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ABSTRACT

We consider the quasi-geostrophic model and its two different
regularizations. Global regularity results are established for
the regularized models with critical or sub-critical indices.
The proof[4,13] of Onsager’s conjecture[19] concerning weak
solutions of the 3D Euler equations and the notion of dissi-
pative solutions of Duchon and Robert[12] are extended to
weak solutions of the quasi-geostrophic equation.
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1 INTRODUCTION

Consider the two dimensional (2D) quasi-geostrophic (QG) equation

�t þ u � r� ¼ 0 ð1:1Þ

and its two different regularizations

�t þ u � r� þ �ð��Þ
�� ¼ 0 ð1:2Þ

and

�t þ u � r� þ �ð��Þ
��t ¼ 0, ð1:3Þ

where �ðx, tÞ is a real-valued function of x and t, 0 � � � 1, � > 0 and � > 0
are real numbers. The advective velocity u in these equations is determined
from � by a stream function  via the auxiliary relations

u ¼ ðu1, u2Þ ¼ �
@ 

@x2
,
@ 

@x1

� �
and ð��Þ

1=2 ¼ ��: ð1:4Þ

Interest will mainly focus on the behavior of solutions of the initial value
problems (IVP) for these equations wherein

�ðx, 0Þ ¼ �0ðxÞ, is specified: ð1:5Þ

To avoid questions regarding boundaries, we will assume periodic boundary
conditions with period box O ¼ ½0, 2

2. Without loss of generality we will
restrict the discussion to initial data �0 with zero mean, namely
ð2
Þ�2

R
O �0ðxÞdx ¼ 0.

Equations (1.1) and (1.2) are special cases of the general quasi-geos-
trophic approximations[20] for atmospheric and oceanic fluid flow with small
Rossby and Ekman numbers. The variable � represents potential tempera-
ture, u is the fluid velocity and  can be identified with the pressure.
Equation (1.1) is an important example of a 2D active scalar with a specific
structure most closely related to the 3D Euler equations. The equation in
(1.2) with � ¼ 1=2 is derived from the 3D Navier-Stokes equations under the
special circumstance of constant potential vorticity and constant buoyancy
frequency and constitutes a dimensionally correct analogue of the 3D
Navier-Stokes equations. These equations have recently been intensively
investigated because of both their mathematical importance and their poten-
tial for applications in meteorology and oceanography.[5–7,10,15,18,20,21]

In modeling long waves in nonlinear dispersive media, Benjamin,
Bona and Mahony[1] introduced the BBM equation

ut þ ux þ uux � uxxt ¼ 0
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as an alternative to the KdV equation

ut þ ux þ uux þ uxxx ¼ 0:

Equation (1.3) to (1.2) is like the BBM to the KdV equation and our
motivation for proposing such a model for study comes from the effects of
regularizations on the global regularity of weak solutions and the potential
applications of this new model in geophysics.

These QG models appear to be simpler than the 3D hydrodynamics
equations, but contain many of their difficult features. For instance, solu-
tions of Eqs. (1.1) and (1.2) exhibit strong nonlinear behavior, strikingly
analogous to that of the potentially singular solutions of the 3D hydrody-
namics equations.[5] Although progress has been made in the past several
years,[5–7,10,18,21] the theory remains fundamentally incomplete. In particu-
lar, it is not known whether or not weak solutions of Eq. (1.2) are regular for
all time when � is equal to the critical index 1/2. The critical case regularity
issue turns out to be extremely difficult and was labeled by Klainerman[16] as
one of the most challenging PDE problems of the 21st Century. In Section 2
we explore how far one can go toward a regularity proof in the critical case
and what are the weakest assumptions needed to fill the gap.

In Section 3 we solve the global regularity problem for Eq. (1.3) with
� � 1=2. We first construct a local solution � in Hs with s > 1 and then
derive explicit bounds on the norms of all derivatives of the solution.
From this we infer that for � > 1=2 the local solution � remains bounded
in Hs for all time and thus no finite-time singularity can occur in this
case. For the critical index � ¼ 1=2, global smoothness results are estab-
lished under assumptions that are much weaker than those needed to
guarantee regularity for Eq. (1.2). This leads us to conclude that solutions
of Eq. (1.3) are better behaved and thus Eq. (1.3) constitutes a reasonable
alternative to Eq. (1.2).

As is well-known, weak solutions of the 3D hydrodynamics equations
in general only satisfy an energy inequality rather than equality. But
Onsager conjectured in Ref. [19] that weak solutions of the 3D Euler equa-
tions in a Hölder space C� with exponent � > 1=3 should conserve energy.
In Ref. [13] Eyink proved energy conservation for weak solutions in a strong
form of Hölder space C�� (� > 1=3), in which the norm is defined in terms of
absolute Fourier coefficients. Constantin et al.[4] provided a proof for the
sharp version of Onsager’s conjecture. Section 4 is concerned with solutions
of the QG Eq. (1.1). First we verify Onsager’s conjecture for weak solutions
of the QG equation, extending the result of Constantin et al. Then the QG
equation is shown to possess the dissipative weak solutions, a notion pro-
posed by Duchon and Robert.[12] Finally the two models Eqs. (1.1) and (1.3)
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are proven to be close by considering the limit of Eq. (1.3) as �! 0. This
provides further evidence for the validity of Eq. (1.3).

We now review the notations used throughout the sequel. The Fourier
transform bff of a tempered distribution f ðxÞ on O is defined as

f̂f ðkÞ ¼
1

ð2
Þ2

Z
O
f ðxÞe�ik�x dx:

We will denote the square root of the Laplacian ð��Þ
1=2 by � and obviously

c�f�f ðkÞ ¼ jkj f̂f ðkÞ:

More generally, ��f for � 2 R can be identified with the Fourier seriesX
k2Z

2

jkj� f̂f ðkÞeik�x:

The equality relating u to � in Eq. (1.4) can be rewritten in terms of periodic
Riesz transforms

u ¼ @x2�
�1�, � @x1�

�1�
� 	

¼ ð�R2�, R1�Þ,

where Rj, j ¼ 1, 2 denotes the Riesz transforms defined by

dRj fRj f ðkÞ ¼ �i
kj
jkj
f̂f ðkÞ, k 2 Z2

n f0g:

LpðOÞ denotes the space of the pth-power integrable functions normed by

j f jp ¼

Z
O
j f ðxÞjpdx

� �1=p
:

For any tempered distribution f on O and s 2 R, we define

k f ks ¼ j�sf j2 ¼
X
k2Z

2

jkj2sj f̂f ðkÞj2

 !1=2

and Hs denotes the Sobolev space of all f for which k f ks is finite. For
1 � p � 1 and s 2 R, the space L

p
s ðOÞ is a subspace of LpðOÞ, consisting

of all f which can be written in the form f ¼ ��sg, g 2 LpðOÞ and the L
p
s

norm of f is defined to be the Lp norm of g, i.e.,

k f kp, s ¼ jgjp:
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2 DISSIPATIVE QG EQUATION

In this section we focus on the nonlinear behavior of weak solutions of
the initial-value problem (IVP) for the dissipative QG equation

�t þ u � r� þ �ð��Þ
�� ¼ f , ðx, tÞ 2 O� ½0,1Þ,

u ¼ ðu1, u2Þ ¼ ð�R2�, R1�Þ, ðx, tÞ 2 O� ½0,1Þ,

�ðx, 0Þ ¼ �0ðxÞ, x 2 O,

8>><>>: ð2:1Þ

where 0 � � � 1 and � > 0 are real numbers. We establish nonlinear esti-
mates which characterize the regularity of weak solutions of the IVP (2.1)
with � greater than or equal to the critical index 1=2.

For 0 � � � 1, weak solutions of the IVP (2.1) are known to exist
globally in time [21], although the uniqueness of weak solutions is
currently open. More precisely, for any T > 0, �0 2 L

2 and f 2 L1ð½0,T 
;
L2Þ, there exists a weak solution � 2 L1

ð½0,T 
;L2Þ \ L2ð½0,T 
;H�
Þ

satisfying

j�ð�, tÞj22 þ

Z t

0

k�ð�, Þk2� d � j�0j2 þ C

Z t

0

j f ð�, Þj2 d

� �2
Furthermore, if �0 2 L

q and f 2 L1ð½0,T 
;LqÞ for 1 < q � 1, then any weak
solution � satisfies the maximum principle

j�ð�, tÞjq � j�0jq þ

Z t

0

j f ð�, Þjq d

for any t � T .
Let s � 0. We now estimate k�ks ¼ j�s�j2. If we take the inner product

of �2s� with the first equation in Eq. (2.1), we obtain

1

2

d

dt
j�s�j22 þ �j�

sþ��j22 ¼ ð�2s�, f Þ � ð�2s�, u � r�Þ ð2:2Þ

The first term on the right hand side is bounded above by

jð�2s�, f Þj � j�sþ��j2j�
s��f j2 �

�

2
j�sþ��j22 þ

1

2�
j�s��f j22 ð2:3Þ

For the second term, we have

jð�2s�, u � r�Þj ¼ jð�2s�,rðu�Þj � j�sþ��j2 j�
sþ1��

ðu�Þj2 ð2:4Þ
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where � � � remains to be determined. To proceed, we need the calculus
inequality

j��
ðFGÞjr � C

h
j��F jpjGjq þ jF jqj�

�Gjp

i
, ð2:5Þ

where � > 0, 1 < r � p � 1 and 1=r ¼ 1=pþ 1=q. The use of Eq. (2.5) gives

jð�2s�, u � r�Þj � Cj�sþ��j2 j�sþ1��ujpj�jq þ j�sþ1���jpjujq
� �

, ð2:6Þ

where 2 < q � 1 and 1=pþ 1=q ¼ 1=2. Taking into account of the second
equation in (2.1) and the inclusion Hsþ2�ð2=pÞ��

� L
p
sþ1��, we have

�sþ1��u
�� ��

p
� �sþ1���
�� ��

p
� �sþ2�2=p���
�� ��

2
:

It then follows from Eq. (2.6) that

jð�2s�, u � r�Þj � Cðj�jq þ jujqÞj�
sþ��j2j�

sþ2�ð2=pÞ���j2:

In the above, � is essentially arbitrary and we may choose

� ¼ 1�
1

p
¼
1

2
þ
1

q
so that sþ � ¼ sþ 2�

2

p
� �:

Hence

jð�2s�, u � r�Þj � Cðj�jq þ jujqÞj�
sþ��j22: ð2:7Þ

Combining Eqs. (2.2), (2.3) and (2.7), we have

d

dt
j�s�j22 þ �j�

sþ��j22 �
1

�
j�s��f j22 þ C0ðj�jq þ jujqÞj�

sþ��j22 ð2:8Þ

for any s � 0, 2 < q � 1 and � ¼ 1=2þ 1=q � �.
We now prove that weak solutions of the IVP (2.1) with � > 1=2 are

actually regular. More precisely, we have the following theorem.

Theorem 2.1. Let � > 1=2 and assume for T > 0, s > 0 and 2 < q < 2=2�� 1

�0 2H
s
\Lq and f 2 L1ð½0,T 
;L2Þ \L1ð½0,T 
;LqÞ \L2ð½0,T 
;Hs��

Þ:

Then any weak solution � of the IVP (2.1) are regular in the sense that

� 2 L1
ð½0,T 
;Hs

Þ \ L2ð½0,T 
;Hsþ�
Þ
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Proof. The idea of the proof is to obtain from Eq. (2.8) a closed differential
inequality for j�s�j2. Since u is essentially the Riesz transform of � from the
second equation in (2.1), we have for 1 < q <1

juð�, tÞjq � j�ð�, tÞjq � j�0jq þ

Z t

0

j f ð�, Þjq d: ð2:9Þ

To eliminate the occurrence of j�sþ��j2, we use one of the inequalities of
Gagliardo and Nirenberg

�sþ��
�� ��

2
� C �sþ��

�� ���=�
2

�s�
�� ��1��=�

2
:

We use Hölder’s inequality to find

�sþ��
�� ��2

2
�
�

2
�sþ��
�� ��2

2
þ
C

�
�s�
�� ��2

2
: ð2:10Þ

Inserting Eqs. (2.9) and (2.10) into Eq. (2.8) and canceling a factor
of j�sþ��j22,

d

dt
�s�
�� ��2

2
þ
�

2
�sþ��
�� ��2

2
�
1

�
j�s��f j22 þ

C

�
j�s�j22, ð2:11Þ

where C only depends on j�0jq and
R T
0 j f ð�, Þjqd. The proof of Theorem 2.1

is then concluded after we apply Gronwall’s lemma to Eq. (2.11).

Remark. The seemingly formal estimates in the proof of Theorem 2.1 can all
be made rigorous through a well-known procedure of first proving them for
a Galerkin-type approximating sequence f�Ng1N¼1 of � and then passing to
the limit. Since the bounds for the sequence depend only on the initial data
and forcing term (independent of N), the weak solution as the limit of the
sequence obeys the same estimates as each �N does. This approach has been
widely used in proving local or global regularity for weak solutions of
the hydrodynamic equations (see e.g., Ref. [11] pp. 96–113], Ref. [23]
pp. 278–308]) and only the a priori-type estimates are given here for the
clarity of our presentation.

Now we turn our attention to the regularity issue of weak solutions of
the IVP (2.1) with � equal to the critical index 1/2. The purpose of the next
several theorems is to show how far one can go toward a regularity proof
and what assumptions are needed to fill the gap.

Theorem 2.2. Let � ¼ 1=2 and s > 0. Assume that �0 2 H
s
\ L1 and

f 2 L1ð½0,T 
;L1
Þ \ L2ð½0,T 
;Hs�1=2

Þ. Consider a weak solution � of the
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IVP (2.1) and assume that

j�ð�, tÞj1 þ juð�, tÞj1 <
�

C0

ð2:12Þ

hols for all t 2 ½0,T 
, where C0 is a constant as in Eq. (2.8). Then � is regular
in the sense that

� 2 L1
ð½0,T 
;Hs

Þ \ L2 ½0,T 
;Hsþð1=2Þ
� �

ð2:13Þ

In particular, if �0, f and u satisfy

j�0j1 þ

Z t

0

j f ð�, Þj1 d �
�

2C0

and juð�, tÞj1 <
�

2C0

, ð2:14Þ

then Eq. (2.13) holds.

Remark. Assumption Eq. (2.12) is a smallness condition.

Proof. The situation is different when � ¼ 1=2. The differential inequality
Eq. (2.8) only holds for � ¼ � ¼ 1=2 and q ¼ 1. We have after replacing �
with 1=2 and q with 1

d

dt
j�s�j22 þ �j�

sþð1=2Þ�j22 �
1

�
j�s�ð1=2Þf j22 þ C0ðj�j1 þ juj1Þj�sþð1=2Þ�j22

Using the assumption Eq. (2.12), we have

d

dt
j�s�j22 �

1

�
j�s�ð1=2Þf j22,

which gives Eq. (2.13). In view of the maximum principle

j�ð�, tÞj1 � j�0j1 þ

Z t

0

jf ð�, Þj1 d,

it then follows that Eq. (2.14) implies Eq. (2.12) and thus Eq. (2.13).
For the critical index � ¼ 1=2, the terms j�j1 and juj1 have so far

stood in the way of finding a regularity proof. The problem of how to deal
with j�j1 and juj1 has to be solved. In order to estimate j�j1 and juj1, we
need the following lemma.[2]
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Lemma 2.3. Let O ¼ ½0, 2

2 and F 2 H�
ðOÞ (� > 1) be periodic. Then

jF j1 � C 1þ kFk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ kFk

1=ð��1Þ
�

� �r� �
ð2:15Þ

Now we can prove the following theorem, which can be reviewed as a
ladder theorem for the QG equation.

Theorem 2.4. Let � ¼ 1=2, T > 0 and s > 1. Assume that �0 2 H
s and

f 2 L2ð½0,T 
;Hs�ð1=2Þ
Þ. Then any solution � of the IVP (2.1) satisfies for

any � > 1

d

dt
j�s�j22þ�j�

sþð1=2Þ�j22�
1

�
j�s�ð1=2Þf j22

þC 1þk�k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þk�k1=ð��1Þ�

� �r� �
j�sþð1=2Þ�j22

If we further assume that k�ð�, tÞk� is bounded and small, say, for some
constant C

1þ k�k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ k�k1=ð��1Þ�

� �r
� C�,

then � is regular in the sense that

� 2 L1
ð½0,T 
;Hs

Þ \ L2ð½0,T 
;Hsþð1=2Þ
Þ:

3 REGULARIZED QG EQUATION

In this section we are concerned with the IVP for the regularized QG
equation

�t þ u � r� þ �ð��Þ
��t ¼ f , ðx, tÞ 2 O� ½0,1Þ,

u ¼ ðu1, u2Þ ¼ ð�R2�, R1�Þ, ðx, tÞ 2 O� ½0,1Þ,
�ðx, 0Þ ¼ �0ðxÞ, x 2 O,

8<: ð3:1Þ

where 0 � � � 1 and � > 0 are real numbers. The central issue is still
whether or not weak solutions are regular for all time. Because of the
insignificant role of f and for the sake of clarity of our presentation, we
will set f¼ 0 in the rest of this section.
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The exposition below is organized as follows. We first construct a local
solution in Hs for s > 1 and then produce explicit bounds on the norms of
all derivatives. From this we infer that for � > 1=2 the solutions are smooth
and unique for all time. For � ¼ 1=2, global regularity is established under a
weak assumption.

We reformulate the problem as an integral equation and then apply
the Banach contraction mapping principle to prove local existence. Now
rewrite the first equation in (3.1) in the form

ð1þ ��2�
Þ �t ¼ �ð f � u � r�Þ

and invert the operator ð1þ ��2�
Þ subject to periodic boundary condition

to obtain

�ðx, tÞ ¼ �0ðxÞ þ

Z t

0

G � ðu�ÞðÞ d, ð3:2Þ

where the convolution kernel GðxÞ is defined through its Fourier transform

ĜGðkÞ ¼ ĜGððk1, k2ÞÞ ¼
i

1þ �jkj2�
k1
k2

� �
: ð3:3Þ

Now notice that for � � 1=2 and any s � 0

kG � Fks ¼
X
k

jkj2sj dG � FG � FðkÞj2

 !1=2

�
X
k

jĜGðkÞj2jkj2sjF̂FðkÞj2

 !1
2

� sup
k

jĜGðkÞj kFks �
1

�
kFks ð3:4Þ

We now state and prove a local existence result for smooth solutions
of the IVP (3.1).

Theorem 3.1. Let � � 1=2 and assume that �0 2 H
s for some s > 1.

(a) There exists a T ¼ Tðk�0ksÞ such that the IVP (3.1) has a unique
solution � with � 2 L1

ð½0,T 
;Hs
Þ.

(b) If T� is the supremum of the set of all T > 0 such that (3.1) has a
solution in L1

ð½0,T 
;Hs
Þ, then either T� ¼ 1 or

lim sup
t"T�

k�ð�, tÞks ¼ 1:
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Proof.Write the Eq. (3.2) symbolically as � ¼ A�. A is seen to be a mapping
of the space E ¼ L1

ð½0,T 
;Hs
Þ into itself, where T > 0 is yet to be specified.

Let b ¼ k�0ks, and set R ¼ 2b. Define BR to be the ball with radius R
centered at the origin in E. We now show that if T is sufficiently small, then
A is a contraction map on BR. Let � and ��� be any two elements of BR. Then
we have

kA� � A ���kE ¼

Z t

0

G � ðu� � �uu ���Þ d

���� ����
E

� TkG � ðu� � �uu ���ÞkE � T kG � ððu� �uuÞ�ÞkE þ kG � ð �uuð� � ���ÞÞkE
� �

Using (3.4), we have

kA� � A ���kE �
T

�
sup
t2½0,T 


j�s
ððu� �uuÞ�Þj2 þ j�s

ð �uuð� � ���ÞÞj2
� �

ð3:5Þ

Then applying the calculus inequality (2.5), we find that

j�s
ððu� �uuÞ�Þj2 � C j�s

ðu� �uuÞj2j�j1 þ ju� �uuj1j�s�j2ð Þ ð3:6Þ

and

j�s
ð �uuð� � ���ÞÞj2 � C j�s

ð� � ���Þj2j �uuj1 þ j� � ���j1j�s �uuj2
� 	

ð3:7Þ

Since s > 1, we have the Sobolev inequality

jF j1 � CkFks, for some constant C: ð3:8Þ

Inserting Eqs. (3.6) and (3.7) into Eq. (3.5) after applying Eq. (3.8), we
obtain

kA� � A ���kE �
T

�
sup
t2½0,T 


k�ksku� �uuks þ k �uuksk� � ���ks
� �

ð3:9Þ

Since u and �, as well as �uu and ���, are related by the second equation in (3.1),
one has

k �uuks � k ���ks, ku� �uuks � k� � ���ks

It then follows from (3.9) that

kA� � A ���kE �
T

�
ðk�kE þ k ���kEÞk� � ���kE �

2TR

�
k� � ���kE :

QUASI-GEOSTROPHIC EQUATIONS 1171

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
k
l
a
h
o
m
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
1
:
1
4
 
2
5
 
M
a
y
 
2
0
0
9



Also, since A0 ¼ �0

kA�kE ¼ kA� � A0þ �0kE � kA� � A0kE þ k�0kE �
2TR

�
k�kE þ b

Now choose

T ¼
�

4R
so that

2TR

�
¼
1

2
:

It is indeed that T depends only on k�0ks (since R ¼ 2k�0ks). For this choice
of T, we have

kA� � A ���kE �
1

2
k� � ���kE , and kA�kE � R

The conclusion of part (a) then follows from contraction mapping principle.

To prove part (b), suppose on the contrary that T� <1 and that there
exists a number M > 0 and a sequence tn approaching T� from below
such that

k�ð�, tnÞks �M, for n ¼ 1, 2, 3, . . .

By part (a), there exists some T ¼ TðMÞ such that the solution starting with
any �ðx, tnÞ is in L

1
ð½0,T 
;Hs

Þ. Since tn approaches T�, we can choose tn
such that tn þ T > T�. By extending � to the interval ½0, tn þ T 
, we obtain a
solution of the IVP (3.1) in L1

ð½0, tn þ T 
;Hs
Þ. But this contradicts the

maximality of T�.
Now we return to the central issue: can the solution obtained in

Theorem 3.1 be extended for all time? This motivates us to explore the
regularity properties of solutions. For � > 1=2, it is indeed the case that
the solution we constructed in Theorem 3.1 can be extended for all time.

Theorem 3.2. Let � > 1=2 and assume that �0 2 H
s for some s > 1. Then there

exists a unique solution to the IVP (3.1) which lies in L1
ð½0,1Þ;Hs

Þ.

Proof. Let � 2 L1
ð½0,T 
;Hs

Þ be the solution of the IVP (3.1) we constructed
in Theorem 3.1. Take the inner product of �2s�2�� with the first equation
in (3.1)

1

2

d

dt
j�s���j22 þ � j�s�j22
� �

¼ � �2s�2��, u � r�
� 	

:
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The estimates for the term on the right hand side are similarly to those in the
previous section, so we only give the most important lines here. Instead of
Eq. (2.8), we have

1

2

d

dt
j�s���j22 þ � j�s�j22
� �

� C0ðj�jq þ jujqÞj�
s��þ��j22 ð3:10Þ

for any 2 < q � 1 and � ¼ 1=2þ 1=q � �. Inserting Eq. (2.9) and the fol-
lowing modified version of Eq. (2.10) in Theorem 2.1

j�s��þ��j22 �
ffiffiffiffi
�

p
j�s�j22 þ

Cffiffiffiffi
�

p j�s���j22

into Eq. (3.10), we obtain

1

2

d

dt
j�s���j22 þ � j�s�j22
� �

�
Cffiffiffiffi
�

p j�s���j22 þ � j�s�j22
� �

Gronwall’s lemma then implies that for any t > 0

j�s���ð�, tÞj22 þ � j�s�ð�, tÞj22 � j�s���0j
2
2 þ � j�s�0j

2
2

� �
eðC=

ffiffiffi
�

p
Þt:

This estimate indicates that the solution of the IVP (3.1) with � > 1=2
remains bounded at later time. Therefore, by part (b) of Theorem 3.1,
� 2 L1

ð½0,1Þ;Hs
Þ.

Now we turn our attention to � ¼ 1=2. The following theorem asserts
that if the solution � loses its regularity at a later time, then the maximum of
� or the maximum of u necessarily grows without a bound. The conclusion is
in the spirit of the well-known Beale–Kato–Majda result for the 3D Euler
equations.[3]

Theorem 3.3. Let � ¼ 1=2 and � be the solution constructed in Theorem 3.1. If
T� is the supremum of the set of all T > 0 such that � in the class
L1

ð½0,T 
;Hs
Þ and T� <1, then one of the followingZ T�

0

j�ð�, Þj1 d ¼ 1,

Z T�

0

juð�, Þj1 d ¼ 1

holds. In other words, � can be extended beyond T� to T1 if for some constant
M and all T < T1Z T

0

j�ð�, Þj1 d <M, and

Z T

0

juð�, Þj1 d <M:
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Proof. The differential inequality (3.10) is valid for all � > 0, therefore we
have by choosing � ¼ 1=2, q ¼ 1 and � ¼ 1=2

1

2

d

dt
j�s�ð1=2Þ�j22 þ � j�s�j22

h i
� C0ðj�j1 þ juj1Þj�s�j22, ð3:11Þ

which implies

j�s�ð1=2Þ�ð�, tÞj22 þ � j�s�ð�, tÞj22

� j�s�ð1=2Þ�0j
2
2 þ � j�s�0j

2
2

h i
exp

C

�

Z t

0

½j�ð�, Þj1 þ juð�, Þj1
 d

� �
:

The conclusion of the theorem is then inferred from this inequality.

Because of the Sobolev inequality Eq. (3.8), the following result is an
easy consequence of Theorem 3.3.

Corollary 3.4. Let � ¼ 1=2 and � 2 L1
ð½0,T 
;Hs

Þ (s > 1) be the solution
constructed in Theorem 3.1. Assume that � satisfies for T1 > TZ T1

0

k�ð�, Þk� d <1,

where � > 1. Then we can extend � to be a solution of the IVP (3.1) in the class
L1

ð½0,T1
;H
s
Þ.

The following theorem concludes that no singularities in k�ks (s > 1)
are possible before k�k1 becomes unbounded.

Theorem 3.5. Let � ¼ 1=2 and � 2 L1
ð½0,T 
;Hs

Þ (s > 1) be the solution con-
structed in Theorem 3.1. For any T1 > T , if � 2 L1

ð½0,T1
;H
1
Þ, then � can be

extended to L1
ð½0,T1
;H

s
Þ.

Proof. After applying Lemma 2.3 to control j�j1 and juj1, we have from
Eq. (3.11) that

1

2

d

dt
j�s�ð1=2Þ�j22 þ � j�s�j22

h i
� C 1þ k�k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ k�k1=ðs�1Þs

� �r� �
j�s�j22

If � 2 L1
ð½0,T1
;H

1
Þ, i.e., k�k1 < C, then the above inequality becomes

dz

dt
� Cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ logðzÞ

p
ð3:12Þ
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where we have set

zðtÞ ¼ j�s�ð1=2Þ�ð�, tÞj22 þ � j�s�ð�, tÞj22:

It follows from applying Gronwall’s lemma to Eq. (3.12) that z 2
L1

ð½0,T1
Þ, which implies � 2 L
1
ð½0,T1
;H

s
Þ.

4 WEAK SOLUTIONS OF THE QG EQUATION

Onsager conjectured[19] that weak solutions of the 3D Euler equations
in a Hölder space C� with exponent � > 1=3 should conserve energy. In Ref.
[13] Eyink proved energy conservation for weak solutions in a strong form
of Hölder space C�� (� > 1=3), in which the norm is defined in terms of
absolute Fourier coefficients. Constantin et al.[4] proved a sharp version of
Onsager’s conjecture in Besov space Bs,1

3 with s > 1
3. In Ref. [12] Duchon

and Robert explored possible sources for energy losses and proved the
existence of the so-called dissipative weak solutions for the 3D Euler equa-
tions. Their notion of dissipative weak solutions can be regarded as a special
type of dissipative solutions proposed by Lions.[17] For the 2D Euler equa-
tions, DiPerna and Majda constructed weak solutions of the
vorticity–velocity formulation with data in Lpðp > 4=3Þ and Eyink[14] vali-
dated such weak solutions as dissipative weak solutions in the sense of
Duchon and Robert and argued for their relevance to the entropy cascade
of 2D turbulence.

The goal of this section is to prove Onsager’s conjecture and extend
the notion of dissipative weak solutions to the IVP for the QG equation

�t þ u � r� ¼ 0, ðx, tÞ 2 O� ½0,1Þ,

u ¼ ðu1, u2Þ ¼ ð�R2�, R1�Þ, ðx, tÞ 2 O� ½0,1Þ,

�ðx, 0Þ ¼ �0ðxÞ, x 2 O:

8><>: ð4:1Þ

Understanding the zero-dissipation limits of the Navier-Stokes equa-
tions[7,8] is crucial in hydrodynamics turbulence theory and we believe that
similar limits for the regularizations of the QG equation will be equally
important in the turbulence theory for quasi-geostrophic flows. At the end
of this section we show that the smooth solution of the regularized QG
equation converges to that of the QG equation as �! 0.

For �0 2 L
2 and any T > 0, the IVP (4.1) has been shown to possess

global weak solutions (in the distributional sense) in L1
ð½0,T 
;L2Þ.[21] In the

rest of this section we will use � to denote the standard mollifier in R
2,

��ðxÞ ¼ 1=�2� x=�ð Þ and F � ¼ �� � F for any tempered distribution F.
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First we show that if the weak solution � is also in the Besov space
Bs,1
3 with s > 1=3, then � conserves the L2-norm. More details on Besov

spaces can be found in Ref. [22], but here we only list some of the basic facts
we will use. If F 2 Bs,1

p for p � 1, then

jFð� þ yÞ � Fð�Þjp � Cj yjskFkBs,1p ;

jF � F �jp � C�skFkBs,1p ;

jrF jp � C�s�1kFkBs,1p : ð4:2Þ

Theorem 4.1. Let � 2 L1
ð½0,T 
;L2Þ be a weak solution of the IVP (4.1)

corresponding to �0 2 L
2 and arbitrary T > 0. If further � 2 L3ð½0,T 
;

Bs,1
3 Þ with s > 1=3, then for any t � T

j�ð�, tÞj2 ¼ j�0j2: ð4:3Þ

Proof. The idea of the proof is similar to the one in Ref. [4]. If � solves the
IVP (4.1), then �� satisfies the following equation

@t�
�
þ u� � r�� ¼ r � ��, ð4:4Þ

where �� ¼ u��� � ðu�Þ�. It is easy to check that �� can be represented by the
formula

�� ¼ ðu� u�Þð� � ��Þ � r�ðu, �Þ,

with

r�ðu, �Þ ¼

Z
�ðyÞ½ðuðx� �yÞ � uðxÞÞð�ðx� �yÞ � �ðxÞÞ
 dy:

It then follows (4.4) thatZ
O
j��ð�, tÞj2 dx�

Z
O
j��0j

2 dx ¼

Z t

0

Z
O
�� � r�� dxd ð4:5Þ

We now estimate the term on the right hand side.Z t

0

Z
O
�� � r�� dxd

���� ���� � C

Z t

0

jr��ð�, Þj3 � j�
�
ð�, Þj3=2 d

� C

Z t

0

jr��ð�, Þj3 � ju� u�j3j� � �
�
j3 þ jr�ðu, �Þj3=2

� �
d
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Since � and u are related by the second equation in (4.1), we have from
Eq. (4.2)

ju� u�j3 � j� � ��j3 � C�sk�kBs,1
3
, and jr�ðu, �Þj3=2 � C�2sk�kBs,1

3
:

ThereforeZ t

0

Z
O
�� � r�� dxd

���� ���� � C�3s�1
Z t

0

k�k3Bs,1
3
d

and it approaches zero as �! 0. The proof is then completed after letting
�! 0 in (4.5).

The following theorem extends the notion of dissipative weak solu-
tions of the inviscid hydrodynamics equations[12,14] to the QG equation

Theorem 4.2. Let � 2 L1
ð½0,T 
;L2Þ be a weak solution of the IVP (4.1)

corresponding to �0 2 L
2 and arbitrary T > 0. If a function G : R ! R is

C2, strictly convex and has bounded derivative, then the equation

@tGð�Þ þ u � rGð�Þ ¼ �FðG, �Þ, ð4:6Þ

holds in the sense of distribution, where FðG, �Þ is the limit of

G00
ð��Þr�� � ððu�Þ� � u���Þ

in the sense of distribution.

Proof. Let G 2 C2
ðR,RÞ. Multiplying Eq. (4.4) by G0

ð��Þ, we have

@tGð�
�
Þ þ u� � rGð��Þ � r � ðG0

ð��Þ��Þ ¼ �G00
ð��Þ�� � r��: ð4:7Þ

Now we start showing that Eq. (4.7) converges to Eq. (4.6) in the distribu-
tional sense. Since G has bounded derivative

jG0
ðxÞj � C

uniformly for all x 2 R
2, we have

jGð��Þð�, tÞ � Gð�Þð�, tÞj2 � jG0
j1j��ð�, tÞ � �ð�, tÞj2 ! 0

as �! 0. Now we show that u�Gð��Þ converges to uGð�Þ in L1, which can be
deduced from the following estimate

ju�Gð��Þ � uGð�Þj1 � jðu� � uÞGð��Þj1 þ juðGð��Þ � Gð�ÞÞj1

� ju� � uj2jGð�
�
Þj2 þ juj2jGð�

�
Þ � Gð�Þj2

� Cj�� � �j2jGð�
�
Þj2 þ juj2jG

0
j1j�� � �j2
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and the fact that �� ! � in L2. It now remains to show that G0
ð��Þ�� ! 0 in

the distributional sense.

jG0
ð��Þ��j1 � jG0

j1jðu�Þ� � u���j1

� Cjðu�Þ� � u�j1 þ ju� � uj2j�j2 þ ju�j2j�
�
� �j2

which approaches zero as �! 0. Therefore the limit of the term on the right
hand side should also exist in the distributional sense. This completes the
proof of the theorem.

We now show that the two models Eqs. (1.1) and (1.3) are close by
examining the limit of Eq. (1.3) as �! 0. First we recall that if �0 2 H

s for
s � 3, then the IVP (4.1) is known to have a unique smooth solution � on a
finite time interval satisfying � 2 L1

ð½0,T 
;Hs
Þ.[5]

Theorem 4.3. Assume that f��0 g�>0 and �0 lie in H
s with s � 3. Then the

difference �� � � between �� of the IVP (3.1) with initial data ��0 and the
solution � of the IVP (4.1) with initial data �0 has the property

j��ð�, tÞ � �ð�, tÞj22 þ �k�
�
ð�, tÞ � �ð�, tÞk2�

� j��0 � �0j
2
2 þ �k�

�
0 � �0k

2
�

� 	
exp C

Z t

0

ð1þ k�ð�, ÞksÞ d

� �
þ C�2

Z t

0

exp C

Z t��

0

ð1þ k�ð�, ÞksÞ d

� �
k�ð�, �Þk42�þ1 d�:

uniformly for 0 � t � T , where C is a pure constant and T is any fixed time
less than the existence time for �.

In particular, if there is a constant C such that

j��0 � �0j
2
2 þ �k�

�
0 � �0k

2
� � C�2 as �!0,

then

j��ð�, tÞ � �ð�, tÞj22 þ �k�
�
ð�, tÞ � �ð�, tÞk2� � C�2

uniformly for 0 � t � T , where C is a constant depending only on T and k�0ks.

Proof. The difference wðx, tÞ ¼ ��ðx, tÞ � �ðx, tÞ solves the equation

wt þ u� � rwþ v � r� þ ��2�wt þ ��
2��t ¼ 0, ð4:8Þ
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where v ¼ u� � u. Since �� and � are both in Hs with s � 3, ��t and �t are at
least in L2. This validify the steps that follow. Multiplying Eq. (4.8) by w and
integrate over O, we obtain

1

2

d

dt

Z
w2 þ �j��wj2
� �

¼ �

Z
v � r� � w� �

Z
w�2��t,

where the two terms on the right-hand side may be estimated as follows.

�

Z
v � r� � w � jr�ð�, tÞj1jvj2 jwj2

Since jr�ð�, tÞj1 � Ck�ð�, tÞks and jvj2 � Cjwj2, it follows that for s > 2

�

Z
v � r� � w � Ck�ð�, tÞksjwj

2
2:

Noticing that �t ¼ �u � r� and applying the calculus inequality Eq. (2.5), we
can bound the second term by

�

Z
w�2�þ1

ðu�Þ

���� ���� � jwj22 þ
�2

4
�2�þ1

ðu�Þ
�� ��2

2

� jwj22 þ C�2 �2�þ1u
�� ��

2
j�j1 þ juj1 �2�þ1�

�� ��
2

� �2
� jwj22 þ C�2 �2�þ1�

�� ��2
2
k�k22�þ1

� jwj22 þ C�2k�k42�þ1

Collecting the above estimates, there appears

d

dt

Z
w2 þ �j��wj2
� �

� Cð1þ k�ð�, tÞksÞ

Z
w2 þ C�2k�k42�þ1, ð4:9Þ

where the pure constant C does not depend on �. The desired result then
follows from applying Gronwall’s lemma to Eq. (4.9).
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