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ABSTRACT. We discuss two important topics of turbulence theory:
inviscid limit and decay of the Fourier spectrum for the 2-D dissipa-
tive quasi-geostrophic (QGS) equations. In the first part we consider
inviscid limits for both smooth and weak solutions of the 2-D dissipa-
tive QGS equations and prove that the classical solutions with smooth
initial data tend to the solutions of the corresponding non-dissipative
equations as the dissipative coefficient tends to zero. Here the conver-
gence is in the strong L? sense and we give the optimal convergence
rate. For the weak solutions of the dissipative QGS equations with
L? initial data, we obtain weak L? inviscid limit results. In the sec-
ond part we use the methods of Foias-Temam [8] and Doering-Titi
[7] developed for the Navier-Stokes equations to establish exponen-
tial decay of the spatial Fourier spectrum for the solutions of the
dissipative QGS equations, but we treat general norms, and also our
method of estimating the nonlinear terms is different.

1. Introduction. We consider the 2-D surface quasi-geostrophic (QGS)
equations

(1) g—f—ku-Vﬁ—&—n(—A)aﬁ:O, 0<a<l,

where £ > 0 in the case of the dissipative equations and x = 0 for the non-
dissipative equations. Here the velocity u = (uj,usz) is determined from ¢ by a

stream function :
Oy ‘9_¢>

(U17u2) = (—8—2327 D1

where 1 satisfies

(—A) 2 = 0.
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Equation (1) is a special case of the general quasi-geostrophic equations [10]
for nonhomogeneous fluid flow in a rapidly rotating 3-D half-space with small
Rossby and Ekman numbers, and its derivation involves assumptions of con-
stant potential vorticity in the interior and constant buoyancy frequency [12].
Actually, the derivation is for & = 1/2; and the general fractional power « is
considered in order to observe the minimal power of the Laplacian necessary in
the analysis, and thus make a comparison with the 3-D Navier-Stokes equations.
The variable ¥ is the potential temperature and w is the fluid velocity. The dis-
sipation coefficient x depends on viscosity and on the Rossby number, and tends
to zero as viscosity tends to zero.

These equations have been under intensive investigations because of mathe-
matical importance and potential applications in meteorology and oceanography
([3], 9], [10]). As pointed out in [3], the 2-D dissipative and non-dissipative QGS
equations are strikingly analogous to the 3-D Navier-Stokes and the Euler equa-
tions. Inviscid limit results for the Navier-Stokes equations with smooth and
rough initial data have been established ([1], [2], [4], [5], [6]). Naturally, the
inviscid limit problem for the solutions of the dissipative QGS equations arises
and, so far, we have seen no work in this direction.

We know from [3] that the QGS equations (defined on R? or T?) with smooth
initial data admit unique classical solutions for short times, and that the quantity

T
/ IVOC, )| ds
0

is responsible for possible singularity formation. The control of this quantity is
also important in our proof of the inviscid limit results for smooth solutions.

Both dissipative and non-dissipative QGS equations on T? with L? initial
data have weak solutions in the distribution sense ([11]). Inviscid limits for weak
solutions are in general hard to obtain, and in this case we only obtain a weak
L? result without a rate. We believe that explicit rates can be given in certain
negative Sobolev norms.

The second part is devoted to regularity estimates for the dissipative QGS
equations. Although we use the ideas of Foias-Temam [8] and Doering-Titi
[7] developed for the Navier-Stokes equations, our methods of estimating the
non-linear terms are significantly different from theirs because of the special
structure of the QGS equations. We treat the norm ||e¥*A" A%¥| ;> (where A =
(—A)/2—see notations in the following sections), and a special consequence of
our estimates for ||e?*A"AP9| 2 is that, as long as |A%¥||2, remains bounded,
the Fourier spectrum decays exponentially at high wave numbers. We note here
that HHABﬁH%Z for 8 = 1 is the analogue of the energy dissipation rate of the
3-D Navier-Stokes equations. In a similar fashion as Doering and Titi [7] argue
for the Navier-Stokes equations, these exponential decay estimates can be used
to obtain bounds on small length scale defined through the exponential decay
rate.



2-D Dissipative Quasi-geostrophic Equations 1115

Here I would like to thank Professor Peter Constantin for his suggestions and
help.

2. Inviscid limits. We consider the 2-D dissipative (x > 0) and the non-
dissipative (k = 0) quasi-geostrophic equations on R? or T?:

g—f—l—u-Vﬁ—&—/ﬁAMﬁ:O, 0<a<l,

where A = (—A)'/2 is the Riesz potential operator and the velocity u is defined
from the stream function ¢ = —A~149 by

oy
u = (ur,uz) = <_6—z2’ 8—1’1> .

We use D? to denote either R? or T?. We first consider the smooth initial data
case: ¥y € H*(D?)(k > 3). As shown by Constantin, Majda and Tabak [3], the
QGS equations with smooth initial data have local (in time) smooth solutions
and the Beale-Kato-Majda type blowup conditions have been obtained. More
precisely, we state the following result:

Proposition 2.1 If the initial data 9|;—o = 99 € H*(D?) for some k > 3,
then both the QQGS and the dissipative QGS equations have a unique smooth
solution for a small time interval, respectively. Furthermore, the solution 9°¢
of the QGS equations satisfies

t
/ V995 (-, 8)|| e ds < oo,
0

¢
[ 1990 o)l ds < oc

0
for any t belonging to the existence interval [0,T™).

This proposition admits the possibility of finite-time singularity formation
and consequently, the inviscid limit results for the smooth solutions are valid only
for the time period before the possible breakdown. We need further estimates
on the solutions.

Proposition 2.2 Let 99¢ and 9PRC be the smooth solutions of the QGS
and the dissipative QGS equations with the same initial data 99 € H*(D?) (k >
3). u®Y and uP9C are the corresponding velocities and ¥?F and YP9C are
the stream functions, respectively. Then for any t in the mazimal time interval
[0,T%) (when the smooth solutions exist),
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(1) The solution 92C of the QGS equation satisfies

G99 (z,t))de = | G(Vo)dx,
D2 D2

where G is a continuous function with G(0) = 0. Especially,
99C ¢ 0o = [GollLe, 1<p < oo

Furthermore,
[u®C ()l e = [99€ (5 8) |2 = [190]l 2,
[uRG () [Le < Call99C () |La, 1< g < o0,

where Cy is a constant depending on q.
(2) The solution 9P9C of the dissipative QGS equation obeys

[9PLE ) er < [ Pollze, 1< p < oo,
[P )][ze < Call9P2( )lle, 1<q< 0.

Proof. The proof of this proposition is classical. The L? estimates are the
classical inequality for the Calderon-Zygmund singular integrals, while the L”
bounds come from energy estimates. We omit the details. (]

‘We now state the inviscid limit theorem for smooth solutions.

Theorem 2.3 Let 9°¢ and 9P be the smooth solutions of the QGS

equations and the dissipative QGS equations with the same initial data ¥y €
H*(D?)(k > 3). If [0,T*) is the mazimal time interval of smooth existence, then

for any t < T,
||19QG(,,t) _ ﬁDQG('vt)”Lz(DZ) < Ck,

where C' is a constant depending on Y9 and T only.
The convergence rate O(k) is optimal. In the proof we only treat the case

D? = R?; the case D? = T? is easier.
Proof of Theorem 2.3. Consider the difference
Iz, t) = 9P9C (2, 1) — 99C (z, 1)

between the solutions of the QGS and the dissipative QGS equations, and let
u(z,t) be the corresponding velocity difference. This difference ¥ satisfies

21: +uPRY . VY 4 u - VO9O + kA2 (9 +999) =0,
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where A2* = (—A)®. Multiplying by ¥ and integrating in space, we obtain

1d
5 di 192dx+n/(A2a19)19dx:I+II+III,

where
I= / (uPRY . V)9 dz,
H:/(u.wQG)ﬁdm,
=k / (A*99C)Y dx .

We estimate these three terms and start with the first one. Clearly the estimates
in Proposition 2.2 guarantee that I is integrable. We show that it is actually zero.
Let x be a smooth cut-off function: x(x) =1if |z| < 1 and x(z) = 0 if |z| > 2
and x, = x(z/r) for r > 0. Using the Dominated Convergence Theorem and the
Divergence Theorem,

I=lim [ (uP?%. V)Ix,(z)dx

r—00

r—oo 21

1
= — lim —/X"uDQG192dx.
since the last integral is bounded,
[ < [ ey o < 1979 ol

< 4ol 2 [90lZ4 ,

we obtain I = 0. II and IIT can be estimated by using Proposition 2.2,
11| < [ VO] | oo full 2 9] 2 = V99| o= 10]]72
|TII| < I;Q/(AQO‘z?QG)deJr % /192 de .
Collecting these estimates, we obtain
G [ e+ KAl de < PODIE: + 210,

where

P(t) = 2||[VIC (-, 1)|| = + 1.
By Gronwall’s inequality,

t t t
1912 < edo POU 012, + w2 / JI PO 9ee 2 ar



1118 JIAHONG WU

Noting that ¥ = 0 and using the result of Proposition 2.1, especially,

t
/ ||V19QG(~7 $)||Le ds < oo,
0

t
/ 1999 (-, 5)II% ds < oo,
0

we obtain

19][r2 < Ck,
which completes the proof of Theorem 2.3. |

We now turn to weak solutions of these equations corresponding to L? initial
data. We restrict ourselves to the periodic domain T? = [0, L] x [0, L]. We quote
the result of Resnick [11] on the existence of weak solutions.

Proposition 2.4 Let 9o € L*(T?) and T > 0 be arbitrarily fized. Then
there exist weak solutions

99¢ € L=([0,T); L*(T?)),
9PRY e L= ([0,T); L*(T?)) N L*([0,T); H*(T?))

of the QGS and the dissipative QGS equations, respectively. That is, for each
test function p € C*°(T?),

T
/ﬁQchdx/ﬁosodz/o /T 99 (- V) d dt = 0,
T
/0DQG<pdm—/a90¢dm—/ / PG (uPRY . Vo) dr dt =0,
0 T2

DQG

where u®C and u are the velocities corresponding to 92¢ and 9PRC.

These weak solutions are constructed by using classical Galerkin approxima-
tions. The weak L? inviscid limit result is an easy consequence of this construc-
tion method.

Theorem 2.5 Let 9y € L?(T?) and 99¢ and 9P?C be the weak solutions
of the QGS and the dissipative QGS equations with the same initial data V.
Then for any arbitrarily fived T > 0 and any ¢ € L*(T?),

(2) lim sup (ﬁDQG(',t) —99¢(.,1), cp) =0, foranyt<T.
k—0

Proof. Consider the n'! Galerkin approximations {99¢} and {¥22C}, which
are in the space S,, spanned by the Fourier modes e™® with 0 < |m| < n and

satisfy

%it” + Po(uy - VO,) + kA%, = 0,
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ﬁn‘t:O = Pnﬁm

where P, is the orthogonal projection from L? onto S,, and & = 0 in the case of
¥9¢. As we know from [11], for some subsequences 92Q¢ — yPRE

99¢ ~ 9  weakly in L2(T?).
So, taking large n, we have for any € > 0
[(@PC(, 1) =999, 1), ) <&+ [(97°F = 03¢, )]

(3) <e+ @l r2l959F — 9| 2
<e+ Cyuk,

which implies (2). Here we’ve applied the inviscid limit result for smooth solu-
tions to 9PRC — 99&.

Remark 2.6 Since the constants C,, in the inequality (3) depends on n,
we obtain no convergence rate. An explicit rate may exist in negative Sobolev
norms.

3. Regularity estimates. We consider the 2-D dissipative QGS equations
with smooth initial data on the torus T2 = [0, L] x [0, L], which admits a unique
classical local solution. Let 1 be this solution. We will estimate the quantity

e A2,
where the operators A? and e*” are defined through the Fourier transform
APf =LY Rk f (k).
. Zk: eik':c+k\k\”f(k_) ’
k
with f(k) being the k" Fourier mode of f,

7wy = / e o) da

It is easy to see from these notations that e*” commutes with A? and the
partial derivatives for periodic boundary conditions considered here.

We obtain bounds for the quantity ||e7*" AP9||2,, which lead to the expo-
nential decay of the Fourier spectrum of 1. The precise estimates are as follows.

Theorem 3.7 Consider the 2-D dissipative QGS equations

1
(4) g—f—|—u-V19+KA2a19:0, n>0,§<a§1,
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on the 2-D torus T? = [0, L] x [0, L]. Let the initial data 9o € H*(T?) with mean
zero and U be the unique smooth solution. We take 8 such that

6>0, B+2a>2.
Then for any v > 0, 9 satisfies
(5) [l AP9]2
i A
(L= O A% [[32) 1 w11 y-2(e2oe/e 1)) !
which is finite for t € [0,t*),

K M—-1,.2
t"=—————log |1+ A S— .
2(N — 1)7? C|| A8 2N

Here C is a constant and M, N are given by

<

N-1)°’

1- Q, Zf ﬂ > 1
O— =
2— /B - Q, Zf /6 < 1
A special consequence of this theorem is that each Fourier mode amplitude
can be individually controlled. In fact, a rough estimate gives

S BP0k ) < D7 e IR0k, 0P = L2 AP s
k
Thus the k** mode is bounded by
L2 6(“72t/'<)*2wt\k|°‘||AL3190||2L2

[9(k, ) < -
K7 (1= C(IAPBo32)N =1 (1) 22N t2e/ ) VD

for ¢ € [0,t*).

Doering and Titi [7] establish the exponential decay of the power spectrum
for the flow field of the 3-D Navier-Stokes equations. A similar analysis based on
these bounds can be made to conclude that if [|[A?9]|2, is bounded uniformly in
time, then after a transient time of length ¢* /2 the Fourier spectrum of ¥ decays
exponentially at high wave numbers. Furthermore, the associated decay length
can be defined and estimated in terms of the dissipation rates.

The main difficulty in proving the estimate (5) is how to bound the non-linear
term properly. We need the inequalities for the Calderon-Zygmund type singular
integrals. We’ll also use the following lemma concerning the operator A*; which
is proved in [11], [13].
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Lemma 3.8 For s >0 and 1 <r <p < oo,
1A (uv)|| e < C([Jullze [[A%0][La + ([0l [[A%ul|Le)

where 1/r = 1/p+1/q and C is a constant.

Proof of Theorem 3.1Using Equation (4), we obtain

]. d @ e [ [ 819
- ytA B.q|2 _ ytA B ytA a B YEAY A B
Q—dt/\e APY)? dz /(e Az9> <’ye A“APY 4 e A—at)dx

— T4+ II+11,
where
I—~ / (e”“‘QAﬂﬁ) (eWtA“AaA%) da
v tA® A B2 K\ ytae 89112
< L AT, + T Ao,
—/ (e"tAaAgﬁ) (e'ytAaAB(u . Vﬂ)) dz,
III = 7!1/ (e”tAaAﬁﬁ) (e”tAaAzo‘J“gl?) dz

= fi-i||e”tAaAa+’819H%2 .

II

Now we deal with the second term II. Since the operators commute,
II = —/ (A(a+’3)67maz9> (RAB_O‘Jrle"’tACx (u- 19)) dz

where R = (9,,A!,8,,A™") are Riesz transforms. For brevity, we’ll use the
notations
a=e"" "y, ="y,

To obtain further estimates, we break up the term e7*A” (u-49). Its structure can
be better seen from the Fourier transform:

M w9y =072 Y MR )I(k”) .
k' 4k =k

For 0 < a <1,
|k|a — |k/ _"_ k/lla S |k/|a _"_ |]€//|C%7

so this term is bounded by

L—2 Zeyt\kﬂ“ |u(k/)| . Zewt\kﬁla |19(k//)‘ )
k/

k'’
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Now, using Holder’s inequality and the boundedness of the Riesz transform,
we have

1| < Ol greces AP (@- D)2
where C' is a constant.
Now we take ¢ =2 if 8 > 1 and ¢ =2/8 if 8 < 1. Choose p such that
-4 - = 1
P q

and 0 = 2 — 2/q — . The condition that 8 4+ 2« > 2 implies that 0 < ¢ < «.
We apply Lemma 2.2 to obtain

) < Cldllgecs (e AP0 o+ [Fllzo AP a0 ) =10y + TTp
Using Sobolev imbeddings, we have

HP s H& — LP, HPY" 15

and from the Gagliado-Nirenberg interpolation (since o < «)

gro=2B+a)+(1-2)8,

(07

we have
I, < C||9||gosa il s |10] rose
<Ol gs 19l ova 19] oo

i1+ S12—
< CIILe 915,

where C' is constant depending on o and . By Young’s inequality
K = C <9\ Y
I < S91e0 + 7 (1913)
where N = (2a—0)/(a—0) and M = (a+0)/(a — 0).
A similar estimate results in the same bound for II. ~
Collecting the estimates for I, II, and IIT and reintroducing 9 = e"*A" ¢, we
have
d o o
S A3, < —r]l A AT,

272 « c a
+ T||€7tA A’319||%2 + H_MHe’ytA ABﬁH%]zY

As we let
Z(t) = [l APV,
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the differential inequality becomes

dz 27 C N
—Z7 —Z
dt T K +
Elementary algebraic calculations yield
dy Ce2W Dwt/)YN
dat - kM ’
where Y = e=27°t/5Z. After a simple calculation,
Yo
(1 — OYN L= (=1)=2(e2(N-1)2t/n _ 1))/ N7V

Y <

Reintroducing Z(t) = [|e"**" A%9||2 and noting that Z(0) = ||A®¥3, we have
that

2
e 4298 < AT .
T (1= O(|AP |3t 1Dy (2N b2 1) VY

This means that [|e?**” A%¥|3 is finite on the interval [0,¢*), where

K KJM 172
= ————log |14+ ———
2(N — 1)y C|| A8, | 2N 1)

The smaller the initial decay rate |[APdg||2 is , the larger ¢*. Similarly, the larger
the parameter v , the shorter ¢*.
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