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Abstract

Solutions of the d-dimensional generalized MHD (GMHD) equations

Ou+u-Vu=—-VP+b-Vb—v(-A)u,
Ob+u-Vb=hb Vu—n(—A)’b

are studied in this paper. We pay special attention to the impact of the parameters v, n,« and f8
on the regularity of solutions. Our investigation is divided into three major cases: (1) v>0 and
n>0,(2)v=0and #>0,and (3) v=0and n = 0. When v>0 and >0, the GMHD equations
with any «>0 and >0 possess a global weak solution corresponding to any L? initial data.
Furthermore, weak solutions associated with oc?% —+ ‘Z’ and f 2% + ‘74’ are actually global classical
solutions when their initial data are sufficiently smooth. As a special consequence, smooth
solutions of the 3D GMHD equations with a;% and ﬁ;% do not develop finite-time
singularities. The study of the GMHD equations with v =0 and >0 is motivated by their
potential applications in magnetic reconnection. A local existence result of classical solutions
and several global regularity conditions are established for this case. These conditions are
imposed on either the vorticity @ = V X u or the current density j = V x b (but not both) and
are weaker than some of current existing ones. When v = 0 and 5 = 0, the GMHD equations
reduce to the ideal MHD equations. It is shown here that the ideal MHD equations admit a
unique local solution when the prescribed initial data is in a Hélder space C" with r> 1.
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1. Introduction

We study in this paper a family of equations

p (1.1)
Ob+u-Vb=>b-Vu—n(—A)"b,

{ Ou+u-Vu=—-VP+b-Vb—v(-A)u,
where v=0, 70, «>0 and >0 are real parameters, and u = u(x,7)eR¢, b=
b(x,1)eR? and P = P(x,t)eR are real-valued functions of xeQ and #>0. The
spatial domain Q will be either the whole space R? or the torus T¢. A fractional
power of the Laplace transform, (—A)?, is defined through the Fourier transform

(“A) /(&) = 2nlEA).

More details on (—A)* can be found in Chapter 5 of Stein’s book [15]. Sometimes we

write A = (—A)% for notational convenience. When o« = f§ =1, (1.1) reduces to the
usual MHD equations. In particular, if v=#% =0, (1.1) becomes the ideal MHD
equations. It is therefore reasonable to call (1.1) a system of generalized MHD
equations, or simply GMHD.

Dissipation corresponding to a fractional power of Laplacian can in principle arise
from modeling real physical phenomena, but our motivation for studying (1.1) is
mainly mathematical and the goal is to understand how the parameters affect the
regularity of its solutions. The issue of whether singularities form in finite time in
smooth solutions of the usual MHD equations is still open. For the 3D Euler
equations, Beale, Kato and Majda (BKM) showed that no singularities can occur
before the magnitude of the vorticity grows without a bound [1]. The work of
Constantin [7] and Constantin et al. [8] generalizes the BKM result by linking the
vorticity directions and the likelihood of blowup. Extending the BKM result,
Caflisch, Klapper and Steele derived a necessary condition for singularity
development in the ideal MHD equations [4]. Recently, Gibbon and Ohkitani
studied the regularity of a class of stretched solutions to the 3D ideal MHD
equations through analytical criteria and pseudo-spectral computations [10]. We
hope that the study of the GMHD equations (1.1) will broaden our view on the issue
of global regularity.

Our attention will be focused on existence, uniqueness and regularities of solutions
in three major parameter domains: (1) v>0 and >0, (2) v=0 and #>0, and (3)
v =15 = 0. A section will be devoted to each case. Section 2 is focused on (1.1) with
v>0 and #>0. Our ultimate goal here is to determine whether (1.1) admits a global
classical solution for any prescribed smooth initial data:

u(x,0) =up(x), b(x,0) = bo(x). (1.2)

As our first step, we show that (1.1) with v>0 and n>0 does have a global weak
solution if (ug, by) € L?. The global existence of weak solutions is universal for o> 0
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and >0 and its proof takes advantage of the regularity available only when the
dissipative terms are present. This point will be made precise in the first part of
Section 2. The second part of Section 2 is devoted to a priori estimates. When
combined with the already established global weak solutions, these bounds allow us
to conclude that if

1 d
=Z-+—
and f 2+4

K

==+

N —
S

then (1.1) with v>0 and 5 >0 possesses a global classical solution associated with
each pair of smooth functions (ug, bg). As a consequence, we recover the classical
result of global smooth solutions for the 2D MHD equations [9,14]. A more
significant corollary is that smooth solutions of the 3D GMHD equations (1.1) with
cx)% and [32% do not develop finite-time singularities. It is said that Ladyzhenskaya
has shown a parallel result for the 3D equations

Ou—+u-Vu=—-Vp—v(-A)u

with oc)%, but we were unable to find the reference. A simple proof of her result is
provided in the appendix of this paper.

The study of the GMHD equations with v =0 and #>0 is motivated by their
potential applications in magnetic reconnection. In a typical resistive process in
MHD reconnection, the viscosity v is often ignored because of its small effect. In
Section 3, we examine in detail how the solutions of (1.1) with v = 0 behave in hope
to achieve a better understanding of the physics models in the theory of MHD
reconnection such as the Sweet—Parker model [13]. Our investigation starts with a
local existence result for smooth solutions followed by an inquiry into their global (in
time) extension. It is not clear whether or not these local solutions can be extended
into global ones, but we show here that the vorticity w =V x u and the current
density j = V x b are bounded for all time if we know before hand that w orjisin a
reasonably regular functional space. These regularity assumptions are imposed on
either w or j (but not both) and thus weaker than some of the existing ones [4,17].
For this purpose, we have also derived a closed form of the GMHD equations
representing @ and j.

When v=# =0, (1.1) reduces to the ideal MHD equations. Due to lack of
smoothing mechanism and the strong coupling between the equations of u« and b,
theoretic issues concerning the ideal MHD equations such as existence and
uniqueness are very challenging and few rigorous results are currently available in
the literature. Partially motivated by the work of Chemin on the Euler equations [5],
we study in Section 4 solutions of the ideal MHD equations with initial data in
Holder spaces. Our major conclusion is that for any initial data (ug, by) in a Holder
space C" with r> 1, the ideal MHD equations have a unique local classical solution.
We remark that the regularity requirement on the initial data may be the minimal
condition needed to establish any existence result concerning classical solutions. To
make the presentation of this section self-contained, we will recall some basic facts
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concerning the characterization of C” in terms of dyadic decompositions and the
action of paraproduct on C”.

At the end of this section we introduce several notations which will be used
throughout the sequel. For a real number s, the space HS(R‘I) consists of functions u
satisfying

ol = [, (1 1P d < o

When the spatial domain is T¢, H* is similarly defined but in terms of Fourier series.
Clearly, H® = L2, but the norm in L? will be denoted || -|| rather than || - |-

1
Finally, we will use %; to denote the Riesz transform 9;(—A)2, i.e., #; = i, i =
1,...,d.

2. v>0and n>0

In this section we study solutions of the GMHD equations

{6,u+u-Vu: —VP+b-Vb—v(—A)u, (2.1)

b +u-Vb=hb--Vu—n—A)"b

with v>0 and #>0. Attention will be focused on existence and regularities of weak
solutions of (2.1) with «>0 and f>0. Naturally this section is divided into two
subsections. The first subsection establishes the global existence of weak solutions
corresponding to L? initial data. We remark that the result obtained here is in sharp
contrast to the existing ones for (2.1) with v =0 and n =0, or the ideal MHD
equations. So far only local weak solutions has been shown for the ideal MHD
equations even in the 2D case. The proof of the global existence result in the v>0
and n>0 case takes the advantage of the regularity available only when the
dissipative terms are present and its argument is no longer valid when v = 0 or # = 0.

One approach leading to global existence of classical solutions is to show that
weak solutions corresponding to smooth initial data can be globally regularized.
This amounts to proving certain a priori bounds. In the second subsection a priori
bounds are obtained to establish that weak solutions of the GMHD equations with
a>1+4and f=1+ ¢ become classical solutions when their initial data are smooth.
A special consequence is that smooth solutions of the 3D GMHD equations with
a}% and 8 2% do not develop finite-time singularities. It is said that Ladyzhenskaya
has proven a parallel result for the 3D Navier—Stokes equations, but we are unable
to locate her paper. We present a proof of her result in the appendix.
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2.1. L? weak solutions

In this subsection we show that the GMHD equations (2.1) with v>0, #>0, >0
and B>0 have a global weak solution corresponding to any prescribed L? initial
data. The proof presented here is for periodic boundary conditions, but minor
modifications will make it work for the whole space case.

We start with a definition of weak solutions for (2.1) with L? initial data (u, bo).
Let T>0 be arbitrarily fixed.

Definition 2.1. A weak solution of (2.1) is a pair of functions (u, b) satisfying
ue L* ([0, T); L*)nL([0, T]; H*), beL” ([0, T]; L*)n L*([0, T]; HY)

and for any test function ve C* (T¢)

/ ()vdx—/uovdx+// (A —u- V)

+b-Vv-b—P(V-v)]dxdt =0, (2.2)

/b( )vdx—/bovdx—i—// A —u-V)o+b-Vo-uldxdti =0, (2.3)

where the spatial integrals are over T¢.
The following theorem states that weak solutions of (2.1) are global.

Theorem 2.2. Let T>0 be fixed. Let v>0, n>0, «>0 and f>0. Assume that uye L?
and byeL*. Then the GMHD equations (2.1) possess a weak solution obeying
Definition 2.1 over [0, T]. Furthermore,

o 4p
(O, 0b) e L (0, T); H) x Ld (0, T} H™).

Proof. The tool is the Galerkin approximation. Denote by Py the projection of L?
onto the space spanned by ¢** with 0<|k|<N. Consider a sequence of functions
{(u",b")} solving the equations

%uN + Py{u? - Vu¥ + VPV =Py (N - VBV +vaT U (2.4)

%bN + Py {u - VON} =Py {bY - VUV } 4+ na?PpN (2.5)
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with the initial condition
¥ (x,0) = uy (x) = Py{ug(x)}, bV (x,0) = bg'(x) = Py{bo(x)}.

Clearly, for t€[0, T], (uV,b") satisfies the energy inequality
t
[l (-, 1 + 1BV ¢ 0l + 2V/0 |47 (-, 1) de
t
20 [ 1A 9P el + 1l (26)

Therefore, {u"} is uniformly bounded in L* ([0, T]; L?) n L*([0, T]; H*) and {h"} in
L*([0, T]; L*) n L*([0, T]; H7).

4o
In addition, we show that {9,4"} is bounded uniformly in L4 ([0, T]; H~') and

{9,hN} in L%([O, T]; H™"). For this purpose, we use (2.4) and (2.5) to write d,u" and
0;bN equal to the remaining terms of these equations. It then suffices to show that the
terms other than 9,u" and 9,b" in (2.4) and (2.5) are bounded uniformly. In fact, for
any ve H',

2 2011 fo, N |12—27
(P {u® - Vu} o))< ol 1|74 < Clol gl [P 1A% |50,
where y, =1 — 4—‘2. By the Gagliardo—Nirenberg inequality,
[Py (" - V), 0)| < Cllol| g [6V]] ol ]|

< ClJol| g 1BV 1A% || 77 [P A ||

< ClJoll g 1BV [ [l [P (AN P72 4 (|47 [P720), - (2.7)
where y, =1 — %. To deal with the pressure term, we notice that
PN = (=A)'V - @ v — bV b)),
Thus
(PN {VPY}, )< Clloll g (|17 + (6™ 1170)

2y,

< C||U||H1 (||MN A“uN|\2‘271 + ||bN||272||AabN||2—2}'z).

Similar estimates can be obtained for the remaining terms. By (2.6),

M1 161 € L% ([0, T]): (147|121 476N e L' ([0, T)).
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Therefore
4y 4
(Ou™, 06Ny e Ld ([0, T); H ') x Ld ([0, T); H"). (2.8)

Since {(uV,b")} is bounded uniformly in L*([0,T];L?), there exists
(1,h)e L* ([0, T]; L*) and a subsequence of (uV,h") such that this subsequence

converges weakly to (i, b). But this weak convergence does not allow one to pass to
the limit in the nonlinear terms. Fortunately this subsequence actually converges in
the strong norm of L?([0, T]; L*). The strong convergence can be proven using the
Lions—Aubin compactness theorem [6,16], which states in our situation that
L*([0, T); L?) is compactly imbedded in the space

4a 4B
{(u,b): (u,b) e L2([0, T]; H"), (9, Oyb) e Ld ([0, T): H™') x L ([0, T];H*I)}.
According to (2.6) and (2.8), the sequence (u#",b") belongs to the above space.
Therefore, (u¥,bV) has a subsequence that converges strongly to (i,b) in
L*([0, T]; L?).
The strong convergence of (1, b") to (i, 5) in L*([0, T; L?) will allow us to show

that (i7,h) is indeed a weak solution of (2.1). Let ve C* (T¢). Dotting both sides of
(2.4) and integrating over T¢ x [0, ], there obtains

N
Oz/uN(Z)vdxf/ vdx
0

t
+ //[uN~(vA2“vN—uN-VUN)+bN-(bN-VvN)—PN(V-vN)]dxd‘E.
0

Let N— oo. Passing to the limits in the linear terms is trivial. A simple argument
combined with the strong convergence («V,bV) to (i7,b) in L>([0, T]; L*) will also
allow one to pass to the limit in the nonlinear terms. For example, to show the
convergence

/uN-(uN-vUN)dx—»/ﬁ-(a-w)dx,
we write
/[uN-(uN~VUN)—L7~(L7-VU)]dx
= [ = V) e (@ - ) V)
+a- (- VY —v)) dx. (2.9)

The first term in (2.9) converges to zero because u" —ite L*([0, T]; L?). The weak
convergence #”" to i sends the middle term to zero and the last term is zero because
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of vV - v in L?. Thus, (7, 5) satisfies (2.2). Similarly, invoking (2.5), one can show

that (i, b) satisfies (2.3). This completes the proof of Theorem 2.2. [

2.2. Global regularity of weak solutions

Weak solutions combined with appropriate a priori bounds leads to the
global existence of classical solutions. In this subsection we establish a priori
estimates for the GMHD equations (2.1) with a;% + % and /32% + j‘—’. This result and
the previously established global weak solutions allow us to conclude that (2.1) has
global classical solutions when ocZ% —&—% and ﬁ?% + %. In particular, we recover the
global existence result for the 2D MHD equations [9,14]. Another special
consequence is that smooth solutions of the 3D GMHD equations (2.1) with oc)%
and f >§ cannot develop finite-time singularities. The issue that remains open is
whether or not the 3D GMHD equations with & =1 and = 1, or the usual 3D
MHD equations have a global smooth solution for any prescribed smooth initial
data.

Theorem 2.3. Let T>0. Assume that v>0, 1>0, o and f satisfy

1 d 1 d
==+ ==+ 2.1
oc2+4 andﬁ2+4 (2.10)
Let upe H® and bye H® with s=max{20,2}. Then the corresponding weak solution
(u, b) of the GMHD equations (2.1) established in the previous subsection is actually a
classical solution satisfying

ue L ([0, T]; H) nL*([0, T}; H***), beL* ([0, T]; H) nL*([0, T]; H**F).

Remark. When d = 3, (2.10) reduces to a?% and f§ 2%. Ladyzhenskaya has obtained
a parallel result for the equation

Ou~+u-Vu=—-Vp—v(-A)u

with oc>§, but we were unable to find the reference. We will provide a proof of her
result in the appendix. In a recent work Mattingly and Sinai [12] gave a proof of
Ladyzhenskaya’s result using the methods of dynamical systems, but their proof
5

does not include the case o = 3.

Proof of Theorem 2.3. First recall that u and b satisfy

t t
||u||2+||b||2+2v/0 IIA“ullzdf+217/0 |APD])* dx = [luo||* + [|bo|*.  (2.11)
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Multiplying the first equation of (2.1) by Au and the second by Ab, integrating by
parts and adding the results, we obtain

s [ A + b+ / 1Al + gl AP D)l
= / 8ku,- . aﬂ/lj . 8]&!] dx + / Bku,- . a,'bj . 8kbj dx.
- / 6kb,‘ . 8,-[9_/ . 8ku, dx — / akb,‘ . 8,u_,~ . Bkb, dx.

The first term on the right is bounded by ||Vu|[;: and the other three terms are
bounded by ||Vu||,:||Vb||7:. For « and f satisfying (2.10), we set

1 d 1 1 d
Cllzl_@ 1+§ s a2=§, (13:@ 1—0(4—5

e1=1-— 31'[3(1—&-‘{) 622%, e3 = 31,8( ﬁ+)

Obviously, these indices satisfy

and

d
atata=1 a+oax+(1+a)az= 1+8
and
d
ertert+es=1, e +per+(1+pes=1 —1—6.
Therefore, by the Gagliardo—Nirenberg inequality,
[IVul| < ClVul | 1A%l || A% ]|

and

V]2 < C||[VB|[! ]| APB| ||| AP B
Since 3;‘ + 3“3 =1 and 3“ + 3‘3 =1, we apply Young’s inequality to obtain
IVl < 1147l + G| A%l /|| e
2 4 2e 2 2
IV ul 2|V [72 < ClIVul [ || A% | [ A% ]| - [[VB][* || APB] [ || AP+ )|
||/1er1 I1?+2 ||Aﬁ+lb|\ + G| A%ul P2 |Vl P

+Cn||/1ﬂb||2”/€‘||VbH -
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Combining these estimates, we reach the closed inequality
G [P 4145 dx s [ plas P gt
SCllA%ul | Tull” + Gyl | AP || VB . (2.12)

For 0(2% + % and ﬁ;% + %, %<2 and 2e—?<2. It then follows from (2.11) that for any
T>0and 70, T)

t 1
|l ar<ce [ At des o,
0 0

We then conclude from (2.12) that
ueL*([0, T H) N L*(10, T, H'™),  beL™([0, T H')n L*(0, T]; H'F).

We remark that higher regularities can be established inductively. For example, to
bound the second derivatives, one starts with the basic inequality

1d
2 dt
< CIIVul| (14213 + [14%]13 ) + CIIb [l A% o148 .

/ [1A%u)* + |A%b)*] dx + / V][ A%F2u)? + | APF2B|*) dx

A closed inequality is then obtained after inserting the estimates

_d d vy
|| A% |72 < C|| Al [*22 ||/12+“u||2“<§ 1A% ul P + C,[|A%u]|*,

4 4
142b13 < CIABI 38 || 4>l 2B <2 || 49| + G, |42
and using the bounds related to the first-order derivatives
o, 112 2
IVu(, 0)ll, IVbl e L7 (0, T]);  ||A4%|1*, ||APb]|*e L'([0, 7).

We omit further details. This completes the proof of Theorem 2.3. [

3. v=0and n>0
In this section, attention will be directed to (1.1) with v = 0, namely

{8,u+u~Vu:—VP+b-Vb, (3.1)

Ob+u-Vb=b-Vu—n(—APb,

where >0 and f>0. The study of (3.1) is partially motivated by its potential
applications in magnetic reconnection. In a typical resistive process of MHD
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reconnection, the viscosity v has a small effect but the magnetic diffusion
plays a crucial role. Our ultimate goal is to have a complete understanding of
several well-known models in MHD reconnection such as the Sweet—Parker
model [13].

The spatial domain is assumed to be either the whole space R? or the torus T¢. We
are primarily concerned with the existence of global classical solutions of (3.1)
associated with the initial condition

u(x,0) =up(x) and b(x,0) = bo(x). (3.2)

For clarity, this section is divided into two subsections. In the first subsection we
prove the existence of a local classical solution. In the second subsection we derive
several conditions under which the local solution can be extended into a global one.
We emphasize that these conditions are valid for a whole range of magnetic diffusion
and are weaker than some of the known ones [4,17]. For this purpose, we derive the
MHD equations representing the vorticity w and the current density j as well as the
vorticity and the magnetic flux function .

3.1. Local classical solutions

We show in this subsection that the initial-value problem (3.1)—~(3.2) possesses a
unique local classical solution when uy and by are sufficiently smooth. The arguments
in the proof apply to both #>0 and 5 = 0 cases.

Theorem 3.1. Let n=0 and [>0. Assume that uye H" and bye H"™ with
m>max{2, f} + d/2. Then there exists a T depending only on uy and by such that

(3.1)-(3.2) possesses a unique classical solution (u,b), which remains in
eL* ([0, T); H™).

Proof. Let ¢>0 be a small parameter and 0 <o < f be fixed. Consider the regularized
equations

p (3.3)
Ob+u-Vb=>b-Vu—n(—A)"b

{6,u+u~Vu: —VP+b-Vb—e(—A)u,
with initial data u(x,0) = uy(x) and b(x,0) = by(x). Theorem 2.2 of the previous
section implies that (3.3) possesses a global weak solution (u,, b.). We now show that
there exists some finite-time interval [0, 7] over which (u;,b,) is regular and
converges to a classical solution (u,b) of (3.1). This mounts to establishing certain a
priori bounds for (u,,b,) thanks to the standard approximating procedures [3,6].
More specifically, we need to show that (u,,b.) is uniformly bounded in H™
over [0,7] and (Ou,,0;b;) in H® for some s<m. This is accomplished in the
following lemma.
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Lemma 3.2. There exist a T >0 and a constant ¢ independent of ¢ such that

sup ([[ue (5 Ol g + 16 D[ ) <, (3.4)
te[0,7T]
sup, (Beaae (-, Dl grs + 110:be (-, Dl o) < (3-5)
tel0,

where s =m — f5.

Proof. Let ¢ be a multi-index with |o| = m. One easily verifies that

1d
o HDngﬂz +¢ / A*(D°u,) - (D°uy) dx

__ / (D) - Vi - (D°uy) dx + / (D°b,) - Vb, - (D°u,) dx

and
1d
2 dt
= —/ (D°u;) - Vb, - (D°b,) dx + / (D°b;) - Vu, - (D°b,) dx.

Db, + 1 / AP(D%B,) - (D°D,) dx

Therefore, for some constant c,
d T 2 4 2 o 2 - 2
73 WDl [+ NID°B[[7) dx < c(|[Vitallp» + [IVBel | ) (1D%wcl|” + [[D7Be] 7).

Applying Sobolev’s imbedding theorem, we have for m>1+d/2
IVtte][ o < Cllutg| g and [[Vbg|| o < CI[Be] -

Thus we have deduced that for some constant ¢

d 2 2
g el =+ 11Del o) < el + 110 ) -

This inequality implies immediately that there exists a 7 = T(||uoll,,,|lboll,,)
such that (u,,b,) is bounded uniformly with respect to both ¢>0 and z€]0, 7).

This proves (3.4).
To show (3.5), we recall the basic inequality that for s>d /2

LS - gl < Cl el - (3.6)

Using (3.3), we can rewrite J,u, and 0,b, in terms of the other terms in (3.3). (3.5) is
then obtained by taking H* norm and applying (3.6). [
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Proof of Theorem 3.1 (Conclusion). Lemma 3.2 will allow us to use the Aubin—
Nitche compactness theorem [11]. According to their compactness theorem,
{(ts,b¢)} is compact in C([0, T]; H*). By Sobolev’s imbedding theorem, it is also
compact in C([0, T]; C?). Therefore, one can pass to the limit in the nonlinear terms
of (3.3). This completes the proof of Theorem 3.1. O

3.2. Conditions for global solutions

Local smooth solutions obtained in the previous subsection are not known to be
global, but they can be extended into global solutions if they further satisfy
appropriate regularity conditions. Several such conditions are derived in this
subsection for the two-dimensional case. These conditions are expressed in terms of
the vorticity and current density as well as the magnetic field. This subsection
consists of three parts labeled explicitly for the clarity of presentation.

3.2.1. Equations of w and j
In this portion we derive a special form of the MHD equations representing o
and j. The v-term is kept in the derivation for the purpose of future references. As we
have mentioned before, we restrict our consideration to the two-dimensional case.
Taking the curl of Egs. (1.1), we find that the vorticity w = V x u and the current
density j = V x b satisfy the equations

{8,w+u~Vco =b-Vj—v(-A) o, (3.7)

Oij+u-Vj=b-Var—2u, by} —n(—A) ;.

Here the repeated index » is summed and the notation { f, g} stands for the Poisson
bracket of two scalar functions f and g, i.c.,

_9 99 Of 99
{/.9} = Ox; Oxy  Ox20x;

The Poisson bracket can be verified to possess some fine properties. If V -« = 0 and

D; =0, +u-V denotes the material derivative, then the following product rule
holds:

DA f.g} ={D:.f.g} +{/, Dig}.
Furthermore, for any frozen-in vector field b, i.e., [D;,b - V] = 0,
b-NV{f,g}=1{b-Vf.g} +{f,b Vg},

where [ ] denotes the commutator operator.
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The term {u,, b,} in (3.7) can be further expressed in terms of w and j. In fact, if #
and 2 denote the deformation tensors for u and b, respectively, namely

1 1
Zij =5 (O + ui), 2y =5 (0ib; + 9bi),

then {u,,b,} can be written as
{un, bu} = ea?uc 2,

where ¢; is the standard permutation symbol and the repeated indices are summed.
In addition, the deformation tensors £ and 2 can be recovered from w and j through
a singular integral operator with the kernel K. More precisely,

P=Kxw and 2=K=xj,
where K assumes the explicit form

1 [ 2xix, x2—x2
K(x) = K((x1,x2)) = |X|4<X% 2 _22X1x; : (3.8)

Thus, we have obtained a “closed form” of the MHD equations of w and j

. ' 5 (3.9)
D;j=b-Vao — 2e;(Ky * o)(Ky *j) —n(=A)" j.

{ D =b-Vj—v(-A) o,
When the spatial domain is either the whole space R? or the torus T2, the above
equations are supplemented with initial conditions

o(x,0) = wo(x) and j(x,0) = jo(x).

3.2.2. Conditions in terms of w and j

In this portion we set v=0 and derive regularity conditions based on the
equations of w and j, namely (3.9). Our intention is to establish maximal regularities
for solutions of (3.9) by imposing minimal conditions on either w or j (but not both).
A natural type of conditions is regularity in L?([0, T]; L?) for 1<p<oo. We also
remark that some of the results here are valid not only for n>0 but also for # = 0.

Theorem 3.3. Assume that n=0. Let wy and jo be smooth, say, (wo,jo)€H™ with
m>max{2,f} +d/2 and (w,j) be the corresponding solution of the 2D MHD
equation (3.9). If, for some T >0,

T
/0 117G, 1)l de< o0, (3.10)

then w,je L* ([0, w]; L?), and je L*([0, T); H?) when n>0.
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Remark. Theorem 3.3 is valid for both #>0 and n = 0.

Remark. We have made no efforts here to optimize the regularity requirement for
the initial condition. Our main concern is the global existence associated with
sufficiently smooth data.

Remark. Caflisch, Klapper and Steele have shown in [4] that a smooth solution of

the ideal MHD equations is global if the corresponding vorticity w and current
density j obeys

/OOC (oGOl e + 117G Dl e ) di < o0 (3.11)

Theorem 3.3 above indicates that it suffices to impose a condition solely on j, i.e.,
(3.10) in order for w and j to remain in L* ([0, T]; L?). However, it seems that (3.10)
alone is not sufficient to show that Ve and Vj are in L= ([0, T]; L*). We will explain
a little bit more at the end of this portion.

Proof of Theorem 3.3. One easily deduces from (3.9) that
d 2 112 B2 g A N
WP+ AR) 20 [ (AR dx = =260 [ (Kie * 0)(Kiexj) - jdx. (3.12)

Since K is the kernel of a standard singular integral operator, we have for some pure
constant C that

|| K * || 2 < Cllof[ 2 and || K * ]| 2 < C[ ][ 2

Therefore the right-hand side of (3.12) is bounded by

2¢i / (Kt o) (K + ) - J| < ClLjll L= o] 2 1] 2
< Cllllee lllz: + 117117:)-
Inserting this bound in (3.12) and applying Gronwall’s inequality, one obtains
w,jeL*([0,T);L*) and jeL*([0,T); HP).
This concludes the proof of Theorem 3.3. [
The following theorem exploits the regularity associated with the y-term.

Theorem 3.4. Let (wo,jo)e H" with m>max{2,} +d/2 and (w,j) be the
corresponding solution of the MHD equations (3.9) with 1>0. Let p and q be two
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indices satisfying

If, for some T >0,

T
| ot 1 di< e,
0
then (w,j)e L* ([0, T]; L?) and je L*([0, T]; H?).

Proof. For ¢;>1 and r;>1 satisfying 1/p+ 1/q1 + 1/r; =1,

’/ (Kix * @) (Kjg * j)j dx

< C[|Ki * |

o /1K % | |7l o

< Clloll g 11 o 1 2 s
where C is pure constant. Using the Gagliardo—Nirenberg inequalities

2 12
m\CIIJIILz i A% 117"

2
b b
11 qu\C||J||L-ﬂ /’f'||/1ﬁ]||ﬂ i and |1/

we obtain

B b
<C||w||yz||JHLz”’ 147 H’p

‘/ (Kik * ) (K * J)j dx

By Young’s inequality,

[ oK

n 112 )
<3 147 jl17: + Cyllool |11l 22,

where C,, is a constant depending on # and 1/(fip) + 1/¢q = 1. Inserting this bound in
(3.12), we obtain

d L2 12
2 ULIP =+ ol ) + nll 4271 < Cylleo 13111122

The proof is then completed after applying Gronwall’s inequality. O

In the next theorem we require the finiteness of a quantity involving L'-norm of w,
the lowest norm of vorticity magnitude. We will need a lemma which provides a L™
bound for the operator Kx* (K is defined in (3.8)). Kx* is a bounded operator from L
to L? for 1 <p< oo, but there are explicit examples showing that K* does not always
map L* into L®. The following lemma states that K x V' is in L* if V' is locally
Holder continuous.
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Lemma 3.5. Let Ve L'(R?) be locally Hélder continuous in the sense that there exists
some pe (0, 1) and constant C

[V(x) = V(»)I<Clx =yl (3.13)

for any x,yeR? with |x — y|<||V||,:. Then K  V is in L* with

P
1K+ V|| <CIIVIIL".

Proof. Recall that for any >0

quK(x) dx =0.

Using this fact, we have

KV = / (V(x—y) - V(0)K() dx

/S | / Vix—re”) — V(x) Ki1(0) dr do,

where S| denotes the unit circle and

Ki(0) 2sin 6 cos 0 sin 6 — cos? 0
! sin”0 —cos20 —2sinfcosf |

1
Now set 0 = || V||2+" and split the integral with respect to r into two parts: from 0 to
0 and from J to oo. We handle the two parts accordingly. Using the local Holder
continuity (3.13), we obtain

0 iy P
/ / Vix ””r> V() k,(0) do arl < cor = vz
N

Since V is also in L!,

_ 10 p
// Vi =re) =V g () do ar <c”V5”LLC\|V||2+P.
S Jo

P
Therefore ||K * V||, <C|\V||2+p~ .
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Theorem 3.6. Let (wo,jo)eH™ with m>max{2,p}+d/2 and (w,j) be the
corresponding solution of the MHD equations (3.9) with n=0. Let T>0. If e L' is
a locally Holder continuous function with index p e (0,1) and satisfies

T _P_
/ (-, 0)[1577 dt < 0, (3.14)
0

then w,je L* ([0, T); L), and je L*([0, T); H?) if n>0.

Proof. According to Lemma 3.5,

\ [ K=o *j)j\ < ClIKu * 0l 11K #1121l

14

2 .12
< ClloC, )l 1l

Inserting the above estimate in (3.12) and applying Gronwall’s inequality result in
w,je L™ ([0, T); L*), and je L*([0, T]; H?) for n>0. O

As we have remarked before, the assumptions of the theorems in this portion do
not seem to yield a uniform bound for ||Vw|| or ||Vj||. We now briefly explore why
(3.14) fails to control certain terms and where the proof for uniform bounds on
[|[Vol|| and ||Vj]| breaks down. For smooth w and j, Vw and Vj satisfy

1d . .
35 [ IVl + i dxtn [ 40P ds =R+ Re+ R,
where R;, R, and Rj are given by

R

— / Ot - (010 - O + 05 J - O J) dx,
R2 = / amb, . (8,(0 . 8m]+ 81] . 8ma)) dx,

Ry = —2¢; / [(1(,‘/C * 8,,1(0) (K/k * CO) + (Kik * (U) (Klk * amw)]amj dx.

To estimate R;, we recall that 2 = (ju; + dju;)/2. Because of symmetry,

Rl =2 / e@mi(aiw : 8mw + al] : amj) dx

) / (Kot % )« (0100 - O + 0y Oy j) dx.
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It then follows from Lemma 3.5 that

2 .12 2 2 112
|[Ri| < ClKpi * 0| - [Vl + [[Vill2] < Cllol [ [ Vol + [[V]7:].

Rj3 can be estimated in a similar fashion. By Lemma 3.5,

Ry < 2([[Kig + Omo[ 2 || Kine 0| o + || Kie * | o [ K+ 0n0) [0 ] 2

P P
24+p . 2+p 2 .12
<Clloll; "IVl Vil < Cllol? (Vo2 + |[Villz.)-

So a condition like (3.14) would take care of R; and R;. The term that is really
troublesome is R,. Recalling that 2;; = (9;b; + 0;b;)/2, we can rewrite R, as

R2:2/Qmi-8mw-8,-jdx.

It seems that (3.14) alone is insufficient for the control of R, and this is where the
proof for uniform bounds on ||Vw|| and ||V/|| breaks down. But a similar conditions
on j as in (3.14) would allow one to show that ||[A"w|| and ||A” || are bounded
uniformly in 7€[0, o0 ) for any fixed m>1. We state this conclusion in the following
theorem.

Theorem 3.7. Let T>0 and (w,j) be a local smooth solution of the MHD equations
(3.9) withn=0. If v and j are both local Holder continuous with the index p and satisfy

e
w,jeL20([0,T]; L"),

then @ and j are both in L* ([0, T|; H™) for any m=0. In particular, if T = oo, then
(w,)) is a global classical solution of (3.9).

3.2.3. Conditions in terms of b

Without loss of generality, we shall assume in this part that § =1 in (3.7). If ¢
denotes the magnetic flux function, i.e., b = V1, then (3.7) is equivalent to the
following equations of  and w:

{8tw+u-Va):b-Vj

(3.15)
O +u- Vi = nAy

as far as smooth solutions are concerned. Smooth solutions of (3.15) are currently
not known to be global. Numerical simulations seem to indicate exponential growths
of w rather than finite-time singularities [2]. In this section we explore conditions on
b under which w grows at most exponentially. Since the condition involves the time-
derivative of b, the estimate may not be helpful in practice.
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Theorem 3.8. Let (W, o) € H* with s>max{2,} + d/2 and (Y, ) be the solution of
(3.15) with initial data (Yo, o). If the magnetic field b = V* x  satisfies

/0 U0 D)% + (B, D][4) di< oo,

then w does not develop any finite-time singularities and ||w|| grows at most
exponentially.

Proof. Noticing Ay = j, we can combine the equations in (3.15) to eliminate j,
nOw~+u-Vo)=5b-V(Oy+u- V).
Multiplying both sides by w and integrating over the spatial domain, we have
d
%z / lo]* dx = / (b- V@,t//)wder/ (b-V(u-V))wdx. (3.16)
Applying basic inequalities to the right-hand side of (3.16) eventually leads to

nd L3
§%||w(wf)||2< C(L+ |IbI| + 11512 [[ul# + [|VB] 7)ol
+ C(IIBIPIIVBIP + 19b]]25 + VD [12)

Finally we use Gronwall’s inequality. [

4. v=0and n=0

We now turn our attention to (1.1) with both v=0 and # = 0. When v =9 =0,
(1.1) reduces to the ideal MHD equations, namely

{8,u+u-Vu:—VP+b-Vb, 1)

In this section the spatial domain is taken to be R and we are primarily concerned
with solutions of (4.1) supplemented with the initial condition

u(x,0) = up(x) and b(x,0) = by(x), xeR’ (4.2)

We shall show that for each (ug,by)eC" with r>1, the initial-value problem
(4.1)-(4.2) has a unique classical solution (u, b), which remains in C" for some finite
time. Here C" denotes the Holder space characterized by the usual dyadic
decomposition. Some basic facts concerning C" will be reviewed in the first
subsection. The precise theorem and its proof are given in the second subsection. The
proof is a modification of Chemin’s approach [5].
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Using Elsdsser’s variables zt = u+ b and z= = u — b, the ideal MHD equations
can be written in the following symmetric form:

{ 9z" +z7 - Vzt = -VP, (4.3)

Oz~ +zV-Vzm = -VP,
which we find more convenient for our purpose here. Correspondingly, the initial

data for z* and z~ are zg = up + b and z; = uy — by, respectively. The pressure P in
(4.3) is determined by zt and z~ through the relation

P=P("z)=(-A)'V(z -Vz") or P(z'.z7) =Bz 7).

4.1. C" and paraproduct

We review here the characterizations of the Hdélder space C" and the action of

paraproduct on C”. We start with a dyadic decomposition of RY. It can be verified
that there exist two radial functions ye C5° and ¢ € Cg° satisfying

supp = {&: [£]<4/3}, supp p={&: 3/4<|¢[<8/3},

WE+> 27 =1, forall ZeR’.

Jj=0

For the purpose of isolating different Fourier frequencies, we define the operators A;
for ieZ as follows:

0 if i< —2,
A= q x(D)u= [ h(y)u(x —y)dy if i=—1, (4.4)
G227 D)u =2 [ g(2y)u(x —y)dy if i>0,

where h=yY and g=¢" are the inverse Fourier transforms of y and ¢,
respectively.
For ieZ, S; is the sum of A; with j<i—1, i.e.,

St = A yut Ao+ A+ -+ Aqu= [ 2"y u(x — y) dy.
R(
It can be shown for any tempered distribution f that S; f —f in the distributional
sense, as i — 0.
For any real number r (not necessarily positive), the Holder space C" contains
tempered distributions u that satisfy

sup 2" || A, . < 0.
i
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Note that the space C° defined here is not equivalent to L*. In fact, L* is a sub-
space of C°. On the other hand, if a function is in C¢ for any >0, then it is in L*.

The usual product uv of two functions u and v can be decomposed into three parts.
More precisely, using the notion of paraproduct, we can write

uv = T+ Tou+ R(u,v), (4.5)
where

T.,v= Z Si_iu- A, R(u,v) = Z Aju - Ajv.

J li—jl<1

We remark that the decomposition in (4.5) allows one to distinguish different types
of terms in the product of uv. The Fourier frequencies of # and v in T,v and T,u are
separated from each other while those of the terms in R(u, v) are close to each other.
Using the decomposition in (4.5), one can show that for s>0

[|uvl| e < C(lful[ o [[ol] Lo + el [0l ) - (4.6)

4.2. Local C" solutions
We now state our main theorem of this section.

Theorem 4.1. Let uge C" and bye C" with r>1. Consider solutions of (4.3) with
initial data

zH(x,0) =z (x) = up(x) + bo(x), z(x,0) = z5 (x) = up(x) — bo(x).

Then there exists a T depending on uy and by only such that (4.3) has a unique
solution (z*,z7) over the interval [0,T). Furthermore, zt,z e L*([0,T];C") and
PeL” ([0, T]; C"*).

Remark. It is not known if the local solution established in this theorem can be
extended into a global one. But if we know that the vorticity @ = V x u and the
current density j = V x b satisfy

/OOC (oG Dllpe + 117G D) di < oo, (4.7)

then (u,b) can be extended into a global solution. The verification of this assertion
involves bounding ||u|| and ||b|| in terms of the quantity on the left of (4.7). We
omit more details.

Remark. In Theorem 4.1 the initial data are assumed to be in C" with r>1. It is not
clear whether similar results hold if uy, and by are merely in C'. Our guess is that
conditions involving initial vorticity and current density may be needed.
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Proof of Theorem 4.1. Consider two approximating sequences of {z\} and {z,}
satisfying

Zy = 8a(zp), 2 = Sa(z),

and
8ZZ’JIF+1 + Zn VZnJrl = _VP( rJlr’ n)
a[ZrTJrl + Z VZnJrl = _VP( ;:—a n )a (48)
Z:Jrl(o) = Sn+220 s Zpal (0) = S"+226'

We shall show that there exists a time interval [0, 7] over which {z]} and {z } are
uniformly bounded in L® ([0, T]; C") and Cauchy in L= ([0, T]; C'~1).

Let j= — 1. Applying the operator A; to both sides of the first equation in (4.8),
there obtains

a (A Zl1+1) V(A Zn+1) = _VP(Z;a Zn ) [ V A; ]

Znt1o

where [, | denotes the commutator. This equation can be written in the following
integral form:

Az (30) = (Swa2zg ) (7)™ (%, 1))

+/ (VP Z) + [ - VoA ) 0 1) d,
0

where y. =y () =y ((y;) ' (x,1),7) and i is the stream function corresponding
to the field z, . Taking L*-norm and then multiplying by 27", we obtain from the
above equation that

||Zn+l||C’\ lz5 |l + / [IVP(zF, z)]

o de
t 5
4 /0 sup 27|[z5 - V, Az e dt (49)
J
Similarly,

lerallo < llllo + [ 1972l ¢

t
[ sup 27z VA de (4.10)
0 J
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We need to bound ||VP(z,z,)||o and ||[z} - V,Ajlz,, ||~ . The following lemmas

n’<n

provide the estimates. Notice that these estimates hold for any r> — 1.

Lemma 4.2. Let r> —1 and P(v,w) = R;R;(viw;). Then for some constant C
depending on r

Celle VWl e + Wl e lVoll.)  for r>1,

||vp<u,w)|,<{ .
SV Cmin{[[Vell Wl 1991 el ) for re(~1,1).

Ccrs

Proof. The bound follows from Proposition 2.5.1 of [5, p. 40]. O

Lemma 4.3. Let r> — 1 and j= — 1. Assume that v and w are both divergence-free.
Then for some constant C depending on r only

w9, Al <27 (19wl + (19wl el

Proof. We sketch the proof and details can be found in [5, p. 67]. Using the
decomposition (4.5), we have

-V, Ajlv = ([Aj, Ty, O] + [Aj, Towie] + [Aj, Ok R(w, -)])v.

We estimate the three terms on the right-hand side. Using the definition of A;, we
find for the first term that

114, T 0ol < C27 V]| lo]] -

For the second term, we have

I[A;, Towieloll - = 1A To,owie — Ty a0 Wil | o

< |A Toowill g + 1 To a0 Well L < C27 (VW] o [l -

For the third part, it can be shown that

1[4 A Rwis )l o < A0 R(wies )| o+ ([ ROwis Ajo)|[ -

< C27|wllea ol o < C277 ||Vl o o]

o O
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Proof of Theorem 4.1 (Conclusion). Applying Lemmas 4.2 and 4.3 to the terms in
(4.9) and (4.10), we find that

Yo ()< (llzg |

t
Cr+||26||c'-)+C/0(||VZZ||Lx+||VZ,?HLw)Yn(f)dT
t
+ C/O IVl + IV = + 2o +lz o) Ya (7) dr, - (4.11)

where Y, (1) = ||z} || + ||z, || - We now show inductively the uniform boundedness
of the sequence {Y,} in L ([0, T]; C") for some T} >0. It is obvious that

Y1<CYo = C(||]

o+ Iz ller)

for some constant C. More generally, there exists a 77>0 such that for r<T)
and any n,

Y, (1)< Cy = 4CY,. (4.12)

To show (4.12), one first realize that ||Vzf||,. and ||Vz/||;. can be bounded in
terms of Y, and then apply an inductive argument to (4.11).
We now show that there exists a 7'€[0, 71] such that z and z, are both Cauchy

sequences in L= ([0, T]; C"~!). For m,neZ", consider the differences

+ _ -+ _ .t - o
Wm,nfzm Zn’ wm, =z Zn

which satisfy the equations
+ - + - +
ame+l,n+l +z,- vwm+l,n+1 + Wi vZn+1

= —VP(W, . 2m) — VP(z W), (4.13)

OWpit 1 + Zh VWi T M}:}:l,n -V,
= —=VP(W, .. %,) — VP(z,,w,,,). (4.14)

no mn

Taking C"~! norm in (4.13) and applying Lemma 4.3, we obtain

t
W metller < € / Vi@t (o Dl
t
+/0 Wi - Vil do

t
+ [ IVPOG 50 + 9Pl de,
| ,
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where V,, = ||Vz, ||~ + ||z,,|| 1. Applying (4.6) and Lemma 4.2, we have

+

||Wm+1,n+1|

t
1< C [ V@I (Dl e
t
+ / Uwpalle IV ztllee + mallie 1Yzt ller ] d
t
+ / Il 19 ze + Il 1925112 de.

A similar estimate can be deduced for ||w \ from (4.14).

et |-

‘
||W;1+1,n+l||C"*] < C/O V):;(T)||W;1+l,n+1('7T)HC"*I dr

t
+ [,
0

1
+/0 Wl V2l + Wl (V21 L2 ] d.

e lIVZlle + W alle= 1VZ | o] de

Now we use the uniform boundedness of {z; } and {z;} in C" to conclude that for
some constant C

t t
Zm+1,n+1 (Z) < C/ Zmn(f) dt + C/ Vm,n (T)ZerLnJrl (T) dr,
0 0

where Zy 101 = (Wi wiille + Wil and Vi, =V, + V5. By Gron-

wall’s inequality,
Zi1 g1 (1) S CrZys1 1 (0) + TCr Zy, (1) (4.15)
for some constant Cr depending on T'<Tj. According to the definition of Z,, ,,
Zins1n41(0) = [|Sms225 = Swi2zg o + 1Sm220 = Sus2zg [l

which approaches zero as m and » tend to co. Now choose T such that 7Cr S%. We
can then conclude from (4.15) that {Z,,,} approaches zero as m,n approaches
infinity. That is, {z,} and {z, } are Cauchy sequences in L* ([0, T]; C"~"). Therefore,
there exist two functions z and z~ such that z}F —z* and z; -z~ in L= ([0, T]; C"")
as n— oo. To show that (z*,z7) solves (4.3), we realize that the nonlinear terms are
continuous on C"~! x C"! functions and thus the nonlinear terms in (4.8) converge
to the corresponding ones in (4.3).

The uniqueness of solutions can be established in a similar fashion as in the proof
showing that {z}} and {z, } are Cauchy. We omit more details. This concludes the
proof of Theorem 4.1. [
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Appendix

In this appendix we prove that the 3D equations

Ou~+u-Vu=—-Vp—v(=A)u

with &>5/4 has a unique global smooth solution for any prescribed smooth initial
data. The spatial domain is assumed to be either the whole space R? or the torus T°.
It is known to the community of mathematical fluids that Ladyzhenskaya has

previously obtained such a result, but we were unable to locate her paper.

Theorem A.1. Let v>0, 0>5/4 and uye H® with s>2o. Then the 3D Navier—Stokes
type equations

Ou~+u-Vu=—-Vp—v(—A)u (A.1)
with initial condition
u(x,0) = up(x)
has a unique global classical solution.

Proof. The proof of this theorem is parallel to that of Theorem 2.3. Arguing in a
similar fashion as in Section 2, one can show that (A.1) has a global weak solution u
satisfying

t
(-, DI + 2v / 1 4%u(-, )| de < o] - (A2)

Let 7> 0. It then suffices to establish a priori bounds for ||u|| . on the time interval
[0, T], where m<s. We start with m = 1. Consider the equation for Vu,

d t
E||vu||2+2v/ 1A% (-, )| de = —2/a,uk-a,u,~-a,~uk dx.  (A3)
0
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The term on the right-hand side can be bounded as follows:

‘/af“k'afui'&uk dx| < C||Vullgs < Cl|Vul | || A%ul ][ A" |

y 2
<z 147 ]| + G| A%ul[@ || Vul|?,
where a; = 1 — 2, a, = and a3 = & — 1. Inserting this estimate in (A.3), we obtain
d 2 ! a1 2 a “ 2
g lVull”+v | [A™ u (-, )||” de< Gl [Aul[ @ [[Vul[~. (A.4)

When >3, 2a—“]2<2. According to (A.2),
‘ 20,
/ [ A%ul[@ de<C(T)
0

for any r<T. We can then infer from (A.4) that ue L= ([0, T]; H"). Higher-order
regularities can be established inductively, but we omit more details. This completes
the proof of Theorem A.1. [
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