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Abstract

This paper furthers our studies on the stability problem for perturbations near
hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffu-
sion and solves some of the problems left open in Doering et al. (Physica D
376(377):144-159, 2018). We focus on the periodic domain to avoid the com-
plications due to the boundary. We present several results at two levels: the linear
stability and the nonlinear stability levels. Our linear stability results state that the
velocity field u associated with any initial perturbation converges uniformly to 0
and the temperature 6 converges to an explicit function depending only on y as ¢
tends to infinity. In addition, we obtain an explicit algebraic convergence rate for
the velocity field in the L?-sense. Our nonlinear stability results state that any initial
velocity small in L? and any initial temperature small in L? lead to a stable solution
of the full nonlinear perturbation equations in large time. Furthermore, we show
that the temperature is eventually stratified and converges to a function depending
only on y if we know it admits a certain uniform-in-time bound. An explicit decay
rate for the velocity in L2 is also ensured if we make assumption on the high-order
norms of u and 6.

1. Introduction

1.1. Overview

This paper is concerned with the two-dimensional Boussinesq equations without
thermal diffusion:
Ju+u-Vu+ VP =vAu -+ fe,,
90 +u-Ve =0, (1.1)
V-u=0.
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In [21], the authors studied the global well-posedness and large-time behavior of
large-data classical solutions to (1.1) on 2D non-smooth domains subject to the
stress-free boundary conditions. In particular, the global stability of the hydrostatic
equilibrium associated with (1.1) was investigated (explained in more details later).
The main purpose of this paper is to further develop the stability problem concerning
(1.1) near the hydrostatic equilibrium through studying the explicit decay rate of
the velocity field towards the zero equilibrium state and identifying the thermal
structure of the final state.

1.2. Background and Literature Review

System (1.1) is a special (limiting) case of the 2D incompressible Boussinesq
equations
du+u-Vu+ VP =vAu + fe,,

0,0 +u-VO =kA9, (1.2)
V.-u=0,

when « = 0, which have a wide range of applications in geophysics and fluid
mechanics, such as the modeling of large scale atmospheric and oceanic flows that
are responsible for cold fronts and jet stream [25,43,45], and the study of Rayleigh—
Bénard convection [15,20,24], just to mention a few. In (1.2), the unknown func-
tions u and P denote the velocity field and pressure of the flow, respectively; 6 is the
deviation of density from the bottom density (which is taken to be 1 for simplicity)
in the context of geophysical flows, or the temperature deviation in the study of
Rayleigh-Bénard convection; v = 0 and « = 0 stand for the kinematic viscosity
and thermal (buoyancy) diffusivity, respectively; and e; = (0, DT.

Besides physical applications, the 2D model (1.2) is also known to retain some
key features of the 3D Euler and Navier—Stokes equations, such as the vortex
stretching mechanism. Indeed, it has been commonly recognized that the growth
of the vorticity associated with (1.2) depends on the temporal accumulation of Vu,
which is a scenario similar to the vortex stretching effect in 3D incompressible flows
[44]. Another important feature of the 2D Boussinesq equations is that when v =
k = 0, the model can be identified with the 3D Euler equations for axisymmetric
swirling flows when the radius r > 0 [44].

Collectively, the physical background and mathematical features of (1.2) make
the model a rich area for mathematical investigations. Studies of the qualitative
behavior of the model have been carried out for nearly half a century. Major concerns
are oriented around the global well-posedness (GWP)/finite-time blowup (FTB) of
large-data classical solutions (LDCS) under general initial and/or boundary con-
ditions, which has a rather long history starting from the work of RABINOWITZ
[46]. On one hand, when the dissipation coefficients, v and «, are all equal to zero,
the GWP of LDCS to the model still largely remains open. We refer the reader to
[5,12,13,16,22,31,48,50] for recent (analytical and numerical) studies concerning
the local well-posedness and FTB of LDCS. On the other hand, when the parameters
are not all equal to zero, the GWP of LDCS has been established in a systematic
fashion by considering both the isotropic and anisotropic dissipations. We refer
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the reader to [1-4,8,9,11,14,17-19,27,28,30,32-34,37-39,41,42,58] for a non-
exhaustive list of results in this direction. There are also works investigating the
well-posedness and regularity of solutions to the model with critical and supercrit-
ical dissipation, and we refer the reader to [35,36,40,49,55-57] and the references
therein.

Compared with the magnitude of research conducted on the GWP of the model,
the large-time behavior (LTB) of solutions, especially the stability of physically
relevant hydrostatic equilibria, has been studied relatively little. To the best of the
authors’ knowledge, the following results have been established in the literature:

e cxponential decay of 6 to constant states and uniform boundedness of kinetic
energy of LDCS on bounded smooth domains when v = 0, « > 0 [58],

e uniform boundedness of kinetic energy of LDCS on bounded smooth domains
whenv > 0, « = 0[37],

e algebraic decay of small-data classical solutions to constant ground states in R3
whenv >0, « > 0[7],

e long time averaged heat transport sustained by thermal boundary conditions,
i.e., bounds for Rayleigh—Bénard convection [52,53],

e cxistence of a global attractor containing infinitely many invariant manifolds
on periodic domains when v > 0, x = 0 [6].

Nevertheless, we note that the above list does not provide any information about the
global asymptotic stability of hydrostatic equilibria associated with (1.2), especially
the partially dissipative systems. Until very recently, such an issue is partially
resolved in [21], where the authors studied the large-time behavior of LDCS to
an initial-boundary value problem of the partially dissipative system when « = 0,
which arises naturally as a relevant system in geophysics [29,47,51]. We briefly
summarize the main results of [21].
First, [21] establishes the GWP of LDCS to the following IBVP:

Ju+u-Vu+ VP =vAu+fe,,
00 +u-Vo =0,
V-u=0, (1.3)
(u, 0)(x, 0) = (up, 6p)(x),
u-njjo =0, wlhe =0,
where Q@ C RR? is either a rectangle or more general Lipschitz domain with minor
constraints (see [21] for more details), n is the unit outward normal to 9£2, and

w = 0yv — dyu is the 2D vorticity. Secondly, [21] obtains the global stabil-
ity and large-time behavior of the perturbation near the hydrostatic equilibrium

[Une, Phe(Y), Ohe(¥)] given by
_ 1 -
Uhe =0, bhe(y) =By +0, Pre(y) = 2By* +0y.
More precisely, it is proven, for 8 > 0, that the L norms of the velocity perturbation

(not necessarily small) and its first order spatial and temporal derivatives converge
to zero as t — oo. Consequently it is found that the pressure and temperature
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functions stratify in the vertical direction in a weak topology. Remarkably, the
second order spatial derivatives of the velocity perturbation (not necessarily small)
are shown to be bounded uniformly in time for all time. In addition, [21] contains
extensive numerical simulations illustrating the analytic results and investigating
unsolved problems. It is worth mentioning several closely related recent works
[10,23,54]. [23] examined the stability and large-time behavior near the hydrostatic
equilibrium of the inviscid Boussinesq system and obtained a sharp decay rate and
stability results via dispersive type estimates. [54] studied the stability of special,
stratified solutions of a 3D inviscid Boussinesq system and established that, as
the strength of the gravity tends to infinity, the 3D system of equations tends to
a stratified system of 2D Euler equations with stratified density. [10] investigated
the stability of the 2D Boussinesq equations with a velocity damping term near
the hydrostatic equilibrium and proved an asymptotic stability with explicit decay
rates when the spatial domain is a strip.

1.3. Motivation and Goals

Now we would like to point out the facts that motivate the current work. Along
with the aforementioned results established in [21], the authors proposed several
open problems. The first is to find explicit decay rates for the velocity perturbation
and its derivatives. The numerical simulation in [21] indicates that the velocity
field might converge to zero as a power law. The second is to provide a precise
description of the final buoyancy distribution in case of general initial conditions.
The numerical test in [21] and an intuitive argument suggest that the final state of
the relaxation problem should generically be the unique stably stratified distribution
6(y) which is the inverse of a height function determined by the initial temperature
[see (6.1) in [21]].

This paper intends to solve these open problems. To simplify the problem, we
take the spatial domain 2 to be the periodic box

Q =T?:=[0,2n] x [0, 2],
and consider the initial-value problem,

Ju+u-Vu+ VP =vAu +fe,,
00 +u-Vo =0,

V-u=0,

(u, 0)(x, 0) = (up, 6p) (x).

(1.4)

The corresponding vorticity w = V X u satisfies
dw+u-Vo =vAw+ 0,6.

We take the hydrostatic equilibrium

1
Uhe =0, 6he = By, Phe= Eﬁyz,
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and consider the perturbation
G=u—up, 0=060—bh, P=P— P,

which satisfies
o+ (- Vyu=—0,p+vAu,

0+ @- V) =—d,p+ vAD +0,

~ - (1.5)
90+ @-V)+ v =0,
V-u=0.
The corresponding perturbation in the vorticity @ = V x u satisfies
W@+ (- V) = vA® + ;6. (1.6)

We separate the linear and the nonlinear parts in (1.5). To do so, we eliminate the
pressure term. Taking the divergence of the velocity equation in (1.5), we find

—Ap=V-(@-V)a)—db
or
—Vp=VATIV. (@i V)a) - VA~!H,6. (1.7)
Inserting (1.7) in (1.5) yields
dil + (8- V)i — 9, ATV - (- V)I) = vAid — A™'8,,0,
dD+ @ V)0 — ATV ((@- V)E) = vAT + A7',,0,

. - (1.8)
00+ - V)0 + v =0,
V.-u=0.
For notational convenience, we ignore the tilde and further write (1.8) as
du =vAu — AT19,,0 + Ny,
v =vAv+ AT9,.0 + Na, (L.9)
8[9 = _ﬂ v+ N37
V.-u=0,
where N1, N> and N3 are the nonlinear terms
Ny =~ V)u+3,A7'V - ((u- V)w),
Ny =—@-V)v+3,A"'V. (- V)u), (1.10)

N3 = —(u- V)6.

The goal of this paper is to study the large-time behavior of large-data classical
solutions to (1.9) and its linearization on the 2D periodic domain T2 subject to
various initial conditions. Specifically, we aim to identify the explicit decay rate of
u, and describe the profile of the equilibrium state of 6.
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1.4. Challenges

We begin the investigation with the linearization of (1.4), which, according to
(1.9), is given by

»U =vAU — 3,,A7'0,

9,V =vAV +03,,A71O,

40 +BV =0, (1.11)
U+ 93,V =0,

Ux,0) = Up(x), V(x,0)=Vo(x), O(x,0) = Opy(x).

We remark that the main results of [21] are proved by using pure energy methods.
However, because of the nature of the energy methods, such an approach does not
allow us to extract any decay rate out of the perturbation, even for the linearized
system (1.11). Indeed, it is easy to check that (1.11) admits the following global
and uniform Sobolev bound, for s = 0,
1 t
1@,V + IO +2 /0 (VU (@), VV (@) d

1
= [|(Uo, Vo)ll%s + Ell@)ollip-

In Section2 we show that the H® norm of the linearized velocity field tends to zero
and the temperature converges to a definite limit, as time goes to infinity. However,
because of the absence of thermal dissipation and the coupling of the temperature
with the velocity equation, it does not seem possible to derive any explicit decay
rate of the velocity perturbation by using energy methods. On the other hand, by
differentiating (1.11) with respect to ¢ and making suitable substitutions, we can
convert (1.11) into a system of degenerate wave type equations,

9, U —vAQ{U — B(—A)"1o, U =0,
9V — VAV — B(—A) 19,V =0, (1.12)
9,0 —VAYO — B(—A) 13,0 =0,

which allows us to extract different global energy bounds, but explicit decay rates
still do not follow from direct energy estimates.

In order to gain a better understanding of the stability problem, here we resort to
the spectral method, that is to first solve the linearized system in the Fourier space,
and then represent the solution of the full nonlinear system in an integral form
via the Duhamel principle. These explicit representations, provided in Section 2,
make it possible for the study of precise large-time behavior. First of all, by direct
calculations, we can show that the Fourier transform of (1.9) is given by

Oy =AYy +F,
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where
kik —
o —vlk]> 0 -@5% Ni
I/f — /U\ , A= 0 —U|k|2 k_l2 s F = N2
g " N,
0 —B 0 3
The eigenvalues of A are
A= —vlk|?,
1 4Bk?
ro=——vk 14,1 =],
2 zl)l | + S2K[S
1 4Bk?
A3=—vk?[1— — 1
3 zl)l | D2k

Clearly, for 8 > 0 and k1 # 0, the real parts of A, A2, A3 are all negative. However,
when ki = 0 or when kf < k4,

2Bk?
)
=K~ (1.13)

2
1+1ﬂ

- l)2“(|6

Although we are able to identify the explicit decay rates of the linearized velocity
field, such a spectral property makes it considerably difficult to extract explicit
convergence rates for solutions of the full nonlinear equations. We also observe
that more regular initial perturbations here could lead to higher decay rates due

to the fact that A3 behaves like —% for some frequencies k. This is reflected
in the statement of Theorem 1.3. This phenomenon is different from the behavior
of solutions to standard parabolic partial differential equations (PDEs). In general
more regular perturbations generate slower decay rates in standard parabolic PDEs
with the Laplacian operator or fractional Laplacian operator. This new phenomenon

is due to the partial dissipation in the Boussinesq equations studied here.

1.5. Statement of Results

We present several results at two levels: level one for the linearized system (1.11)
and level two for the full nonlinear system (1.9). We obtain three main results for
the linearized system. The first result states that if the initial profile (Uy, Vo, ®¢) is
in the Sobolev space H* for any s = 0, then the Sobolev norm of the corresponding
velocity field in H* converges to zero and the H*-norm of ® converges to a definite
limit. More precisely, we have the following theorem:

Theorem 1.1. Let s = 0. Assume that (Uy, Vo, ®g) € H® (Tz) satisfies 0x Uy +
0yVo = 0 and

/ Up(x)dx =0 and / Vo(x) dx = 0. (1.14)
T2 T2



592 L. Tao, J. Wu, K. ZHAO, & X. ZHENG

Let (U, V, ®) be the corresponding solution of (1.11). Then, as t — 00,

IUOlas — 0, IVOlus — 0,

o
1O 17 = 1Uo, Vo, ©0)1Fs — 2v / I(VU, VV)(@) s de.
0
Our second result for the linearized system (1.11) assesses that, if the Fourier

series of the initial data is summable, then the velocity field (U, V) converges
uniformly to zero and, more importantly, the temperature ® converges pointwise

to an explicit function that depends only on the vertical variable. This points to the
stratification of the temperature.

Theorem 1.2. Assume that (U, Vo, ©g) satisfies 3, Uy + 0, Vo = 0 and

D 10| <00, Y lkallVo)| < oo, Y 1@k <oc.  (1.15)
k k k

Assume Uy and Vi satisfy the mean-zero condition (1.14). Let (U, V, ®) be the
corresponding solution of (1.11). Then, ast — oo,

U@l oeqrzy = 0. IV @l 12y = O, (1.16)

O, y, 1) > B(y) := ) e (%\70(0, k2) + ©o(0, k2)> . (1L17)
ko 2

The third result for the linearized system provides explicit bounds on the H*-
norm of the velocity field (U, V). In particular, these bounds give us the precise
decay rates of the velocity perturbation.

Theorem 1.3. Assume that Uy, Vo and ©¢ are in L*(T?), and satisfy 0xUp~+0dy Vo =
0 and the mean-zero condition (1.14). Let (U, V, ®) be the corresponding solution
of (1.11). Then the following L*-estimates hold, for a pure constant co > 0:

- _ 1
U@z £ Ce " [ Upll2 + C (e CO”’+W) IVoll 2

1
+C e“’”’+—> C) , 1.18
( N 1O0ll .2 (1.13)
1 1
Vil £C (e +— ) |V Cle " +—=) I©ol2,
VOl = <€ +w> Vol 2 + (6 +ﬁ> 10l .2
(1.19)

where C is a constant independent of v and t. If 9,Vy € L?*(T?) instead of
Vo € L*(T?), the decay rate in the second part of the bound for ||U(t)| ;2 can
be improved,

_ _ 1
IU®2 = Ce " |[Uoll2 +C (e C°”+E) 19y Voll .2

‘ 1
+C <e‘°” + ﬁ) 190l ;2. (1.20)
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For the full nonlinear system (1.9), we remark that the stability results of [21]
remain valid in the periodic setting. Our first theorem presents stability and large-
time behavior results similar to those in Theorem 1.2 of [21], but with a weakened
assumption on 8y. The results are obtained by combining Theorem 1.2 of [21] with
a uniqueness result of [26,38] on the Boussinesq equations in a weak setting. We
conclude that any initial data ug € H 2(T2y and 6y € L2(T?) N L°°(T2) lead to a
unique, global (in time) solution with the velocity, its time derivative, its first-order
spatial derivatives all tend to zero, and its second-order spatial partials uniformly
bounded. As a special consequence, if the L2-norm of the initial data (ug, 6p) is
small, then the second-order spatial partials of the velocity becomes small in large
time.

Theorem 1.4. Assume ug € H2(T?) is divergence-free and mean-zero, and 0y €
L?(T?) N L>®(T?). Then (1.9) has a unique global solution (u, ) satisfying,

ue L¥0,00; H?), 6 e L0, 00; L?).
More importantly, u, 6 and the corresponding pressure P satisfy, ast — 00,

a2 = 0, [Va@®)lz — 0, [[du()]2 — 0,

oo
16172 — lluoll7> + l1€0ll7> — 2v fo IVu@)|7, dr,
VP(t) —6(t)ex| y-1 — O.

In addition, the second-order spatial partials of w admit the uniform global bound,
for an absolute constant C,

lau®lz2 £ C AUO@ N2 + 8@ 2 + Tu@)ll 2 [Va@)[72)

for any t > 0. Especially, if the L*-norm of the initial data is small, namely
laoll 2 + 1160l 72 is small, then the L%-norm of the temperature 6 remains small
and the H*-norm of the velocity w becomes small in large time, namely,

02 e, forallt >0,

luollz2 + 6ol < e .
L L lu(@)ll 2 < Ce, whent islarge,

where the constant C is independent of time.

We emphasize that the first part of Theorem 1.4 requires no smallness on the
initial data and the global stability part follows as a special consequence. One
interesting point about the global stability result is that the initial closeness to the
hydrostatic equilibrium is only in the L?-norm, but the velocity becomes close to
the equilibrium in H?-norm in large time.

The second result for the nonlinear system (1.9) assesses the large-time behavior
of the Fourier frequencies of u and 6.
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Theorem 1.5. Assume that ug € H2(T?) is divergence-free and mean-zero,
V.uyg=0, / up(x)dx = 0.
T2

Assume that 0y satisfies

> 1Bk < oo.

keZ?

Let (u, 0) be the solution of (1.9). Then, for any k,
uk,?) = 0 ast — oo,
and, for kK = (k1, kp) with ki # 0,
@\(k,t) — 0 ast — oo.

Moreover, if there is a constant independent of t, such that

Yol ¢,

keZ?

then 6 (X, t) converges to a function depending on y only. More precisely, the large
time asymptotics of 0(X, t) is determined by S(y, t), which satisfies

Sy, 1) = B(y) — Bwdyy) " (¥ — 1) Tg(y) + 8y (v0) (v, 1).

Here the bar denotes the horizontal average, namely

— 1
F(y) = E/TF(x,y)dx.

We remark that the aim of Theorem 1.5 has been to understand the large-time
behavior and the eventual profile of the temperature. Theorem 1.5 indeed provides
a large-time asymptotics that is independent of the horizontal variable. The earlier
part of Theorem 1.5 is a special consequence of Theorem 1.4, which is based on
energy estimates. However, the large-time asymptotics part is established using the
explicit integral representation derived in Section 2.

Our third result for the nonlinear system (1.9) intends to provide an explicit
decay rate for the velocity field. As we mentioned before, it is extremely difficult to
obtain any decay rate, due to the fact that the third eigenvalue A3 (k, t) is of the order
—k% /Ik|* and is close to zero when k% < |K|* Tt appears to be necessary to make
some assumptions on the solution in order to obtain the desired decay rate. Our
investigation indicates that no assumption on the decay of the temperature itself
is needed. We find that if the difference between the temperature 6 and its large-
time asymptotics S(y, t) decays at certain rate and if the large-time asymptotics
obey some uniform bounds, then the L2-norm of the velocity decays at the rate of

1+ t)_% for large 7.
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Theorem 1.6. Assume that ug € H2(T?) is divergence-free and mean-zero,
V-.uy=0, / up(x)dx = 0.
T2

Assume 6y € H*(T?) with s > 2. Let (u, 0) be the corresponding solution of (1.9)
and let S denote the large-time asymptotics defined in Theorem 1.5. If (u, 0) obeys,
for some small ¢ > 0 and a constant C > 0,

e B
Am u®ll g =0,

. 1
A 2%[[V© = DOl 2 =0, 19y SOz + 19y, SO 2 = €, (1.21)

then

lu@)ll2 = (1.22)

C
N/ESE

for some constant C which is independent of t.

The rest of the paper is divided into three sections. The second section derives
the integral representation of (1.9). The third section proves the three theorems for
the linearized system (1.11), while the fourth section presents the proofs of three
theorems for the nonlinear system (1.9). The paper is finished with concluding
remarks.

2. Integral Representation

This section converts (1.9) into an integral form. The Fourier transform of (1.9)
can be written as

Y =AY + F, 2.1
where
> —v[k?> 0 —’E{% M
y=|1|, A= 0 —vlk? “1% . F=| N |. (2.2)

Therefore, 1 can be represented as

t
v (t) = ey + / AU F(r)dr. (2.3)
0

In order to obtain a more explicit representation, we need to diagonalize A. To do
so, we compute the eigenvalues and eigenvectors of A. The associated characteristic
polynomial of A is given by

k2
p) =G+ V|k|2) (k2 + ])|k|2)\ + ﬁ)
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and the eigenvalues are

r = —vlk]?,
N 1 K2 1 2 K 4Bk3 1 ki 14 /1 4Bk?
=—=v — =V ——=—=v -
S 2 k|2 2 NI
2.4)
. 1 |k|2+1 2 4pki 1 K [ 1 ] 4pk?
3T 2\ k2 - 2" 21K
2.5)

Clearly, for 8 > 0 and k1 # 0, the real parts of A1, A, A3 are all negative:
M <0, Rely <0, Rersz <O.

When Ay # A3 or 4;3kf * v2 |k|6, the eigenvectors corresponding to A1, Az and A3
are given by

1 Bkika Bkiky

kP2 e

m=10|, m=| - |, m=| -3
0 B B

Consequently we can write
AW =WD or A=WDW™,

where D is the diagonal matrix and W denotes the matrix with n, n2 and n3 being
the column vectors, namely

Bkiky  Bkiky

AL 00 I S ke

D=0 x 0|, W=hLnmnl=|0 —-x —i3
0 0 X3 0 B B

For k1 # 0, the inverse of W, denoted w1l is given by

g 0
-1 _ 1 A3
W =10 A3—A2 B(A3z—A2) ’
0 — 1 _ 1%
A3z—A2 B(h3—h2)
2
where we have used AyA3 = % to simplify the calculations. Therefore,

S L) 0 ; 0 0
vy =W | 0 2 0 W—lw(0)+/w 0 2 o |W'F(r)dr.
0 0 3! 0 0 0 Mt
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More explicitly,

00 MR - G) ’;,;’;gc

A -1 _
W0 e o fwt= Gy 6

where

Azekgt _ )\.3€)L3t Aot e}»3t )\3€A2t _ )\'zek'jt
Gi(t) = , Ga(t) = , G3(t) =

1(1) PP 2(0) . 3(0) o
(2.6)

Therefore, for Ay # A3 and k; # O,

kil Ga(t) o (k)

k
k1) = M K + 2 (@ = Gio) Tok) - e
1

t
~ k ~
" / (H Rty + k—%e““‘” — Gyt — 1) Na(K, 7)
0

Kk - o sk, ) d 27

kg 020 0 N 0 dr, @)
k2

Tk, 1) = G1(1) To(K) + ~—5 G2 (1) Go (k)

k|2

t R k% R
+/0 (Gl(t =) Nalh, ©) o 5 Gl = 1) N r)) dr, (2.8)

0(k, 1) = —BGa(1) To(K) + G3(1) Gp (k)
t
+/ ( — BGa(t — 1) Na(k, 7) + G3(t — 1) N3(k, r)) dr. (2.9)
0

For k; =0,
1
ro=-—vk?, A3=0, G =", Gz=7(e*2’—1), Gy =1
2
and
1 0 0 1 0 0
—1 1 _ A3 _ 1
wi=10 —5; Foa | =0 B 0
0 ! A o -+~ 4
A3—A2 B(rz—Ar2) A B
and
Mt 0 et 0 0
Wl 0o e o |w'l=]| o0 G 0
0 0 M 0 —BG2 G3

Therefore, for k1 = 0, the integral representation of (1.9) is given by

t
uk, 1) = M iay(k) + / D N (K, T) dr, (2.10)
0
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t
Dk, 1) = G1(t) Ty (k) +/ Gt — 1) Na(k, 1) dx, 2.11)
0
Bk, 1) = —BG2(1) TH(K) + by (k)
t
+/ ( — BGy(t — 1) Na(k, 7) + Ni(k, r)) dr.  (2.12)
0

‘We remark this representation is actually the limit of (2.7), (2.8) and (2.9) ask; — 0,
due to the fact that

lim =G0 _

0.
k1 —0 ki

For the sake of conciseness, we sometimes still use the representation in (2.7), (2.8)
and (2.9) even for k; = 0.

In the case when A, = A3, the eigenvectors associated with the eigenvalues
are different from those for A, # A3. Fortunately the representation formula in
(2.7), (2.8) and (2.9) remain valid if G1, G, and G3 in (2.6) are interpreted as their
corresponding limits,

Aot A3t

Aoe Aze

Gy = lim ==~ — (1 + )™, (2.13)
A2—>A3 A2 — A3
dot A3t
Gr= lim & — o, (2.14)
=3 Ay — A3
A Aot — Azt
Gy = lim 29 "72¢° _ (1 _ a0 (2.15)

A—>A3 A3 —Ap

That is, when A» = A3 or 4,8k% = v2|Kk|°, the integral representation of (1.9) is
given by (2.7), (2.8) and (2.9) with G, G, and G3 being specified in (2.13), (2.14)
and (2.15).

To prepare for the proofs in the subsequent sections, we provide some prelim-
inary bounds on G, G, and G3. They admit different bounds for different k’s.
When k = (ky, k») satisfies

4Bk3 > v|k|°, (2.16)

_ ARk

v2|k|6

behave like their real parts — % v|Kk|?. In order to make our presentation concise, we

shall ignore the case (2.16) since G, G, and G3 admit very similar bounds as those
for the case k € Sj, as provided in the following lemma.

1 is a pure imaginary number and X, given by (2.4) and 13 given by (2.5)

Lemma 2.1. Let Sy and S» be subsets of 72 (the set of all pairs of integers),

32 4Bk?
Si:=1keZ: ki 2 —Ik[° 1-——L <
! T A VK|S =

312 [ 4Bk?

- 2. 122 6 1
S2.— kGZk1<@|k| or 1—W>

Then the following estimates hold:

. @17

| =

(2.18)

| =
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(1) foranyk € Sy,

A2

[IA

1 1
——vlk]®, A3 S ——vlk|?,
2 4
Gi] < e3P g L2 o
2
C
|G2(2)| £ t e avIkPr < — |k|2 for a constant C independent of k and t,

Lk 4
|Ga(0)] < e~ 2V IKPE oy kP VIR,

(2) foranyk € S,

1 4812 1
A k]2, < -l A > —vk
) < 2v| I 3= 3vik[? 3 2_2U| |
2
4,3k 47
G < 3v\k|4 2 7’V|k\ p < C
1G] = v2|k|6e 1 e
2 2 c
Gar(1)| = Aot hat < ’
GO1= ShEe™ F ok = vk
4k%
G3(0)] < 2¢” 3" 4 7{;‘66“”"“2' e

Proof. We start with the first case, k € S7. As we remarked before the statement

Ak}
2|k|6
generality. For k € Sp, A, given by (2.4) and A3 given by (2.5) obviously satisfy

of this lemma, we shall always assume ,/1 — is real-valued, without loss of

1 1
o < ——vkA < ——vk
225 K| 3= K|
By the mean-value theorem, there is p € (A2, A3) such that
Gy = ™ 4 astel’ < e_%”‘kl ! v|k| te—ivIkPr,

The bounds for G, and G3 are similarly obtained. We now turn to the case k € $5.
Obviously, Ay < —%v|k|2. We write A3 as

26k2
1 453 SR 4Bk?
= vk (1= 1 —L | = vkE < APk
2 v2|k|® 1510 3v|k[*
1+,/1— Ik
‘We have the difference
4 k?
hs—hy = vk 1 — 2PA 5 1 SvIk[?.

2|k|6
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The bound for G, follows directly from the lower bound of this difference. To
bound G, we have

2 4x2
|)\3| At |)\2| Jat < 4,3k1 87 !

t L2
Gi(t)| £ e et < k' e avIkITE
Gl = A3 — Az [A3 — A2 = v2Kk[0

The estimate for G is similar. This completes the proof of Lemma 2.1. 0O

3. Proofs for the Linear Stability Results

This section proves Theorems 1.1, 1.2 and 1.3 stated in the introduction. For
the convenience of the reader, we recall the linearized system (1.11):

»U =vAU — 9,,A™'0,

&V =vAV +3,A7'0,

9,0+ BV =0, (3.1)
WU +9,V =0,

Ux,0) =Up(x), V(x,0) =WV, O, 0)=0yx),

and its explicit representation in the Fourier space given by the linearization of
(2.7), (2.8) and (2.9):

Uk, 1) = e oK) + 2(G1(1) — 1) Vo(k) + 12 G2 (1) Op k),

~ ~ 2 —

V(k, 1) = G (1) (k) + 5 G2(1) B (K), (32)
Ok, 1) = —BG2(1) VoK) + G3(1) O (K).
To prove Theorem 1.1, we recall the following lemma (see [21]). It assesses

that a uniformly continuous and integrable function must vanish at infinity. A proof
of this simple fact is provided in [21].

Lemma 3.1. Assume f € L'(0,00) is a nonnegative and uniformly continuous
function. Then,

f(@®) — 0 ast — oo.

Especially, if f € L'(0, 00) is nonnegative and satisfies, for a constant C and any
0<s<t<oo

lf(®) = f&I=Clt —s],
then f(t) — 0ast — oo.

For the conciseness of the presentation, we set § = 1 from now on. We start
with the proof of Theorem 1.1.
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Proof of Theorem 1.1. Due to the linearity of (3.1), it suffices to prove the result
for s = 0. Dotting (3.1) with (U, V, ®) and integrating by parts, we have

d
SNV O +22I(VU. V)7, =0,

which implies, for any 0 < s <z,
t
U, V., 0)®)]7, +2v f I(VU, VV)(@©)|7.dT = (U, V. ©)(5)]7.. (3.3)
N

Therefore, ||(U, V, ®)(2)]|;2 is a decreasing function of # and it must have a limit
ast — oo. In fact, as t — oo,

o0
U, V,0)DI2, — (U, Vo, ®)lI>, —2v [ (YU, VV)(D)||?, dz.
L L 0 L

(3.4)
Next we show that, as t — o0,

U @), VD2 — 0.
Taking the inner product of (U, V) with the first two equations in (3.1) yields
d 2 2
E”(U’ 2 +2vI(VU, VV) I, = /@ Vdx
S VI + 1013, < (U0, Vo, ©0) |13

which implies

\H(U(t), VN, = WU Gs), V)7

t
< va I(VU, VV)(@)I2dT + [|(Uo, Vo, O) %)t —sI. (3.5)
N

Note that (3.3) implies [[(VU, VV)(1)|17, € L'(0, 00). Hence, (3.5) implies that
(U (1), V(t))lli2 is absolutely (and so is uniformly) continuous with respect to
time. Moreover, the periodic setting and the mean-zero condition (1.14) allow the
Poincaré type inequality

U W)llg2 = Co VU, VV) 2.

It then follows from (3.3) that
> 2
/ U @), V()ll; . dr < oo.
0
Lemma 3.1 then implies, as t — oo, that

IOz — 0, VOl — 0,

which, together with (3.4), implies the desired limits. This completes the proof of
Theorem 1.1. O
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The key components of the proof of Theorem 1.2 are stated in the following
two lemmas. The first lemma provides the limit of U (k, 1), ‘7(k, t) and @(k, t) as
t — oo while the second lemma establishes the uniform summability of U (k, 1),
V(k, t) and Ok, 7).

Lemma 3.2. Under the assumptions of Theorem 1.2, ﬁ(k, 1), f/\(k, t) and @(k, 1)
obey the following large-time behavior:

for any Kk, ﬁ(k, 1), V(k, t) > 0 ast — o0,

forany k = (ky, ko) withky #0, Ok, 1) — 0 ast — 0o,

~ 1 ~ —~
foranyk = (0, k), Ok, t) — ?VO(O, ko) + ©g(0, kp) ast — oo.
vk

Lemma 3.3. Under the assumptions of Theorem 1.2, ﬁ(k, 1), V(k, t) and @(k, 1)
are uniformly summable, in the sense that the series converge uniformly in time
t € (0, 00),

Y UK Dl <oo, Y [V(k.n)| <oo, Y Ok, 0] < oc.
K k K
Proof of Theorem 1.2. With the preparations of the two lemmas above, we can

easily prove Theorem 1.2. Lemmas 3.2 and 3.3 allow us to use the Dominated
Convergence Theorem. Therefore,

: _ 1 i(kix+k2y) 77 _ i(kix4+k2y) 13 77 _
lim U, y.0) = tli)ngoik:e Uk, 1) = Ze lim U(k, 1) =0,

k
- — i(kix+hay) 7 _ iix+koy) 1o O _
Jlim V(x,y.1) _tlggoik:e VK, 1) = Xk:e Jlim V(k, 1) =0,
: R T i(kix+k2y) _ itkix+kay) 1z 3
Jlim O, y.1) = tl_l)noloxk:e Ok, 1) = Xk:e lim Ok, 1)

. 1 ~ —
=D (W V0(0. k2) + (0. kz)) :
2

k

This completes the proof of Theorem 1.2. O
We now prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. 'We invoke the representation of U (k, 1), V(k, t) and @(k, 1)
in (3.2). For each k = (k1, k2) with k1 # 0, the eigenvalues all have negative real
parts,

Y k%<0, A ! kP2 [ 1+ /1 g 0
= —v <0, =——V —-————1<0,
! 277 V2[K[6
1 413
rm=——vk[1-/1—-—L ]| <0
3 ZVI | J2K[6
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and, for A, # A3 or 4k% £ 12 |k|%, as t — oo,

A e}»3t —A ekzt g)‘3t _ ekzt
Giin=""""0 50, Gt)="——— =0,
A3 — A2 A3 — A
A ekzt —A e)»}t
Gy =222_"72 .
A3 — A2

In the case when 4k12 = v2|k|6, we have A» = A3. Then G, G, and G3 are given
by the limit form and, as r — oo,

Aaeh3t — pnet2!
Gi(t)= lim 2777 _ (1 40 -0,
Ar—A3 A3 — A2
A3t Aot
et —e
Go(t) = lim —— =re™' — 0,
—A3 )\,3 — A2
Aret2l — ),et3t
G3([) = lim u — (1 _ )“zt)ekzt - 0.
Aa—23 A3 — A2

Therefore, for k = (k1, kp) with ky # 0, as t — o0,

= Mt T ka iy O kika =

Uk, 1) = ™" Up(k) + - =(G1 (1) — ™) VoK) + WGz(I) Bo(k) — 0,
1

N . k2 _

Vk, 1) = Gi(t) Vo(k) + @sz By(k) — 0,

Ok, 1) = —G(1) Vo(K) + G3(1) Bg (k) — 0.
When k; = 0, or k = (0, kp) with ky # 0,
M:—vk%<0, )»2:—Uk%<0, A3 =0
and

1
Gi(t) = &M, G2(1)=/\—(6W—1), G3(t) = 1.
2

According to the representation for the case k1 = 0, namely in (2.10), (2.11) and
(2.12), we have, as t — o0,

Uk, 1) ="' Upk) — 0,
Vk 1) = G(1) o(k) — 0,

A ~ P 1 ~ .
Ok, 1) = =G2(1) Vo(k) + G3(1) Op(k)  — WVO(O, k) + ©o(0, k2).
2

This completes the proof of Lemma 3.2. O

We now turn to the proof of Lemma 3.3.
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Proof of Lemma 3.3. The proof is devoted to establishing the following uniform-
in-time bounds, for k = (k1, kp) with k1 # 0,

~ — ~ cC ~
UK, )| = [UoK)| + C lka2|[Vo(k)| + —— O (k)]

VK2
IV(k, 1) £ C|Vok)| + kP 1O0 ()],
~ C ~ —
Ok, 1)] < S | Y0001+ € 8ok

and, for k = (0, k»),

Uk, )] < Upk)],
IV, 0| £ C Vo),

1Ok, 1)| < IVo(k)| 4 C |89 (K)|,

C
vlk[?

where C is a pure constant. As a consequence, for Uy, V and © satisfying (1.15),

YUK DL Y IV Y 1Ok, 1)
k k k

< C Y (U®)| + [kal Vo (K)| + [@(K)]) < oo.
k

The rest of this proof shows the aforementioned uniform bounds. As our first step,
we prove the following bounds for G, G and G3:

C
GO =C, 1G2()] = VKR IG3()] = C, (3.6)

where C is a pure constant. For k = (kq, k2) with k1 # 0, by the Mean-Value
Theorem, there exists A satisfying A» < A < A3 < 0 such that

Gi(1) = (1 + Ane? < C.
Fork = (0, k2), 22 = —v|k|? and A3 = 0, and
Gi(r) = < 1.

Furthermore, for k = (k1, k2) with k1 # 0,

k 1
é(Gm -t < T (Ik2l|G1 () — e*1']) < Clkal, 3.7

where we have used the fact that, for k1 # 0 L < C. In the case when ki =0,

Ckl =
A
as we have explained before, %l_elt is defined by the limit

G = _ G
kq k1—0 ki ’



The 2D Boussinesq Equations 605

Now we turn to bounding G»(t). For ky = 0 and k = (0, kp), Ax = —v|k|2 and
A3 =0, and
ekzt _ ek3t 1 1
Gyt) = ——— = — (" - 1) < .
20 A=Az A (e = vIk|?
We consider k = (ky, k) with k; # 0. We invoke the bounds from Lemma 2.1.
By Lemma 2.1,

(o
Gy(t) £ —.
2(1) = DIk
Due to
A )th_)\ Azt
G3(1) = % =M =32 Ga),

G is bounded by

c
IG3()| <1+ vk> — < 1+C.
v|k|?

We thus have establishe/q tl}g boullgs in (3.6). Inserting these bounds in (3.2) yields
the desired bounds for U, V and ®. This completes the proof of Lemma 3.3. O

We now turn to the proof of Theorem 1.3.
Proof of Theorem 1.3. Since U and V are mean zero,
U@©,1)=0, V(1) =0.

By Plancherel’s theorem,

i, =Y 10k 0

K#£0
2007 (g 2 k3 M2 T 1 2 K 5 =0
<3 AT KIP+3 ) 2G10) =MW +3 > #6310l
k£0 ky#£0 “1 k#0 k20 Kl
=L +hLh+1s. 3.8)
Since 1| = —v|k|?, there is ¢y > 0 such that

I £ 3e V|| Upll3,.

We now estimate /3. The key is to bound G, and we invoke the bounds in Lemma 2.1.
According to Lemma 2.1,

3v2 1 1
for k=(ki. kz) € Sy orkj = 1—”6|k|6, Gaty=te’, —Svlk]® < p < —vikl’

and

312 2 2
B ) 6 It Azt
fork = (ki, k2) € Sy orky < Elkl . 1G] = v|k|2€ 2t v|k|2e 3t
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The summation in /3 is naturally divided into two summations:

2 o 2 a2
32 |k|4 G300 + Z |k|4 G310

keS; kes$;
2 2pt \(ys 2 k%k% 1 20018 | 2
32 |k|4 " |©g(k)* + C ZWu%kW 1©0 (k)|
keS) keS$,
Kk 1 2
3 1@ (k
+C Z |k|4 2|k|4 ©0( )|
< C([ 4 1) —covt ”@ ” + C Z k2k2 2A3t I(:j\(k)|2
o 1l Tk 2 O

The estimate of the last term in /3 is slightly more complex. As in Lemma 2.1, for
ke S andky #0,
2k?
VK L
4k% = 3v |k|4 ’
GR

>
w
I
|
A

I+,/1—

and thus,

Kk 1 O(k)|? < L - Sk%‘*’ Oo(k)|?
ST 3vik]|

kEES K[ 2P 1©(K)|” = E FEITRES 1©0 (k)|
2

N TR,
e WK Og(K)|

[IA
g
CN
=
=

N S
e WK B (k)|

IA
I

vt v|k|*4
keSy

A

C 2
~11©0l}..

where we have used k; # 0 and the simple fact xe™ < C for any x = 0. We now
turn to /> in (3.8). The key is to bound G (f) —e’!’. Again we split the consideration
into two cases: k € S| and k € S,. We invoke the bounds for G| in Lemma 2.1.
Fork € S,

1
1G1(0)] = |(1 + pt) '] < (1 + 5v|k|2r) e vk

Fork € S,

2 %3

1IG1(1)] = j|k1|6e_3vlk4t 2o vk
vV
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To bound 7, we split the summation in /> into two pieces and use the bounds
above for G1. We emphasize that the summation does not involve k1 = 0 and |k1_1|
is bounded above:

L<CY BIGIOP+)VmPE+ C Y KB (GO + D) Vo k)|

keS ke$
1 ~
<cY 8 ((1 + 5 vlk[n)? e 2k +e2“"‘2’) Voo ?
keSS

2

453 2 2\ ~

+C Y i3 ( 2|k1|6e mw 4 2¢ 2Kl f) + e 2K VK2
ke$S,

For Vy € L*(T?), we further bound I as follows:

Mk, 4\
12 g Ce—C()v[”VO” +C Z < 1 e T ) |V0(k)|2
keSy

3 2
_ 1 a4y —
é Ce Covt”VO”iz + CW Z <])|k|3e 3ulk[4 ) |V0(k)|2
ke$;

< Ce Y Vol2, + € —— Vol

(vi )3/

where again we have used the fact that xe™ < C for all x 2 0. If we have
oW € L? instead of V € L?, the decay rate in this part can be improved. For any
t > 0, we have

4k2 ﬂt ? ~
]2 < Ce—COI)tHa‘ V0||L2 + C Z We 3ulk|4 k%|V0(k)|2
keS;

4 N\? L
< C —covt”a V0||L2 + C( t)z Z <v|k|4e vk ) k§|V()(k)|2

< Ce |ay Voll2, + c( Ay 19y Voll7.»

Combining the bounds for Iy, I and I3 leads to the desired bound for ||U(¢)]| 2
in (1.18) and (1.20). The bound for ||V (#)]|;2 in (1.19) can be similarly obtained.
This completes the proof of Theorem 1.3. O

4. Proofs of the Theorems for the Nonlinear System (1.9)

This section proves the three theorems concerning the nonlinear system (1.9).
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Proof of Theorem 1.4. Theorem 1.4 is very close to the statement of Theorem 1.2
in [21]. The main difference here is that the assumption on 6y is weaker than
in Theorem 1.2 in [21]. The weaker setting makes the proof for the uniqueness
harder. By adopting the approach of [26,38], we can still prove the uniqueness when
0y € L? (no need for 6y € L°°). [26,38] introduced the new unknown 7 satisfying
An = 6 and proved the uniqueness by considering the difference ||V — V2|l 2.
This approach still works here and more details can be found in [26,38].
The proof for the large-time behavior, as t — oo,

a2 — 0, [Vu®l2 =0, [du@®)l2— 0,

o
1072 — lluoliZ> + 160ll7> — 2v /0 IVu@)|?, dr,
IVP@) —0()esll -1 — 0

is very similar to the proof of Theorem 1.2 in [21]. We now provide a proof for the
global bound on the second-order spatial partials of u, for ¢t > 0:

IAu@) |2 < C U0z + 8@ 22 + [lu@)l 2 [Vu@)][72). 4.1
Recall that u satisfies (1.9). We rewrite the velocity equation in (1.9) as
vAu—V(AT'V. (u-Vu)+ A7'9,0) = u+u- Vu —fes. (4.2)
Taking the L?-norm each side yields
viAaul?, + 1V(ATIV - - V) + A78,0) )12,
< Clloul7, + Cllu- Va7, + 10172, (4.3)

where, due to V - u = 0, we have used the fact that Au and V(A_IV -(u-Vu) +
A~'9,6) are perpendicular in L, or

/ Au-V(AT'V - (- vu) +A79,0)dx = 0.

For the nonlinear term on the right-hand side of (4.3), we can show that
Clu-Vul7, < Clluljs|Vul,

< Cllull2[Vul7, ]| Aujl 2
2
v
< S IAulZ, + C fulg [ Vullz,. (4.4)

Substituting (4.4) into (4.3) leads to (4.1).

In particular, since |6 (#) || ;2 < ||(ug, 60) |2, when || (ug, 6p) || ; 2 is small, taking
into account of the large-time behavior of |[u(t)|| g1 and ||9;u(¢)| 12, we conclude
from (4.1) that ||u|| z2 becomes small in large time. This completes the proof of
Theorem 1.4. 0O

We now turn to the proof of Theorem 1.5. We make use of the representation
formula derived in Section 2.
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Proof of Theorem 1.5. We recall the equation of 5(k, t)in (2.9),

t
Ok, 1) = OK, 1) + f (— G2t — 1) Na(k, 7) + G3(t — 7) N3 (K, r)) dr,
0

(4.5)
where ©(k, 1) denotes the corresponding linear part, namely
Ok, 1) = =G (t) 1o(k) + G3(1) By (k).
As shown in Lemma 3.2, for k = (ky, k») with k; # 0,
@(k,t) — 0 ast — oo.
We focus on the last two terms in (4.5),
t . t -
I = / (=Gy(t — 1) Na(k, 7))dr, I = / G3(t — 1) N3(k, T drt.
0 0
We recall the bounds for G, and G3 obtained Lemma 2.1. Fork € Sy,
Ja € —SulkP, s < —SvlkP?
= 2 9 = 4 9
1 1
Gl S 1, —vlk* < p £ —vlk[;
G3(1) = e —22Gy(1), |G3(1)] < €' + [nyte”. (4.6)
Fork € $;,
2k?
1 KR 4k>
A S -k, ap=—— < T
2 w vk
2 2
Gy(1)| < hat hat, 4.7
G20 £ iz + e (4.7)
|G3(1)] < 3e*2 2. (4.8)

Recalling the definitions of N> and N3 in (1.10), we have, for any |k| # 0,
IN2| £ 21(u- Vyulk, )], N3] £ |(u- V)o(k, 1).

Assume k = (k1, k2) with k1 # 0. We now estimate /7 and I, for k € S7. We split
the time integral into two parts:

[ —_—
I £ 2 / (t — 1) e VKD @ Viuk, 1) dr
0

t
2 —
= 2/ (t — 1) e~ K20 @ Vyu(k, 7)| dt
0
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t —_—
+2/ (t — 1) e~ KO0 |- Vyu(k, 7)| dt
2

= I + 1. 4.9

By Holder’s inequality and Poincaré’s inequality, for a pure constant C,

t
1 2
T Cre—V'k'z’f - Vyu@)l, dr
0

;
< C 1o IR / lu()l,2 Va2 de
0
. NE * 2
<Ctes IVu(o)]l;, dr, (4.10)
0

where we have used the simple fact that ||f(k) lliee < || £l 11 with [°° denoting the
space of bounded sequences. Therefore, I1; — 0 as ¢t — oo, and we have

! L2
o] £ Cﬁ k| (t — ) e 3" D a2, de

2

t
<c s Ju@ls / K| (¢ — 1) e~ PIPa-D g7
(<ese :
<C sup ()2, WD — e8I, @11

[<r<s
Using the fact that

. 2
lim sup [lu(0)|2, =0,
—00 %§r§t

we conclude that I}, — 0 as t — oo. Therefore,
I} > 0 ast — oo.

I can be similarly estimated. In fact, by the bound for G3 in (4.6),
1

| < / (1 + vk = 0)e KD 1k Ju()| 2 1602 d
0

L

2
< CIK|(1+ v]k[2r) e~ sV Ik / ()l 102 dT
0

t
+C sup Ju(@)l2 16(0)] ;2 / (1 + vk — 1)) e 8" KPE=D g
<r<s 5

1

L 2
1 2
< C ll(uo, 60) 2 KI(1 + v]k|?r) e~ 5V /7 ( / IVul?, dr)
0

C Y D D)
+C l(ug, €0)ll;2 sup Ju(o)|,2 (ma—e sV 4 C |k 1 e8Ik '),
L<e <y
2=t=

where we have invoked Poincaré’s inequality and the global bound
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18O1z2 = Nl (uo, Bo)ll 2.

Due to the facts that

o
sup [lu(t)f2 — 0, 2v / IVu(o)ll3, dr < [[(uo, 60)1I3 >,
(<< 0

it is easy to see from the bound for I, that, as t — oo,
I, — 0.

We now turn to the case k € S> and use the bounds in (4.7) and (4.8) to bound I
and I». For any k = (k1, k2) with k] # O and k € Sy,

1 t L
Il = S5 / <e—%vk'2<’—”+e s o) - Va2 de
v 0

13

C | —Lokpe Y 2
DIk e 4 +e 3vik [Vu(z)ll;, de
0

¢ T Al G
+—~ sup IIu(r)Ile/ e 2’ Yte 3K dr
VIRl 1 << 5

A

1

C k2 7&; 2 2
< e 3VIKIE L Tk / ||Vll(f)||L2 dr
0

+— lu(o)l17 1 + ik’
sup |lu(r .
p_ L2\ vik? 4k3

It is then clear that, as t — oo,
11 — 0.

For any k = (k1, k2) with k1 # 0 and k € S», the bound for G3 in (4.8) implies

' 4@
1 — —
| 15] §/ (e_2V|k|2(t—f) +e ot ¢ T)) K[la(T)]l 2 16(T)|l 2 dT
0

t

2 2
< K| (e_zlwkzl +e 3vk4t> / la(z) 2 10(T) || 2 dT
0

t _
+ sup ||u(f)||L2||9(f)||L2/ <e_év|k2(t—t)+e 3v\k|4(l T)) dr

St 2

1

1 ik[2 ,ﬁl 0 5 2
< [K| lluo. Bo)l 2 [ e 5 e 3T ) (f Ilu<r>nudf>
0

+ C |Kk[ || (uo, 60) |l lu()] 1 + Bulkf
uop, 6o 2 Sup u(r 2| — — | -
L %§r§t L V|k|2 4]{%
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Therefore, as t — 00,
I, — 0.

In summary, we have shown in either cases that, ast — o0, I1 and I, both converge
to 0. As a consequence, for any k = (k1, k2) with k1 # 0,

ok,t) — O

as t — oo. Therefore, for large time r > 0, 6(x, y, t) is mainly determined by

PN 1
S(y.t) =) e*0(0.ky. 1) = E/qré(x,y,t) dx.
ko

We derive an equation for S(y, ¢). Recall from (2.12) that, for k = (0, k3),
0(k. 1) = —BGa(t) to(k) + fo (k)

t
+f (— BGa(t — 1) No(k, 7) + N3 (K, 7:)) dr.  (4.12)
0
Multiplying each side of (4.12) by ¢/%2¥ and summing over k; yields

S, 1) =S(,0) =B Y " Ga(t) 10, k2)
ka2

t
—5/ Y e Gyt — 1) Na(0. kp. 7) dt
0
k2

t
+/ Ze'kzwg(o, ky, 7)dz.
0

k
Recall the definition of N, in (1.10):
Ny =—(u-V)v+3,A"'V.((u- Vu).
We find, by a direct calculation, that the identity holds, for any k; and 7, such that
N2(0, ka, 7) = 0.

Invoking the definitions of G, and N3 and identifying

L 1
> R F(0.ky) = —/ F(x,y)dx,
2 T
ko
we have
_ _ﬁ =L, vtdyy
Sy, 1) = 8(y,0) > (Wayy) " (" = 1) | wvolx, y)dx

T T

1
+—/u~V«9(x,y,t)dx. (4.13)
2 T
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Writing u - VO = 10,6 + vd,0 and applying the periodic boundary condition, we
find

/ u-Vo(x,y, t)dx = 0y / v(x,y,1)0(x,y,t)dx.
T T
‘We introduce the notation
— 1
FO) =5 / F(x, y)dx.
7 Jr
Then (4.13) becomes
Sy, 1) = o(y) — Bdyy) " (€™ — 1) Tp(y) + 0, (v) (y, 1).
This completes the proof of Theorem 1.5. O
We now prove Theorem 1.6.

Proof of Theorem 1.6. Let k = (ki, ko) with k; # 0. Taking the />-norm of the
sequences on each side of (2.7) yields

t
@k, )l S NU& D + H / HMOTIN (K, T) de
0

12

t
k N
+ H/ 261t — 1) —MDYNY (K, 7) dT

12

kik
H/ “‘('sz(z ~ N3k, 1) dr
2

=h+ DL+ 1L+ 14, (4.14)

where U (k, t) denotes the linear part,
-~ —~ k - kiko
U(k.1) = ' @ k) + > (G1() — ) Tok) + Tz G20 B0tk
1

We can directly use the result of Theorem 1.3 to obtain
L =[U® 2

1
— t — 13
S Ce " Upll2 +C <e v —l—W) Vol .2

1
+C ( _COVt"i‘\/—v—) 1®0ll2,

. . _1 . . .
which clearly has the desired decay rate ¢t 2. To estimate I, we split the time
integral into two parts:

t

2 ~
L < / SMUTON (k) dT|| +
0

12

t
f MION (k, 7)dT
t

2

12
=D + Ip.
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By the definition of Nj in (1.10), we have

Ik ® k|
k|2

INI(K)| < |u- Vu(k, )] + lu- Vu(k, 1)

<2lk| [u ® u(k, 1)].

Therefore,
%
1] < / " =D Ny (K, T)]|2 de
0

t

2 _ 200 —
< / llkle ™K C=D, ju @ uk, ) [~ dr.
0

Bounding the />-norm in terms of its corresponding integral, we have

1
2

Z |k|26—2v\k|2(t—r)

k#£0

1
( |x|2872v\x\ (t—1) dx>2
1
C

k|2 (t—
l[[kle KD, =

2 =202 (t=1) rdr) .

(r — r) L (4.15)

In addition,
lu@u(k, Dl < lu@uf < Jull?,.
Therefore,
% -1 2 -1
Iyl < C / = @2, dr < Cr
0
where we have used the fact that
o
/ lu(o)l|?, dr < co.
0

To bound I, we fix ¢ > 0 (a positive small parameter) and proceed as in the
estimate of I»j,

t
|ls| < / le* DN (K, T)]|,2 de
2
t 5 —
< / k|2 eV IREETD 0 | A28 (u @ u) (K, 1) dT
2

t
< / (1 — D) A% @@ w1 dr
2
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! 1 2
<c / (t — 01 A%l 2 ful 2 d
2-2
<Cf(t O~ 35 (| Vall3 de
<C sup M(‘L’)

p< () 5% Va7 / (t—1)""ter

,l
<Cr 2 osup M(r) sup Tfllu()]|}% Va3,
1<t (<<

1
M(1) =12 lu(@)|l 2.
Here we have used the fact that, for a constant C > 0,
! —1+e_—1—¢ -1
(t—1) T2 %dr=Ct"2.
t
3

We now turn to /3. We again split the time integral into two parts:

Tk .
L < f ﬁ(cm—r)—eM(’—f))ka,r)dr
0

12

t
k N
+ / (Gt — 1) — MDY Ny (K, 7) dT
t ky
2 12
= I3 + I3;.

Clearly,

IN>(k, )| < 2[k| [ @ w)(k, 7).
Therefore,

— . -
I3 g/ |||k|E(Gl(t—r)—e“<f Nell@@u)k, )|~ dr.
0

615

r76 dt

(4.16)

4.17)

As pointed out in Lemma 2.1, G1(k, ¢) obeys different bounds for k in different

ranges. More precisely,

G1(k, 1) < e 2VIKPT 4 v|k| re P ipg e sy,

2 a@?
L, ud! — vk
v2|k|68 + 2e ifk € $,

where S1 and S are defined by (2.17) and (2.18), namely

32 4Bk 1
S = keZz.k2>—|k|6 or J1— p <%,
168 V2k[6 T 2

Gk, )] =
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4ﬁk2 1

Sy=1keZ?: ik} ——k6
2 < Top I Or 2k[6 2

Correspondingly, || |k| (G1 (t—1)—eMl- f))|| 2 is split into two parts

< L+ B, (4.18)

12

k
H|k|k—2<cl (t—1) =107
1

where

=

Ly = Z|k|k|G1<z r) —MEOR |

keS; 1

D=

L= |k| |Gl(r — M OP
ke$,

We note that k; # 0 in the summations above. As we explained in Section 2, I3 = 0
when k; = 0. By the definition of S; in (2.17), k € S implies
302
k= — k[’
168

which further yields, for any k1 # 0 and a constant C (independent of k), that

ka

<C.
k1 -

Invoking the bound for G (k, 7) in the case k € S;, we find

1 2
L £C | ) IkP <1+§vlk|2(t—r)> e 2VIKPC-D)

k€S|
We further bound 7311 as in (4.15) to obtain
L <c@e—1)h (4.19)

To bound 131>, we invoke the bound for G (k, 7) in the case k € S, and use the
facts S 1 and |k>| < |K| to obtain

2\ 2
2 4
Z k| [2¢2vKPa-D) | ie ot 70
keSS, VZ|k|6
I3l + B2, (4.20)

A

I3

A
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where

1 2
I3z :=C Z k|* e 2V K= )

ke$r
1
4 82 2
1 774(17‘[)
i =C Z —e K
k8
keSy

Clearly, I3121 can be similarly estimated as /311 and
3
13121 § C(t—r1) 2. “4.21)

Estimating /3177 is slightly more complex. Noting that the summation is for |k| = 1,
we can bound it by an integral

4 2

X -8 (t—1)

By sC / —ge N dx.
xi>1 X

Using polar coordinates and then changing variables, we have
2 2 1 4 —SLcosze(t—r)
I35 £ C / / —cosfe 2 rdrd@
o J1 T
2 1 s
=C / f pcost @ 87 eosTOU=T) gy g,
0o Jo

To further bound this integral, we convert it back into Cartesian coordinates as
follows:

2 x* —8x2 (t—1)
xi<1 x|

2

1 1—x
— C / )C4 efgxz (tfr)/ (X2 + y2)72 dydx
-1 —/1—x2
V1—x2

1
=2C / xhe 82 -0 / (x> + y»H 2 dydx
-1 0

1 2 2
1 1-— 1-—
=C / x4 e8¢ (=) (—3 arctan vi-x + Vi-x ) dx
-1 X X

2
Using the basic facts that
J1—
—% < arctan—x < %, V1—-x2<1,

we find that
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! 1
132122 =C / x| e 8 =Dy +C / 22 e8P =) gy

-1 _3
SC@E—1) +C(@t—1) 2. (4.22)
(4.21) and (4.22) together imply
B <C@—1) 2. 4.23)
Combining (4.17), (4.18), (4.19) and (4.23), we obtain

1

1
2 1
msc [fo-o i ar et
0
We now turn to I3;. We split the /2-norm into two parts:

I3 < Iy + I3oo,

where I371 contains the summation over k € §; and I3, over k € S>, namely

t
I3y = /
t

2
t k -
Ly = ” / é(Gla — 1) — M) Ny(k, T) dt
2

dr,
12(S1)

k —
ﬁ(Gl (t —1)— M) Na(k, 1)

12(82)
‘We use the fact that, for k € S,
k

IA
a

As in the estimate of 17,

1
2

t 1 2
1321§/ > k[ (1+§v|k|2(t—r)) e WP A2 @@ )|, dr.
2 keS,;

As in the estimate of I31; (see (4.19)), we have

1

2
1 2
Z k|2~ (1 + 5v|k|2(z — r)> kP | < o — )T
keS;

Therefore,

t
I gc/u—r)*‘“ 1A% @ wl, dr
2
t
§C/(r—r)*‘+€ IA*u]l 2 ull 2 dT
2

t
—1 2-2, 2
¢ [a— o i vui dr
2
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<C sup M(t) sup tfu(m)|)5 [ Vu(n)|7 / (t-t) T2 g
1<e<s 1<e<s
SCi7 osup M@ sup <@ IVa@%

f<t<s F<t<s

I3, is estimated differently from I35;. For k € S,, we use the simple fact |k;| = 1
due to k1 # 0, and thus

< kol = [KI.

2

k1

In addition, we use the bound
IN2(k, 7)] < 2/k| |(@ @ w)(k, 7).

Then I35; is bounded by

' 2-2 Lylk[? 4k —ﬁ(t—r) 2
I g/ K|>728 (27 2VIKIPG=D) L TSk A% (u®u)|;2 dr.

lOC

v2|k|6
2

It is clear that

2 42
k[*~2 <2e—év'k'2<f—f> I emir*“”) ol

l)2|k|6
IOO
By Holder’s inequality and Sobolev’s inequality,
IA*@@wl2 < Clull;; IIVUI|1+8-

Therefore,

t

Ln £C / =) uf ¢ IVl 1 dr
t
2

[IA

1
Ct™2 sup M'™%(z) sup r2s||Vu(t)||1+5.
5SS f<rse

Therefore,

_1
Ip<Ct72 sup M(z) sup =°lu()]|}>% Va7
<t <<

+C17T sup M) sup o3| Va(o)] e
’<r<t f< <t

To estimate 14, we split it into four parts,

Iy = Iy + Igp + I3 + Iyg,

L

2
141=/
0

where

1k2 ~
26yt — N3k, T) dr,

12(S1)
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kika .

Iy = 7 020 —1)N3(k, 7) dr,

0 |k| 12(5)

kiko

Iy = / ‘ G- oMk |
Ik| P2(sp)
kik .

Iy = 226t — N3 (k. 7) dr.
Ik 2(82)

We recall that G, obeys the following bounds, according to Lemma 2.1,

Ga(t)] S ek ifk e sy, (4.24)
2 L
1G2(1)] < |k|2e—%”'k'2f e Wkt ifk e Sy (4.25)
V

Applying the bound for G, and invoking the bound for Z/\J; ,
N3] < [Kk|uf (k. 7)1, (4.26)

we have

t

L1 é/ [KIG2(t = D)ub (, )| o 5, d

< [* s e s
—Jo 12(S1)

By the simple fact that |k| = 1 for k # 0,

Iud (k, 7)1 d.

t
2
Tl = [kt - oe
0

, @2 18() ]l 2 de

3 ;
= /o ¢ =) 2 u(@)ll 2 16(2) 2 dT

1

2
a7, dr) <cr !

3
< Ct7(uo, )l 2 (/0

To bound 147, we obtain by applying (4.26) to bound 1/\7\3 and (4.25) to bound G

t

2
] £C /
0

1 LkPe-o

e Uk, T)|[l12o(s,) d7
k| 12(5,)
klkz i (t—1) —=
+C / K T u-Vok, ) dr
o | m* 2(5y)
= Ig1 + I422.

To bound 1471, we again use the simple fact that |k| = 1 for k # 0 to obtain
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t
2 Clomk2 s
Iy £ C / ke3P s a2 (00,2 dr
0

; .
gc/o (t — 073 Ju@ll2 1602 dr

1

L 2
2
C t7l(uo, 60) .2 ( /0 a7, dr) :

For k; = 0 or kp = 0, we have I45, = 0. It suffices to consider the case when
ki1 # 0 and k» # 0. Recall that S(y, ) denotes the horizontal average of 6. We
write

[IA

u-Vok, 1) =u- VO — Sk, 1)+ v9,5(K, ).
In addition,

v, Sk, = > Dlki kb, 1) KyS(KS. 1)

Kk =ka
= > Bk k. OKSE. D+ Y Dk Ky ) KYS(S 1),
21K Wb <15

For |k}| 2 [k |, we have |ky| < |k)| + [k)| < 2|k}| and

kI = K2+ 13 <2,/ + (k)2
Therefore,

> ki k. 1) KYS(KS 1)
k5|2 15|

1 - ~
= > 2—/2,/k]2+(k§)2 Ok, ks, 1) Ky S(ky, 1)
Ky kg1 KT+ (k)

2 — —
éﬂ > IVIvtkr, Ky, 1) 3,85, 1))

k5| 2 [k5 |
For |k}| < |k} |, we have |ka| < |kj| + |k)| < 2|kJ|. Thus,
> Dk Ky ) kyS(KS. 1)
LARSlY

1 —~
> T Pk ka0 (K5)2S (K, 1)
1<y 2

2 N , =,
Tl D [0tk Ky )] 10,y SRS, 1)1,

I3 | <5 |

A
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Thus we have written u - V0 (k, t) into three pieces. Correspondingly the estimate
of 1477 is split into three parts 14221, 14202 and I4223. To bound the first part, we use
the simple fact that, for |k1| = 1 and |k2| < |K|, we have

3
kiko 4k% 4
a2 < e . 427
k4|~ (3vlkl4 27
Thus,
5 ; 4k2 i s
I £ C t—1)73 Lt — I
4221 = /O( 7) (3v|k|4( T)) e
12
x|l V(0 = $)(k, 7)1 dr
3 ; .
g(?/ (t —1)" 1 u- V@ = S)(k, 7)||~ dr.
0

By Young’s inequality for sequence convolutions,

1 1
Ipp1 = Ct72 sup 74| V(0 = S)(T)ll 12,
0S4

where we have used the simple fact that

t

2 2
; lu(m)[;.dr = C.

Now we bound 14727:

% k1k2 fii(tfr) 2 — ’ =
L SC | |qge MM > IV, k5, 1) 8,5k, 0l dr.
0 k1= 13 2

Clearly, for k1 # 0,

@t 2 a2
%6_3"'“4 (t_r)% Se-o)7! (%(Z —1)e i (t_r)) .

Therefore,

5 . .
I £C / t—7)! E [[VIv(ki, k5, 7) 9y S(ky, D)I||  dt
0 Pl
Ik |2 |k

loo
:C/WO—ﬂqHﬂﬁﬁmeldr
O o0

=Cr72 sup 0,502
0<r<t
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‘We now bound 74773:

5 kiky —ﬁ(t—r) 2 —
Ly < C / e T 3 Wk KL 0138 ol d
0 RIARIA p

The process is similar to that for 14227; in fact,

7 —
Linys < c/ (=07 oSk, r)Hl dr
0 oo

SCrtosup [, S@)l 2
0<t<t

In summary, we have obtained the bound for I45:

_1 1
laa| = Ct72 sup (||3y5(f)||142 +118yy SO llz2 + *V(O — S)(r)lle) .
0S4

To estimate 143, we recall the bound (4.24) for G, (¢) with k € S} to obtain
t
I3< C / It — )e 3ROk wh(k, 1) dr.
2

We use the equation of v to write
0 =0v+u-Vu43d,p—vAv.
Then
k-uf=k-udv+k-um-vv)+k-ud,p—vk-uAv.
We further write 16}\17 as

k-udypk.)=k- Y Wk Ky 1)Ky PkY. &S, 1)

K +k"=k
ky
=k- Y UK.k 1) Ik,/|2|k”| pk{, Ky, 1).
K +k"=k
Thus
k- wd, plk, 0| < CIKI fu- (ZA)718 pik, 1)

Similarly,

k-udv < C kP uvuk, 7).
Therefore,

lu- VoK, D)l < K| [[ullz2 (3] 22 + K] )7, Vo]l 2
+C KPP a2 [(=2)""ay pll2 + C kI ull 2 |Vl
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< C kP a2 (Nvll2 + IVul?,
HI(=8) 3y pll2 + 11Vl 2)
= C kP’ [lull 2 A),
where, for notational convenience, we have written
A) = 13vll 2 + 1Vul + (=) "3y pll 2 + [ Vull 2. (4.28)

According to Theorem 1.4, as t — oo,

k>
19:plly-1 — 0 or 2:—|k‘|2|p<k,z>|2 - 0.
k

Since

2

k5 1
(=)~ 9y pll7, = Z Pl P> g Pl ni* < Z e |p( %,
k

we have, as t — 00,
I=)""aypl2 — 0.
Therefore, as t — o0,
A@t) — 0.

We are now ready to estimate 143:

t ———
s cC / It — Ty s 1 a - VA (k, 7) [ dr
1
2

t
< | IKP@ = De 3R, a2 Ar) de

2 i~

)
=¢ / K[ (2 — e 3K D Ju(r) |2 Ar) de
t

2
! L2
+C / kPt — ©)e” 3" KD jlu(r) |2 A(r) dr,
—§8
= Iy31 + Iy32,

where the small number § > 0 is to be specified later. Using the simple fact that
|k| = 1 for k # 0, we have, for any m > 0,

A

t—36
_1 204
143 Cf |||k|2m+4(t—r)e TVIK[“(r r)”l2 ||ll(‘L’)||L2 A(r)dr
2
1—8
C sup [u(r)ll,2 sup A(r) - )" ar
5t t<e< ;

[IA
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A
Sl

5™ sup Jlu(o)ll2 sup A(D).
1<ty L<e<s

1437 is estimated slightly differently. For small number ¢ > 0,

! — _1 20—
laa £ € [ K@ - e RO ju A de
t—§
t
= C/ t — 1) ")l 2 A(r) dr
=5
t
< C sup M(r) sup A(r) ([—T)_l+8f_%dt
3Srse 3Stst =8
_1 1
< C sup M(z) sup A(x) (t—38)72(-8%.

(<< 1< &

625

(4.29)

(4.30)

We can choose a small § > 0 such that the two bounds in (4.29) and (4.30) are

equal. In fact, if we set

1
L fsupr <. <, lu(z) [ 2\ "F*
) :tﬂ%ﬂ) <£>m+6 ( P - ,

m Snggrgz M(T)

then the two bounds become the same and

1
43| = [Is31] + [1a32| = Ct72 sup M(r) sup A(r)
(<< 1<

& m

SUPL <r<; M(7)

which holds for any m > 0. By letting m — oo, we find
i3] SC177 sup M(t) sup A7)
§<tss F<t<s

Invoking the bound for G, in (4.25), we have

t
1 _
|I44|§C[ We*%”'k‘“”) Vo)l dr
7 I
ks - M gy
C/ #e ikt T 0 Vek, T)| dr
2 12
= Iaa1 + Iago.

£
L (27 (p Hu<r>nm>m+s
X — m-+e —_—

1441 can be estimated similarly as I43. Without repeating the details, we find

Iy = ct? sup M(t) sup A(7).
5SS f<e<s
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The estimate of 1445 is close to that for I47>. The bound is

_1 1
o< Crtoswp (IS@e + 1 SOl + 7 YO - H©I2).
<<t
F=T=

We have finished bounding all the terms in (4.14). Collecting all the estimates above
leads to

_1 _1 _
lu@®l2 £ Ct724Ct72 sup M(r) sup 7°[u(m)|)5 [IVa()ll35
F<e<s §<t<s

1 3
+Ct72 sup M'7%(r) sup rf‘EIIVll(T)HlLJzF‘g
st 5STSt

1 1
+C172 sup (I9,S@ll2 + 103y S@l 2 + 72V = $)(Dll.2)

+Ct_% sup M(t) sup A(r)
1 <<y t<e<s

(18:S@l2 + 10, S@L2 +T51VO = H(D12)

=
%]
=1

o

+Ct™
L<e<s

where A(t) is defined in (4.28) and A(r) — 0 as t — o0. The estimates for
[0(k, 7)||;2 are very similar and we shall omit the details. Multiplying each term

by t%, recalling the definition of M (¢) in (4.16) and making use of the conditions
in (1.21), we find that, for C; < 1,

1—¢
sup M(t) £ C + C | sup M(¢) + C1 sup M(z), 4.31)
t<T t<T t<T

where C is a constant depending on the initial data only. The decay rate in (1.22)
follows directly from (4.31). This completes the proof of Theorem 1.6. O

4.1. Conclusion and Discussion

We have studied the large-time behavior of large-data classical solutions to the
initial value problems of the 2D Boussinesq equations without thermal diffusion on
the periodic domain T2. By utilizing spectral method, we established several sta-
bility results regarding the global stability of the hydrostatic equilibria associated
with the model at both the linear and nonlinear levels. For the linearized system,
we identified the explicit decay rate of the velocity field towards the zero steady
state, and gave a precise description of the thermal structure of the final state of the
temperature. For the full nonlinear system, we first obtained a similar result regrad-
ing the global stability of hydrostatic equilibria as in [21], but under a weakened
condition on the initial data. Then similar results as in the linear case are proved
under certain assumptions on the solution.

Collectively, the results reported in this paper give partial answers to the open
questions proposed in the recent study [21] regarding the large-time behavior of
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large-data classical solutions to the 2D Boussinesq equations without thermal diffu-
sion. However, it should be emphasized that our results on the full nonlinear system,
especially the explicit decay rate and description of final thermal state, are still not
satisfactory, due to they are obtained under certain assumptions on the solution,
which can hardly be verified. This is largely caused by the degeneracy in the third
eigenvalue associated with the linearized system (see (1.13)). We leave the further
investigation in a forthcoming paper.
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