt + 1

(νt)3/4

)

‖V0‖L2

+C

(

e−c0 νt + 1√
νt

)

‖�0‖L2 ,

which clearly has the desired decay rate t− 1
2 . To estimate I2, we split the time

integral into two parts:

I2 �
∥
∥
∥
∥
∥

∫ t
2

0
eλ1(t−τ) N̂1(k, τ ) dτ

∥
∥
∥
∥
∥
l2

+
∥
∥
∥
∥
∥

∫ t

t
2

eλ1(t−τ) N̂1(k, τ ) dτ

∥
∥
∥
∥
∥
l2

:= I21 + I22.



614 L. Tao, J. Wu, K. Zhao, & X. Zheng

By the definition of N1 in (1.10), we have

|N̂1(k)| � |û · ∇u(k, t)| + |k ⊗ k|
|k|2 |û · ∇u(k, t)|

� 2|k| |û ⊗ u(k, t)|.
Therefore,

|I21| �
∫ t

2

0
‖eλ1(t−τ) N̂1(k, τ )‖l2 dτ

�
∫ t

2

0
‖|k|e−ν|k|2(t−τ)‖l2 ‖û ⊗ u(k, τ )‖l∞ dτ.

Bounding the l2-norm in terms of its corresponding integral, we have

‖|k|e−ν|k|2(t−τ)‖l2 =
⎛

⎝
∑

k �=0

|k|2e−2ν|k|2(t−τ)

⎞

⎠

1
2

�
(∫

R2
|x |2e−2ν|x |2(t−τ) dx

) 1
2

=
(

2π
∫ ∞

0
r2 e−2νr2(t−τ) rdr

) 1
2

= C (t − τ)−1. (4.15)

In addition,

‖û ⊗ u((k, τ )‖l∞ � ‖u ⊗ u‖L1 � ‖u‖2L2 .

Therefore,

|I21| � C
∫ t

2

0
(t − τ)−1 ‖u(τ )‖2L2 dτ � C t−1,

where we have used the fact that
∫ ∞

0
‖u(τ )‖2L2 dτ < ∞.

To bound I22, we fix ε > 0 (a positive small parameter) and proceed as in the
estimate of I21,

|I22| �
∫ t

t
2

‖eλ1(t−τ) N̂1(k, τ )‖l2 dτ

�
∫ t

t
2

‖|k|1−2εe−ν|k|2(t−τ)‖l2 ‖ ̂�2ε(u ⊗ u)(k, t)‖l∞ dτ

�
∫ t

t
2

(t − τ)−1+ε ‖�2ε(u ⊗ u)‖L1 dτ
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� C
∫ t

t
2

(t − τ)−1+ε ‖�2εu‖L2 ‖u‖L2 dτ

� C
∫ t

t
2

(t − τ)−1+ε ‖u‖2−2ε
L2 ‖∇u‖2εL2 dτ

� C sup
t
2�τ�t

M(τ ) sup
t
2�τ�t

τ ε‖u(τ )‖1−2ε
L2 ‖∇u(τ )‖2εL2

∫ t

t
2

(t−τ)−1+ετ− 1
2 τ−ε dτ

� C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

τ ε‖u(τ )‖1−2ε
L2 ‖∇u(τ )‖2εL2 ,

where
M(t) = t

1
2 ‖u(t)‖L2 . (4.16)

Here we have used the fact that, for a constant C > 0,
∫ t

t
2

(t − τ)−1+ετ− 1
2−ε dτ = C t−

1
2 .

We now turn to I3. We again split the time integral into two parts:

I3 �
∥
∥
∥
∥
∥

∫ t
2

0

k2
k1

(G1(t − τ) − eλ1(t−τ))N̂2(k, τ ) dτ

∥
∥
∥
∥
∥
l2

+
∥
∥
∥
∥
∥

∫ t

t
2

k2
k1

(G1(t − τ) − eλ1(t−τ))N̂2(k, τ ) dτ

∥
∥
∥
∥
∥
l2

:= I31 + I32.

Clearly,

|N̂2(k, τ )| � 2|k| | ̂(u ⊗ u)(k, τ )|.
Therefore,

I31 �
∫ t

2

0
‖|k|k2

k1
(G1(t − τ) − eλ1(t−τ))‖l2‖ ̂(u ⊗ u)(k, τ )‖l∞ dτ. (4.17)

As pointed out in Lemma 2.1, G1(k, t) obeys different bounds for k in different
ranges. More precisely,

|G1(k, t)| � e− 1
2 ν|k|2t + 1

2
ν|k|2t e− 1

4 ν|k|2t if k ∈ S1,

|G1(k, t)| � 4k21
ν2|k|6 e

− 4k21
3ν|k|4 t + 2e− 1

2 ν|k|2t if k ∈ S2,

where S1 and S2 are defined by (2.17) and (2.18), namely

S1 :=
⎧
⎨

⎩
k ∈ Z

2 : k21 � 3ν2

16β
|k|6 or

√

1 − 4βk21
ν2|k|6 � 1

2

⎫
⎬

⎭
,
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S2 :=
⎧
⎨

⎩
k ∈ Z

2 : k21 <
3ν2

16β
|k|6 or

√

1 − 4βk21
ν2|k|6 >

1

2

⎫
⎬

⎭
.

Correspondingly, ‖|k| k2k1 (G1(t − τ) − eλ1(t−τ))‖l2 is split into two parts
∥
∥
∥
∥|k|k2

k1
(G1(t − τ) − eλ1(t−τ))

∥
∥
∥
∥
l2

� I311 + I312, (4.18)

where

I311 :=
⎛

⎝
∑

k∈S1
|k|2 k

2
2

k21
|G1(t − τ) − eλ1(t−τ)|2

⎞

⎠

1
2

,

I312 :=
⎛

⎝
∑

k∈S2
|k|2 k

2
2

k21
|G1(t − τ) − eλ1(t−τ)|2

⎞

⎠

1
2

.

We note that k1 �= 0 in the summations above. As we explained in Section 2, I3 = 0
when k1 = 0. By the definition of S1 in (2.17), k ∈ S1 implies

k21 � 3ν2

16β
|k|6,

which further yields, for any k1 �= 0 and a constant C (independent of k), that
∣
∣
∣
∣
k2
k1

∣
∣
∣
∣ � C.

Invoking the bound for G1(k, τ ) in the case k ∈ S1, we find

I311 � C

⎛

⎝
∑

k∈S1
|k|2

(

1 + 1

2
ν|k|2(t − τ)

)2

e− 1
2 ν|k|2(t−τ)

⎞

⎠

1
2

.

We further bound I311 as in (4.15) to obtain

I311 � C (t − τ)−1. (4.19)

To bound I312, we invoke the bound for G1(k, τ ) in the case k ∈ S2 and use the
facts 1

k21
� 1 and |k2| � |k| to obtain

I312 �

⎛

⎝
∑

k∈S2
|k|4

(

2e− 1
2 ν|k|2(t−τ) + 4k21

ν2|k|6 e
− 4k21

3ν|k|4 (t−τ)

)2
⎞

⎠

1
2

� I3121 + I3122, (4.20)
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where

I3121 := C

⎛

⎝
∑

k∈S2
|k|4 e− 1

2 ν|k|2(t−τ)

⎞

⎠

1
2

,

I3122 := C

⎛

⎝
∑

k∈S2

k41
|k|8 e

− 8k21
3ν|k|4 (t−τ)

⎞

⎠

1
2

.

Clearly, I3121 can be similarly estimated as I311 and

I3121 � C (t − τ)−
3
2 . (4.21)

Estimating I3122 is slightlymore complex. Noting that the summation is for |k| � 1,
we can bound it by an integral

I 23122 � C
∫

|x|�1

x4

|x|8 e
−8 x2

|x|4 (t−τ)
dx.

Using polar coordinates and then changing variables, we have

I 23122 � C
∫ 2π

0

∫ ∞

1

1

r4
cos4 θ e−8 1

r2
cos2 θ (t−τ) rdrdθ

= C
∫ 2π

0

∫ 1

0
ρ cos4 θ e−8ρ2 cos2 θ (t−τ) dρdθ.

To further bound this integral, we convert it back into Cartesian coordinates as
follows:

I 23122 � C
∫

|x|�1

x4

|x|4 e
−8x2 (t−τ) dx

= C
∫ 1

−1
x4 e−8x2 (t−τ)

∫ √
1−x2

−√
1−x2

(x2 + y2)−2 dydx

= 2C
∫ 1

−1
x4 e−8x2 (t−τ)

∫ √
1−x2

0
(x2 + y2)−2 dydx

= C
∫ 1

−1
x4 e−8x2 (t−τ)

(
1

x3
arctan

√
1 − x2

x
+

√
1 − x2

x2

)

dx

Using the basic facts that

−π

2
< arctan

√
1 − x2

x
<

π

2
,

√
1 − x2 � 1,

we find that
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I 23122 � C
∫ 1

−1
|x | e−8x2 (t−τ)dx + C

∫ 1

−1
x2 e−8x2 (t−τ)dx

� C (t − τ)−1 + C (t − τ)−
3
2 . (4.22)

(4.21) and (4.22) together imply

I312 � C (t − τ)−
1
2 . (4.23)

Combining (4.17), (4.18), (4.19) and (4.23), we obtain

I31 � C
∫ t

2

0
(t − τ)−

1
2 ‖u‖2L2 dτ � C t−

1
2 .

We now turn to I32. We split the l2-norm into two parts:

I32 � I321 + I322,

where I321 contains the summation over k ∈ S1 and I322 over k ∈ S2, namely

I321 :=
∫ t

t
2

∥
∥
∥
∥
k2
k1

(G1(t − τ) − eλ1(t−τ))N̂2(k, τ )

∥
∥
∥
∥
l2(S1)

dτ,

I322 :=
∥
∥
∥
∥
∥

∫ t

t
2

k2
k1

(G1(t − τ) − eλ1(t−τ))N̂2(k, τ ) dτ

∥
∥
∥
∥
∥
l2(S2)

.

We use the fact that, for k ∈ S1,
∣
∣
∣
∣
k2
k1

∣
∣
∣
∣ � C.

As in the estimate of I22,

I321�
∫ t

t
2

⎛

⎝
∑

k∈S1
|k|2−4ε

(

1+1

2
ν|k|2(t−τ)

)2

e− 1
2 ν|k|2(t−τ)

⎞

⎠

1
2

‖�2ε(u ⊗ u)‖L1 dτ.

As in the estimate of I311 (see (4.19)), we have

⎛

⎝
∑

k∈S1
|k|2−4ε

(

1 + 1

2
ν|k|2(t − τ)

)2

e− 1
2 ν|k|2(t−τ)

⎞

⎠

1
2

� C (t − τ)−1+ε.

Therefore,

I321 � C
∫ t

t
2

(t − τ)−1+ε ‖�2ε(u ⊗ u)‖L1 dτ

� C
∫ t

t
2

(t − τ)−1+ε ‖�2εu‖L2 ‖u‖L2 dτ

� C
∫ t

t
2

(t − τ)−1+ε ‖u‖2−2ε
L2 ‖∇u‖2εL2 dτ
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� C sup
t
2�τ�t

M(τ ) sup
t
2�τ�t

τ ε‖u(τ )‖1−2ε
L2 ‖∇u(τ )‖2εL2

∫ t

t
2

(t−τ)−1+ετ− 1
2 τ−ε dτ

� C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

τ ε‖u(τ )‖1−2ε
L2 ‖∇u(τ )‖2εL2 .

I322 is estimated differently from I321. For k ∈ S2, we use the simple fact |k1| � 1
due to k1 �= 0, and thus

∣
∣
∣
∣
k2
k1

∣
∣
∣
∣ � |k2| � |k|.

In addition, we use the bound

|N̂2(k, τ )| � 2|k| | ̂(u ⊗ u)(k, τ )|.
Then I322 is bounded by

I322 �
∫ t

t
2

∥
∥
∥
∥
∥
|k|2−2ε

(

2e− 1
2 ν|k|2(t−τ) + 4k21

ν2|k|6 e
− 4k21

3ν|k|4 (t−τ)

)∥
∥
∥
∥
∥
l∞

‖�2ε(u ⊗ u)‖L2 dτ.

It is clear that
∥
∥
∥
∥
∥
|k|2−2ε

(

2e− 1
2 ν|k|2(t−τ) + 4k21

ν2|k|6 e
− 4k21

3ν|k|4 (t−τ)

)∥
∥
∥
∥
∥
l∞

� C(t − τ)−1+ε.

By Hölder’s inequality and Sobolev’s inequality,

‖�2ε(u ⊗ u)‖L2 � C ‖u‖1−ε

L2 ‖∇u‖1+ε

L2 .

Therefore,

I322 � C
∫ t

t
2

(t − τ)−1+ε ‖u‖1−ε

L2 ‖∇u‖1+ε

L2 dτ

� C t−
1
2 sup

t
2�τ�t

M1−ε(τ ) sup
t
2�τ�t

τ
3
2 ε‖∇u(τ )‖1+ε

L2 .

Therefore,

I32 � C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

τ ε‖u(τ )‖1−2ε
L2 ‖∇u(τ )‖2εL2

+C t−
1
2 sup

t
2�τ�t

M1−ε(τ ) sup
t
2�τ�t

τ
3
2 ε‖∇u(τ )‖1+ε

L2 .

To estimate I4, we split it into four parts,

I4 = I41 + I42 + I43 + I44,

where

I41 =
∫ t

2

0

∥
∥
∥
∥
k1k2
|k|2 G2(t − τ)N̂3(k, τ )

∥
∥
∥
∥
l2(S1)

dτ,
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I42 =
∫ t

2

0

∥
∥
∥
∥
k1k2
|k|2 G2(t − τ)N̂3(k, τ )

∥
∥
∥
∥
l2(S2)

dτ,

I43 =
∫ t

t
2

∥
∥
∥
∥
k1k2
|k|2 G2(t − τ)N̂3(k, τ )

∥
∥
∥
∥
l2(S1)

dτ,

I44 =
∫ t

t
2

∥
∥
∥
∥
k1k2
|k|2 G2(t − τ)N̂3(k, τ )

∥
∥
∥
∥
l2(S2)

dτ.

We recall that G2 obeys the following bounds, according to Lemma 2.1,

|G2(t)| � t e− 1
4 ν|k|2t if k ∈ S1, (4.24)

|G2(t)| � 2

ν|k|2 e
− 1

2 ν|k|2t + 2

ν|k|2 e
− 4k21

3ν|k|4 t if k ∈ S2. (4.25)

Applying the bound for G2 and invoking the bound for N̂3,

|N̂3| � |k||ûθ(k, τ )|, (4.26)

we have

|I41| �
∫ t

2

0

∥
∥|k|G2(t − τ)|ûθ(k, τ )|∥∥l2(S1) dτ

�
∫ t

2

0

∥
∥
∥|k|(t − τ)e− 1

4 ν|k|2(t−τ)
∥
∥
∥
l2(S1)

‖|ûθ(k, τ )|‖l∞ dτ.

By the simple fact that |k| � 1 for k �= 0,

|I41| �
∫ t

2

0

∥
∥
∥|k|4(t − τ)e− 1

4 ν|k|2(t−τ)|
∥
∥
∥
l2

‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

�
∫ t

2

0
(t − τ)−

3
2 ‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

� C t−1‖(u0, θ0)‖L2

(∫ t
2

0
‖u(τ )‖2L2 dτ

) 1
2

� C t−1.

To bound I42, we obtain by applying (4.26) to bound N̂3 and (4.25) to bound G2

|I42| � C
∫ t

2

0

∥
∥
∥
∥
1

|k|e
− 1

2 ν|k|2(t−τ)

∥
∥
∥
∥
l2(S2)

‖|ûθ(k, τ )|‖l∞(S2) dτ

+ C
∫ t

2

0

∥
∥
∥
∥
∥

k1k2
|k|4 e

− 4k21
3ν|k|4 (t−τ)

û · ∇θ(k, τ )

∥
∥
∥
∥
∥
l2(S2)

dτ

:= I421 + I422.

To bound I421, we again use the simple fact that |k| � 1 for k �= 0 to obtain
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I421 � C
∫ t

2

0
‖|k|2e− 1

2 ν|k|2(t−τ)‖l2 ‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

� C
∫ t

2

0
(t − τ)−

3
2 ‖u(τ )‖L2 ‖θ(τ )‖L2 dτ

� C t−1‖(u0, θ0)‖L2

(∫ t
2

0
‖u(τ )‖2L2 dτ

) 1
2

.

For k1 = 0 or k2 = 0, we have I422 = 0. It suffices to consider the case when
k1 �= 0 and k2 �= 0. Recall that S(y, t) denotes the horizontal average of θ . We
write

û · ∇θ(k, t) = ̂u · ∇(θ − S)(k, t) + v̂∂y S(k, t).

In addition,

v̂∂y S(k, t) =
∑

k′
2+k′′

2=k2

v̂(k1, k
′
2, t) k

′′
2 Ŝ(k′′

2 , t)

=
∑

|k′
2|�|k′′

2 |
v̂(k1, k

′
2, t) k

′′
2 Ŝ(k′′

2 , t) +
∑

|k′
2|<|k′′

2 |
v̂(k1, k

′
2, t) k

′′
2 Ŝ(k′′

2 , t).

For |k′
2| � |k′′

2 |, we have |k2| � |k′
2| + |k′′

2 | � 2|k′
2| and

|k| =
√

k21 + k22 � 2
√

k21 + (k′
2)

2.

Therefore,
∑

|k′
2|�|k′′

2 |
v̂(k1, k

′
2, t) k

′′
2 Ŝ(k′′

2 , t)

=
∑

|k′
2|�|k′′

2 |

1
√

k21 + (k′
2)

2

√

k21 + (k′
2)

2 v̂(k1, k
′
2, t) k

′′
2 Ŝ(k′′

2 , t)

� 2

|k|
∑

|k′
2|�|k′′

2 |
||̂∇|v(k1, k

′
2, t) ∂̂y S(k′′

2 , t)|.

For |k′
2| < |k′′

2 |, we have |k2| � |k′
2| + |k′′

2 | � 2|k′′
2 |. Thus,

∑

|k′
2|<|k′′

2 |
v̂(k1, k

′
2, t) k

′′
2 Ŝ(k′′

2 , t)

=
∑

|k′
2|<|k′′

2 |

1

|k′′
2 |

v̂(k1, k
′
2, t) (k′′

2 )
2 Ŝ(k′′

2 , t)

� 2

|k2|
∑

|k′
2|<|k′′

2 |
|̂v(k1, k

′
2, t)| |∂̂yy S(k′′

2 , t)|.
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Thus we have written û · ∇θ(k, t) into three pieces. Correspondingly the estimate
of I422 is split into three parts I4221, I4222 and I4223. To bound the first part, we use
the simple fact that, for |k1| � 1 and |k2| � |k|, we have

∣
∣
∣
∣
k1k2
|k|4

∣
∣
∣
∣ � C

(
4k21

3ν|k|4
) 3

4

. (4.27)

Thus,

I4221 � C
∫ t

2

0
(t − τ)−

3
4

∥
∥
∥
∥
∥
∥

(
4k21

3ν|k|4 (t − τ)

) 3
4

e
− 4k21

3ν|k|4 (t−τ)

∥
∥
∥
∥
∥
∥
l2

×‖ ̂u · ∇(θ − S)(k, τ )‖l∞ dτ

� C
∫ t

2

0
(t − τ)−

3
4 ‖ ̂u · ∇(θ − S)(k, τ )‖l∞ dτ.

By Young’s inequality for sequence convolutions,

I4221 � C t−
1
2 sup

0�τ� t
2

τ
1
4 ‖∇(θ − S)(τ )‖L2 ,

where we have used the simple fact that

∫ t
2

0
‖u(τ )‖2L2 dτ � C.

Now we bound I4222:

I4222 � C
∫ t

2

0

∥
∥
∥
∥
∥
∥

k1k2
|k|4 e

− 4k21
3ν|k|4 (t−τ) 2

|k|
∑

|k′
2|�|k′′

2 |
||̂∇|v(k1, k

′
2, τ ) ∂̂y S(k′′

2 , τ )|
∥
∥
∥
∥
∥
∥
l2

dτ.

Clearly, for k1 �= 0,

k1k2
|k|4 e

− 4k21
3ν|k|4 (t−τ) 2

|k| � (t − τ)−1

(
k21
|k|4 (t − τ) e

− 4k21
3ν|k|4 (t−τ)

)

.

Therefore,

I4222 � C
∫ t

2

0
(t − τ)−1

∥
∥
∥
∥
∥
∥

∑

|k′
2|�|k′′

2 |
||̂∇|v(k1, k

′
2, τ ) ∂̂y S(k′′

2 , τ )|
∥
∥
∥
∥
∥
∥
l∞

dτ

= C
∫ t

2

0
(t − τ)−1

∥
∥
∥∇̂v ∂y S(k, τ )

∥
∥
∥
l∞

dτ

= C t−
1
2 sup

0�τ� t
2

‖∂y S(τ )‖L2 ,
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We now bound I4223:

I4223 � C
∫ t

2

0

∥
∥
∥
∥
∥
∥

k1k2
|k|4 e

− 4k21
3ν|k|4 (t−τ) 2

|k2|
∑

|k′
2|<|k′′

2 |
|̂v(k1, k

′
2, t)| |∂̂yy S(k′′

2 , t)|
∥
∥
∥
∥
∥
∥
l2

dτ.

The process is similar to that for I4222; in fact,

I4223 � C
∫ t

2

0
(t − τ)−1

∥
∥
∥v̂ ∂yy S(k, τ )

∥
∥
∥
l∞

dτ

� C t−
1
2 sup

0�τ� t
2

‖∂yy S(τ )‖L2 .

In summary, we have obtained the bound for I42:

|I422| � C t−
1
2 sup

0�τ� t
2

(
‖∂y S(τ )‖L2 + ‖∂yy S(τ )‖L2 + τ

1
4 ‖∇(θ − S)(τ )‖L2

)
.

To estimate I43, we recall the bound (4.24) for G2(t) with k ∈ S1 to obtain

I43 � C
∫ t

t
2

‖(t − τ)e− 1
4 ν|k|2(t−τ)k · û θ(k, τ )‖l2 dτ.

We use the equation of v to write

θ = ∂tv + u · ∇v + ∂y p − ν�v.

Then

k · û θ = k · û∂tv + k · ̂u(u · ∇v) + k · û ∂y p − νk · û�v.

We further write û∂y p as

k · û ∂y p(k, t) = k ·
∑

k′+k′′=k

û(k′
1, k

′
2, t) k

′′
2 p̂(k

′′
1 , k

′′
2 , t)

= k ·
∑

k′+k′′=k

û(k′
1, k

′
2, t)

k′′
2

|k′′|2 |k′′|2 p̂(k′′
1 , k

′′
2 , t).

Thus
∣
∣
∣k · û ∂y p(k, t)

∣
∣
∣ � C |k|3 | ̂u · (−�)−1∂y p(k, t)|.

Similarly,

k · û�v � C |k|2 |û∇u(k, t)|.
Therefore,

‖û · ∇θ(k, τ )‖l∞ � |k| ‖u‖L2 ‖∂tv‖L2 + |k| ‖u‖2L4 ‖∇v‖L2

+C |k|3 ‖u‖L2 ‖(−�)−1∂y p‖L2 + C |k|2 ‖u‖L2 ‖∇u‖L2
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� C |k|3 ‖u‖L2

(
‖∂tv‖L2 + ‖∇u‖2L2

+‖(−�)−1∂y p‖L2 + ‖∇u‖L2

)

= C |k|3 ‖u‖L2 A(t),

where, for notational convenience, we have written

A(t) := ‖∂tv‖L2 + ‖∇u‖2L2 + ‖(−�)−1∂y p‖L2 + ‖∇u‖L2 . (4.28)

According to Theorem 1.4, as t → ∞,

‖∂x p‖H−1 → 0 or
∑

k

k21
|k|2 | p̂(k, t)|2 → 0.

Since

‖(−�)−1∂y p‖2L2 =
∑

k

k22
|k|4 | p̂(k, t)|2 �

∑

k

1

|k|2 | p̂(k, t)|2 �
∑

k

k21
|k|2 | p̂(k, t)|2,

we have, as t → ∞,

‖(−�)−1∂y p‖L2 → 0.

Therefore, as t → ∞,

A(t) → 0.

We are now ready to estimate I43:

I43 � C
∫ t

t
2

‖(t − τ)e− 1
4 ν|k|2(t−τ)‖l2 ‖û · ∇θ(k, τ )‖l∞ dτ

� C
∫ t

t
2

‖|k|3(t − τ)e− 1
4 ν|k|2(t−τ)‖l2 ‖u(τ )‖L2 A(τ ) dτ

= C
∫ t−δ

t
2

‖|k|3(t − τ)e− 1
4 ν|k|2(t−τ)‖l2 ‖u(τ )‖L2 A(τ ) dτ

+ C
∫ t

t−δ

‖|k|3(t − τ)e− 1
4 ν|k|2(t−τ)‖l2 ‖u(τ )‖L2 A(τ ) dτ,

:= I431 + I432,

where the small number δ > 0 is to be specified later. Using the simple fact that
|k| � 1 for k �= 0, we have, for any m > 0,

I431 � C
∫ t−δ

t
2

‖|k|2m+4(t − τ)e− 1
4 ν|k|2(t−τ)‖l2 ‖u(τ )‖L2 A(τ ) dτ

� C sup
t
2�τ�t

‖u(τ )‖L2 sup
t
2�τ�t

A(τ )

∫ t−δ

t
2

(t − τ)−m−1 dτ
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� C

m
δ−m sup

t
2�τ�t

‖u(τ )‖L2 sup
t
2�τ�t

A(τ ). (4.29)

I432 is estimated slightly differently. For small number ε > 0,

I432 � C
∫ t

t−δ

‖|k|4−2ε (t − τ)e− 1
4 ν|k|2(t−τ)‖l2 ‖u(τ )‖L2 A(τ ) dτ

� C
∫ t

t−δ

(t − τ)−1+ε‖u(τ )‖L2 A(τ ) dτ

� C sup
t
2�τ�t

M(τ ) sup
t
2�τ�t

A(τ )

∫ t

t−δ

(t − τ)−1+ε τ− 1
2 dτ

� C sup
t
2�τ�t

M(τ ) sup
t
2�τ�t

A(τ ) (t − δ)−
1
2 (

1

ε
δε). (4.30)

We can choose a small δ > 0 such that the two bounds in (4.29) and (4.30) are
equal. In fact, if we set

δ = t
1

2(m+ε)

( ε

m

) 1
m+ε

(
sup t

2�τ�t ‖u(τ )‖L2

sup t
2�τ�t M(τ )

) 1
m+ε

,

then the two bounds become the same and

|I43| � |I431| + |I432| � C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

A(τ )

× 1

ε
t

ε
2(m+ε)

( ε

m

) ε
m+ε

(
sup t

2�τ�t ‖u(τ )‖L2

sup t
2�τ�t M(τ )

) ε
m+ε

,

which holds for any m > 0. By letting m → ∞, we find

|I43| � C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

A(τ ).

Invoking the bound for G2 in (4.25), we have

|I44| � C
∫ t

t
2

∥
∥
∥
∥

1

|k|2 e
− 1

2 ν|k|2(t−τ) |û · ∇θ(k, τ )|
∥
∥
∥
∥
l2

dτ

+ C
∫ t

t
2

∥
∥
∥
∥
∥

k1k2
|k|4 e

− 4k21
3ν|k|4 (t−τ)

û · ∇θ(k, τ )

∥
∥
∥
∥
∥
l2

dτ

:= I441 + I442.

I441 can be estimated similarly as I43. Without repeating the details, we find

I441 � C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

A(τ ).
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The estimate of I442 is close to that for I422. The bound is

I442 � C t−
1
2 sup

t
2�τ�t

(
‖∂y S(τ )‖L2 + ‖∂yy S(τ )‖L2 + τ

1
4 ‖∇(θ − S)(τ )‖L2

)
.

Wehave finished bounding all the terms in (4.14). Collecting all the estimates above
leads to

‖u(t)‖L2 � C t−
1
2 + C t−

1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

τ ε‖u(τ )‖1−2ε
L2 ‖∇u(τ )‖2εL2

+C t−
1
2 sup

t
2�τ�t

M1−ε(τ ) sup
t
2�τ�t

τ
3
2 ε‖∇u(τ )‖1+ε

L2

+C t−
1
2 sup

0�τ� t
2

(
‖∂y S(τ )‖L2 + ‖∂yy S(τ )‖L2 + τ

1
4 ‖∇(θ − S)(τ )‖L2

)

+C t−
1
2 sup

t
2�τ�t

M(τ ) sup
t
2�τ�t

A(τ )

+ C t−
1
2 sup

t
2�τ�t

(
‖∂y S(τ )‖L2 + ‖∂yy S(τ )‖L2 + τ

1
4 ‖∇(θ − S)(τ )‖L2

)
,

where A(t) is defined in (4.28) and A(t) → 0 as t → ∞. The estimates for
‖̂v(k, t)‖l2 are very similar and we shall omit the details. Multiplying each term

by t
1
2 , recalling the definition of M(t) in (4.16) and making use of the conditions

in (1.21), we find that, for C1 < 1,

sup
t�T

M(t) � C + C

(

sup
t�T

M(t)

)1−ε

+ C1 sup
t�T

M(t), (4.31)

where C is a constant depending on the initial data only. The decay rate in (1.22)
follows directly from (4.31). This completes the proof of Theorem 1.6. ��

4.1. Conclusion and Discussion

We have studied the large-time behavior of large-data classical solutions to the
initial value problems of the 2D Boussinesq equations without thermal diffusion on
the periodic domain T

2. By utilizing spectral method, we established several sta-
bility results regarding the global stability of the hydrostatic equilibria associated
with the model at both the linear and nonlinear levels. For the linearized system,
we identified the explicit decay rate of the velocity field towards the zero steady
state, and gave a precise description of the thermal structure of the final state of the
temperature. For the full nonlinear system, we first obtained a similar result regrad-
ing the global stability of hydrostatic equilibria as in [21], but under a weakened
condition on the initial data. Then similar results as in the linear case are proved
under certain assumptions on the solution.

Collectively, the results reported in this paper give partial answers to the open
questions proposed in the recent study [21] regarding the large-time behavior of
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large-data classical solutions to the 2DBoussinesq equations without thermal diffu-
sion. However, it should be emphasized that our results on the full nonlinear system,
especially the explicit decay rate and description of final thermal state, are still not
satisfactory, due to they are obtained under certain assumptions on the solution,
which can hardly be verified. This is largely caused by the degeneracy in the third
eigenvalue associated with the linearized system (see (1.13)). We leave the further
investigation in a forthcoming paper.
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