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STABILITY AND DECAY RATES FOR
A VARIANT OF THE 2D BOUSSINESQ-BÉNARD SYSTEM∗

JIAHONG WU† , XIAOJING XU‡ , AND NING ZHU§

Abstract. This paper investigates the stability and large-time behavior of perturbations near the
trivial solution to a variant of the 2D Boussinesq-Bénard system. This system does not involve thermal
diffusion. Our research is partially motivated by a recent work [C.R. Doering, J. Wu, K. Zhao, and X.
Zheng, Phys. D, 376/377:144–159, 2018] on the stability and large-time behavior of solutions near the
hydrostatic balance concerning the 2D Boussinesq system. Due to the lack of thermal diffusion, these
stability problems are difficult. The energy method and classical approaches are no longer effective in
dealing with these partially dissipated systems. This paper presents a new approach that takes into
account the special structure of the linearized system. The linearized parts of the vorticity equation
and the temperature equation both obey a degenerate damped wave-type equation. By representing
the nonlinear system in an integral form and carefully crafting the functional setting for the initial data
and solution spaces, we are able to establish the long-term stability and global (in time) existence and
uniqueness of smooth solutions. Simultaneously, we also obtain exact decay rates for various derivatives
of the perturbations.

Keywords. Boussinesq-Bénard equations; global solution; large-time behavior; stability; velocity
damping.

AMS subject classifications. 35Q35; 76D03; 76D05.

1. Introduction
This paper focuses on the following 2D Boussinesq-Bénard system

∂tu+u ·∇u+u+∇P =θe2,

∂tθ+u ·∇θ= ∆u · e2,

∇·u= 0,

(1.1)

where u(t,x,y), (u1(t,x,y),u2(t,x,y)) denotes the 2D velocity field, P =P (t,x,y) the
pressure and θ=θ(t,x,y) the temperature. Here e2 = (0,1) and the term θe2 represents
the buoyancy forcing due to the gravity in the vertical direction. The first equation is
the 2D damped Euler equation with a buoyancy forcing and the second equation simply
states that the temperature is transported by the velocity field with a diffusion term
of the second component of the velocity. Equation (1.1) is a variant of the standard
Boussinesq-Bénard system. The standard Boussinesq-Bénard system contains ∆u and
the term u ·e2 instead of the damping u and ∆u · e2 in (1.1). Equation (1.1) may be
physically relevant when the diffusive effect of u2 plays a more dominant role in the
equation of temperature.

The aim here is to understand the large-time stability property of perturbations
near the trivial steady state (u,θ) = (0,0). Equivalently, we explore the global existence
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and uniqueness of small solutions and the precise large-time behavior of these solutions.
This study is partially motivated by a recent work of Doering, Wu, Zhao and Zheng [18]
and a followup paper [50] on the global stability and large-time behavior of perturbations
near the hydrostatic balance concerning the Boussinesq equations. The 2D Boussinesq
system 

∂tu+u ·∇u+∇P = ∆u+θe2,

∂tθ+u ·∇θ= 0,

∇·u= 0

(1.2)

admits a special class of solutions

uhe= 0, θhe=βy, Phe=
1

2
βy2, (1.3)

where β>0 is a parameter. The special solution in (1.3) is the so-called hydrostatic
balance, which refers to the geophysical circumstance when the fluid is at rest and when
the pressure gradient is balanced out by the buoyancy force in the direction of gravity.
The perturbations

ũ=u−uhe, θ̃=θ−θhe, P̃ =P −Phe

satisfy 
∂tũ+ ũ ·∇ũ+∇P̃ = ∆ũ+ θ̃e2,

∂tθ̃+ ũ ·∇θ̃+βũ2 = 0,

∇· ũ= 0.

(1.4)

The difference between (1.1) and (1.4) is that the velocity equation in (1.4) involves
dissipation instead of damping, and the temperature equation contains ũ2 instead of
∆u2 as in (1.1). The recent papers [18] and [50] have significantly advanced our un-
derstanding of the stability problem involving (1.4). [18] obtains the global stability

and large-time behavior of the perturbation (ũ,P̃ , θ̃). It is proven, for β>0, that the
L2 norms of the velocity perturbation (not necessarily small) and its first-order spatial
and temporal derivatives converge to zero as t→∞. Consequently it is found that the
pressure and temperature functions stratify in the vertical direction in a weak topology.
Remarkably, the second-order spatial derivatives of the velocity perturbation (not nec-
essarily small) are shown to be bounded uniformly in time for all time. In addition, [18]
contains extensive numerical simulations illustrating the analytic results and investigat-
ing unsolved problems. [50] furthers the studies of [18]. [50] obtains precise large-time
decay rates for the velocity field of the linearized equations and explicit eventual profile
for the temperature. Conditional decay rates are also obtained for the nonlinear system.
There are still many interesting open issues concerning (1.4). One issue is whether or

not ‖∇θ̃‖L2 is bounded uniformly in time. The lack of thermal diffusion in (1.4) makes
it extremely difficult to answer this question.

In contrast, (1.1) has a very special structure and solutions of (1.1) appear to behave
differently from those of (1.4). We are able to prove the global stability of the solutions
of (1.1) in a highly regular setting and extract precise decay rates for various derivatives
of the solutions. We explain in some detail our main idea. We take advantage of the
vorticity formulation. The vorticity ω=∇×u,∂xu2−∂yu1 measures how fast the fluid
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rotates and its control is very important in the study of fluid stability problem. Taking
the curl of the velocity equation in (1.1) yields

∂tω+u ·∇ω+ω=∂xθ.

Due to the divergence-free condition, we have

∆u ·e2 = (∂xx+∂yy)u2 =∂xxu2−∂xyu1 =∂xω.

Equation (1.1) is then reduced to the following system
∂tω+u ·∇ω+ω=∂xθ,

∂tθ+u ·∇θ=∂xω,

u=∇⊥∆−1ω.

(1.5)

Since (1.5) is translation invariant, we assume, without loss of generality, that the initial
data start with t= 1, namely

u(1,x,y) =u0(x,y), ω(1,x,y) =ω0(x,y), θ(1,x,y) =θ0(x,y). (1.6)

Differentiating (1.5) in t yields{
∂ttω+∂tω−∂xxω=F1,

∂ttθ+∂tθ−∂xxθ=F2,
(1.7)

and {
F1 =−∂x(u ·∇θ)−∂t(u ·∇ω),

F2 =−∂x(u ·∇ω)−∂t(u ·∇θ)−u ·∇θ.
(1.8)

We observe that the linear parts ω and θ obey exactly the same degenerate damped
wave equation. It follows from (1.5) and (1.6) that

ω1(1,x,y), (∂tω)(1,x,y) =−u0 ·∇ω0−ω0−∂xθ0,
θ1(1,x,y), (∂tθ)(1,x,y) =−u0 ·∇θ0 +∂xω0.

(1.9)

We have derived an equivalent system of (1.1) and our attention will be focused on this
equivalent initial-value problem

∂ttω+∂tω−∂xxω=F1,

∂ttθ+∂tθ−∂xxθ=F2,

ω(1,x,y) =ω0(x,y), (∂tω)(1,x,y) =ω1(x,y),

θ(1,x,y) =θ0(x,y), (∂tθ)(1,x,y) =θ1(x,y).

(1.10)

Before we analyze the nonlinear system, we first understand the linearized system of
(1.5), which is given by {

∂tω+ω=∂xθ,

∂tθ=∂xω.
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Clearly, for any integer k∈N,

‖Λkω(t)‖2L2 +‖Λkθ(t)‖2L2 +

∫ t

0

‖Λkω(τ)‖2L2 dτ =‖Λkω0‖2L2 +‖Λkθ0‖2L2 , (1.11)

which implies the linear stability in any Sobolev space Hk(R2). Here Λ =
√
−∆ denotes

the Zygmund operator. Λ and more general fractional Laplacian operators Λα with
α∈R are defined via the Fourier transform

Λ̂αf(ξ,η) = (ξ2 +η2)
α
2 f̂(ξ,η),

where the Fourier transform is defined by

f̂(ξ,η) =

∫
R2

e−ixξ−iyηf(x,y)dxdy.

However, the energy estimate (1.11) does not give us any information on the decay
rates of ω or θ, due to the lack of thermal diffusion. The Fourier-splitting method of
Schonbek has been very effective on large-time decay problems (see, e.g., [9,47,48]), but
it does not apply here when there is no thermal diffusion or damping in θ. Therefore,
new ideas and different approaches appear to be necessary in order to handle the large-
time behavior problem here.

To establish the long-term stability and large-time behavior of (ω,θ) of (1.10), we
take advantage of the special structure of the linear portion in (1.10). Our first step is
to represent the solution of the degenerate damped wave equation{

∂ttf+∂tf−∂xxf =F,

f(1,x,y) =f0(x,y), ∂tf(1,x,y) =f1(x,y)
(1.12)

to be the integral form

f(t,x,y) =K0(t,∂x)f0 +K1(t,∂x)

(
1

2
f0 +f1

)
+

∫ t

1

K1(t−s,∂x)F (s,x,y)ds, (1.13)

where K0 and K1 are Fourier multiplier operations,

K0(t,∂x) =
1

2

(
e

(
− 1

2+
√

1
4+∂

2
x

)
(t−1) +e

(
− 1

2−
√

1
4+∂

2
x

)
(t−1)

)
,

K1(t,∂x) =
1

2
√

1
4 +∂2x

(
e

(
− 1

2+
√

1
4+∂

2
x

)
(t−1)−e

(
− 1

2−
√

1
4+∂

2
x

)
(t−1)

)
.

A natural second step is to obtain the precise large-time behavior of K̂0 and K̂1 and
sharp bounds for their action on L1 and L2 functions. Once these preparations are
made, we then write (1.10) into an integral form and apply the continuity argument.
We need a suitable functional setting for the initial data. Let a∈N be a sufficiently
large positive integer, say a>8 and define X0 to be the Sobolev space, equipped with
the norm

‖(ω0,θ0)‖X0
,‖〈∇〉a(ω0,θ0)‖L2 +‖〈∇〉4(ω0,θ0)‖L1 +‖〈∇〉4(ω1,θ1)‖L1

+‖Λ−1(ω0,θ0)‖L1 +‖Λ−1(ω1,θ1)‖L1 +‖Λ−2θ0‖L1 +‖Λ−2θ1‖L1 ,
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where (ω1,θ1) is given by (1.9) and 〈∇〉 denotes the inhomogeneous derivative,

〈∇〉, (I−∆)
1
2 .

We set the Banach space X as the working space for the solution (ω,θ) to system (1.5)
equipped with the following norm

‖(ω,θ)‖X = sup
t≥1

{
t−ε‖〈∇〉aω,〈∇〉aθ‖L2 + t

1
4 ‖〈∇〉2θ‖L2 + t

1
4 ‖Λ−1ω‖L2

+ t
1
4 ‖〈∇〉2Λ−1θ‖L2 + t

3
4 ‖∂x〈∇〉ω‖L2 + t

3
4 ‖∂x〈∇〉2θ‖L2

+ t
5
4 ‖∂xx〈∇〉θ‖L2 + t

3
4 ‖∂xΛ−1θ‖L2 + t

7
8 ‖∂xxΛ−2θ‖L2

+ t
5
4 ‖∂t〈∇〉2ω‖L2 + t

5
4 ‖∂tθ‖L2 + t

5
4 ‖∂tΛ−1ω‖L2

}
. (1.14)

The time weights in (1.14) except the first term are based on the decay properties of
the kernels K0 and K1. With these preparations at our disposal, we can state our main
result as follows. For notational convenience, we write A.B for the statement that
A≤CB for some absolute constant C>0.

Theorem 1.1. There exists a small number ε0>0 such that, if the initial data (ω0,θ0)
satisfies

‖(ω0,θ0)‖X0
≤ ε0,

then there exists a unique global solution (ω,θ) to system (1.5) or (1.10) with

(ω,θ)∈X, P ∈C([1,∞);Ha(R2)). (1.15)

Moreover, the following decay estimates hold:

‖ω(t)‖L∞xy . ε0t
−1, ‖θ(t)‖L∞xy . ε0t

− 1
2 , ‖P (t)‖L∞xy . ε0t

− 1
4 . (1.16)

To prove Theorem 1.1, we make use of the following continuity argument.

Lemma 1.1. Assume the initial data (ω0,θ0)∈X0 and the solution (ω,θ) given by
(1.10) fulfills the following condition

‖(ω,θ)‖X .‖(ω0,θ0)‖X0
+Q(‖(ω,θ)‖X), (1.17)

where Q(z)≥Czβ for z.1 and β>1. Then there exists ε0>0 such that, if

‖(ω0,θ0)‖X0 . ε0,

then (1.10) has a unique global solution (ω,θ)∈X and satisfies

‖(ω,θ)‖X . ε0.

To facilitate the proof of Lemma 1.1, we introduce a working space Y equipped
with the norm

‖(u,ω,θ)‖Y =‖(ω,θ)‖X +sup
t≥1

{
t
3
4 ‖〈∇〉ω‖L2 + t

3
4 ‖u1‖L2 + t

7
8 ‖u2‖L2

+t‖ω‖L∞+ t
5
4 ‖∂x〈∇〉ω‖L2

}
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and verify that the norm ‖(u,ω,θ)‖Y is bounded by ‖(ω,θ)‖X and Q(‖(ω,θ)‖X) with
Q(z) being of the form Czβ with β>1, as stated in the following lemma.

Lemma 1.2. Let X and Y be the Banach spaces with their norms being defined as the
above. Then

‖(u,ω,θ)‖Y .‖(ω,θ)‖X +Q(‖(ω,θ)‖X). (1.18)

As a consequence of Lemma 1.2, to prove (1.17), it suffices to verify

‖(ω,θ)‖X .‖(ω0,θ0)‖X0
+Q(‖(u,ω,θ)‖Y ). (1.19)

So the proof of Theorem 1.1 is reduced to establishing (1.18) in Lemma 1.2 and (1.19).

The Boussinesq equations have attracted considerable interest recently and there are
substantial developments. Physically the Boussinesq equations are important models
in the study of geophysical fluids and the Rayleigh-Bénard convection (see, e.g., [14,17,
22, 23, 27, 42, 43, 45, 51]). Mathematically they share many similar properties with the
3D Navier-Stokes and the 3D Euler equations such as the vortex stretching mechanism,
which is believed to be the primary reason for any potential finite-time blowup [41].
The significance of the Boussinesq equations has made them the subject of numerous
investigations. The global regularity problem and the issue of stability near physically
relevant equilibria are among the most prominent topics on the Boussinesq equations,
especially when there is only partial or fractional dissipation. Important progress has
been made on both topics (see, e.g., [1–5, 8–21, 24–26, 28–40, 44, 46, 49, 50, 52–54, 56–
63]). It is hoped that the results presented in this paper will help lead to a better
understanding of the hydrostatic equilibrium.

We remark that Wu, Wu and Xu [55] studied the global solution of a magnetohy-
drodynamic (MHD) system near a background magnetic field and skillfully solved the
small data global well-posedness problem there. We take advantage of some of the tools
developed in [55]. Although there are resemblances between the linear part of (1.10)
and that of the MHD system, there are a few differences between the Boussinesq-Bénard
system and the MHD system in [55]. First, the equation of θ in (1.1) involves ∆u2 while
the magnetic stream function in [55] depends on u2. As a consequence, the functional
setting for θ involves Sobolev spaces of negative indices, as in the definitions of X0 and
X. Second, ω and θ naturally form a self-contained system, as in (1.10) and it suffices
to understand this system of two scalar functions. There are some other differences as
well such as the nonlinear terms.

The rest of this paper is divided into five sections. The second section provides the
derivation of the integral representation (1.13) for the convenience of the readers. In
addition, decay rates of K0 and K1 and some estimates of K0 and K1 acting on L1 and
L2 functions are also listed here. The third section verifies (1.18). The fourth section
shows that

sup
t≥1

t−ε‖〈∇〉a(ω,θ)‖L2 .‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y ),

which fulfills part of the proof for (1.19). Section 5 serves as a preparation for Section
6. It estimates the nonlinear terms and provides bounds for various Sobolev norms of
these terms. Section 6 completes the proof of (1.19) via the integral representation in
(1.13) and thus finishes the proof of Theorem 1.1.
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2. Integral representation and properties of kernel functions
This section serves as a preparation. We derive the integral representation in (1.13)

and list several estimates on the kernel functions K0 and K1.

Lemma 2.1. The solution of the degenerate damped wave equation{
∂ttf+∂tf−∂xxf =F,

f(1,x,y) =f0(x,y), ∂tf(1,x,y) =f1(x,y)

can be written in the integral form

f(t,x,y) =K0(t,∂x)f0 +K1(t,∂x)

(
1

2
f0 +f1

)
+

∫ t

1

K1(t−s,∂x)F (s,x,y)ds,

where K0 and K1 are Fourier multiplier operators given by

K̂0(t,ξ) =
1

2

(
e

(
− 1

2+
√

1
4−ξ2

)
(t−1) +e

(
− 1

2−
√

1
4−ξ2

)
(t−1)

)
, (2.1)

K̂1(t,ξ) =
1

2
√

1
4−ξ2

(
e

(
− 1

2+
√

1
4−ξ2

)
(t−1)−e

(
− 1

2−
√

1
4−ξ2

)
(t−1)

)
. (2.2)

Proof. We decompose the second-order operator into first-order time operators,

∂ttf+∂tf−∂xxf =

(
∂t+

1

2
− 1

2

√
1+4∂2x

)(
∂t+

1

2
+

1

2

√
1+4∂2x

)
f = 0.

Therefore ∂ttf+∂tf−∂xxf = 0 can be written as
(
∂t+

1
2−

1
2

√
1+4∂2x

)
g= 0,(

∂t+
1
2 + 1

2

√
1+4∂2x

)
f =g

or 
(
∂t+

1
2 + 1

2

√
1+4∂2x

)
h= 0,(

∂t+
1
2−

1
2

√
1+4∂2x

)
f =h.

Clearly,

g(t,x,y) =e

(
− 1

2+
1
2

√
1+4∂2

x

)
(t−1)g(1,x,y),

h(t,x,y) =e

(
− 1

2−
1
2

√
1+4∂2

x

)
(t−1)h(1,x,y).

Therefore,

f(t,x,y) =
1√

1+4∂2x
(g(t,x,y)−h(t,x,y))

=
1√

1+4∂2x

(
e

(
− 1

2+
1
2

√
1+4∂2

x

)
(t−1)g(1,x,y)−e

(
− 1

2−
1
2

√
1+4∂2

x

)
(t−1)h(1,x,y)

)
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with

g(1,x,y) =f1 +

(
1

2
+

1

2

√
1+4∂2x

)
f0, h(1,x,y) =f1 +

(
1

2
− 1

2

√
1+4∂2x

)
f0.

Regrouping the terms in the representation of f above yields the desired formula for f .
This completes the proof of Lemma 2.1.

The integral representation stated in Lemma 2.1 will be applied to (1.10) and also
to the system for (Λ−1ω,Λ−1θ), which satisfies{

∂ttΛ
−1ω+∂tΛ

−1ω−∂xxΛ−1ω=F3,

∂ttΛ
−1θ+∂tΛ

−1θ−∂xxΛ−1θ=F4,
(2.3)

where {
F3 =−∂xΛ−1∇·(uθ)−∂tΛ−1∇·(uω),

F4 =−∂xΛ−1∇·(uω)−∂tΛ−1∇·(uθ)−Λ−1∇·(uθ).
(2.4)

As a preparation for the estimates in the subsequent sections, the following lemma
provides some decay estimates on K0 and K1. These estimates are derived in [55].

Lemma 2.2. Let K0,K1 be defined as above. Then for any α>0, 1≤ q≤∞, i= 0,1,

(1) ‖|ξ|αK̂i(t,·)‖Lqξ(|ξ|≤ 1
2 )
. 〈t〉−

1
2 (

1
q+α),

(2) ‖∂tK̂i(t,·)‖Lqξ(|ξ|≤ 1
2 )
. 〈t〉−1−

1
2q ,

(3) |K̂i(t,ξ)|.e−
1
2 t, for any |ξ|≥ 1

2
,

(4) |〈ξ〉−1∂tK̂0(t,ξ)|, |∂tK̂1(ξ)|.e− 1
2 t, for any |ξ|≥ 1

2
.

(2.5)

We list several bounds on K0 and K1 when acting on L1 and L2 functions. These
bounds can be found in [55].

Lemma 2.3. Assume that ‖K̂(t,·)‖L∞ is bounded. Then, for any Schwartz function
f , we have

‖K(t,∂x)f‖L2
xy

.‖K̂(t,ξ)‖L∞ξ ‖f‖L2
xy
.

Lemma 2.4. Assume that ‖K̂(t,·)‖L2 is bounded. Then, for any Schwartz function f ,
we have

‖K(t,∂x)f‖L2
xy

.‖K̂(t,ξ)‖L2
ξ
‖Λ 1

2−ε〈∇〉2εf‖L1
xy
.

Lemma 2.5. Assume that ‖K̂(t,·)‖L∞ is bounded. Then, for any Schwartz function
f , we have

‖K(t,∂x)f‖L2
xy

.‖K̂(t,ξ)‖L∞ξ ‖Λ
1
2−ε〈∇〉 12+2εf‖L1

xy
.

As a consequence of Lemma 2.4 and Lemma 2.5, we have the following corollary.
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Corollary 2.1. Assume the Fourier multiplier operator K(t,∂x) satisfies, for some
α≥0,

‖∂̂αxK(t,ξ)‖L2(|ξ|≤ 1
2 )
<∞, ‖K̂(t,ξ)‖L∞(|ξ|≥ 1

2 )
<∞.

Then, for any Schwartz function f and any ε>0,

‖∂αxK(t,∂x)f‖L2
xy

. (‖∂̂αxK(t,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖K̂(t,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)

×‖〈∇〉α+ 1
2+2εΛ

1
2−εf‖L1

xy
.

3. Verifying Lemma 1.2
This section and the subsequent three sections are devoted to the proof of Theorem

1.1. As aforementioned, the proof of Theorem 1.1 is reduced to the proof of (1.18) in
Lemma 1.2 and (1.19). This section verifies (1.18), namely

‖(u,ω,θ)‖Y .‖(ω,θ)‖X +Q(‖(ω,θ)‖X).

Due to the definitions of X and Y , it suffices to check that

sup
t≥1

{
t
3
4 ‖〈∇〉ω‖L2 + t

3
4 ‖u1‖L2 + t

7
8 ‖u2‖L2 + t‖ω‖L∞+ t

5
4 ‖∂x〈∇〉ω‖L2

}
.‖(ω,θ)‖X +Q(‖(ω,θ)‖X). (3.1)

We start with the first term in (3.1). Noticing that u=∇⊥∆−1ω, we have

‖u‖L2 =‖∇⊥∆−1ω‖L2 =‖Λ−1ω‖L2 .

It follows from the basic inequality

‖f‖L∞(R)≤
√

2‖f‖
1
2

L2(R)‖f
′‖

1
2

L2(R)

that

‖u‖L∞(R2).‖u‖
1
4

L2‖∂xu‖
1
4

L2‖∂yu‖
1
4

L2‖∂xyu‖
1
4

L2

.‖Λ−1ω‖
1
4

L2‖ω‖
1
2

L2‖∂xω‖
1
4

L2 .

where L∞ and L2 are abbreviated for L∞(R2) and L2(R2), respectively. Unless oth-
erwise stated, this convention is assumed throughout the rest of the paper. By an
interpolation inequality and Young’s inequality,

‖ω‖L2 ≤‖∂tω‖L2 +‖u ·∇ω‖L2 +‖∂xθ‖L2

≤‖∂tω‖L2 +‖u‖L∞‖∇ω‖L2 +‖∂xθ‖L2

≤‖∂tω‖L2 +‖Λ−1ω‖
1
4

L2‖ω‖
1
2

L2‖∂xω‖
1
4

L2‖ω‖
1− 1

a

L2 ‖∇aω‖
1
a

L2 +‖∂xθ‖L2

≤‖∂tω‖L2 +‖Λ−1ω‖
1
4

L2‖ω‖
7
8

L2‖∂xω‖
1
4

L2‖ω‖
5
8−

1
a

L2 ‖∇aω‖
1
a

L2 +‖∂xθ‖L2

≤‖∂tω‖L2 +
1

2
‖ω‖L2 +‖Λ−1ω‖2L2‖∂xω‖2L2‖〈∇〉aω‖5L2 +‖∂xθ‖L2 .

By the definition of X,

‖ω‖L2 .‖∂tω‖L2 +‖Λ−1ω‖2L2‖∂xω‖2L2‖〈∇〉aω‖5L2 +‖∂xθ‖L2

.s−
5
4 ‖(ω,θ)‖X +s(−

1
4×2−

3
4×2+5ε)‖(ω,θ)‖7X +s−

3
4 ‖(ω,θ)‖X

.s−
3
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)),
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where − 1
2−

3
2 +5ε≤− 3

4 and Q(b) = b7. Therefore,

‖ω‖L∞ ≤‖ω‖
1
4

L2‖∂xω‖
1
4

L2‖∂yω‖
1
4

L2‖∂xyω‖
1
4

L2

≤‖ω‖
1
4

L2‖∇ω‖
1
2

L2‖∇2ω‖
1
4

L2

≤‖ω‖
1
4

L2‖ω‖
1
2 (1−

1
a )

L2 ‖∇aω‖
1
2a

L2‖ω‖
1
4 (1−

2
a )

L2 ‖∇aω‖
1
2a

L2

≤‖ω‖1−
1
a

L2 ‖∇aω‖
1
a

L2

.s−
3
4 (1−

1
a )sε

1
a (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
5
8 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)),

where a and ε satisfy − 1
8 + 1

a ( 3
4 +ε)≤0. This is a preliminary estimate for ‖ω‖L∞ and a

better decay rate will be provided later. By an interpolation inequality and the Sobolev
embedding,

‖∇ω‖L∞ .‖ω‖1−
1
a−2

L∞ ‖∇a−2ω‖
1
a−2

L∞

.‖ω‖1−
1
a−2

L∞ ‖〈∇〉aω‖
1
a−2

L∞

.s−
5
8 (1−

1
a−2 )+ε

1
a−2 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
1
2 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)), (3.2)

when − 5
8 (1− 1

a−2 )+ε 1
a−2 ≤−

1
2 . Similarly,

‖∇2ω‖L∞ .s−
1
2 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).

To bound ‖∂xω‖L2 , we apply ∂x to the vorticity equation in (1.5) to get

∂t∂xω+∂xu ·∇ω+u ·∇∂xω+∂xω=∂xxθ.

Therefore,

‖∂xω‖L2 ≤‖∂t∂xω‖L2 +‖∂xu ·∇ω‖L2 +‖u ·∇∂xω‖L2 +‖∂xxθ‖L2

≤‖∂t∂xω‖L2 +‖∂xu‖L2‖∇ω‖L∞+‖u‖L∞‖∂x∇ω‖L2 +‖∂xxθ‖L2

≤‖∂t∂xω‖L2 +‖ω‖L2‖∇ω‖L∞+‖Λ−1ω‖
1
4

L2‖ω‖
1
2

L2‖∂xω‖
1
4

L2‖ω‖
1− 2

a

L2 ‖∇aω‖
2
a

L2

+‖∂xxθ‖L2

≤‖∂t∂xω‖L2 +‖ω‖L2‖∇ω‖L∞+‖Λ−1ω‖
1
3

L2‖ω‖
2
3

L2‖ω‖
4
3−

8
3a

L2 ‖〈∇〉aω‖
8
3a

L2

+
1

2
‖∂xω‖L2 +‖∂xxθ‖L2 .

Then, by the definition of ‖(ω,θ)‖X , we get

‖∂xω‖L2

.‖∂t∇ω‖L2 +‖ω‖L2‖∇ω‖L∞+‖Λ−1ω‖
1
3

L2‖ω‖
2− 8

3a

L2 ‖〈∇〉aω‖
8
3a

L2 +‖∂xxθ‖L2

. (s−
5
4 +s−

3
4−

1
2 +s−

1
12−

5
4 +s−

5
4 )(‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
5
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).
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Applying ∇ to the vorticity equation in (1.5), we obtain

∂t∇ω+∇u ·∇ω+u ·∇2ω+∇ω=∂x∇θ.

By Young’s inequality,

‖∇ω‖L2 ≤‖∂t∇ω‖L2 +‖∇u ·∇ω‖L2 +‖u ·∇2ω‖L2 +‖∂x∇θ‖L2

≤‖∂t∇ω‖L2 +‖∇u‖L2‖∇ω‖L∞+‖u‖L∞‖∇2ω‖L2 +‖∂x∇θ‖L2

≤‖∂t∇ω‖L2 +‖ω‖L2‖∇ω‖L∞+‖Λ−1ω‖
1
4

L2‖ω‖
1
2

L2‖∂xω‖
1
4

L2‖ω‖
1− 2

a

L2 ‖∇aω‖
2
a

L2

+‖∂x∇θ‖L2

≤‖∂t∇ω‖L2 +‖ω‖L2‖∇ω‖L∞+‖Λ−1ω‖
1
3

L2‖ω‖
2
3

L2‖ω‖
4
3−

8
3a

L2 ‖〈∇〉aω‖
8
3a

L2

+
1

2
‖∇ω‖L2 +‖∂x∇θ‖L2 .

Then by the definition of ‖(ω,θ)‖X , we obtain

‖∇ω‖L2

.‖∂t∇ω‖L2 +‖ω‖L2‖∇ω‖L∞+‖Λ−1ω‖
1
3

L2‖ω‖
2− 8

3a

L2 ‖〈∇〉aω‖
8
3a

L2 +‖∂x∇θ‖L2

. (s−
5
4 +s−

3
4−

1
2 +s−

1
12−

5
4 +s−

3
4 )(‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
3
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)). (3.3)

Next we deal with the term ‖∂x∇ω‖L2 . Applying ∂x∇ to the vorticity equation in (1.5),
we have

∂t∂x∇ω+∂x∇u ·∇ω+∇u ·∇∂xω+∂xu ·∇2ω+u ·∇2∂xω+∂x∇ω=∂xx∇θ.

Taking the L2-norm yields

‖∂x∇ω‖L2 ≤‖∂t∂x∇ω‖L2 +‖∂x∇u ·∇ω‖L2 +‖∇u ·∇∂xω‖L2 +‖∂xu ·∇2ω‖L2

+‖u ·∇2∂xω‖L2 +‖∂xx∇θ‖L2 . (3.4)

By the definition of ‖(ω,θ)‖X , we have

‖∂t∂x∇ω‖L2 .‖∂t∇2ω‖L2 .s−
5
4 ‖(ω,θ)‖X , ‖∂xx∇θ‖L2 .s−

5
4 ‖(ω,θ)‖X ,

‖∂x∇u ·∇ω‖L2 .‖∂xω‖L2‖∇ω‖L∞

.s−
5
4−

1
2 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
7
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)),

‖∇u ·∇∂xω‖L2 .‖ω‖L2‖∇2ω‖L∞

.s−
3
4−

1
2 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
5
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)),

‖∂xu ·∇2ω‖L2 .‖ω‖L2‖∇2ω‖L∞

.s−
3
4−

1
2 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
5
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))
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and

‖u ·∇2∂xω‖L2 .‖u‖L∞‖∂x∇2ω‖L2

.‖Λ−1ω‖
1
4

L2‖ω‖
1
2

L2‖∂xω‖
1
4

L2‖∂xω‖
a−3
a−1

L2 ‖∂x〈∇〉a−1ω‖
a−3
a−1

L2

.s−
5
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).

Inserting these estimates in (3.4) leads to

‖∂x∇ω‖L2 .s−
5
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).

Using the estimate obtained above, we can calculate the decay estimate of ‖ω‖L∞ again
with a better decay rate,

‖ω‖L∞ ≤‖ω‖
1
4

L2‖∂xω‖
1
4

L2‖∂yω‖
1
4

L2‖∂xyω‖
1
4

L2

.s
1
4×(−

3
4−

5
4−

3
4−

5
4 )(‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−1(‖(ω,θ)‖X +Q(‖(ω,θ)‖X)). (3.5)

In order to obtain the decay estimate of ‖u‖L2 , we make use of the structure of system
(1.5) and the boundedness of Riesz transforms. Applying Λ−1 to the first equation of
(1.5), we have

∂tΛ
−1ω+Λ−1∇·(uω)+Λ−1ω=∂xΛ−1θ. (3.6)

By the boundedness of the Riesz transform in L2, we have

‖Λ−1ω‖L2 ≤‖∂tΛ−1ω‖L2 +‖Λ−1∇·(uω)‖L2 +‖∂xΛ−1θ‖L2

≤‖∂tΛ−1ω‖L2 +C‖uω‖L2 +‖∂xΛ−1θ‖L2

≤‖∂tΛ−1ω‖L2 +C‖Λ−1ω‖L2‖ω‖L∞+‖∂xΛ−1θ‖L2

≤‖∂tΛ−1ω‖L2 +C‖Λ−1ω‖L2‖ω‖L∞+‖∂xΛ−1θ‖L2

. (s−
5
4 +s−

1
4−1 +s−

3
4 )(‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

.s−
3
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).

Therefore,

‖u‖L2 =‖∇⊥∆−1ω‖L2 =‖Λ−1ω‖L2 .s−
3
4 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).

Noticing that u2 =∂x∆−1ω and using the first equation of (1.5), we have

u2 =−∂t∂xΛ−2ω+∂xΛ−2(u ·∇ω)+∂xxΛ−2θ.

According to the boundedness of Riesz transform, divergence-free condition of u and
Hölder inequality, we obtain

‖u2‖L2 .‖∂tΛ−1ω‖L2 +‖uω‖L2 +‖∂xxΛ−2θ‖L2

.‖∂tΛ−1ω‖L2 +‖u‖L∞‖ω‖L2 +‖∂xxΛ−2θ‖L2

.s−
7
8 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)).



JIAHONG WU, XIAOJING XU AND NING ZHU 2337

A special consequence of the estimates above is the following bound for ‖u‖L∞ , which
will be used in a subsequent section.

‖u‖L∞ .‖u‖
1
4

L2‖∂xu‖
1
4

L2‖∂yu‖
1
4

L2‖∂xyu‖
1
4

L2

.s−
1
4 (

3
4+

3
4+

3
4+

5
4 ) (‖(ω,θ)‖X +Q(‖(ω,θ)‖X))

=s−
7
8 (‖(ω,θ)‖X +Q(‖(ω,θ)‖X)). (3.7)

Thus we have verified (3.1).

4. Estimate for ‖〈∇〉a(ω,θ)‖L2

This section and the rest two sections continue the proof of Theorem 1.1. The goal
is to prove

‖(ω,θ)‖X .‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y ).

This section verifies

sup
t≥1

t−ε‖〈∇〉a(ω,θ)‖L2 .‖(ω0,θ0)‖X0
+Q(‖(u,ω,θ)‖Y ).

To do so, we first derive the L2 bound of (ω,θ). Taking the L2-inner product of the first
two equations of (1.5) with (ω, θ) yields

1

2

d

dt
(‖ω(t)‖2L2 +‖θ(t)‖2L2)+‖ω‖2L2 =

∫
R2

∂xθω+∂xωθ dxdy= 0.

Integrating from 1 to t with respect to the time variable leads to

sup
t≥1

t−ε‖(ω,θ)‖2L2 .‖(ω0,θ0)‖2L2 .‖(ω0,θ0)‖X0 . (4.1)

Next we establish the high-order energy estimate. Applying ∇a to (1.5), we have{
∂t∇aω+[∇a,u ·∇]ω+u ·∇∇aω+∇aω=∂x∇aθ,
∂t∇aθ+[∇a,u ·∇]θ+u ·∇∇aθ=∂x∇aω,

(4.2)

where we have used the commutator notation

[f,g] =fg−gf.

Taking the L2-inner product of (4.2) with (∇aω,∇aθ) yields

1

2

d

dt
(‖∇aω‖2L2 +‖∇aθ‖2L2)+‖∇aω‖2L2

=−
∫
R2

[∇a,u ·∇]ω ·∇aω dxdy− [∇a,u ·∇]θ ·∇aθ dxdy

.‖[∇a,u ·∇]ω‖L2‖∇aω‖L2 +‖[∇a,u ·∇]θ‖L2‖∇aθ‖L2

. (‖∇au‖L2‖∇ω‖L∞+‖∇aω‖L2‖∇u‖L∞)‖∇aω‖L2

+(‖∇au‖L2‖∇θ‖L∞+‖∇aθ‖L2‖∇u‖L∞)‖∇aθ‖L2 .

.‖∇aω‖
a−1
a

L2 ‖ω‖
1
a

L2(‖∇ω‖L∞‖∇aω‖L2 +‖∇θ‖L∞‖∇aθ‖L2)

+
1

4
‖∇aω‖2L2 +(‖∇u‖2L∞+‖∇u‖L∞)(‖∇aω‖2L2 +‖∇aθ‖2L2)

.‖ω‖
2
a+1

L2 (‖∇ω‖L∞‖∇aω‖L2 +‖∇θ‖L∞‖∇aθ‖L2)
2a
a+1

+
1

2
‖∇aω‖2L2 +(‖∇u‖2L∞+‖∇u‖L∞)(‖∇aω‖2L2 +‖∇aθ‖2L2).
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Here we have used the standard commutator estimate

‖[∇a,f ·∇]g‖L2 .‖∇f‖L∞‖∇ag‖L2 +‖∇g‖L∞‖∇af‖L2

and the interpolation formula

‖∇au‖L2 ≈‖∇a−1ω‖L2 .‖∇aω‖1−
1
a

L2 ‖ω‖
1
a

L2 .

Thus

1

2

d

dt
(‖∇aω‖2L2 +‖∇aθ‖2L2).‖ω‖

2
a+1

L2 (‖∇ω‖L∞‖∇aω‖L2 +‖∇θ‖L∞‖∇aθ‖L2)
2a
a+1

+(‖∇u‖2L∞+‖∇u‖L∞)(‖∇aω‖2L2 +‖∇aθ‖2L2).

Integrating from 1 to t with respect to the time variable, we have

‖∇aω‖2L2 +‖∇aθ‖2L2

.‖∇aω0‖2L2 +‖∇aθ0‖2L2 +

∫ t

1

(‖∇u‖2L∞+‖∇u‖L∞)(‖∇aω‖2L2 +‖∇aθ‖2L2) ds

+

∫ t

1

‖ω‖
2
a+1

L2 (‖∇ω‖L∞‖∇aω‖L2 +‖∇θ‖L∞‖∇aθ‖L2)
2a
a+1 ds.

By the definition of ‖(u,ω,θ)‖Y ,

‖∇θ‖L∞ .‖∇θ‖
1
4

L2‖∂x∇θ‖
1
4

L2‖∂y∇θ‖
1
4

L2‖∂xy∇θ‖
1
4

L2

.‖〈∇〉2θ‖
1
2

L2‖∂x〈∇〉2θ‖
1
2

L2

.s−
1
4×

1
2−

3
4×

1
2 ‖(u,ω,θ)‖Y

.s−
1
2 ‖(u,ω,θ)‖Y . (4.3)

Invoking the estimates in (3.2), (3.3) and (4.3), we find∫ t

1

‖ω‖
2
a+1

L2 (‖∇ω‖L∞‖∇aω‖L2 +‖∇θ‖L∞‖∇aθ‖L2)
2a
a+1 ds

.
∫ t

1

s−
3

2(a+1) (s−1+ε+s−
1
2+ε)

2a
a+1 ds(‖(u,ω,θ)‖4−

2
a+1

Y +Q(‖(u,ω,θ)‖Y ))

.
∫ t

1

s−1+2εds(‖(u,ω,θ)‖4−
2
a+1

Y +Q(‖(u,ω,θ)‖Y ))

. t2ε(‖(u,ω,θ)‖4−
2
a+1

Y +Q(‖(u,ω,θ)‖Y )). (4.4)

As for the term ‖∇u‖L∞ , the definition of ‖(u,ω,θ)‖Y yields that

‖∇u‖L∞ .‖∇u‖
1
4

L2‖∂x∇u‖
1
4

L2‖∂y∇u‖
1
4

L2‖∂xy∇u‖
1
4

L2

.‖ω‖
1
4

L2‖∂xω‖
1
4

L2‖∇ω‖
1
4

L2‖∂x∇ω‖
1
4

L2

.s
1
4×(−

3
4−

5
4−

3
4−

5
4 )‖(u,ω,θ)‖Y

.s−1‖(u,ω,θ)‖Y .
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Thus ∫ t

1

(‖∇u‖2L∞+‖∇u‖L∞)(‖∇aω‖2L2 +‖∇aθ‖2L2) ds

. t2ε(‖(u,ω,θ)‖3Y +‖(u,ω,θ)‖4Y ). (4.5)

Therefore

‖∇aω‖2L2+‖∇aθ‖2L2 .‖∇aω0‖2L2 +‖∇aθ0‖2L2

+ t2ε(‖(u,ω,θ)‖3Y +‖(u,ω,θ)‖4−
2
a+1

Y +‖(u,ω,θ)‖4Y +Q(‖(u,ω,θ)‖Y )). (4.6)

Then we deduce that

sup
t≥1

t−ε‖∇a(ω,θ)‖L2 .‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y ). (4.7)

Combining (4.1) and (4.7), we obtain

sup
t≥1

t−ε‖〈∇〉a(ω,θ)‖L2 .‖(ω0,θ0)‖X0
+Q(‖(u,ω,θ)‖Y ). (4.8)

5. Estimates for the nonlinear terms
This section serves as a preparation for the estimates to be presented in the subse-

quent section. We bound various Sobolev norms of the nonlinear terms Fi for i= 1,2,3,4
defined in (1.8) and (2.4). The Littlewood-Paley techniques will be employed. We give
a brief introduction to Littlewood-Paley theory. Let φ(ξ) be a smooth bump function
supported in the ball |ξ|≤2 and equal to 1 on the ball |ξ|≤1. For any real number
N >0 and f ∈S ′ (tempered distributions), projection operators are defined as follows:

P̂≤Nf(ξ), φ

(
ξ

N

)
f̂(ξ),

P̂>Nf(ξ),

(
1−φ

(
ξ

N

))
f̂(ξ),

P̂Nf(ξ),

(
φ

(
ξ

N

)
−φ
(

2
ξ

N

))
f̂(ξ).

P<N and P≥N are similarly defined. The following Bernstein inequalities play an im-
portant role in the process of estimating the nonlinear terms (see, e.g., [6, 7]).

Lemma 5.1 (Bernstein Inequalities). Let α≥0 and N >0 be real numbers and let
1≤p≤ q≤∞. Then there exist three constants C1,C2,C3 such that

‖ΛαP≤Nf‖Lq(Rd)≤C1N
α+d( 1

p−
1
q )‖P≤Nf‖Lp(Rd),

C2N
α‖PNf‖Lq(Rd)≤‖ΛαPNf‖Lq(Rd)≤C3N

α‖PNf‖Lq(Rd).

Our first lemma bounds F1.

Lemma 5.2. For any s≥1,

‖〈∇〉5Λ
1
2−εF1(s,·)‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ), (5.1)

where ε is same as in Corollary 2.1 and ε is same as in the definition of X-norm defined
in (1.14).
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Proof. We recall that F1 is given by

F1 =−∂x(u ·∇θ)−∂t(u ·∇ω)

=−∂xu ·∇θ−u ·∇∂xθ−∂tu ·∇ω−u ·∇∂tω
,F11 +F12 +F13 +F14.

For F11(u,θ), we divide it into three parts via the frequency decomposition defined
above

F11 =−∂x(1−P≤sδ)u ·∇θ−∂xP≤sδu ·∇(1−P≤sδ)θ−∂xP≤sδu ·∇P≤sδθ. (5.2)

For the first high-frequency part, we have

‖〈∇〉5Λ
1
2−ε(∂x(1−P≤sδ)u ·∇θ)‖L1

xy

.‖〈∇〉6(∂xP&sδu ·∇θ)‖L1
xy

.‖〈∇〉6∂xP&sδu‖L2
xy
‖〈∇〉6∇θ‖L2

xy

.‖〈∇〉7P&sδu‖L2
xy
‖〈∇〉7θ‖L2

xy

.s−(a−7)δ‖〈∇〉aP&sδu‖L2
xy
‖〈∇〉aθ‖L2

xy

.s−
3
2−εQ(‖(u,ω,θ)‖Y )

for large a and small δ. For the second high-frequency part in (5.2), we can bound it in
the same way. For sufficiently large a,

‖〈∇〉5Λ
1
2−ε(∂xP≤sδu ·∇(1−P≤sδ)θ)‖L1

xy

.‖〈∇〉6(∂xP.sδu ·∇P&sδθ)‖L1
xy

.‖〈∇〉6∂xP.sδu‖L2
xy
‖〈∇〉6∇P&sδθ‖L2

xy

.‖〈∇〉7P.sδu‖L2
xy
‖〈∇〉7P&sδθ‖L2

xy

.s−(a−7)δ‖〈∇〉aP.sδu‖L2
xy
‖〈∇〉aP&sδθ‖L2

xy

.s−
3
2−εQ(‖(u,ω,θ)‖Y ).

For the low-frequency part in (5.2), we can bound it by

‖〈∇〉5Λ
1
2−ε(∂xP≤sδu ·∇P≤sδθ)‖L1

xy

.‖〈∇〉6P≤4sδ∂xP≤sδu ·∇P≤sδθ‖L1
xy

.s6δ(‖(P≤sδ∂xu1∂xP≤sδθ)‖L1
xy

+‖(P≤sδ∂xu2∂yP≤sδθ)‖L1
xy

)

.s6δ‖ω‖L2
xy
‖∂xθ‖L2

xy
+s7δ‖u2‖L2

xy
‖∂yθ‖L2

xy

. (s6δs−
3
4−

3
4 +s7δs−

7
8−

1
4 )Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y )

for δ small. Thus we proved

‖〈∇〉5Λ
1
2−εF11‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ). (5.3)

Along the same lines, we can also prove that

‖〈∇〉5Λ
1
2−εF1i‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ), i= 2,3,4. (5.4)
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For F12(u,θ), we again divide it into three parts

F12 =−(1−P≤sδ)u ·∇∂xθ−P≤sδu ·∇(1−P≤sδ)∂xθ−P≤sδu ·∇P≤sδ∂xθ.

Then, for the first high-frequency part, we have

‖〈∇〉5Λ
1
2−ε((1−P≤sδ)u ·∇∂xθ)‖L1

xy

.‖〈∇〉6(P&sδu ·∇∂xθ)‖L1
xy

.‖〈∇〉6P&sδu‖L2
xy
‖〈∇〉6∇∂xθ‖L2

xy

.‖〈∇〉6P&sδu‖L2
xy
‖〈∇〉8θ‖L2

xy

.s−(a−6)δ‖〈∇〉aP&sδu‖L2
xy
‖〈∇〉aθ‖L2

xy

.s−
3
2−εQ(‖(u,ω,θ)‖Y ),

for large enough a and small δ. For the second high-frequency part, we can bound it by

‖〈∇〉5Λ
1
2−ε(P≤sδu ·∇(1−P≤sδ)∂xθ)‖L1

xy

.‖〈∇〉6(P.sδu ·∇P&sδ∂xθ)‖L1
xy

.‖〈∇〉6P.sδu‖L2
xy
‖〈∇〉6∇P&sδ∂xθ‖L2

xy

.‖〈∇〉6P.sδu‖L2
xy
‖〈∇〉6P&sδθ‖L2

xy

.s−(a−8)δ‖〈∇〉aP.sδu‖L2
xy
‖〈∇〉aP&sδθ‖L2

xy

.s−
3
2−εQ(‖(u,ω,θ)‖Y ).

For the low-frequency part, we can bound it by

‖〈∇〉5Λ
1
2−ε(P≤sδu ·∇P≤sδ∂xθ)‖L1

xy

.‖〈∇〉6P≤4sδ(P≤sδu ·∇P≤sδ∂xθ)‖L1
xy

.s6δ‖(P≤sδu ·∇P≤sδ∂xθ)‖L1
xy

.s6δ‖P≤sδu‖L2
xy
‖∇P≤sδ∂xθ‖L2

xy

.s7δ‖Λ−1ω‖L2
xy
‖∂xθ‖L2

xy

.s7δs−
3
4−

3
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

Thus we have shown

‖〈∇〉5Λ
1
2−εF12‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ). (5.5)

For F13(u,ω), we also divide it into three parts

F13 =−(1−P≤sδ)∂tu ·∇ω−P≤sδ∂tu ·∇(1−P≤sδ)ω−P≤sδ∂tu ·∇P≤sδω.

For the first high-frequency part, we have

‖〈∇〉5Λ
1
2−ε((1−P≤sδ)∂tu ·∇ω)‖L1

xy

.‖〈∇〉6(P&sδ∂tu ·∇ω)‖L1
xy

.‖〈∇〉6P&sδ∂tu‖L2
xy
‖〈∇〉6∇ω‖L2

xy
.
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By Lemma 5.1 and (1.5), we obtain

‖〈∇〉6P&sδ∂tu‖L2
xy

.s−(a−3)δ‖〈∇〉a−2∂tω‖L2
xy

.s−(a−3)δ‖〈∇〉a−2(∂xθ−ω−u ·∇ω)‖L2
xy

.s−(a−3)δsCε(‖(u,ω,θ)‖Y +Q(‖(u,ω,θ)‖Y )).

Therefore, combining two estimates above, we obtain

‖〈∇〉5Λ
1
2−ε((1−P≤sδ)∂tu ·∇ω)‖L1

xy
.s

3
2−εQ(‖(u,ω,θ)‖Y ).

for large enough a and small δ. Similarly, for the second high-frequency part,

‖〈∇〉5Λ
1
2−ε(P≤sδ∂tu ·∇(1−P≤sδ)ω)‖L1

xy
.s−

3
2−εQ(‖(u,ω,θ)‖Y ).

The low-frequency part is bounded by

‖〈∇〉5Λ
1
2−ε(P≤sδ∂tu ·∇P≤sδω)‖L1

xy

.‖〈∇〉6P≤4sδ(P≤sδ∂tu ·∇P≤sδω)‖L1
xy

.s6δ‖(P≤sδ∂tu ·∇P≤sδω)‖L1
xy

.s6δ‖P≤sδ∂tu‖L2
xy
‖∇P≤sδω‖L2

xy

.s7δ‖∂tΛ−1ω‖L2
xy
‖ω‖L2

xy

.s7δs−
5
4−

3
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

Thus we have proven

‖〈∇〉5Λ
1
2−εF13‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ). (5.6)

For F14(u,θ), we also divide it into three parts,

F14 =−(1−P≤sδ)u ·∇∂tω−P≤sδu ·∇(1−P≤sδ)∂tω−P≤sδu ·∇P≤sδ∂tω.

Then, for the first high-frequency part, we have

‖〈∇〉5Λ
1
2−ε((1−P≤sδ)u ·∇∂tω)‖L1

xy

.‖〈∇〉6(P&sδu ·∇∂tω)‖L1
xy

.‖〈∇〉6P&sδu‖L2
xy
‖〈∇〉6∇∂tω‖L2

xy

.‖〈∇〉6P&sδu‖L2
xy
‖〈∇〉7(∂xθ−ω−u ·∇ω)‖L2

xy

.s−(a−6)δ‖〈∇〉aP&sδu‖L2
xy
sCε(‖(u,ω,θ)‖Y +Q(‖(u,ω,θ)‖Y ))

.s−
3
2−εQ(‖(u,ω,θ)‖Y ),

for large enough a and small δ. Similarly, for the second high-frequency part,

‖〈∇〉5Λ
1
2−ε(P≤sδu ·∇(1−P≤sδ)∂tω)‖L1

xy
.s−

3
2−εQ(‖(u,ω,θ)‖Y ).
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For the low-frequency part, we can bound it by

‖〈∇〉5Λ
1
2−ε(P≤sδu ·∇P≤sδ∂tω)‖L1

xy

.‖〈∇〉6P≤4sδ(P≤sδu ·∇P≤sδ∂tω)‖L1
xy

.s6δ‖(P≤sδu ·∇P≤sδ∂tω)‖L1
xy

.s6δ‖P≤sδu‖L2
xy
‖∇P≤sδ∂tω‖L2

xy

.s7δ‖Λ−1ω‖L2
xy
‖∂tω‖L2

xy

.s7δs−
3
4−

5
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

Thus we have proven

‖〈∇〉5Λ
1
2−εF14‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ). (5.7)

This completes the proof of Lemma 5.2.

F2 admits a similar bound.

Lemma 5.3. For any s≥1,

‖〈∇〉5Λ
1
2−εF2(s,·)‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ), (5.8)

where ε is same as in Corollary 2.1 and ε is same as in the definition of X-norm in
(1.14).

Proof. We can rewrite F2 explicitly as

F2 =−∂x(u ·∇ω)−∂t(u ·∇θ)−u ·∇θ
=−∂xu ·∇ω−u ·∇∂xω−∂tu ·∇θ−u ·∇∂tθ−u ·∇θ
,F21 +F22 +F23 +F24 +F25.

It suffices to analyze u ·∇θ, which is the worst term in F2. Other terms can be treated in
the same way as in the proof of Lemma 5.2. We again use the frequency-decomposition
technique to handle this term. Firstly we can divide it into three parts

u ·∇θ=−(1−P≤sδ)u ·∇θ−P≤sδu ·∇(1−P≤sδ)θ−P≤sδu ·∇P≤sδθ.

So for the first high-frequency part, we have

‖〈∇〉5Λ
1
2−ε((1−P≤sδ)u ·∇θ)‖L1

xy

.‖〈∇〉6(P&sδu ·∇θ)‖L1
xy

.‖〈∇〉6P&sδu‖L2
xy
‖〈∇〉6∇θ‖L2

xy

.‖〈∇〉6P&sδu‖L2
xy
‖〈∇〉7θ‖L2

xy

.s−(a−6)δ‖〈∇〉aP&sδu‖L2
xy
‖〈∇〉aθ‖L2

xy

.s−
3
2−εQ(‖(u,ω,θ)‖Y )

for large enough a and small δ, say (a−6)δ≥ 3
2 +ε. Using the same method, one can

obtain the estimate for the second high-frequency part,

‖〈∇〉5Λ
1
2−ε(P≤sδu ·∇(1−P≤sδ)θ)‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ).



2344 STABILITY AND DECAY RATES FOR BOUSSINESQ-BÉNARD SYSTEM

For the low-frequency part,

‖〈∇〉5Λ
1
2−ε(P≤sδu ·∇P≤sδθ)‖L1

xy

.‖〈∇〉6P≤4sδ(P≤sδu ·∇P≤sδθ)‖L1
xy

.s6δ(‖P≤sδu1∂xP≤sδθ‖L1
xy

+‖P≤sδu2∂yP≤sδθ‖L1
xy

)

.s6δ(‖u1‖L2
xy
‖∂xθ‖L2

xy
+‖u2‖L2

xy
‖∂yθ‖L2

xy
)

.s6δ(s−
3
4−

3
4 +s−

7
8−

1
4 )Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

This finishes the proof of Lemma 5.3.

According to the boundness of Riesz transforms, we can also bound F3 and F4 in
the same way. The main result can be stated as follows.

Lemma 5.4. For any s≥1,

‖〈∇〉5Λ
1
2−εF3‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ), (5.9)

‖〈∇〉5Λ
1
2−εF4‖L1

xy
.s−1−εQ(‖(u,ω,θ)‖Y ), (5.10)

where ε is same as in Corollary 2.1 and ε is same as in the definition of X-norm in
(1.14).

In order to bound Λ−2θ, we need a decay estimate for the nonlinear term Λ−1F4,
which can be stated as follows.

Lemma 5.5. For any s≥1,

‖|∂x|
1
4 Λ−1F4(s,·)‖L2

xy
.s−1−εQ(‖(u,ω,θ)‖Y ), (5.11)

where |∂x|γ with a fractional power γ≥0 is defined via the Fourier transform

|̂∂x|γf(ξ,η) = |ξ|γ f̂(ξ,η)

and ε is same as in Corollary 2.1 and ε is same as in the definition of X-norm in
(1.14).

Proof. F4 is given by

F4 =−∂xΛ−1∇·(uω)−∂tΛ−1∇·(uθ)−Λ−1∇·(uθ)
=−Λ−1∇·(∂xuω)−Λ−1∇·(u∂xω)−Λ−1∇·(∂tuθ)
−Λ−1∇·(u∂tθ)−Λ−1∇·(uθ)

,F41 +F42 +F43 +F44 +F45. (5.12)

By the standard bounds for the Riesz transforms, Hardy-Littlewood-Sobolev inequality,
Hölder inequality and interpolation inequality,

‖|∂x|
1
4 Λ−1F41‖L2

xy
.‖Λ− 3

4 (∂xuω)‖L2
xy

.‖∂xuω‖
L

8
7
xy

.‖∂xu‖L2
xy
‖ω‖

L
8
3
xy

.‖∂xu‖L2
xy
‖ω‖

3
4

L2
xy
‖ω‖

1
4

L∞xy
.s−

3
4−

3
4×

3
4−

1
4Q(‖(u,ω,θ)‖Y )
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.s−1−εQ(‖(u,ω,θ)‖Y ).

Invoking the bound for ‖u‖L∞ in (3.7), we have

‖|∂x|
1
4 Λ−1F42‖L2

xy
.‖Λ− 3

4 (u∂xω)‖L2
xy

.‖u∂xω‖
L

8
7
xy

.‖∂xω‖L2
xy
‖u‖

L
8
3
xy

.‖∂xω‖L2
xy
‖u‖

3
4

L2
xy
‖u‖

1
4

L∞xy
.s−

3
4−

3
4×

3
4−

1
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

To bound F43, we invoke the bound

‖θ‖L∞ .‖θ‖
1
4

L2 ‖∂xθ‖
1
4

L2 ‖∂yθ‖
1
4

L2 ‖∂xyθ‖
1
4

L2

.s−
1
4 (

1
4+

3
4+

1
4+

3
4 )Q(‖(u,ω,θ)‖Y ) =s−

1
2 Q(‖(u,ω,θ)‖Y )

to obtain

‖|∂x|
1
4 Λ−1F43‖L2

xy
.‖Λ− 3

4 (∂tuθ)‖L2
xy

.‖∂tuθ‖
L

8
7
xy

.‖∂tu‖L2
xy
‖θ‖

L
8
3
xy

.‖∂tu‖L2
xy
‖θ‖

3
4

L2
xy
‖θ‖

1
4

L∞xy
.s−

5
4−

1
4×

3
4−

1
2×

1
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

‖|∂x|
1
4 Λ−1F44‖L2

xy
.‖Λ− 3

4 (u∂tθ)‖L2
xy

.‖u∂tθ‖
L

8
7
xy

.‖∂tθ‖L2
xy
‖u‖

L
8
3
xy

.‖∂tθ‖L2
xy
‖u‖

3
4

L2
xy
‖u‖

1
4

L∞xy
.s−

5
4−

3
4×

3
4−

1
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

‖|∂x|
1
4 Λ−1F45‖L2

xy
.‖Λ− 3

4 (uθ)‖L2
xy

.‖uθ‖
L

8
7
xy

.‖u‖L2
xy
‖θ‖

L
8
3
xy

.‖u‖L2
xy
‖u‖

3
4

L2
xy
‖θ‖

1
4

L∞xy
.s−

3
4−

3
4×

3
4−

1
2×

1
4Q(‖(u,ω,θ)‖Y )

.s−1−εQ(‖(u,ω,θ)‖Y ).

Collecting these estimates yield the desirable bound (5.11), which finishes the proof of
Lemma 5.5.

6. Proof of Equation (1.19)
This section completes the proof of Theorem 1.1. We continue to verify

‖(ω,θ)‖X .‖(ω0,θ0)‖X0
+Q(‖(u,ω,θ)‖Y ).

For the sake of clarity, we divide this section into several subsections, each dealing with
some of the terms in ‖(ω,θ)‖X .

6.1. Estimates of ‖〈∇〉2θ‖L2 , ‖Λ−1ω‖L2 and ‖〈∇〉2Λ−1θ‖L2 . Using Duhamel’s
formula,

θ(t,x,y) =K0(t,∂x)θ0 +K1(t,∂x)

(
1

2
θ0 +θ1

)
+

∫ t

1

K1(t−s,∂x)F2(s)ds. (6.1)
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For notational convenience, we may sometimes write K0(t) for K0(t,∂x) and K1(t) for
K1(t,∂x). Then by Lemma 2.2, Corollary 2.1 and Lemma 5.3, we have

‖〈∇〉2θ‖L2 .‖K0(t)〈∇〉2θ0‖L2 +‖K1(t)〈∇〉2
(

1

2
θ0 +θ1

)
‖L2

+‖
∫ t

1

K1(t−s)〈∇〉2F2(s)ds‖L2

. t−
1
4 (‖〈∇〉3+εθ0‖L1

xy
+‖〈∇〉3+εθ1‖L1

xy
)+

∫ t

1

(‖K̂1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖K̂1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 52+2εF2(s)‖L1

xy
ds

. t−
1
4 ‖(ω0,θ0)‖X0

+

∫ t

1

〈t−s〉− 1
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
1
4 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).

Again by Duhamel’s formula,

Λ−1ω(t,x,y) =K0(t,∂x)Λ−1ω0 +K1(t,∂x)

(
1

2
Λ−1ω0 +Λ−1ω1

)
+

∫ t

1

K1(t−s,∂x)F3(s)ds,

Λ−1θ(t,x,y) =K0(t,∂x)Λ−1θ0 +K1(t,∂x)

(
1

2
Λ−1θ0 +Λ−1θ1

)
+

∫ t

1

K1(t−s,∂x)F4(s)ds.

Thus, by Lemma 2.2, Corollary 2.1 and Lemma 5.4,

‖Λ−1ω‖L2 .‖K0(t)Λ−1ω0‖L2 +‖K1(t)

(
1

2
Λ−1ω0 +Λ−1ω1

)
‖L2

+‖
∫ t

1

K1(t−s)F3(s)ds‖L2

. t−
1
4 (‖〈∇〉1+εΛ−1ω0‖L1

xy
+‖〈∇〉1+εΛ−1ω1‖L1

xy
)

+

∫ t

1

(‖K̂1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖K̂1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖〈∇〉 12+2εΛ
1
2−εF3(s)‖L1

xy
ds

. t−
1
4 ‖(ω0,θ0)‖X0

+

∫ t

1

〈t−s〉− 1
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
1
4 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).

Similarly, by Lemma 2.2, Corollary 2.1 and Lemma 5.4,

‖〈∇〉2Λ−1θ‖L2 . t−
1
4 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).
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6.2. Estimates of ‖∂x〈∇〉ω‖L2 , ‖∂x〈∇〉2θ‖L2 , ‖∂xx〈∇〉2θ‖L2 and ‖∂xΛ−1θ‖L2 .
To estimate ‖∂x〈∇〉ω‖L2 , we start with Duhamel’s formula

ω(t,x,y) =K0(t,∂x)ω0 +K1(t,∂x)

(
1

2
ω0 +ω1

)
+

∫ t

1

K1(t−s,∂x)F1(s)ds. (6.2)

By Lemma 2.2, Corollary 2.1 and Lemma 5.3,

‖∂x〈∇〉ω‖L2 .‖∂xK0(t)〈∇〉ω0‖L2 +‖∂xK1(t)〈∇〉
(

1

2
ω0 +ω1

)
‖L2

+‖
∫ t

1

∂xK1(t−s)〈∇〉F1(s)ds‖L2

. t−
3
4 (‖〈∇〉2+εω0‖L1

xy
+‖〈∇〉2+εω1‖L1

xy
)

+

∫ t

1

(‖∂̂xK1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂̂xK1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 32+2εF1(s)‖L1

xy
ds

. t−
3
4 ‖(ω0,θ0)‖X0

+

∫ t

1

〈t−s〉− 3
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
3
4 (‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y )).

Now we consider ‖∂x〈∇〉2θ‖L2 . As in the estimates above,

‖∂x〈∇〉2θ‖L2 .‖∂xK0(t)〈∇〉2θ0‖L2 +‖∂xK1(t)〈∇〉2
(

1

2
θ0 +θ1

)
‖L2

+‖
∫ t

1

∂xK1(t−s)〈∇〉2F2(s)ds‖L2

. t−
3
4 (‖〈∇〉3+εθ0‖L1

xy
+‖〈∇〉3+εθ1‖L1

xy
)+

∫ t

1

(‖∂̂xK1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂̂xK1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 52+2εF2(s)‖L1

xy
ds

. t−
3
4 ‖(ω0,θ0)‖X0 +

∫ t

1

〈t−s〉− 3
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
3
4 (‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y )).

As for ‖∂xx〈∇〉2θ‖L2 , using Lemma 2.2, Corollary 2.1 and Lemma 5.3 again, we obtain

‖∂xx〈∇〉2θ‖L2 .‖∂xxK0(t)〈∇〉2θ0‖L2 +‖∂xxK1(t)〈∇〉2
(

1

2
θ0 +θ1

)
‖L2

+‖
∫ t

1

∂xxK1(t−s)〈∇〉2F2(s)ds‖L2

. t−
5
4 (‖〈∇〉3+εθ0‖L1

xy
+‖〈∇〉3+εθ1‖L1

xy
)+

∫ t

1

(‖∂̂xxK1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂̂xxK1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 52+2εF2(s)‖L1

xy
ds

. t−
5
4 ‖(ω0,θ0)‖X0

+

∫ t

1

〈t−s〉− 5
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )
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. t−
5
4 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).

Then we deal with the term ‖∂xΛ−1θ‖L2 . We proceed in the same way as in the previous
estimate,

‖∂xΛ−1θ‖L2 .‖∂xK0(t)Λ−1θ0‖L2 +‖∂xK1(t)

(
1

2
Λ−1θ0 +Λ−1θ1

)
‖L2

+‖
∫ t

1

∂xK1(t−s)F4(s)ds‖L2

. t−
3
4 (‖〈∇〉1+εΛ−1θ0‖L1

xy
+‖〈∇〉1+εΛ−1θ1‖L1

xy
)

+

∫ t

1

(‖∂̂xK1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂̂xK1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖〈∇〉 12+2εΛ
1
2−εF4(s)‖L1

xy
ds

. t−
3
4 ‖(ω0,θ0)‖X0 +

∫ t

1

〈t−s〉− 3
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
3
4 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).

6.3. Estimates of ‖∂t〈∇〉2ω‖L2 , ‖∂tΛ−1ω‖L2 , ‖∂tθ‖L2 and ‖∂xxΛ−2θ‖L2 . By
Lemma 2.2, Corollary 2.1 and Lemma 5.2, we have

‖∂t〈∇〉2ω‖L2 .‖∂tK0(t)〈∇〉2ω0‖L2 +‖∂tK1(t)〈∇〉2
(

1

2
ω0 +ω1

)
‖L2

+‖
∫ t

1

∂tK1(t−s)〈∇〉2F1(s)ds‖L2

. t−
5
4 (‖〈∇〉3+εω0‖L1

xy
+‖〈∇〉3+εω1‖L1

xy
)+

∫ t

1

(‖∂tK̂1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂tK̂1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 52+2εF1(s)‖L1

xy
ds

. t−
5
4 ‖(ω0,θ0)‖X0 +

∫ t

1

〈t−s〉− 5
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
5
4 (‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y )).

Next we bound ‖∂tΛ−1ω‖L2 . By Lemma 2.2, Corollary 2.1 and Lemma 5.4, we have

‖∂tΛ−1ω‖L2 .‖∂tK0(t)Λ−1ω0‖L2 +‖∂tK1(t)Λ−1
(

1

2
ω0 +ω1

)
‖L2

+‖
∫ t

1

∂tK1(t−s)Λ−1F3(s)ds‖L2

. t−
5
4 (‖〈∇〉1+εΛ−1ω0‖L1

xy
+‖〈∇〉1+εΛ−1ω1‖L1

xy
)

+

∫ t

1

(‖∂tK̂1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂tK̂1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 12+2εF3(s)‖L1

xy
ds

. t−
5
4 ‖(ω0,θ0)‖X0 +

∫ t

1

〈t−s〉− 5
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
5
4 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).
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For ‖∂tθ‖L2 , by (6.1), Lemma 2.2, Corollary 2.1 and Lemma 5.3, we have

‖∂tθ‖L2 .‖∂tK0(t)θ0‖L2 +‖∂tK1(t)

(
1

2
θ0 +θ1

)
‖L2

+‖
∫ t

1

∂tK1(t−s)F2(s)ds‖L2

. t−
5
4 (‖〈∇〉1+εθ0‖L1

xy
+‖〈∇〉1+εθ1‖L1

xy
)+

∫ t

1

(‖∂tK̂1(t−s,ξ)‖L2
ξ(|ξ|≤

1
2 )

+‖∂tK̂1(t−s,ξ)‖L∞ξ (|ξ|≥ 1
2 )

)‖Λ 1
2−ε〈∇〉 12+2εF2(s)‖L1

xy
ds

. t−
5
4 ‖(ω0,θ0)‖X0

+

∫ t

1

〈t−s〉− 5
4 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
5
4 (‖(ω0,θ0)‖X0 +Q(‖(u,ω,θ)‖Y )).

Now we consider the last term ‖∂xxΛ−2θ‖L2 . By Duhamel’s formula,

Λ−2θ(t,x,y) =K0(t,∂x)Λ−2θ0 +K1(t,∂x)

(
1

2
Λ−2θ0 +Λ−2θ1

)
+

∫ t

1

K1(t−s,∂x)Λ−1F4(s)ds.

Using Lemma 2.2, Lemma 2.3 and Lemma 5.5, we deduce that

‖∂xxΛ−2θ‖L2 .‖∂xxK0(t)Λ−2θ0‖L2 +‖∂xxK1(t)Λ−2
(

1

2
θ0 +θ1

)
‖L2

+‖
∫ t

1

|∂x|
7
4K1(t−s)|∂x|

1
4 Λ−1F4(s)ds‖L2

.‖∂xxK̂0(t)‖L2‖Λ−2θ0‖L1
xy

+‖∂xxK̂1(t)‖L2‖Λ−2
(

1

2
θ0 +θ1

)
‖L1

xy

+

∫ t

1

‖ ̂|∂x|
7
4K1(t−s)‖L∞‖|∂x|

1
4 Λ−1F4(s)‖L2

xy
ds

. t−
5
4 (‖Λ−2θ0‖L1

xy
+‖Λ−2θ1‖L1

xy
)+

∫ t

1

〈t−s〉− 7
8 s−1−εds ·Q(‖(u,ω,θ)‖Y )

. t−
7
8 (‖(ω0,θ0)‖X0

+Q(‖(u,ω,θ)‖Y )).

Finally we estimate the pressure P . According to the divergence-free condition, we have

P = ∆−1∂yθ−∆−1∇·(∇·(u⊗u)).

Therefore, for any t≥1, by the boundedness of Riesz transforms and the definition of
Y -norm,

‖P (t)‖Ha .‖∆−1∂yθ‖Ha +‖∆−1∇·(∇·(u⊗u))‖Ha
.‖∆−1∂yθ‖L2 +‖Λa∆−1∂yθ‖L2 +‖∆−1∇·(∇·(u⊗u))‖Ha
.‖Λ−1θ‖L2 +‖Λa−1‖L2 +‖u‖Ha‖u‖L∞
. tε(‖(u,ω,θ)‖Y +Q(‖(u,ω,θ)‖Y ))

. tεε0.
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This implies that P ∈C([1,+∞);Ha(R2)). Moreover,

‖P (t)‖L∞ .‖∆−1∂yθ‖L∞+‖∆−1∇·(∇·(u⊗u))‖L∞
.‖〈∇〉2∆−1∂yθ‖L2 +‖〈∇〉2∆−1∇·(∇·(u⊗u))‖L2

.‖〈∇〉2Λ−1θ‖L2 +‖〈∇〉2(u⊗u)‖L2

.‖〈∇〉2Λ−1θ‖L2 +‖〈∇〉2u‖L2‖u‖L∞

. t−
1
4 ε0.

This finishes the proof of Theorem 1.1.
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