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Abstract

This paper surveys recent developments on the global regularity and related prob-
lems on the 2D incompressible magnetohydrodynamic (MHD) equations with par-
tial or fractional dissipation. The MHD equations with partial or fractional dissipa-
tion are physically relevant and mathematically important. The global regularity
and related problems have attracted considerable interests in recent years and there
have been substantial developments. In addition to reviewing the existing results,
this paper also explains the difficulties associated with several open problems and
supply some new results.
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1 Introduction

In the last few years there have been substantial developments on the global regu-
larity problem concerning the magnetohydrodynamic (MHD) equations, especially
when there is only partial or fractional dissipation. This paper reviews some of
these recent results and explains the difficulties associated with several open prob-
lems in this direction. Attention will be focused on the two dimensional (2D)
whole space case.

The MHD equations govern the motion of electrically conducting fluids such
as plasmas, liquid metals, and electrolytes. They consist of a coupled system of
the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electro-
magnetism. Since their initial derivation by the Nobel Laureate H. Alfvén in 1924,
the MHD equations have played pivotal roles in the study of many phenomena in
geophysics, astrophysics, cosmology and engineering (see, e.g., [4, 18]).
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The standard incompressible MHD equations can be written as⎧⎨⎩
ut + u · ∇u = −∇p+ νΔu + b · ∇b,
bt + u · ∇b = ηΔb+ b · ∇u,
∇ · u = 0, ∇ · b = 0,

(1.1)

where u denotes the velocity field, b the magnetic field, p the pressure, ν ≥ 0 the
kinematic viscosity and η ≥ 0 the magnetic diffusivity. Besides their wide phys-
ical applicability, the MHD equations are also of great interest in mathematics.
As a coupled system, the MHD equations contain much richer structures than
the Navier-Stokes equations. They are not merely a combination of two paral-
lel Navier-Stokes type equations but an interactive and integrated system. Their
distinctive features make analytic studies a great challenge but offer new oppor-
tunities.

Our attention will be focused on the initial-value problem of the MHD equa-
tions with a given initial data (u0, b0) satisfying

u(x, 0) = u0(x), b(x, 0) = b0(x), ∇ · u0 = 0, ∇ · b0 = 0.

One of the fundamental problems concerning the MHD equations is whether phys-
ically relevant regular solutions remain smooth for all time or they develop finite
time singularities. This problem can be extremely difficult, even in the 2D case.
In recent years the MHD equations have attracted considerable interests and one
focus has been on the 2D MHD equations with partial or fractional dissipation.
Important progress has been made.

We first explain why the study of the MHD equations with partial or frac-
tional dissipation is relevant and important. When there is no kinematic dissi-
pation or magnetic diffusion, the MHD equations become inviscid and the global
regularity problem appears to be out of reach at this moment. In contrast, when
both the dissipation and the magnetic diffusion are present, the MHD equations
are fully dissipative and the global regularity problem in the 2D case can be solved
in a similar way as the one for the 2D Navier-Stokes equations. Mathematically
it is natural to explore the intermediate equations that bridge the two extremes:
the inviscid MHD and the fully dissipative MHD equations. The MHD equations
with partial or fractional dissipation exactly fill this gap. Physically, some of
the partially dissipative MHD equations are important models in geophysical or
astrophysical applications.

We elaborate on this point in more precise terms and summarize some of the
main results on the 2D MHD equations with partial or fractional dissipation. One
standard approach on the global regularity problem on the incompressible MHD
equations is to divide the process into two steps. The first step is to show the local
well-posedness. This step is in general based on the contraction mapping principle
and its variants such as successive approximations. In most circumstances we
need to restrict to small time interval in order to verify the conditions of the
contraction mapping principle. For many incompressible hydrodynamic models
such as the Navier-Stokes and the MHD equations, the local well-posedness can
be accomplished in this fashion when the initial data are sufficiently regular. The
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second step is to extend the local solution of the first step into a global (in time)
one by establishing suitable global a priori bounds on the solutions. That is, one
needs to prove that the solution remains bounded at any later time t, even though
the bound in general grows in time. Once we have the global bounds, the standard
Picard type extension theorem allows us to extend the local solution into a global
one. Therefore, the global regularity problem on the MHD equations boils down
to the global a priori bounds.

In the extreme case when the MHD equations are inviscid, namely⎧⎨⎩ut + u · ∇u = −∇p+ b · ∇b,
bt + u · ∇b = b · ∇u,
∇ · u = 0, ∇ · b = 0,

(1.2)

global bounds on (u, b) in any Sobolev space are not available. It is not clear if
smooth solutions of (1.2) can blow up in a finite time, even though local well-
posedness in sufficiently regular Sobolev or Besov type spaces are well-known. We
will present in Section 2 this local well-posedness result and a regularity criterion.
In addition, this section also provides two alternative formulations of the invis-
cid MHD equations: the Lagrangian-Eulerian formulation and the formulation in
terms of a purely Lagrangian variable. These different formulations have their own
advantages and may help understand the global regularity issue.

In another extreme case when the MHD equations are fully dissipative,
namely ⎧⎨⎩ut + u · ∇u = −∇p+ νΔu + b · ∇b,

bt + u · ∇b = ηΔb+ b · ∇u,
∇ · u = 0, ∇ · b = 0

(1.3)

with ν > 0 and η > 0, the global regularity problem can be solved similarly as for
the 2D Navier-Stokes equations. In fact, any initial data (u0, b0) ∈ L2(R2) with
∇ · u0 = 0 and ∇ · b0 = 0 leads to a unique global solution (u, b) that becomes
infinitely smooth, namely (u, b) ∈ C∞(R2 × (t0,∞)) for any t0 > 0. This simple
global result is explained in Section 3.

Mathematically it is natural to examine intermediate equations that fill the
gap between (1.2) and (1.3). One type of such equations are the MHD equations
with partial dissipation,⎧⎨⎩

ut + u · ∇u = −∇p+ ν1uxx + ν2uyy + b · ∇b,
bt + u · ∇b = η1bxx + η2byy + b · ∇u,
∇ · u = 0, ∇ · b = 0,

(1.4)

where the parameters ν1 ≥ 0, ν2 ≥ 0, η1 ≥ 0 and η2 ≥ 0. Clearly, when ν1 = ν2 =
η1 = η2 = 0, (1.4) reduces to (1.2) while (1.4) with ν1 = ν2 > 0 and η1 = η2 > 0
reduces to (1.3). Various partial dissipation cases arise when some of the four
parameters but not all are zero. Another type of intermediate equations that
bridge (1.2) and (1.3) are the 2D MHD equations with fractional dissipation⎧⎨⎩

ut + u · ∇u = −∇p− ν(−Δ)αu+ b · ∇b,
bt + u · ∇b = −η(−Δ)βb+ b · ∇u,
∇ · u = 0, ∇ · b = 0,

(1.5)
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where the fractional Laplacian operator is defined via the Fourier transform

(̂−Δ)αf(ξ) = |ξ|2αf̂(ξ).

When α = β = 1, (1.5) becomes (1.3) while α = β = 0, or more precisely
ν = η = 0, corresponds to the inviscid MHD equations in (1.2). Recent efforts are
devoted to seeking the global regularity of (1.5) for smallest possible parameters
α ≥ 0 and β ≥ 0.

One special partial dissipation case is the 2D resistive MHD equations, namely⎧⎨⎩ut + u · ∇u = −∇p+ b · ∇b,
bt + u · ∇b = ηΔb+ b · ∇u,
∇ · u = 0, ∇ · b = 0,

(1.6)

where η > 0 denotes the magnetic diffusivity (resistivity). (1.6) is applicable when
the fluid viscosity can be ignored while the role of resistivity is important such as
in magnetic reconnection and magnetic turbulence. Magnetic reconnection refers
to the breaking and reconnecting of oppositely directed magnetic field lines in a
plasma and is at the heart of many spectacular events in our solar system such
as solar flares and northern lights. The mathematical study of (1.6) may help
understand the Sweet-Parker model arising in magnetic reconnection theory [41].
The global regularity problem is not completely solved at this moment, but recent
efforts on this problem have significantly advanced our understanding. Global a
priori bounds in very regular functional settings have been obtained, but the global
bound for ω ∈ L∞(0, T ;L∞) is lacking. As a consequence, the uniqueness and the
higher regularity can not be achieved. Section 4 reviews several recent results,
explains the difficulty involved, details two hopeful attempts and discusses paths
that may potentially yield the solution to this intriguing problem. In particular,
we will present the work of Q. Jiu, D. Niu, J. Wu, X. Xu and H. Yu [30] as well
as some a priori estimates obtained in a work in progress with P. Zhang [54]. In
addition, we state a theorem of C. Cao, J. Wu and B. Yuan [12] on a slightly more
regular system that points to the criticality of this global regularity problem.

Another significant partial dissipation case is the 2D MHD equations with
velocity dissipation and no resistivity, namely⎧⎨⎩ut + u · ∇u = −∇p+ νΔu + b · ∇b,

bt + u · ∇b = b · ∇u,
∇ · u = 0, ∇ · b = 0,

(1.7)

(1.7) models fluids that can be treated as perfect conductors such as strongly
collisional plasmas. In addition, the breakdown of ideal MHD is known to be
the cause of solar flares, the largest explosions in the solar system [40]. The
intriguing problem of whether (1.7) can blow up in a finite time has recently
attracted considerable interests. Recent strategy has been to seek global solutions
near an equilibrium. Since the pioneering work of F. Lin, L. Xu and P. Zhang
[36], this direction has flourished and a rich array of results have been obtained.
Section 5 presents these recent results. We start with a local well-posedness result
of P. Constantin achieved via the Lagrangian-Eulerian approach. We then state
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and describe a global result (near an equilibrium) of Lin, Xu and Zhang [36] and
their Lagrangian approach. We then present the main result of X. Ren, J. Wu, Z.
Xiang and Z. Zhang [43] and outline the proof. A closely related work of J. Wu,
Y. Wu and X. Xu [55] via the method of dispersive equations is then supplied. We
also briefly summarize the results of X. Hu and F. Lin [27], and of T. Zhang [62].

Section 6 explains the global existence and uniqueness result of C. Cao and J.
Wu [11] on the 2D MHD equations with mixed kinematic dissipation and magnetic
diffusion, namely ⎧⎪⎨⎪⎩

ut + u · ∇u = −∇p+ νuyy + b · ∇b,
bt + u · ∇b = ηbxx + b · ∇u,
∇ · u = 0, ∇ · b = 0

or ⎧⎪⎨⎪⎩
ut + u · ∇u = −∇p+ νuxx + b · ∇b,
bt + u · ∇b = ηbyy + b · ∇u,
∇ · u = 0, ∇ · b = 0.

Section 7 is devoted to the partial dissipation case when the 2D MHD equa-
tions involve only the horizontal dissipation and the horizontal magnetic diffusion,⎧⎨⎩

∂tu+ u · ∇u = −∇p+ ∂xxu+ b · ∇b,
∂tb + u · ∇b = ∂xxb+ b · ∇u,
∇ · u = 0, ∇ · b = 0.

We describes the results of C. Cao, D. Regmi and J. Wu [8] as well as the results
of a followup preprint of C. Cao, D. Regmi, J. Wu and X. Zheng [9].

The last section summarizes the results on the global regularity problem
concerning the incompressible MHD equations with fractional dissipation and pro-
poses an open problem.

There is large literature on the MHD equations. This short survey focuses
on the 2D incompressible MHD equations with partial or fractional dissipation.
Due to the page constraints, we are not able to cover many significant results on
the MHD equations, especially those on the 3D MHD equations (see, e.g., [7, 10,
14, 15, 16, 22, 23, 24, 25, 26, 29, 31, 33, 34, 37, 47, 49, 50, 52, 56, 58, 59, 61, 63]).

2 The inviscid MHD equations

This section is devoted to the initial-value problem for the inviscid MHD equations⎧⎪⎪⎨⎪⎪⎩
ut + u · ∇u = −∇p+ b · ∇b,
bt + u · ∇b = b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x)

(2.1)

where u0 and b0 satisfy ∇ · u0 = 0 and ∇ · b0 = 0. Whether or not a reasonably
regular initial datum (u0, b0) always leads to a globally regular solution of (2.1)
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remains an outstanding open problem. Besides the standard local existence and
uniqueness result in the Sobolev setting, this section also provides two alternative
formulations of the inviscid MHD equations: a purely Lagrangian approach and
the Lagrangian-Eulerian formulation. These different formulations have their own
advantages and may aid in the understanding of the global regularity issue. The
rest of this section is divided into three subsections.

2.1 A standard local existence and uniqueness result

This subsection provides the local existence and uniqueness result in the Sobolev
setting and explains why it is difficult to prove global a priori bounds. The Beale-
Kato-Majda type regularity criterion follows as a consequence of this explanation.

Theorem 2.1. Let s > 2. Assume (u0, b0) ∈ Hs(R2) with ∇ · u0 = 0 and
∇ · b0 = 0. Then (2.1) has a unique local classical solution (u, b) ∈ C([0, T0);Hs)
for some T0 = T0(‖(u0, b0)‖Hs) > 0. In addition, if, for T > T0,∫ T

0

(
‖ω(t)‖Ḃ0∞,∞

+ ‖j(t)‖Ḃ0∞,∞

)
dt <∞, (2.2)

then the solution remains in Hs for any t ≤ T . Here ω = ∇ × u denotes the
vorticity and j = ∇× b denotes the current density.

Here Ḃ0∞,∞ denotes the homogeneous Besov space (see, e.g., [1, 2, 39, 44, 48]).
The original Beale-Kato-Majda criterion on the 3D Euler equations involves the
L∞-norm of the vorticity [38]. Due to the embedding

L∞ ↪→ Ḃ0
∞,∞,

the assumption in (2.2) is weaker than the corresponding one with L∞-norm.
The condition that (u0, b0) ∈ Hs(R2) with s > 2 may not be weakened to

(u0, b0) ∈ H2(R2). The work of Bourgain and Li [5, 6] on the Euler equations may
be extended to the inviscid MHD equations to indicate the ill-posedness of (2.1)
in H2(R2).

The proof of the existence and uniqueness part in Theorem 2.1 is standard.
One may follow the steps in the proof of Theorem 3.4 of the book by Majda and
Bertozzi [38], even though Theorem 3.4 there requires more regularity on the initial
data. Another approach is Friedrichs’ method, a regularization approximation
process by spectral cutoffs (see, e.g., [1]). Our intention here is to explain why it
is difficult to obtain global a priori bounds on the Sobolev norms of the solutions.
The regularity criterion follows as a consequence.

Proof of Theorem 2.1. As we just remarked above, we only supply the proof for
the regularity criterion. In the process, we explain the difficulties associated with
the global bounds. When ∇ · b0 = 0, the solution (u, b) of (2.1) preserves this
property, namely ∇ · b = 0. This, together with ∇ · u = 0, allows us to obtain the
L2-bound easily,

‖u(t)‖2
L2 + ‖b(t)‖2

L2 = ‖u0‖2
L2 + ‖b0‖2

L2 .
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But due to the lack of dissipation and magnetic diffusion, global bounds for any
Sobolev-norm appear to be impossible. We use the estimate of the H1-norm of
(u, b) as an example. Due to ∇ · u = 0 and ∇ · b = 0,

‖∇u‖L2 = ‖ω‖L2 and ‖∇b‖L2 = ‖j‖L2,

and consequently it suffices to consider the L2-norm of (ω, j), which satisfies{
ωt + u · ∇ω = b · ∇j,
jt + u · ∇j = b · ∇ω + 2∂xb1(∂yu1 + ∂xu2) − 2∂xu1(∂yb1 + ∂xb2).

(2.3)

Dotting the first equation by ω and the second by j, adding up the resulting
equations and integrating by parts, we have

1
2
d

dt

(‖ω‖2
L2 + ‖j‖2

L2

)
= 2

∫
j(∂xb1(∂yu1 + ∂xu2) − ∂xu1(∂yb1 + ∂xb2)).

We note that (2.3) does have a structure that allows us to eliminate four of the
nonlinear terms. The terms on the right-hand side are of the triple product form
and can not be bounded suitably unless we make the assumption∫ T

0

‖∇u‖∞dt <∞ or
∫ T

0

‖j‖∞dt <∞.

This explains why we need (2.2) in order to control the H1-norm. More generally
the Hs-norm of (u, b) obeys the differential inequality, for Y (t) = ‖u(t)‖2

Hs +
‖b(t)‖2

Hs ,
d

dt
Y (t) ≤ C(‖∇u‖L∞ + ‖∇b‖L∞)Y (t). (2.4)

We can further bound ‖∇u‖L∞ and ‖∇b‖L∞ in terms of the logarithmic interpo-
lation inequalities, for s > 2,

‖∇u‖L∞ ≤ C
(
1 + ‖u‖L2 + ‖ω‖Ḃ0∞,∞

log(1 + ‖u‖Ḣs)
)
,

‖∇b‖L∞ ≤ C
(
1 + ‖b‖L2 + ‖j‖Ḃ0∞,∞

log(1 + ‖b‖Ḣs)
)
.

Inserting the bounds above in (2.4) yields

d

dt
Y (t) ≤ C

(
1 + ‖ω‖Ḃ0∞,∞

+ ‖j‖Ḃ0∞,∞

)
Y (t) log(e+ Y (t)).

Osgood’s inequality then yields the desired regularity criterion part. This com-
pletes the proof of Theorem 2.1.

2.2 Lagrangian-Eulerian type formulation

The Lagrangian-Eulerian approach of P. Constantin has the advantage that the
Lagrangian-Eulerian evolution system and the solution map are Lipschitz contin-
uous in lower regularity path spaces and there is Lipschitz dependence of solutions
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on initial data in these spaces [17]. The inviscid MHD equations can not be writ-
ten in the exact Lagrangian-Eulerian form of Constantin, but we can still recast
the inviscid MHD equations as an evolution system that shares some of the fine
characteristics of the original Lagrangian-Eulerian formulation.

We now detail this formulation and start with the particle trajectory. For a
sufficiently smooth velocity field u, say u ∈ L1(0, T ;W 1,∞), the particle trajectory
(or flow map) X(a, t) with a ∈ R2 and t ≥ 0 obeys the ordinary differential
equation ⎧⎨⎩

dX(a, t)
dt

= u(X(a, t), t),

X(a, 0) = a.

In addition, X(a, t) is invertible for any fixed t ∈ [0, T ], and we follow the notation
of Constantin [17] to write the inverse as

X−1(x, t) = A(x, t),

which will also be called the “back-to-labels” map. The identities

A(X(a, t), t) = a for any a ∈ R2 and X(A(x, t), t) = x for any x ∈ R2

allow us to derive the equation of A,{
∂tA+ u · ∇A = 0,
A(x, 0) = x.

To derive the Lagrangian-Eulerian form, we rewrite the equation of b into an
equivalent form. It is clear from the equation of b that

σ = b⊗ b ≡ (bibj)

satisfies
∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗, (2.5)

where (∇u)∗ denotes the transpose of ∇u. Thus, we can write (2.1) as⎧⎨⎩∂tu+ u · ∇u = −∇p+ ∇ · σ,
∇ · u = 0,
∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗,

(2.6)

which, in terms of the vorticity ω and σ, can be further written as⎧⎨⎩∂tω + u · ∇ω = ∇×∇ · σ,
u = ∇⊥Δ−1ω,
∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗.

(2.7)

For notational convenience, we define the operators U and G as

u = U(ω) ≡ ∇⊥Δ−1ω, ∇u = G(ω) ≡ ∇∇⊥Δ−1ω.
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In terms of the Lagrangian variables

ζ(a, t) = ω ◦X ≡ ω(X(a, t), t) or ω(x, t) = ζ ◦A,
τ(a, t) = σ ◦X or σ = τ ◦A,

(2.7) can be written as ⎧⎪⎨⎪⎩
d

dt
ζ = (∇×∇ · (τ ◦A)) ◦X,

d

dt
τ = gτ + τg∗,

(2.8)

where
g = G(ζ ◦A) ◦X.

Therefore, we have reduced the inviscid MHD equations in (2.1) to the following
system in terms of the Lagrangian variables X , ζ and τ as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

dt
X = U(ζ ◦A) ◦X,

d

dt
ζ = (∇×∇ · (τ ◦A)) ◦X,

d

dt
τ = gτ + τg∗.

Integrating in time yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X(a, t) = a+
∫ t

0

U(ζ ◦A) ◦X(a, τ)dτ,

ζ(a, t) = ω0(a) +
∫ t

0

(∇×∇ · (τ ◦A)) ◦X(a, τ)dτ,

τ(a, t) = (b0 ⊗ b0)(a) +
∫ t

0

(gτ + τg∗)(τ)dτ.

We can summarize what we have derived above as the following theorem.

Theorem 2.2. The 2D inviscid incompressible MHD equations in (2.1) are for-
mally equivalent to the following Lagrangian-Eulerian type formulation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X(a, t) = a+
∫ t

0

U(ζ ◦A) ◦X(a, τ)dτ,

ζ(a, t) = ω0(a) +
∫ t

0

(∇×∇ · (τ ◦A)) ◦X(a, τ)dτ,

τ(a, t) = (b0 ⊗ b0)(a) +
∫ t

0

(gτ + τg∗)(τ)dτ,

where X denotes the particle trajectory (or flow path), A is the inverse of X,
ζ and τ are the Lagrangian counterparts of the Eulerian variables ω and b ⊗ b,
respectively, and U(f) = ∇⊥Δ−1f corresponds to the 2D Biot-Savart kernel

U(f) =
∫

R2
K2(x− y)f(y)dy, K2(x) =

1
2π

x⊥

|x|2 , (2.9)
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G(f) ≡ ∇∇⊥Δ−1f is given by the explicit representation

G(f)(x, t) = PV
∫

R2

P (x− y)
|x− y|2 f(y)dy +

f(x)
2

[
0 −1
1 0

]
with

P (z) =
1

2π|z|2
[

2z1z2 z2
2 − z2

1

z2
2 − z2

1 −2z1z2

]
,

and g = G(ζ ◦A) ◦X and g∗ is the transpose of g.

2.3 Purely Lagrangian formulation

It is possible to reformulate the inviscid MHD equations completely in terms of the
particle trajectory and the initial data. This purely Lagrangian formulation allows
us to represent all relevant physical quantities in terms of the particle trajectory.

Due to the divergence-free condition ∇ · b = 0, we can write b = ∇⊥ψ for a
scalar function ψ and the induction equation for b,

∂tb + u · ∇b = b · ∇u, b(x, 0) = b0(x)

is then reduce to a transport equation for ψ,

∂tψ + u · ∇ψ = 0, ψ(x, 0) = ψ0(x)with ∇⊥ψ0 = b0. (2.10)

Equivalently, ψ can be represented by the back-to-labels map A (defined in the
previous subsection), namely the inverse of X ,

ψ(x, t) = ψ0(A(x, t)). (2.11)

Since b = ∇⊥ψ, we have j = ∇× b = Δψ and b · ∇j can be written in terms of
the Poisson bracket

b · ∇j = J(ψ,Δψ),

where J is the usual Poisson bracket,

J(f, g) = ∂1f∂2g − ∂2f∂1g. (2.12)

Therefore, the vorticity equation

∂tω + u · ∇ω = b · ∇j
can be represented in the Lagrangian variable by

d

dt
(ω ◦X) = J(ψ,Δψ) ◦X. (2.13)

J(ψ,Δψ) ◦X can be further represented in terms of ψ0 and X . In fact, according
to (2.11) and the identity A(X(a, t), t) = a, we have

(∂1ψ) ◦X = J(ψ0, X2), (∂2ψ) ◦X = J(X1, ψ0),
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where J again is the Poisson bracket. ∂1Δψ and ∂2Δψ are more complex and we
shall not presenting them. Integrating (2.13) in time yields

ω(X(a, t), t) = ω0(a) +
∫ t

0

(J(ψ,Δψ) ◦X)(a, τ)dτ.

Therefore,

d

dt
X(a, t)

= u(X(a, t), t)

=
∫

R2
K2(X(a, t) −X(ã, t))ω(X(ã, t), t)dã

=
∫

R2
K2(X(a, t) −X(ã, t))

(
ω0(ã) +

∫ t

0

(J(ψ,Δψ) ◦X)(ã, τ)dτ
)
dã

and X(a, 0) = a. We sum this up in the following theorem.

Theorem 2.3. The 2D inviscid incompressible MHD equations in (2.1) are for-
mally equivalent to the following purely Lagrangian formulation

d

dt
X(a, t) =

∫
R2
K2(X(a, t) −X(ã, t))

·
(
ω0(ã) +

∫ t

0

(J(ψ,Δψ) ◦X)(ã, τ)dτ
)
dã,

X(a, 0) = a,

where K2 is the Biot-Savart kernel defined in (2.9), J is the Poisson bracket defined
in (2.12) and ∇⊥ψ = b.

3 The fully dissipative MHD equations

This section turns to another extreme case of the 2D incompressible MHD equa-
tions, the fully dissipative MHD equations⎧⎪⎪⎨⎪⎪⎩

ut + u · ∇u = −∇p+ νΔu + b · ∇b,
bt + u · ∇b = ηΔb+ b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x)

(3.1)

where u0 and b0 satisfy ∇ · u0 = 0 and ∇ · b0 = 0. The global regularity prob-
lem on (3.1) can be solved following the similar approaches as those for the 2D
incompressible Navier-Stokes equations. The initial datum (u0, b0) does not have
to be smooth. In fact, any (u0, b0) ∈ L2(R2) leads to a unique global solution that
becomes smooth instantaneously. More precisely, we have the following theorem.
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Theorem 3.1. Let (u0, b0) ∈ L2(R2). Then (3.1) has a unique global solution
(u, b) satisfying,

u, b ∈ L∞(0,∞;L2(R2)) ∩ L2(0,∞; Ḣ1(R2)). (3.2)

In addition, for any t0 > 0, (u, b) is smooth,

(u, b) ∈ C∞(R2 × (t0,∞)). (3.3)

The approaches for the 2D incompressible Navier-Stokes equations can be
extended to (3.1). One approach is to use the method of Friedriches, namely
regularization approximation via cutoffs in the Fourier space. The second approach
is to use the classical fixed point theorem involving bilinear functions (see, e.g.,
[1, p. 207]). We shall not provide the details here. In the following proof, we
emphasize that solutions of the fully dissipative MHD equations in the natural
energy space (3.2) are unique. In addition, we explain the mechanism why (3.3)
is true.

Proof. As aforementioned, we only prove the uniqueness part and (3.3). Assume
that (u(1), b(1)) and (u(2), b(2)) are two solutions of (3.1). Then the difference

(ũ, b̃) = (u(1) − u(2), b(1) − b(2))

satisfies

∂tũ+ u(1) · ∇ũ+ ũ · ∇u(2) = νΔũ+ b(1) · ∇b̃+ b̃ · ∇b(2),
∂tb̃+ u(1) · ∇b̃ + ũ · ∇b(2) = ηΔb̃+ b(1) · ∇ũ+ b̃ · ∇u(2).

Taking the inner product with (ũ, b̃), we obtain after integration by parts,

1
2
d

dt

(
‖ũ‖2

L2 + ‖b̃‖2
L2

)
+ ν‖∇ũ‖2

L2 + η‖∇b̃‖2
L2

= −
∫
ũ · ∇u(2) · ũ−

∫
ũ · ∇b(2) · b̃

+
∫
b̃ · ∇b(2) · ũ+

∫
b̃ · ∇u(2) · b̃. (3.4)

The four terms have similar structure and can be bounded similarly. We provide
the bound for one of them. By Hölder’s inequality and Sobolev’s inequality,∣∣∣∣∫ ũ · ∇b(2) · b̃

∣∣∣∣ ≤ ‖ũ‖L4‖b̃‖L4‖∇b(2)‖L2

≤ C‖∇b(2)‖L2‖ũ‖ 1
2
L2‖∇ũ‖

1
2
L2‖b̃‖

1
2
L2‖∇b̃‖

1
2
L2

≤ 1
8
ν‖∇ũ‖2

L2 +
1
8
η‖∇b̃‖2

L2 + C‖∇b(2)‖2
L2‖(ũ, b̃)‖2

L2.

After inserting these bounds in (3.4), we obtain

d

dt

(
‖ũ‖2

L2 + ‖b̃‖2
L2

)
+ ν‖∇ũ‖2

L2 + η‖∇b̃‖2
L2

≤ C
(
‖∇u(2)‖2

L2 + ‖∇b(2)‖2
L2

)
‖(ũ, b̃)‖2

L2.
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Applying Gronwall’s inequality and invoking the fact that u(2), b(2) ∈ L2(0,∞; Ḣ1)
yield the desired uniqueness.

We now explain why (3.3) is true. Since (u, b) ∈ L2(0,∞; Ḣ1), then (u, b) is
in Ḣ1 for almost every t ∈ (0,∞). For any t0 > 0, there is 0 < t1 < t0 such that
(u(x, t1), b(x, t1)) ∈ H1(R2). Starting with (u(x, t1), b(x, t1)), we then solve (3.1).
The solution (u, b) satisfies

(u, b) ∈ L∞(t1,∞;H1) ∩ L2(t1,∞; Ḣ2),

which allows us to further choose t2 ∈ (t1, t0) such that

(u(x, t2), b(x, t2)) ∈ H2(R2).

We then solve (3.1) with more regular initial datum and repeating the process
leads to the desired smoothness. This completes the proof of Theorem 3.1.

4 The MHD equations with only magnetic diffu-
sion

This section addresses the global regularity problem on the partial dissipation case
when the 2D MHD equations involve only the magnetic diffusion,⎧⎪⎪⎨⎪⎪⎩

ut + u · ∇u = −∇p+ b · ∇b,
bt + u · ∇b = ηΔb+ b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x),

(4.1)

where u0 and b0 satisfy ∇ · u0 = 0 and ∇ · b0 = 0. The global regularity prob-
lem is not completely solved at this moment, but recent efforts have significantly
advanced our understanding. Global a priori bounds in very regular functional
settings have been obtained, for example, for any T > 0 and, for any p ∈ [2,∞)
and q ∈ (1,∞),

(u, b) ∈ L∞(0,∞;H1), u ∈ Lq(0, T ;W 1,p), b ∈ Lq(0, T ;W 2,p),

ω ∈ L∞(0, T ;Lp), j ∈ L∞(0, T ;Lp)

where ω = ∇ × u is the vorticity and j = ∇ × b denotes the current density.
Unfortunately the global bound for ω ∈ L∞(0, T ;L∞) is lacking. As a consequence,
the uniqueness and the higher regularity can not be achieved. Various attempts
have been made to prove the global L∞ bound for ω. In particular, we will present
the work of Q. Jiu, D. Niu, J. Wu, X. Xu and H. Yu [30] and some a priori estimates
obtained in a work in progress with P. Zhang [54]. In addition, several combined
quantities have been discovered to be globally bounded in highly regular functional
settings.

This section reviews several recent results, explains the difficulty involved,
describes some of the attempts and discusses paths that may potentially lead to
the solution to this intriguing problem. We divide the rest of this section into four
subsections.
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4.1 Global a priori bounds

This subsection presents the global a priori bounds that have been established
for solutions (u, b) of (4.1). Most of the materials presented in this subsection are
taken from [30]. The first is a global uniform (in time) bound on (u, b) in the
Sobolev space H1 (see, e.g., [11, 30, 34]).

Proposition 4.1. If (u, b) solves (4.1), then, for any t > 0,

‖ω(t)‖2
L2 + ‖j(t)‖2

L2 +
∫ t

0

‖∇j(s)‖2
L2ds

≤ (‖ω0‖2
L2 + ‖j0‖2

L2)eC(‖u0‖2
L2+‖b0‖2

L2)

and consequently

‖u(t)‖2
H1 + ‖b(t)‖2

H1 +
∫ t

0

‖b(s)‖2
H2ds

≤ C(‖ω0‖2
L2 + ‖j0‖2

L2)eC(‖u0‖2
L2+‖b0‖2

L2 ) + ‖u0‖2
L2 + ‖b0‖2

L2 .

A special consequence of this global H1 bound is the global existence of weak
solutions of (4.1) in the standard distributional sense. Higher regularity estimates
can be established by making use of the regularizing effect of the heat kernel,
namely

etΔf = Kt(x) ∗ f, Kt(x) = (4πt)−
d
2 e−

|x|2
4t .

One frequently used tool is the following Lp − Lq type estimate.

Lemma 4.2. Let 1 ≤ p ≤ q ≤ ∞. Let β be a multi-index. For any t > 0, the heat
operator eΔt and ∂β

x e
Δt are bounded from Lp to Lq. Further, for any f ∈ Lp(Rd),

‖eΔtf‖Lq(Rd) ≤ C1t
− d

2 ( 1
p− 1

q )‖f‖Lp(Rd)

and
‖∂β

xe
Δtf‖Lq(Rd) ≤ C2t

− |β|
2 − d

2 ( 1
p− 1

q )‖f‖Lp(Rd),

where C1 = C1(p, q) and C2 = C2(β, p, q) are constants.

Proposition 4.3. If (u, b) solves (4.1), then, for any T > 0 and for any 2 ≤ p <
∞, 1 < q <∞,

u ∈ Lq(0, T ;W 1,p(R2)), b ∈ Lq(0, T ;W 2,p(R2)), (4.2)
ω ∈ L∞(0, T ;Lp(R2)), j ∈ L∞(0, T ;Lp(R2)). (4.3)

Especially, for any r ∈ (1,∞),

u ∈ L∞([0, T ];L∞), j ∈ Lr([0, T ];L∞).
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Proof. The proof makes use of the maximal Lq
tL

p
x regularity for the heat kernel

(see, e.g., [35]). That is, the operator A defined by

Af ≡
∫ t

0

e(t−s)ΔΔf(s)ds

is bounded from Lp(0, T ;Lq(Rd)) to Lp(0, T ;Lq(Rd)) for every fixed T ∈ (0,∞].
Resorting to the heat kernel, we write the equation of b in the integral form

b(x, t) = etΔb0 +
∫ t

0

e(t−s)Δ∇ · f(s, ·)ds, (4.4)

with f = (fi) and fi = biu − uib (i = 1, 2). The global bound in Proposition 4.1
and Sobolev’s inequality imply that, for any p ∈ [2,∞),

fi ∈ L∞(0, T ;Lp).

(4.4), combined with Lemma 4.2, leads to a global L∞ bound for b,

‖b‖L∞(0,T ;L∞)

≤ C(‖Kt‖L∞(0,T ;L1)‖b0‖L∞ + ‖∇Kt‖L1(0,T ;Lp′)‖f‖L∞(0,T ;Lp))

≤ C(‖b0‖L∞ + ‖u‖L∞(0,T ;H1)‖b‖L∞(0,T ;H1)).

(4.4), together with the maximal Lq
tL

p
x regularity, yields

‖∇b‖Lq(0,T ;Lp) ≤C(‖Kt‖Lq(0,T ;L1)‖∇b0‖Lp + ‖f‖Lq(0,T ;Lp))
≤C(‖b0‖H2 + ‖u‖L∞(0,T ;H1)‖b‖L∞(0,T ;H1)).

The global bounds for ‖Δb‖Lq(0,T ;Lp) and ‖ω‖Lq(0,T ;Lp) are obtained simultane-
ously,

‖ω(t)‖Lp ≤ C(‖ω0‖Lp + ‖Δb‖Lq
t Lp),

‖Δb‖Lq
t Lp ≤ C(‖Δb0‖Lp + ‖b‖L∞

t L∞‖ω‖Lq
tLp + ‖u‖L2

tH1‖∇b‖
L

2q
2−q
t L2p

).

The two estimates above and Gronwall’s inequality yield the desired bounds in
(4.3). The global bound for j ∈ L∞(0, T ;Lp) in (4.3) follows from energy estimates
involving the equation of j and the global bound for ω ∈ L∞(0, T ;Lp) follows from
energy estimates on the vorticity equation. This completes the proof of Proposition
4.3.

4.2 An attempt to bound ‖ω‖L∞(0,T ;L∞) and an equation for
a combined quantity G = ω + curl∇ · (b ⊗ b)

It appears that the global a priori bounds in the previous subsection are not
sufficient to hammer out the problem. The missing piece in the puzzle is a global
bound for ‖ω‖L∞(0,T ;L∞). Various attempts have been made to establish this
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global bound. This subsection provides two of them. The first one is to work with
a combined quantity while the second one is a work in progress with P. Zhang [54].

In the paper of Q. Jiu, D. Niu, J. Wu, X. Xu and H. Yu [30], we attempted
to solve the global regularity problem by working with a combined quantity. We
are close to solving this problem and [30] provides a regularity criterion.

Theorem 4.4. Let s > 2. Assume (u0, b0) ∈ Hs(R2) with ∇ · u0 = ∇ · b0 = 0.
Let (u, b) be the local (in time) solution of (1.1) on [0, T ∗). Let T0 > T ∗. If there
is σ > 0 and an integer k0 > 0 such that b satisfies

M(T0) ≡
∫ T0

0

∑
k≥k0

2σk‖Sk−1(b⊗ b)‖L∞dt <∞, (4.5)

then the local solution can be extended to [0, T0]. Here b ⊗ b denotes the tensor
product and Sj denotes the identity approximator defined via the Littlewood-Paley
decomposition.

We explain the proof of Theorem 4.4. Due to the lack of a global bound on
∇j in L∞, the vorticity equation

∂tω + u · ∇ω = b · ∇j (4.6)

does not allow us to extract a global bound for ‖ω‖L∞. A natural idea is to
eliminate this bad term. To this end, we rewrite the vorticity equation as

∂tω + u · ∇ω = curl∇ · (b⊗ b) (4.7)

and recast the equation of b as

(b⊗ b)t + u · ∇(b ⊗ b) = ∇u(b⊗ b) + (b ⊗ b)(∇u)∗

+Δ(b⊗ b) − 2
2∑

k=1

(∂kb⊗ ∂kb). (4.8)

Applying R ≡ (−Δ)−1curl∇· to (4.8) yields to(
(R(b ⊗ b)

)
t
+u · ∇R(b⊗ b)

= −[R, u · ∇](b⊗ b) + R(∇u(b⊗ b) + (b ⊗ b)(∇u)∗
)

−curl∇ · (b⊗ b) − 2
2∑

k=1

R(∂kb⊗ ∂kb). (4.9)

Adding (4.9) to (4.7) and setting G = ω + R(b ⊗ b), we get

∂tG+ u · ∇G = −[R, u · ∇](b ⊗ b) − 2
2∑

k=1

R(∂kb⊗ ∂kb)

+R(∇u(b⊗ b)) + R((b ⊗ b)(∇u)∗). (4.10)
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The right-hand side of the equation of G looks more complex than b · ∇j, but it
does not involve two derivatives of b and this gives us hope. We note that R is a
Calderon-Zygmund singular integral operator (homogeneous of degree zero). Since
R is not bounded on L∞, it may not be a good idea to estimate ‖G‖L∞ . Instead we
estimate G in the Besov space B0∞,1. Singular integral operators are bounded on
B0

∞,1, but the trade-off is that the bound for the solution of a transport equation
relies on the L∞-norm of the gradient of the velocity, as stated in the following
lemma.

Lemma 4.5. Consider the linear equation{
∂tθ + u · ∇θ = f,

θ(x, 0) = θ0(x),
(4.11)

Then, there exists C > 0 such that

‖θ‖L∞
t B0

q,1
≤ C(‖θ0‖B0

q,1
+ ‖f‖L1

tB0
q,1

)
(

1 +
∫ t

0

‖∇u‖L∞dτ

)
,

where q ∈ [1,∞].

If we apply Lemma 4.5, then

‖G‖L∞
t B0

∞,1
≤ C(‖G0‖B0

∞,1
+ ‖f‖L1

tB0
∞,1

)
(

1 +
∫ t

0

‖∇u‖L∞dτ

)
, (4.12)

where we have written the right-hand side of (4.10) as f ,

f = −[R, u · ∇](b⊗ b) − 2
2∑

k=1

R(∂kb⊗ ∂kb)

+R((b ⊗ b)(∇u)ᵀ) + R(∇u(b⊗ b)).

If we can show
‖f‖L1

tB0
∞,1

<∞, (4.13)

then we would be able to obtain a global bound for ‖ω‖B0
∞,1

, which would imply
global regularity. In fact, if we have (4.12) with (4.13), then

‖ω‖B0
∞,1

≤ ‖G‖B0
∞,1

+ ‖b⊗ b‖B0
∞,1

≤ ‖b⊗ b‖B0
∞,1

+ C

(
1 +

∫ t

0

‖∇u‖L∞dτ

)
≤ ‖b⊗ b‖B0

∞,1
+ C

(
1 +

∫ t

0

(‖u‖L2 + ‖ω‖B0
∞,1

)dτ
)
.

Gronwall’s inequality and ‖b⊗ b‖B0
∞,1

≤ ‖b‖2
Bε

∞,1
<∞ (0 < ε < 1) then imply that

‖ω‖B0
∞,1

<∞.
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Especially, ‖ω‖L∞ <∞. Then higher regularities follow.
It then remains to check (4.13). f involves a commutator and the following

lemma provides a bound of such a commutator in Besov spaces. This type of
estimates can be found in [28, 45].

Lemma 4.6. Let R denote a standard singular integral operator, say Riesz trans-
form or R = (−Δ)−1curl∇·. Let 1 < p ≤ ∞. For any integer k, for 0 ≤ s1, s2 ≤ 1
and s1 + s2 ≤ 1, we have

‖Δk([R, u · ∇]θ)‖Lp ≤ Cs2(1−s1−s2)k‖Λs1u‖Lp1‖Λs2θ‖Lp2 (4.14)

where 1 < p1, p2 ≤ ∞ and 1
p = 1

p1
+ 1

p2
.

The global a priori bounds obtained in the previous subsection allow us to
bound the first two terms in f without any problem. The last two terms in f are
similar and each one of them is split into three parts by the notion of paraproducts.
It is only one of these parts that need the assumption in (4.5) to be bounded. Here
are more details. By Lemma 4.6, for s ∈ (0, 1),

‖[R, u · ∇](b ⊗ b)‖B0
∞,1

≤ C‖Λsu‖B0
∞,1

‖Λ1−s(b ⊗ b)‖B0
∞,1

.

For any s ∈ (0, 1), ‖Λsu‖B0
∞,1

can be bounded by ‖ω‖Lq for some large q ∈ (2,∞).
In fact, by Bernstein’s inequality,

‖Λsu‖B0
∞,1

≤ ‖Δ−1Λsu‖L∞ +
∞∑

k=0

‖ΔkΛsu‖L∞

≤ C‖u‖L2 + C

∞∑
k=0

2(s−1)k‖Δkω‖L∞

≤ C‖u‖L2 + C
∞∑

k=0

2(s−1+ 2
q )k‖Δkω‖Lq

≤ C‖u‖L2 + C‖ω‖Lq

∞∑
k=0

2(s−1+ 2
q )k.

Therefore, if we choose q ∈ (2,∞) such that s− 1 + 2
q < 0, then

‖Λsu‖B0
∞,1

≤ C(‖u‖L2 + ‖ω‖Lq) <∞.

The regularity of b also implies that, for s ∈ (0, 1) close to 1,

‖Λ1−s(b ⊗ b)‖B0
∞,1

<∞.

In fact, in a similar fashion as above, if q̃ ∈ (2,∞) such that −s+ ε+ 2
eq < 0,

‖Λ1−s(b ⊗ b)‖B0
∞,1

≤C‖Λ1−sb‖2
Bε

∞,1
≤ C(‖b‖2

L2 + ‖∇b‖2
Leq).
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Therefore, Proposition 4.3 implies

‖[R, u · ∇](b ⊗ b)‖L1
tB0

∞,1

≤ C(‖u‖L∞
t L2 + ‖ω‖L∞

t Lq)(‖b‖2
L2

tL2 + ‖∇b‖2
L2

tLeq) <∞.

We now estimate the second term in f . For any ε > 0,∥∥∥∥∥
2∑

k=1

R(∂kb⊗ ∂kb)

∥∥∥∥∥
B0

∞,1

≤ ‖∇b‖2
Bε

∞,1
.

By Bernstein’s inequality,

‖∇b‖Bε
∞,1

≤ C‖b‖L2 + C

∞∑
k=0

2εk‖Δk∇b‖L∞

≤ C‖b‖L2 + C

∞∑
k=0

2k(ε+1+ 2
q )‖Δkb‖Lq

≤ C‖b‖L2 + C

∞∑
k=0

2k(ε+1+ 2
q −γ)‖ΛγΔkb‖Lq

≤ C‖b‖L2 + C‖Λγb‖Lq ,

where ε+ 1 + 2
q < γ < 2. Therefore,∥∥∥∥∥

2∑
k=1

R(∂kb⊗ ∂kb)

∥∥∥∥∥
L1

t B0
∞,1

≤ ‖∇b‖2
L2

tBε
∞,1

≤ C‖b‖2
L2

tL2 + C‖Λγb‖2
L2

t Lq <∞.

We bound the last two terms in f . Their estimates are similar and we shall handle
one of them. By Bernstein’s inequality,

‖R(∇u(b⊗ b))‖B0
∞,1

≤C‖Δ−1(∇u(b⊗ b))‖L2 +
∞∑

k=0

‖Δk(∇u(b ⊗ b))‖L∞

≤C‖ω‖L2‖b‖2
L∞ +

∞∑
k=0

‖Δk(∇u(b ⊗ b))‖L∞ .

Following the notion of paraproducts, we write

Δk(∇u(b⊗ b)) =
∑

|k−m|≤2

Δk(Sm−1∇uΔm(b⊗ b))

+
∑

|k−m|≤2

Δk(Δm∇uSm−1(b⊗ b))

+
∑

m≥k−1

Δk(Δm∇uΔ̃m(b⊗ b)), (4.15)



302 Jiahong Wu

where Δ̃m = Δm+1 + Δm + Δm−1. By Bernstein’s inequality,∑
|k−m|≤2

‖Δk(Sm−1∇uΔm(b ⊗ b))‖L∞

≤
∑

|k−m|≤2

‖Sm−1∇u‖L∞‖Δm(b⊗ b)‖L∞

≤ C
∑

|k−m|≤2

2
2
q m‖Sm−1ω‖Lq‖Δm(b ⊗ b)‖L∞

≤ C‖ω‖Lq

∑
|k−m|≤2

2
2
q m‖Δm(b ⊗ b)‖L∞.

By Bernstein’s inequality and the Hardy-Littlewood-Sobolev inequality, the third
term in (4.15) can be bounded by∑

m≥k−1

‖Δk(Δm∇uΔ̃m(b⊗ b))‖L∞

=
∑

m≥k−1

‖ΔkΛ
2
q Λ− 2

q (Δm∇uΔ̃m(b ⊗ b))‖L∞

≤
∑

m≥k−1

2
2
q k‖Λ− 2

q (Δm∇uΔ̃m(b⊗ b))‖L∞

≤ C
∑

m≥k−1

2
2
q k‖Δm∇u‖Lq‖Δ̃m(b⊗ b)‖L∞

≤ C‖ω‖Lq

∑
m≥k−1

2
2
q (k−m)2

2
q m‖Δ̃m(b ⊗ b)‖L∞ .

The condition (4.5) is needed to handle the second term in (4.15). As in the
estimate of the first term, we have∑

|k−m|≤2

‖Δk(Δm∇uSm−1(b⊗ b))‖L∞

≤ C‖ω‖Lq

∑
|k−m|≤2

2
2
q m‖Sm−1(b⊗ b)‖L∞ .

Combining the estimates above, we have

‖R(∇u(b⊗ b))‖B0
∞,1

≤ C‖ω‖L2‖b‖2
L∞ + C‖ω‖Lq

∑
k≥0

∑
|k−m|≤2

2
2
q m‖Δm(b ⊗ b)‖L∞

+C‖ω‖Lq

∑
k≥0

∑
m≥k−1

2
2
q (k−m)2

2
q m‖Δ̃m(b⊗ b)‖L∞

+C‖ω‖Lq

∑
k≥0

∑
|k−m|≤2

2
2
q m‖Sm−1(b⊗ b)‖L∞
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≤ C‖ω‖L2‖b‖2
L∞ + C‖ω‖Lq‖b‖L∞‖b‖

B
2
q
∞,1

+C‖ω‖Lq

∑
k≥0

2
2
q k‖Sk−1(b⊗ b)‖L∞ . (4.16)

We provide some details for the last inequality, namely∑
k≥0

∑
|k−m|≤2

2
2
q m‖Δm(b ⊗ b)‖L∞ ≤ C‖b‖L∞‖b‖

B
2
q
∞,1

, (4.17)

∑
k≥0

∑
m≥k−1

2
2
q (k−m)2

2
q m‖Δ̃m(b⊗ b)‖L∞ ≤ C‖b‖L∞‖b‖

B
2
q
∞,1

. (4.18)

In fact, by the paraproduct decomposition,∑
k≥0

∑
|k−m|≤2

2
2
q m‖Δm(b⊗ b)‖L∞

≤ C
∑
k≥0

2
2
q k

∑
|k−l|≤2

‖Δk(Sl−1b⊗ Δlb)‖L∞

+C
∑
k≥0

2
2
q k

∑
|k−l|≤2

‖Δk(Δlb⊗ Sl−1b)‖L∞

+C
∑
k≥0

2
2
q k

∑
l≥k−1

‖Δk(Δlb⊗ Δ̃lb)‖L∞

≤ C
∑
k≥0

2
2
q k‖b‖L∞‖Δkb‖L∞

+C
∑
k≥0

∑
l≥k−1

2
2
q (k−l)‖b‖L∞2

2
q l‖Δlb‖L∞

≤ C‖b‖L∞‖b‖
B

2
q
∞,1

.

This proves (4.17). The proof of (4.18) is similar. Due to (4.5), the third term is
time integrable if we choose q large enough, say 2

q < σ. Therefore we have proven
(4.13). This completes the proof of Theorem 4.4.

4.3 Another attempt to bound ‖ω‖L∞(0,T ;L∞)

This subsection describes an attempt to bound ‖ω‖L∞(0,T ;L∞) via a more direct
approach. This is part of the work in progress with P. Zhang [54]. It follows from
the vorticity equation (4.6) that

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ + C‖b‖L∞
t,x
‖∇j‖L1

t L∞
x
. (4.19)

We know that ‖b‖L∞
t,x

is bounded according to the a priori bounds of the previous
subsection. A natural idea would be to bound ‖∇j‖L1

tL∞
x

directly. We obtain the
following proposition.
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Proposition 4.7. Assume that (u, b) is classical solution of (4.1). Then,

‖∇j‖L1
tB0

∞,1
≤ ‖j0‖B−1

∞,1
+ C‖ω‖L1

tB0
∞,1

+ C,

where C depends on the initial data and t only.

We remark that, if we could bound ‖∇j‖L1
tL∞

x
in terms of ‖ω‖L1

tL∞
x

, the
global regularity problem would be solved. In fact, it follows from (4.19) that

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ + C‖b‖L∞
t,x
‖∇j‖L1

tB0
∞,1

≤ ‖ω0‖L∞ + C‖b‖L∞
t,x
‖ω‖L1

tL∞ .

Gronwall’s inequality then yields the global bound on ‖ω(t)‖L∞ . As we shall see
in the proof of Proposition 4.7, it is just one paraproduct part of one term that
prevents us from bounding ‖∇j‖L1

tL∞
x

in terms of ‖ω‖L1
tL∞

x
.

In order to prove Proposition 4.7, we need a simple fact on the smoothing
effort of the heat operator eΔt on distributions with Fourier transform supported
on annulus (see, e.g., [1]).

Lemma 4.8. There exist two constants C1 > 0 and C2 > 0 such that, for any
q ∈ [1,∞],

‖eνΔΔ̇kf‖Lq(Rd) ≤ C1e
−C2ν22j‖Δ̇kf‖Lq(Rd),

where ν > 0 is a parameter and Δ̇k denotes the homogeneous Littlewood-Paley
blocks.

We can now prove Proposition 4.7.

Proof of Proposition 4.7. We know that j = ∇× b satisfies

∂tj + u · ∇j = Δj + b · ∇ω +Q,

where

Q = 2∂1b1(∂2u1 + ∂1u2) − 2∂1u1(∂2b1 + ∂1b2). (4.20)

The corresponding integral form is given by

j(t) = etΔj0 −
∫ t

0

e(t−τ)Δ(u · ∇j)(τ)dτ

+
∫ t

0

e(t−τ)Δ(b · ∇ω)(τ)dτ +
∫ t

0

e(t−τ)ΔQ(τ)dτ. (4.21)

Applying Δk to (4.21) yields

Δkj(t) = etΔΔkj0 −
∫ t

0

e(t−τ)ΔΔk(u · ∇j)(τ)dτ

+
∫ t

0

e(t−τ)ΔΔk(b · ∇ω)(τ)dτ +
∫ t

0

e(t−τ)ΔΔkQ(τ)dτ.
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According to Lemma 4.8, we have

‖Δkj(t)‖L∞ ≤ Ce−C22kt‖Δkj0‖L∞ + J1 + J2 + J3, (4.22)

where

J1 =
∥∥∥∥∫ t

0

e(t−τ)ΔΔk(u · ∇j)(τ)dτ
∥∥∥∥

L∞

≤ C

∫ t

0

e−C(t−τ)22k‖Δk(u · ∇j)(τ)‖L∞dτ,

J2 =
∥∥∥∥∫ t

0

e(t−τ)ΔΔk(b · ∇ω)(τ)dτ
∥∥∥∥

L∞

≤ C

∫ t

0

e−C(t−τ)22k‖Δk(b · ∇ω)(τ)‖L∞dτ,

J3 =
∥∥∥∥∫ t

0

e(t−τ)ΔΔkQ(τ)dτ
∥∥∥∥

L∞

≤ C

∫ t

0

e−C(t−τ)22k‖ΔkQ(τ)‖L∞dτ.

To estimate J1, we invoke the notion of paraproduct to write

Δk(u · ∇j) =
∑

|j−k|≤2

Δk(Sl−1u · ∇Δlj)

+
∑

|j−k|≤2

Δk(Δlu · ∇Sl−1j) +
∑

l≥k−1

Δk(Δlu · ∇Δ̃lj).

Employing the bound on u in Proposition 4.3, we have

‖Δk(u · ∇j)‖L∞ ≤ C2k‖u‖L∞‖Δkj‖L∞ + C‖u‖L∞
∑

m≤k−1

2m‖Δmj‖L∞

+C‖u‖L∞2k
∑

l≥k−1

‖Δlj‖L∞ .

Therefore,

J1 ≤ C‖u‖L∞

[ ∫ t

0

e−C(t−τ)22k
(
2k‖Δkj‖L∞ +

∑
m≤k−1

2m‖Δmj‖L∞

+2k
∑

l≥k−1

‖Δlj‖L∞
)
dτ

]
. (4.23)

We now turn to J2. To estimate J2, we write

Δk(b · ∇ω) =
∑

|l−k|≤2

Δk(Sl−1b · Δl∇ω) +
∑

|l−k|≤2

Δk(Δlb · Sl−1∇ω)

+
∑

l≥k−1

Δk(Δlb · Δ̃l∇ω).
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Thus,

‖Δk(b · ∇ω)‖L∞ ≤ C2k‖Sk−1b‖L∞‖Δkω‖L∞ + C2k‖Δkb‖L∞‖ω‖L∞

+
∑

l≥k−1

2k‖Δlb‖L∞‖ω‖L∞.

Therefore,

J2 ≤ C

∫ t

0

e−C(t−τ)22k
(
2k‖Sk−1b‖L∞‖Δkω‖L∞ + 2k‖Δkb‖L∞‖ω‖L∞

+
∑

l≥k−1

2k‖Δlb‖L∞‖ω‖L∞
)
dτ. (4.24)

The difficult term is C2k‖Sk−1b‖L∞‖Δkω‖L∞. The other terms are all right. We
now turn to J3. Recalling the definition of Q in (4.20), it suffices to deal with the
typical term

∂1b1∂2u1.

To estimate ∂1b1∂2u1, we write Δk(∂1b1∂2u1) into paraproducts

Δk(∂1b1∂2u1) =
∑

|l−k|≤2

Δk(Sl−1∂1b1Δl∂2u1)

+
∑

|l−k|≤2

Δk(Δl∂1b1Sl−1∂2u1)

+
∑

l≥k−1

Δk(Δl∂1b1Δ̃l∂2u1).

By Bernstein’s inequality,

‖Δk(∂1b1∂2u1)‖L∞ ≤ C‖Sk−1∂1b1‖L∞‖Δk∂2u1‖L∞

+C‖Sk−1∂2u1‖L∞‖Δk∂1b1‖L∞

+C
∑

l≥k−1

‖Δl∂1b1‖L∞‖Δ̃l∂2u1‖L∞

≤ C2k‖∇b‖L∞‖Δku‖L∞

+C2k‖u‖L∞‖Δk∇b‖L∞

+C‖u‖L∞
∑

l≥k−1

2k−l‖ΔΔlb‖L∞ .

Now we then multiply (4.22) by 2k and integrate in time to obtain

2k‖Δkj‖L1
t L∞ ≤ 2−k‖Δkj0‖L∞ + 2k‖J1‖L1

t
+ 2k‖J2‖L1

t
+ 2k‖J3‖L1

t
. (4.25)

Invoking the bound in (4.23) and applying Young’s inequality for convolution yield

2k‖J1‖L1
t
≤ C2−k‖u‖L∞2k‖Δkj‖L1

tL∞

+C2−k‖u‖L∞
∑

m≤k−1

2m‖Δmj‖L1
tL∞

+C2−k‖u‖L∞
∑

l≥k−1

2k−l2l‖Δlj‖L1
tL∞ .
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Similarly,

2k‖J2‖L1
t
≤ C‖b‖L∞

t,x
‖Δkω‖L1

tL∞

+C‖ω‖L1
tL∞

x
‖Δkb‖L∞

t,x
+ C‖ω‖L1

tL∞
x

∑
l≥k−1

‖Δlb‖L∞
t,x

and

2k‖J3‖L1
t
≤ C‖Δku‖L∞

t L∞
x
‖∇b‖L1

tL∞
x

+C‖u‖L∞
t L∞

x
‖Δk∇b‖L1

t L∞
x

+C2−k‖u‖L∞
t L∞

x

∑
l≥k−1

2k−l‖ΔΔlb‖L∞.

We choose N > 0 sufficiently large such that

2−N‖u‖L∞ <
1
16
.

Summing over k ≥ N in (4.25) and invoking the global bounds in Proposition 4.3,
we have

∞∑
k=N

2k‖Δkj‖L1
t L∞ ≤

∞∑
k=N

2−k‖Δkj0‖L∞ +
1
4

∞∑
k=0

2k‖Δkj‖L1
tL∞

+C
∞∑

k=N

‖Δkω‖L1
tL∞ + C(1 + ‖ω‖L1

tL∞). (4.26)

In addition, by Proposition 4.3,

N−1∑
k=0

2k‖Δkj‖L1
t L∞ <∞.

Inserting this bound in (4.26) yields

‖j‖L1
tB1

∞,1
≤ ‖j0‖B−1

∞,1
+

1
4
‖j‖L1

tB1
∞,1

+
N−1∑
k=0

2k‖Δkj‖L1
tL∞ + C‖ω‖L1

tB0
∞,1

+ C(1 + ‖ω‖L1
tL∞).

We thus have obtained that

‖∇j‖L1
tB0

∞,1
≤ ‖j0‖B−1

∞,1
+ C‖ω‖L1

tB0
∞,1

+ C.

This completes the proof of Proposition 4.7.
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4.4 The criticality

The global regularity problem on the 2D MHD equations with only magnetic
diffusion (4.1) is critical in two senses. The first is that solutions of (4.1) admit
global bounds in very regular functional settings such as

‖ω‖L∞(0,T ;Lp) for any 1 < p <∞,

but the crucial global bound on ‖ω‖L∞(0,T ;L∞) is missing. The second is that, if
we replace Δb by (−Δ)βb with any β > 1, the resulting system then admits a
unique global solution. More precisely, we have the following theorem.

Theorem 4.9. Consider the following 2D MHD equations with fractional mag-
netic diffusion⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu+ u · ∇u = −∇p+ b · ∇b, x ∈ R2, t > 0,
∂tb+ u · ∇b+ (−Δ)βb = b · ∇u, x ∈ R2, t > 0,
∇ · u = 0, ∇ · b = 0, x ∈ R2, t > 0,
u(x, 0) = u0(x), b(x, 0) = b0(x), x ∈ R2.

(4.27)

Let β > 1. Assume that (u0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0, ∇ · b0 = 0 and
j0 = ∇× b0 satisfying

‖∇j0‖L∞ <∞.

Then (4.27) has a unique global solution (u, b) satisfying, for any T > 0,

(u, b) ∈ L∞([0, T ];Hs(R2)), ∇j ∈ L1([0, T ];L∞(R2))

where j = ∇× b.

The theorem stated above is taken from a recent paper of C. Cao, J. Wu and
B. Yuan [12]. Q. Jiu and J. Zhao was able to give a different proof of this result
[32].

4.5 Discussions

The recent efforts have advanced the course on the global regularity problem on
the 2D MHD equations with only magnetic diffusion (4.1), but so far this problem
has resisted a complete resolution. This subsection discusses some ideas that may
be useful.

One thought is to seek suitable functional spaces that are close to L∞ and
have the desired properties described below. One type of functional spaces X
would allow us to obtain the following estimates

‖ω(t)‖X ≤ ‖ω0‖X + C‖∇j‖L1
tX , (4.28)

‖∇j‖L1
t X ≤ C + C‖ω‖L1

tX . (4.29)

Obviously, (4.28) and (4.29), together with Gronwall’s inequality, would yield a
global bound for ‖ω‖X . The Lebesgue space L∞ would certainly satisfy (4.28),
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but we do not know how to prove (4.29). It appears that we need a stronger norm
than L∞ for the term on the right of (4.29). Another type of functional spaces Y
would have the following desired properties

‖ω(t)‖Y ≤
(
‖ω0‖Y + C‖∇j‖L1

tY

)(
1 +

∫ t

0

‖∇u(τ)‖L∞dτ

)
, (4.30)

‖∇u(t)‖L∞ ≤ C + C‖ω(t)‖Y , (4.31)
‖∇j‖L1

tY ≤ C. (4.32)

Obviously, (4.30), (4.31) and (4.32), together with Gronwall’s inequality, would
allow us to derive a global bound for ‖ω‖Y . The Besov space B0

∞,1 certainly
satisfies (4.30) and (4.31), but unfortunately, as we have seen in the previous
subsection, we do not know how to prove (4.32). Instead we only know how to
prove

‖∇j‖L1
tY ≤ C + C‖ω‖L1

tY ,

which is not good enough. Another hopeful example of Y is the space

Y = Lp ∩ LBMO, p ∈ (1, 2),

where LBMO is the logarithmic BMO space defined by F. Bernicot and S. Keraani
[3]. Lp∩LBMO can be shown to satisfy (4.30) and (4.31). We have not been able
to prove (4.32) for this space. We will continue to search for function spaces that
satisfy either (4.28) and (4.29) or (4.30), (4.31) and (4.32).

Another thought is to make use of some of quantities that admit global
bounds in very regular spaces. There are many such quantities. One of them, as
kindly mentioned to the author by H. Dong, is

A ≡ j + u · b⊥, b⊥ = (−b2, b1).
It is easy to verify that A satisfies

∂tA = ΔA+ ∂t(u · b⊥).

The global bounds stated in Proposition 4.3 implies that, for any p ∈ [2,∞) and
q ∈ [1,∞), and for any T > 0,

∂t(u · b⊥) ∈ Lq(0, T ;Lp(R2)).

As a consequence of the maximal regularity of the heat operator, we have

∂tA ∈∈ Lq(0, T ;Lp(R2)), ΔA ∈ Lq(0, T ;Lp(R2)). (4.33)

In order to make use of this global bound, we substitute j = A − u · b⊥ in the
vorticity equation,

∂tω + u · ∇ω = b · ∇(A− u · b⊥). (4.34)

The global bound in (4.33) guarantees that b · ∇A can be bounded suitably. The
trouble is the term involving b · ∇u · b⊥. Recalling that ∇u = Pω for a singu-
lar integral operator P , (4.34) essentially reduces to the model proposed by P.
Constantin,

∂tω + u · ∇ω = Pω, u = K2 ∗ ω, (4.35)
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where P is a singular integral operator such as the 2D Riesz transform and K2 is
the 2D Biot-Savart kernel (2.9). The global regularity problem on (4.35) remains
open. Small data global solutions have been obtained (see, e.g., [20, 42]).

5 The MHD equations with only kinematic dissi-
pation

This section is devoted to the case when only the kinematic dissipation is present
in the 2D MHD equations, namely⎧⎪⎪⎨⎪⎪⎩

ut + u · ∇u = −∇p+ νΔu + b · ∇b,
bt + u · ∇b = b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x),

(5.1)

where u0 and b0 satisfy ∇·u0 = 0 and ∇·b0 = 0. Even though the global regularity
problem on (5.1) remains an outstanding open problem, there are very exciting
new developments. This section review some of these recent results.

The kinematic dissipation alone is not sufficient for proving the desired global
bounds to ensure the global regularity. Even the global existence of weak solutions
in this partial dissipation case remains open and the main difficulty is how to pass
the limit in the term b · ∇b. Due to the lack of magnetic diffusion, we do not even
know how to establish the standard small data global well-posedness.

Recent strategy has been to seek global solutions near an equilibrium. Since
the pioneering work of F. Lin, L. Xu and P. Zhang [36], this direction has flourished.
This section reviews several recent results in this direction. Attention is focused
on the whole space case. For the sake of clarity, the rest of this section is divided
into five subsections. The first subsection describes a local well-posedness result
of P. Constantin [17]. The second subsection states and describes the global result
(near an equilibrium) of Lin, Xu and Zhang [36] and their Lagrangian approach.
The third subsection presents the results of X. Ren, J. Wu, Z. Xiang and Z. Zhang
[43] and outlines the proof. The fourth subsection gives an account of the result
of J. Wu, Y. Wu and X. Xu [55]. The last subsection briefly describes the results
of X. Hu and F. Lin [27], and of T. Zhang [62].

5.1 A local well-posedness of P. Constantin

It is not difficult to see that the standard local existence and uniqueness result
in the Sobolev space setting like Theorem 2.1 remains true for (5.1). This sub-
section presents a different local well-posedness result, obtained by P. Constantin
[17]. Constantin introduced the Lagrangian-Eulerian approach on hydrodynamic
equations and was able to establish the existence and uniqueness in a very weak
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functional setting. Consider the initial value problem for the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ u · ∇u = −∇p+ νΔu + ∇ · σ,
∇ · u = 0,
∂tσ + u · ∇σ = F (∇u, σ),
u(x, 0) = u0(x), σ(x, 0) = σ0(x),

(5.2)

where F is a quadratic function of its variables.

Theorem 5.1. Let 0 < α < 1, 1 < p <∞, let u0 ∈ C1+α ∩ Lp be divergence-free
and σ0 ∈ Cα ∩ Lp.

(A) There exists T > 0 and a solution (u, σ) of (5.2) with u ∈ L∞(0, T ;C1+α∩Lp)
and with σ ∈ Lip(0, T ;Cα ∩ Lp).

(B) Two solutions uj ∈ L∞(0, T ;C1+α∩Lp) and σj ∈ Lip(0, T ;Cα∩Lp), j = 1, 2
obey the strong Lipschitz bound

‖∂tX2 − ∂tX1‖L∞(0,T ;C1+α∩Lp) + ‖∂tτ2 − ∂tτ1‖L∞(0,T ;Cα∩Lp)

≤ C(T ) (‖u2(0) − u1(0)‖C1+α∩Lp + ‖σ2(0) − σ1(0)‖Cα∩Lp) .

where Xj, j = 1, 2 denote the particle trajectories corresponding to uj, and
τj , j = 1, 2 denote the Lagrangian counterparts of σj, or τj = σ ◦ Xj. In
particular, two such solutions with the same initial data must coincide.

When (u, b) solves (5.1), (u, σ) with σ = b ⊗ b solves (5.2), as explained in
(2.5). Theorem 5.1 provides a local well-posedness for the MHD equations (5.1).

5.2 The work of F. Lin, L. Xu and P. Zhang

The work of F. Lin, L. Xu and P. Zhang pioneered the study on the global well-
posedness of (5.1) with smooth initial data which is close to some non-trivial steady
state. We first explain the mechanism on why the solutions of the perturbation
equation near an equilibrium may exist for all time. As in (2.10), setting b = ∇⊥φ
allows us to write (5.1) as⎧⎪⎨⎪⎩

ut + u · ∇u = −∇p+ νΔu+ ∇⊥φ · ∇∇⊥φ,
∇ · u = 0,
φt + u · ∇φ = 0.

(5.3)

Clearly, (u, φ) = (0, x2) is a steady solution. Setting φ = x2 + ψ yields⎧⎪⎪⎨⎪⎪⎩
∂tψ + u · ∇ψ + u2 = 0,
∂tu1 + u · ∇u1 − νΔu1 + ∂1∂2ψ = −∂1p−∇ · (∂1ψ∇ψ),
∂tu2 + u · ∇u2 − νΔu2 + ∂2

1ψ = −∂2p−∇ · (∂2ψ∇ψ),
(ψ, u1, u2)(x, 0) = (ψ0(x), u10(x), u20(x)).

(5.4)

The aim is then to show that (5.4) possesses a unique global solution when the
initial data is sufficiently small. The most significant difference between (5.3) and
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(5.4) is that (5.4) contains an extra term u2 in the equation of ψ. This term
appears to play a role in the process.

The approach of Lin, Xu and Zhang is Lagrangian. They reformulated (5.4)
in Lagrangian coordinates. More precisely, they work with the displacement

Y (x, t) = X(x, t) − x

where X = X(x, t) be the particle trajectory determined by u. They then derive
the equation for Y , which satisfies⎧⎪⎨⎪⎩

Ytt − ΔyYt − ∂2
y1
Y = f(Y, q),

∇y · Y = ρ(Y ),
Y (y, 0) = Y0(y), Yt(y, 0) = Y1(y),

where q(y, t) = (p+ |∇ψ|2) ◦X(y, t), f(Y, q) denotes a functions of Y and q, and
ρ(Y ) = J(Y2, Y1) with J being the Poisson bracket defined in (2.12). They then
estimate the Lagrangian velocity Yt in L1

tLipx, using the anisotropic Littlewood-
Paley theory and anisotropic Besov space techniques. The estimates involved are
very delicate.

Due to their use of the Lagrangian coordinates, they need to impose a compat-
ibility condition on the initial data ψ0, more precisely, ∂yψ0 and (1+∂yψ0,−∂xψ0)
are admissible on 0 × R and supp ∂yψ0(·, y) ⊂ [−K,K] for some K. Here ∂yψ0

and (1 + ∂yψ0,−∂xψ0) are admissible on 0 × R if∫
R

∂yψ0(Z(a, t))dt = 0 for all a ∈ 0 × R,

where Z is the particle trajectory defined by (1+∂yψ0,−∂xψ0). Their main result
can be stated as follows.

Theorem 5.2. Given u0 and ψ0 satisfying (u0,∇ψ0) ∈ Hs ∩ Ḣs2 with s1 > 1,
s2 ∈ (−1,− 1

2 ) and s > s1 + 2, and

‖∇ψ0‖Hs1+2 ≤ ε0, ‖(∇ψ0, u0)‖Ḣs1+1∩Ḣs2 + ‖∂yψ0‖Hs1+2 ≤ ε0

for some ε0 small. Assume that ∂yψ0 and (1 + ∂yψ0,−∂xψ0) are admissible on
0 × R and ∂yψ0(·, y) ⊂ [−K,K] for some K. Then (5.4) has a unique global
solution (ψ, u, p).

5.3 The work of X. Ren, J. Wu, Z. Xiang and Z. Zhang

Motivated by the work of Lin, Xu and Zhang [36], Ren, Wu, Xiang and Zhang [43]
examined the same issue via a different approach, namely the global well-posedness
on the perturbed system⎧⎨⎩∂tψ + u · ∇ψ + u2 = 0,

∂tu1 + u · ∇u1 − νΔu1 + ∂1∂2ψ = −∂1p−∇ · (∂1ψ∇ψ),
∂tu2 + u · ∇u2 − νΔu2 + ∂2

1ψ = −∂2p−∇ · (∂2ψ∇ψ).
(5.5)
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The paper of Ren, Wu, Xiang and Zhang [43] is based on the Eulerian approach
and employs direct energy estimates. In addition, [43] also investigates the large-
time behavior of the solutions and verifies a numerical observation that the energy
of the MHD equations is dissipated at a rate independent of the ohmic resistivity.

The functional setting is the anisotropic Sobolev spaces defined below.

Definition 5.3. Let σ, s ∈ R. The anisotropic Sobolev space H̊σ,s(R2) is defined
by

H̊σ,s(R2) =
{
f ∈ S′(R2) : ‖f‖H̊σ,s < +∞

}
,

where

‖f‖H̊σ,s =
∥∥∥{

2js2σk‖ΔjΔh
kf‖L2

}
j,k

∥∥∥
	2
,

or, in terms of the Fourier transforms,

‖f‖H̊σ,s =
[∫

R2
|ξ|2sξ2σ

1 |f̂(ξ)|2dξ
] 1

2

.

We need the anisotropic Sobolev spaces to deal with the anisotropic nature
of the equations here. It is not very difficult to show that (u1, u2, ψ) satisfies
a degenerate damped wave equation that exhibits anisotropicity. As derived in
detail in the next subsection, the linear part of the equation is given by

utt − Δut − ∂2
1u = 0.

The characteristic equation satisfies

λ2 + |ξ|2λ+ ξ21 = 0,

which has two roots

λ± = −|ξ|2 ± √|ξ|4 − 4ξ21
2

.

As |ξ| → ∞,

λ−(ξ) → − ξ21
|ξ|2 ∼

{−1, |ξ| ∼ |ξ1|,
0, |ξ| � |ξ1|.

Therefore, the dissipative effect is weak in the case of |ξ| � |ξ1|.
The main result of [43] can be stated as in the following theorem.

Theorem 5.4. Assume (∇ψ0, u0) ∈ H8(R2). Let s ∈ (0, 1
2 ). There exists a small

positive constant ε such that, if, (∇ψ0, u0) ∈ H̊−s,−s ∩ H̊−s,8(R2), and

‖(∇ψ0, u0)‖H8 + ‖(∇ψ0, u0)‖H̊−s,−s + ‖|(∇ψ0, u0)‖H̊−s,8 ≤ ε,

then (5.5) has a unique global solution (ψ, u) satisfying

(∇ψ, u) ∈ C([0,+∞);H8(R2)).

Moreover, the solution decays at the same rate as that for the linearized solutions,

‖∂k
x∇ψ‖L2 + ‖∂k

xu‖L2 ≤ Cε(1 + t)−
s+k
2 ,

for any t ∈ [0,+∞) and k = 0, 1, 2.
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To help understand the proof of Theorem 5.4 and extract the necessary decay
rates, we first examine the linearized version of (5.5). The following proposition
holds.

Proposition 5.5. Consider the linearized equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu1 − Δu1 − ∂x1x2ψ = 0,
∂tu2 − Δu2 + ∂x1x1ψ = 0,
∂tψ + u2 = 0,
u(x, 0) = u0(x), ψ(x, 0) = ψ0(x).

Assume (u0,∇ψ0) ∈ H4 and |D1|−su0 ∈ H1+s and |D1|−s∇ψ0 ∈ H1+s for s > 0,
then, for k = 0, 1, 2,

‖∂k
x1
u‖L2 + ‖∂k

x1
∇ψ‖L2 ≤ C(1 + t)−

k+s
2 .

To explain why we need the functional setting in the Sobolev space with
negative indices, we provide the main lines of the proof for this proposition.

Proof. For small ε1 > 0, define

D0(t) = ‖u‖2
L2 + ‖∇u‖2

L2 + ‖∇ψ‖2
L2 + ‖∇2ψ‖2

L2 + 2ε1〈u2,∇ψ〉,
H0(t) = ‖∇u‖2

L2 + ‖∇2u‖2
L2 + ε1‖∇∂1ψ‖2

L2 − ε1‖∇u2‖2
L2 − ε1〈Δu2,Δψ〉,

Es(t) = ‖|D1|−su‖2
L2 + ‖|D1|−s∇ψ‖2

L2

+‖|D|1+s|D1|−su‖2
L2 + ‖|D|1+s|D1|−s∇ψ‖2

L2 .

We can show
d

dt
D0(t) + CH0(t) ≤ 0,

d

dt
Es(t) ≤ 0.

By interpolation inequalities,

D0(t) ≤ Es(t)
1

1+sH0(t)
s

1+s , H0(t) ≥ Es(0)−
1
sD0(t)1+

1
s .

Thus,

d

dt
D0(t) + CEs(0)−

1
sD0(t)1+

1
s ≤ 0

and consequently

E(t) ≤ (E(0)−
1
s + C(s)t)−s = E0

(
E

1
s
0 C(s)t + 1

)−s

.

This completes the proof of Proposition 5.5.

We now return to the full nonlinear system (5.5) and outline the proof of
Theorem 5.4. The frame work to prove the global existence of small solutions is
the Bootstrap Principle. The following abstract bootstrap principle is taken from
the book of T. Tao [46, p. 21].
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Lemma 5.6 (Abstract Bootstrap Principle). Let I be an interval. Let C(t) and
H(t) be two statements related to t ∈ I. If C(t) and H(t) satisfy

(a) if H(t) is true, then C(t) is true for the same t,
(b) if C(t1) is true, then H(t) is true for t in a neighborhood of t1,
(c) if C(tk) is true for a sequence tk → t, then C(t) is true,
(d) C(t) is true for at least one t0 ∈ I,

then, C(t) is true for all t ∈ I.

We only provide a sketch of the proof while the detailed proof can be found
in [43].

Proof of Theorem 5.4. The proof is divided into two main steps:

(1) The first step is to obtain decay rates under the assumption that the solution
is small.

(2) The second step is to show that the solution is even smaller if the initial data
is small.

Then the Bootstrap Principle would imply that the solution remain small for all
time. The initial step is to show that, if (u,∇ψ) satisfies

‖(u(t),∇ψ(t))‖H4 ≤ δ

for sufficiently small δ > 0 and for t ∈ [0, T ], then we can show

d

dt
D0 + CH0 ≤ 0 for t ∈ [0, T ],

where D0 and H0 are defined as in the proof of Proposition 5.5. To further the
estimate, we define the higher-order counterparts of D0 and H0. For l = 1, 2, we
define

Dl(t) =
∑
j,k

22lk(‖ΔjΔh
ku‖2

L2 + ‖ΔjΔh
k∇u‖2

L2 + ‖ΔjΔh
k∇ψ‖2

L2

+‖ΔjΔh
k∇2ψ‖2

L2 + 2ε1〈ΔjΔh
ku2,ΔjΔh

kΔψ〉),

Hl(t) =
∑
j,k

22lk(‖ΔjΔh
k∇u‖2

L2 + ‖ΔjΔh
k∇2u‖2

L2 + ε1‖ΔjΔh
k∇∂1ψ‖2

L2

−‖ΔjΔh
k∇u2‖2

L2 − ε1〈ΔjΔh
kΔu2,ΔjΔh

kΔψ〉).
We then show that, for e(t) = ‖(u,∇ψ)‖H8∩H−s,−s∩H−s,8 , if

sup
t∈[0,T ]

e(t) ≤ δ

for some sufficiently small δ, then

d

dt
Dl(t) + CHl(t) ≤ 0, t ∈ [0, T ].
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In order to extract the decay rates from these differential inequalities, we also need
to include some intermediate norms in the estimates. We further define

Es,s1 = ‖(u,∇ψ)‖2
Ḣ−s,s1

+ ‖(u,∇ψ)‖2
Ḣ−s,s1+1 ,

εs,k(t) = Es,0(t) + Es,s+k(t).

We then prove that, for sufficiently small δ > 0, if, for k = 0, 1, 2,

sup
t∈[0,T ]

e(t) ≤ δ, sup
t∈[0,T ]

εs,k(t) ≤ δ,

then
‖∂l

x1
(u,∇ψ)‖L2 + ‖∂l

x1
(∇u,∇2ψ)‖L2 ≤ C(1 + t)−

l+s
2 .

Finally we show that, for sufficiently small r0 > 0, if

e(0) = ‖(u0,∇ψ0)‖H8∩Ḣ−s,8∩Ḣ−s,−s ≤ r0,

then (u,∇ψ) satisfies

e(t) = ‖(u,∇ψ)‖H8∩Ḣ−s,8∩Ḣ−s,−s ≤ 2r0, Es(t) ≤ 2r0,

where Es(t) = E0,7(t) + Es,−s(t) + E7,0(t). Therefore, if we choose 2r0 < 1
2δ,

then our proof above implies e(t) < 1
2δ. This then fulfills the assumptions of the

Bootstrap Principle, which then concludes that e(t) < 1
2δ for all t ∈ [0, T ]. This

completes the proof of Theorem 5.4.

5.4 The work of J. Wu, Y. Wu and X. Xu

This subsection presents the work of J. Wu, Y. Wu and X. Xu [55], which studied
the global well-posedness near an equilibrium for the 2D MHD type equations with
a velocity damping term instead of the dissipation, namely⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t�u+ �u · ∇�u + �u+ ∇P = −div(∇φ⊗∇φ), (t, x, y) ∈ R+ × R2,

∂tφ+ �u · ∇φ = 0,
∇ · �u = 0,
�u|t=1 = �u0(x, y), φ|t=1 = φ0(x, y),

(5.6)

where �u = (u, v). The notation in this subsection is slightly different from the
previous subsections. We use �u for the 2D velocity, u and v for its components,
and (x, y) for the coordinates of a 2D point. Their paper takes the dispersive
nature of the perturbed equations into full consideration and makes use of the
tools and techniques for dispersive type equations.

We again consider the perturbation near the equilibrium u = 0, φ = y. Sub-
stituting φ = y + ψ in (5.6) yields⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu+ u∂xu+ v∂yu+ u+ ∂xP̃ = −Δψ∂xψ,

∂tv + u∂xv + v∂yv + v + ∂yP̃ = −Δψ − Δψ∂yψ,

∂tψ + u∂xψ + v∂yψ + v = 0,
∂xu+ ∂yv = 0,

(5.7)
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where P̃ = P + 1
2 |∇φ|2. By ∇ · �u = 0,

ΔP̃ = −∇ · (�u · ∇�u) −∇ · (Δψ∇ψ) − Δ∂yψ.

Moving all nonlinear terms in (5.7) to the right yields

∂tu+ u− ∂xyψ = N1, (5.8)
∂tv + v+∂xxψ = N2, (5.9)
∂tψ + v = −u∂xψ − v∂yψ, (5.10)

where

N1 = −�u · ∇u+ ∂xΔ−1∇ · (�u · ∇�u) − Δψ∂xψ + ∂xΔ−1∇ · (Δψ∇ψ),

N2 = −�u · ∇v + ∂yΔ−1∇ · (�u · ∇�u) − Δψ∂yψ + ∂yΔ−1∇ · (Δψ∇ψ).

Taking the time derivative leads to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ttu+ ∂tu− ∂xxu = F1,

∂ttv + ∂tv − ∂xxv = F2,

∂ttψ + ∂tψ − ∂xxψ = F0,

�u|t=1 = �u0(x, y), �ut|t=1 = �u1(x, y),
ψ|t=1 = ψ0(x, y), ψt|t=1 = ψ1(x, y),

(5.11)

where �u1 = (u1(x, y), v1(x, y)), ψ0 = φ0 − y, and

u1 = (−u+ ∂xyψ +N1)|t=1,

v1 = (−v − ∂xxψ +N2)|t=1,

ψ1 = (−u∂xψ − v∂yψ − v)|t=1,

and

F0 = −�u · ∇ψ − ∂t(�u · ∇ψ)−N2,

F1 = ∂tN1 − ∂xy(�u · ∇ψ),
F2 = ∂tN2 + ∂xx(�u · ∇ψ).

Magically all the linear parts have the same structure, and u, v and ψ all satisfy a
degenerate wave equation with a damping term.

Next we convert (5.11) into an integral form by inverting the linear part of
this wave equation. To this end, we consider the linear equation

∂ttΦ + ∂tΦ − ∂xxΦ = 0, (5.12)

with the initial data

Φ(0, x, y) = Φ0(x, y),Φt(0, x, y) = Φ1(x, y).
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Taking the Fourier transform on the equation (5.12), we have

∂ttΦ̂ + ∂tΦ̂ + ξ2Φ̂ = 0, (5.13)

where the Fourier transform Φ̂ is defined as

Φ̂(t, ξ, η) =
∫

R2
eixξ+iyηΦ(t, x, y)dxdy.

Solving (5.13) by a simple ordinary differential equation theory, we have

Φ̂(t, ξ, η)

=
1
2

(
e

(
− 1

2 +
√

1
4−ξ2

)
t + e

(
− 1

2−
√

1
4−ξ2

)
t
)
Φ̂0(ξ, η)

+
1

2
√

1
4 − ξ2

(
e(−

1
2+

√
1
4−ξ2)t − e(−

1
2−

√
1
4−ξ2)t

)(1
2
Φ̂0(ξ, η) + Φ̂1(ξ, η)

)
.

If we define the operators K0(t, ∂x),K1(t, ∂x) by

̂K0(t, ∂x)f(t, ξ, η) =
1
2

(
e

(
− 1

2 +
√

1
4−ξ2

)
t + e

(
− 1

2−
√

1
4−ξ2

)
t
)
f̂(t, ξ, η) (5.14)

and

̂K1(t, ∂x)f(t, ξ, η)

=
1

2
√

1
4 − ξ2

(
e

(
− 1

2+
√

1
4−ξ2

)
t − e

(
− 1

2−
√

1
4−ξ2

)
t
)
f̂(t, ξ, η), (5.15)

where
√−1 = i, then the solution Φ of the equation (5.12) can be written as

Φ(t, x, y) = K0(t, ∂x)Φ0 +K1(t, ∂x)
(

1
2
Φ0 + Φ1

)
.

Moreover, for the inhomogeneous equation,

∂ttΦ + ∂tΦ − ∂xxΦ = F,

with initial data Φ(x, 1) = Φ0(x), ∂tΦ(x, 1) = Φ1(x), the standard Duhamel for-
mula implies

Φ(t, x, y) = K0(t, ∂x)Φ0 +K1(t, ∂x)
(

1
2
Φ0 + Φ1

)
+

∫ t

1

K1(t− s, ∂x)F (s, x, y)ds. (5.16)

We need to estimate the decay properties of these kernel functions in order
to show that the terms in the integral representation remain small when the initial
data is sufficiently small. This lemma also indicates the anisotropicity in the decay
estimates.
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Lemma 5.7. Let K0,K1 be defined in (5.14) and (5.15). Then

(1)
∥∥|ξ|αK̂i(t, ·)

∥∥
Lq

ξ(|ξ|≤ 1
2 )

� t−
1
2 ( 1

q +α), for any α ≥ 0, 1 ≤ q ≤ ∞, i = 0, 1.

(2)
∥∥∂tK̂i(t, ·)

∥∥
Lq

ξ(|ξ|≤ 1
2 )

� t−1− 1
2q , i = 0, 1.

(3)
∣∣K̂i(t, ξ)

∣∣ � e−
1
2 t, for any |ξ| ≥ 1

2 , i = 0, 1.
(4)

∣∣〈ξ〉−1∂tK̂0(t, ξ)
∣∣, ∣∣∂tK̂1(t, ξ)

∣∣ � e−
1
2 t, for any |ξ| ≥ 1

2 .

Due to the complexity of the nonlinear terms, we need to choose a suitable
functional setting for the initial data and for the solutions. Let X0 be the Banach
space defined by the following norm

‖(�u0, ψ0)‖X0 = ‖〈∇〉N (�u0,∇ψ0)‖L2
xy

+‖〈∇〉6+(�u0, ψ0)‖L1
xy

+ ‖〈∇〉6+(�u1, ψ1)‖L1
xy
,

where 〈∇〉 = (I −Δ)
1
2 , N � 1 and a+ denotes a+ ε for small ε > 0. The solution

spaces X is defined by

‖(�u, ψ)‖X = sup
t≥1

{
t−ε‖〈∇〉N (�u(t),∇ψ(t))‖2 + t

1
4 ‖〈∇〉3ψ‖2

+t
1
4 ‖〈∇〉3ψ‖2 + t

3
2 ‖∂xxψ‖∞ + t

5
4 ‖〈∇〉2∂xxψ‖2 + t

3
2 ‖∂xxxψ‖2

+t
3
2 ‖∂t�u‖∞ + t

5
4 ‖〈∇〉∂t�u‖2 + t‖〈∇〉∂x�u‖∞ + t

3
2 ‖∂x∂tv‖2

}
.

Our main result can be stated as follows:

Theorem 5.8. There exists a small constant ε > 0 such that, if the initial data
satisfies ‖(�u0, ψ0)‖X0 ≤ ε, then (5.6) possesses a unique global solution (u, v, ψ) ∈
X. Moreover, the following decay estimates hold

‖u(t)‖L∞
x

� εt−1; ‖v(t)‖L∞
x

� εt−
3
2 ; ‖ψ(t)‖L∞

x
� εt−

1
2 .

The proof of this theorem relies on the continuity argument, which is a con-
sequence of the Bootstrap Principle.

Lemma 5.9 (Continuity Argument). Suppose that (�u, ψ) with the initial data
(�u0, ψ0), satisfies

‖(�u, ψ)‖X � ‖(�u0, ψ0)‖X0 + C‖�u, ψ)‖β
X (5.17)

with β > 1. Then, there exists r0 such that, if

‖(�u0, ψ0)‖X0 � r0,

then ‖(�u, ψ)‖X � 2r0.

Various tool estimates are obtained in [55]. The following is one of them.
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Proposition 5.10. Let K(t, ∂x) be a Fourier multiplier operator satisfying∥∥∂̂α
xK(t, ξ)

∥∥
L1

ξ(|ξ|≤ 1
2 )
<∞,

∥∥K̂(t, ξ)
∥∥

L∞
ξ (|ξ|≥ 1

2 )
<∞, α ≥ 0.

Then, for any space-time Schwartz function f ,∥∥∂α
xK(t, ∂x)f

∥∥
L∞

xy
�

(∥∥∂̂α
xK(t, ξ)

∥∥
L1

ξ(|ξ|≤ 1
2 )

+
∥∥K̂(t, ξ)

∥∥
L∞

ξ (|ξ|≥ 1
2 )

)
× ∥∥〈∇〉α+1+ε∂yf

∥∥
L1

xy
. (5.18)

Many delicate estimates on the kernel functions K0 and K1 have also been
established in [55]. To get a flavoring of how we proceed to bound the solution
in the solution space, we provide a segment of the estimates for one of the norms
defining the solution space. A lot more details can be found in [55]. By the
Duhamel formula, namely (5.16),

ψ(t, x, y) = K0(t, ∂x)ψ0 +K1(t, ∂x)
(

1
2
ψ0 + ψ1

)
+

∫ t

1

K1(t− s, ∂x)F0(s)ds.

Therefore,

‖〈∇〉∂xxψ‖∞ �‖〈∇〉∂xxK0(t)ψ0‖∞ +
∥∥∥∥〈∇〉∂xxK1(t)

(
1
2
ψ0 + ψ1

)∥∥∥∥
∞

+
∥∥∥∥∫ t

1

〈∇〉∂xxK1(t− s)F0(s)ds
∥∥∥∥
∞
.

By Proposition 5.10 and Lemma 5.7,

‖〈∇〉∂xxK0(t)ψ0‖∞
�

(‖∂̂xxK0(t, ξ)‖L1
ξ(|ξ|≤ 1

2 ) + ‖K̂0(t, ξ)‖L∞
ξ (|ξ|≥ 1

2 )

)‖〈∇〉2+ε∂xx∂yψ0‖L1
xy

�
(
t−

3
2 + e−t

)‖〈∇〉5+εψ0‖L1
xy

� t−
3
2 ‖〈∇〉5+εψ0‖X0 .

Similarly, we have∥∥∥∥〈∇〉∂xxK1(t)
(

1
2
ψ0 + ψ1

)∥∥∥∥
∞

� t−
3
2

∥∥∥∥〈∇〉5+ε

(
1
2
ψ0 + ψ1

)∥∥∥∥
X0

.

Moreover, ∥∥∥∥∫ t

1

〈∇〉∂xxK1(t− s)F0(s)ds
∥∥∥∥
∞

�
∫ t

1

‖∂xxK1(t− s)〈∇〉F0(s)‖∞ds

�
∫ t

2

1

‖∂xxK1(t− s)〈∇〉F0(s)‖∞ds

+
∫ t

t
2

‖∂xK1(t− s)〈∇〉∂xF0(s)‖∞ds.
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The lines above illustrate how we bound the solution in one of the norms in the
solution space. More details can be found in [55].

5.5 The results of X. Hu and F. Lin, and of T. Zhang

This subsection briefly describes two more papers on the global well-posedness
near an equilibrium for the 2D MHD equations with kinematic dissipation only,
the work of X. Hu and F. Lin [27], and the work of T. Zhang [62]. Both papers
establish the global well-posedness but through somewhat different approaches.
Their main results can be summarized as follows. We start with the result of T.
Zhang [62].

Theorem 5.11 (T. Zhang). Consider (5.5) with u0 and ψ0 satisfying

u0 ∈ H2, ∇ · u0 = 0, ∇ψ0 ∈ H1,

e−|ξ|2tû0, e
−|ξ|2t∇̂ψ0 ∈ L2(0,∞;L1).

Then there exists a constant c0 > 0 such that, if

A0 ≡ ‖u0‖H2 + ‖∇ψ0‖H1 + ‖e−|ξ|2tû0‖L2(0,∞;L1)

+‖e−|ξ|2t∇̂ψ0‖L2(0,∞;L1) ≤ c0,

then (5.5) has a unique global solution (u, ψ, p) satisfying

u, ψ ∈ C([0, T ];H2), ∇p ∈ C([0, T ];H1),

∇u ∈ L2(0, T ;H2), ∂1∇ψ ∈ L2(0, T ;H1), û, ∂̂1ψ ∈ L2(0, T ;L1)

and, for any T > 0,

AT ≤ CA0, ‖∇p‖L∞
T H1 ≤ C(1 + c0)A0,

where AT is given by

AT ≡ ‖u‖L∞
T H2 + ‖∇ψ‖L∞

T H1 + ‖∇u‖L2
T H2

+‖∂1∇ψ‖L2
T H1 + ‖û‖L2

T L1 + ‖∂̂1ψ‖L2
T L1 .

The proof uses extensively the divergence-free conditions ∇ · u = 0, , the
interpolation inequality and the first equation in (5.5), namely u2 = −(∂tψ + u ·
∇ψ).

The work of X. Hu and F. Lin [27] has also established an interesting result
on the global existence and uniqueness of solutions to the perturbation equation
(5.5). The functional spaces are hybrid Besov spaces. The initial perturbations u0

and b0 are required to be small and the initial inverse map of the particle trajectory
is required to be close to the identity map in a Besov norm. We omit the precise
statement of their main result, which can be found in [27].
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6 The 2D MHD equation with mixed dissipation

This section briefly explains the global existence and uniqueness result of C. Cao
and J. Wu [11] on the 2D MHD equations with mixed kinematic dissipation and
magnetic diffusion, namely⎧⎪⎨⎪⎩

ut + u · ∇u = −∇p+ νuyy + b · ∇b,
bt + u · ∇b = ηbxx + b · ∇u,
∇ · u = 0, ∇ · b = 0

(6.1)

or ⎧⎪⎨⎪⎩
ut + u · ∇u = −∇p+ νuxx + b · ∇b,
bt + u · ∇b = ηbyy + b · ∇u,
∇ · u = 0, ∇ · b = 0.

(6.2)

It is not very difficult to see that (6.2) can be converted to (6.1) by making suitable
changes of variables. In fact, if we set

U1(x, y, t) = u2(y, x, t), U2(x, y, t) = u1(y, x, t),
B2(x, y, t) = b1(y, x, t), B1(x, y, t) = b2(y, x, t),
P (x, y, t) = p(y, x, t),

then U = (U1, U2), P and B = (B1, B2) satisfy

Ut + U · ∇U = −∇P + νUyy +B · ∇B,
Bt + U · ∇B = ηBxx +B · ∇U,
∇ · U = 0, ∇ ·B = 0.

Therefore, as far as the global regularity problem is concerned, it suffices to con-
sider one of them, say (6.1).

C. Cao and J. Wu was able to show that (6.1) always possesses a unique
global solution for any sufficiently smooth general initial data.

Theorem 6.1. Assume u0 ∈ H2(R2) and b0 ∈ H2(R2) with ∇ · u0 = 0 and
∇ · b0 = 0. Then (6.1) has a unique global classical solution (u, b). In addition,
(u, b) satisfies

(u, b) ∈ L∞([0,∞);H2),
ωy ∈ L2([0,∞);H1), jx ∈ L2([0,∞);H1).

The core part in the proof of Theorem 6.1 is the global a priori bounds for
H1 and H2 norms. We shall only sketch the proof for the global H1-bound. One
tool in the proof is the anisotropic Sobolev estimates for the triple product.

Lemma 6.2. Assume that f , g, gy, h and hx are all in L2(R2). Then,∫∫
|fgh|dxdy ≤ C‖f‖L2‖g‖1/2

L2 ‖gy‖1/2
L2 ‖h‖1/2

L2 ‖hx‖1/2
L2 .
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Any classical solution of (6.1) admits a global H1-bound.

Proposition 6.3. If (u, b) is a classical solution of (6.1), then

‖ω(t)‖2
2 + ‖j(t)‖2

2 + ν

∫ t

0

‖ωy(τ)‖2
2dτ + η

∫ t

0

‖jx(τ)‖2
2dτ

≤ C(ν, η)
(‖ω0‖2

2 + ‖j0‖2
2

)
,

where C(ν, η) denotes a constant depending on ν and η only.

We start with the L2-bound:

‖u(t)‖2
2 + ‖b(t)‖2

2 + 2ν
∫ t

0

‖uy(τ)‖2
2dτ + 2η

∫ t

0

‖bx(τ)‖2
2dτ ≤ ‖u0‖2

2 + ‖b0‖2
2.

To get the global H1-bound for (u, b), we consider ω and j satisfying

ωt + u · ∇ω = νωyy + b · ∇j,
jt + u · ∇j = ηjxx + b · ∇ω

+2∂xb1(∂xu2 + ∂yu1) − 2∂xu1(∂xb2 + ∂yb1).

A simple energy estimate indicates that X(t) = ‖ω(t)‖2
2 + ‖j(t)‖2

2 obeys

1
2
dX(t)
dt

+ ν‖ωy‖2
2 + η‖jx‖2

2

≤ 2
∫

(∂xb1(∂xu2 + ∂yu1) − ∂xu1(∂xb2 + ∂yb1)) jdxdy.

The terms on the right-hand side can be bounded as follows. By Lemma 6.2,∫
|∂xb1||∂xu2||j|dxdy

≤ C‖∂xu2‖1/2
2 ‖∂xyu2‖1/2

2 ‖j‖1/2
2 ‖jx‖1/2

2 ‖∂xb1‖2

≤ ν

4
‖∂xyu2‖2

2 +
η

8
‖jx‖2

2 + C‖∂xu2‖2‖∂xb1‖2‖j‖2

≤ ν

4
‖ωy‖2

2 +
η

8
‖jx‖2

2 + C‖ω‖2‖∂xb1‖2
2‖j‖2

≤ ν

4
‖ωy‖2

2 +
η

8
‖jx‖2

2 + C‖∂xb1‖2
2X(t).

Similarly,∫
|∂xb1||∂yu1||j|dxdy ≤ ν

4
‖ωy‖2

2 +
η

8
‖jx‖2

2 + C(‖∂xb1‖2
2 + ‖∂yu1‖2

2)‖j‖2
2.
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By integration by parts and Lemma 6.2,∣∣∣∣∫ ∂xu1∂xb2jdxdy

∣∣∣∣
=

∣∣∣∣∫ (u1∂xxb2j + u1∂xb2jx)dxdy
∣∣∣∣

≤ C‖u1‖
1
2
2 ‖∂yu1‖

1
2
2 ‖j‖

1
2
2 ‖jx‖

1
2
2 ‖∂xxb2‖2

+C‖u1‖
1
2
2 ‖∂yu1‖

1
2
2 ‖∂xb2‖

1
2
2 ‖∂xxb2‖

1
2
2 ‖jx‖2

≤ C‖u1‖
1
2
2 ‖∂yu1‖

1
2
2 ‖j‖

1
2
2 ‖jx‖

3
2
2 + C‖u1‖

1
2
2 ‖∂yu1‖

1
2
2 ‖∂xb2‖

1
2
2 ‖jx‖

3
2
2

≤ η

8
‖jx‖2

2 + C‖u1‖2
2‖∂yu1‖2

2‖j‖2
2 + C‖u1‖2

2‖∂yu1‖2
2‖∂xb2‖2

2

≤ η

8
‖jx‖2

2 + C‖u1‖2
2‖∂yu1‖2

2‖j‖2
2.

Similarly, ∣∣∣∣∫ ∂xu1∂yb1jdxdy

∣∣∣∣ ≤ η

8
‖jx‖2

2 + C‖u1‖2
2‖∂yu1‖2

2‖j‖2
2.

Combining these estimates, we have

dX(t)
dt

+ ν‖ωy‖2
2 + η‖jx‖2

2 ≤ C((1 + ‖u1‖2
2)‖∂yu1‖2

2 + ‖∂xb1‖2
2)X(t),

which, together with the time integrability of (‖∂yu1‖2
2 + ‖∂xb1‖2

2), yields the
desired H1-bound. The global H2-bound and more details can be found in [11].

7 The 2D MHD equations with horizontal dissi-

pation and horizontal magnetic diffusion

This section is devoted to the partial dissipation case when the 2D MHD equations
involve only the horizontal dissipation and the horizontal magnetic diffusion,⎧⎨⎩∂tu+ u · ∇u = −∇p+ ∂xxu+ b · ∇b,

∂tb + u · ∇b = ∂xxb+ b · ∇u,
∇ · u = 0, ∇ · b = 0.

(7.1)

The global regularity problem on (7.1) is close to a complete solution. C. Cao, D.
Regmi and J. Wu examined this problem in [8] and obtained various global a priori
bounds. C. Cao, D. Regmi, J. Wu and X. Zheng [9] made further investigations
and a preprint was completed in 2015. We are currently clearing up some of the
minor issues in [8] and [9] and hopefully we can put this difficult problem to rest
soon.

To solve the global regularity problem on (7.1), the idea of [8] is to take
advantage of the symmetric structure of the system for the combined quantities
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w± = u± b, ⎧⎪⎨⎪⎩
∂tw

+ + (w− · ∇)w+ = −∇p+ ∂2
xw

+,

∂tw
− + (w+ · ∇)w− = −∇p+ ∂2

xw
−,

∇ · w+ = 0, ∇ · w− = 0.
(7.2)

The main difficulty to obtain a global bound for the H1-norm of w± is the ap-
pearance of the L∞-norm of the horizontal components of w±, namely ‖w±

1 ‖2
L∞ .

As a consequence, the global regularity problem boils down to control∫ T

0

‖w±
1 ‖2

L∞dt or
∫ T

0

(‖b1‖2
L∞ + ‖u1‖2

L∞)dt.

Motivated by the work of Cao and Wu on the 2D Boussinesq equation with partial
dissipation [13], the program in [8] is to obtain sharp bounds for ‖w±

1 ‖2
Lq (in terms

of q), where 1 < q <∞. The symmetric formulation in (7.2) is more complex than
the 2D Boussinesq equations. (7.2) consists of a system of two vector equations
and the interaction between them makes it more difficult mathematically. For
example, the global H1 bound on the pressure established for the 2D Boussinesq
equations has to be replaced by a global bound in a weaker space, namely in the
Hs-norm with s ∈ (0, 1). To deal with this more difficult situation, new tools such
as the triple product estimate involving fractional derivatives (see Lemma 7.2) are
needed to cope with the difficulty here.

If ‖w±
1 ‖2

Lq does not grow too fast in q, say

‖w±
1 ‖2

Lq ≤ Cq log(2 + q) or ‖(u1, b1)‖2
Lq ≤ Cq log(2 + q), (7.3)

the preprint of Cao, Regmi, Wu and Zheng [9] was able to show that

Y (t) = ‖ω(·, t)‖2
L2 + ‖j(·, t)‖2

L2

obeys the differential inequality

d

dt
Y (t) +

1
2
(‖∂xω‖2

L2 + ‖∂xj‖2
L2)

≤ C(1 + ‖(u1, b1)‖2
L2 + ‖∂xu‖2

L2 + ‖∂xb‖2
L2)Y (t)

+C

[
sup

q∈[2,∞)

‖(u1, b1)‖Lq√
q log(q)

]2

Y (t) log(e+ Y (t)) log(e+ log(e+ Y (t))).

The Osgood inequality then would imply a global bound for Y . The global H2-
bound then follows as a consequence.

In order to prove (7.3), one needs a good global bound on the pressure p.
The following global a priori bounds have been established in [8].

Proposition 7.1. Assume that (u0, b0) ∈ H2 and let (u, b) be the corresponding
solution of (7.1). Then, the following global a priori bounds hold:

(1) For any 1 ≤ r <∞, the first component (u1, b1) admits the global bound

‖(u1, b1)‖L2r ≤ C1e
C2r3

,

where C1 and C2 are constants depending only on ‖(u0, b0)‖L2r .
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(2) Let p be the corresponding pressure. Let s ∈ (0, 1). Then, for any T > 0 and
t ≤ T , the second component (u2, b2) and p admit the global bounds,

‖(u2, b2)‖L2r ≤ C r = 2, 3,

and, for any 1 < q ≤ 3,

‖p‖Lq ≤ C,

∫ T

0

‖p(τ)‖2
Hsdτ ≤ C,

where C is a constant depending on T and the initial data only.

In order to obtain sharper global bounds for ‖(u1, b1)‖L2r , we need two tool
estimates (see Lemma 4.1 and Lemma 4.2 in [8]).

Lemma 7.2. Let q ∈ [2,∞) and s ∈ (1
2 , 1]. Assume that f, g, ∂yg ∈ L2(R2),

h ∈ L2(q−1)(R2) and Λs
xh ∈ L2(R2). Then,∣∣∣∣∫∫

R2
fghdxdy

∣∣∣∣ ≤ C‖f‖2‖g‖ρ
2‖∂yg‖1−ρ

2 ‖h‖ϑ
2(q−1)‖Λs

xh‖1−ϑ
2 , (7.4)

where ρ and ϑ are given by

ρ =
1
2

+
(2s− 1)(q − 2)

2(2s− 1)(q − 1) + 2
, ϑ =

(2s− 1)(q − 1)
(2s− 1)(q − 1) + 1

,

and Λs
x denotes a fractional derivative with respect to x and is defined by

Λs
xh(x) =

∫
eix·ξ|ξ1|sĥ(ξ)dξ.

The following lemma allows us to bound the high frequency and low frequency
parts of a function in Hs (0 < s < 1) separately.

Lemma 7.3. Let f ∈ Hs(R2) with s ∈ (0, 1). Let R ∈ (0,∞). Denote by B(0, R)
the ball centered at zero with radius R and by χB(0,R) the characteristic function
on B(0, R). Write

f = f+ f̃ with f = F−1(χB(0,R)Ff) and f̃ = F−1((1−χB(0,R))Ff), (7.5)

where F and F−1 denote the Fourier transform and the inverse Fourier transform,
respectively. Then we have the following estimates for f and f̃ .

(1) For a pure constant C0 (independent of s),

‖f‖∞ ≤ C0√
1 − s

R1−s‖f‖Hs(R2), (7.6)

(2) For any 2 ≤ q <∞ satisfying 1−s− 2
q < 0, there is a constant C1 independent

of s, q, R and f such that

‖f̃‖q ≤ C1qR
1−s− 2

q ‖f‖Hs(R2). (7.7)

The key to obtain a sharper bound for ‖(u1, b1)‖L2r is to control the pressure
associated terms. The pressure is split into high frequency and low frequency parts
according to (7.3) and bounded accordingly. More details can be found in [8].
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8 The MHD equations with fractional dissipation

This section summarizes recent results on the incompressible MHD equations with
fractional dissipation⎧⎪⎪⎨⎪⎪⎩

ut + u · ∇u+ ν(−Δ)αu = −∇p+ b · ∇b,
bt + u · ∇b+ η(−Δ)βb = b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x).

(8.1)

The aim is the global regularity of (8.1) for smallest possible parameters α ≥ 0
and β ≥ 0. Since (8.1) was proposed for study in [51], there have been consider-
able activities and the global well-posedness problem on (8.1) is now much better
understood (see, e.g., [12, 21, 31, 32, 47, 52, 53, 58, 59, 61]).

We summarize some of the results on (8.1). First of all, (8.1) with any α > 0
and β > 0 always possesses a global weak solution in both 2D and 3D cases.

Theorem 8.1. Consider (8.1) with ν > 0, η > 0, α > 0 and β > 0. Let
(u0, b0) ∈ L2(Rd) with ∇ · u0 = 0 and ∇ · b0 = 0. Then (8.1) has a global Leray-
Hopf weak solution (u, b) satisfying, for any T > 0,

u ∈ L∞(0,∞;L2) ∩ L2(0,∞; Ḣα), b ∈ L∞(0,∞;L2) ∩ L2(0,∞; Ḣβ),

∂tu ∈ L
4α
d (0, T ;H−1), ∂tb ∈ L

4β
d (0, T ;H−1).

A general result on the global existence and uniqueness of classical solutions
that are valid for general d-dimensional MHD equations can be found in [51] and
[53]. The result stated below is taken from [53].

Theorem 8.2. Consider the generalized incompressible magnetohydrodynamic
(GMHD) equations of the form{

∂tu+ u · ∇u + L2
1u = −∇p+ b · ∇b, x ∈ Rd, t > 0,

∂tb+ u · ∇b+ L2
2b = b · ∇u, x ∈ Rd, t > 0,

(8.2)

where L1 and L2 are multiplier operators with symbols given by m1 and m2, namely

L̂1u(ξ) = m1(ξ)û(ξ), L̂2b(ξ) = m2(ξ)̂b(ξ).

Assume the initial data (u0, b0) ∈ Hs(Rd) with s > 1 + d
2 , and ∇ · u0 = 0 and

∇ · b0 = 0. Assume the symbols m1 and m2 satisfy

m1(ξ) ≥ |ξ|α
g1(ξ)

and m2(ξ) ≥ |ξ|β
g2(ξ)

, (8.3)

where α and β satisfy

α ≥ 1
2

+
d

4
, β > 0, α+ β ≥ 1 +

d

2
, (8.4)
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and g1 ≥ 1 and g2 ≥ 1 are radially symmetric, nondecreasing and satisfy∫ ∞

1

ds

s (g2
1(s) + g2

2(s))2
= +∞. (8.5)

Then (8.2) has a unique global classical solution (u, b).

A special consequence of Theorem 8.2 is the global regularity for the special
dissipative operators

L2
1u =

(−Δ)α

log1/2(3 − Δ)
, L2

2u =
(−Δ)β

log1/2(3 − Δ)

with

α ≥ 1
2

+
d

4
, β > 0, α+ β ≥ 1 +

d

2
.

We remark that this result for the GMHD equations is not completely parallel
to that for the generalized Navier-Stokes equations. In fact, the condition that
β ≥ 1

2 + d
4 is not imposed and (8.4) implies that it suffices to assume β > 0 when

α is sufficiently large.
The borderline case α > 0 and β = 0 is studied by K. Yamazaki [60] and his

main result can be stated as follows.

Theorem 8.3. The 2D fractional MHD equations⎧⎪⎪⎨⎪⎪⎩
ut + u · ∇u = −∇p− ν

(−Δ)2

log
1
2 (3 − Δ)

u+ b · ∇b,
bt + u · ∇b = b · ∇u,
∇ · u = 0, ∇ · b = 0

(8.6)

always possess a unique global solutions when the initial data is sufficiently smooth.

Several papers have been exclusively devoted to the global regularity problem
in the 2D case. As already described in Subsection 4, the fractional 2D MHD equa-
tions with α = 0 (or ν = 0) and β > 1 have been shown to possess a unique global
solution for any sufficiently smooth data [12]. The paper of [21] has established
the global regularity of (8.1) with any α > 0 and β = 1.

The global regularity problem on (8.1) with β < 1 and α+β < 2 is currently
open.
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