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Abstract

Whether or not classical solutions of the 2D incompressible MHD equations without full dissipation and
magnetic diffusion can develop finite-time singularities is a difficult issue. A major result of this paper
establishes the global regularity of classical solutions for the MHD equations with mixed partial dissipation
and magnetic diffusion. In addition, the global existence, conditional regularity and uniqueness of a weak
solution is obtained for the 2D MHD equations with only magnetic diffusion.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

This paper concerns itself with the fundamental issue of whether classical solutions of the 2D
incompressible MHD equations can develop finite-time singularities. The 2D MHD equations
under consideration assume the form

ur+u-Vu=—=Vp—+viuy +v2uyy +b-Vb, (1)
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by +u-Vb=n1byy +mby, +b-Vu, (2)
V.-u=0, 3)
V-b=0, 4)

where (x,y) € R2, >0, u= (u1(x,y,t),uz(x,y,t)) denotes the 2D velocity field, p =
p(x,y,t) denotes the pressure, b = (b1(x, y, ), ba(x, y, t)) denotes the magnetic field, and vy,
V2, 1 and 71, are nonnegative real parameters.

When v; > 0, v > 0, n; > 0 and n, > 0, (1)—(4) has a unique global classical solution for
every initial data (uq, bg) € H™ with m > 2 (see e.g. [4,9]). However, if any one of these param-
eters is zero, the global regularity issue has not been settled. This paper establishes the global
regularity of classical solutions of (1)—(4) with either vi =0, v, =v>0,n1=n>0and n, =0
orvi =v>0,v=0,n; =0and n, =n > 0. More precisely, we have the following theorem.

Theorem 1. Consider the 2D MHD equations (1)—(4) with vi =0, v, =v >0, ny =n > 0 and
m = 0. Assume ug € H*(R?) and by € H*(R?) with V -ug = 0 and V - by = 0. Then (1)—(4) with
the initial data (ug, bo) has a unique global classical solution (u, b). In addition, (u, b) satisfies

(u,b) € L([0,00); H?),  wyeL*([0,00); H'),  jreL*(10,00); H"), (5
where w =V x u and j =V X b represent the vorticity and the current density, respectively.

A similar global regularity result can also be stated for (1)-(4) withvi =v > 0,v, =0,n; =0
and n, =n > 0.

Attention is also paid to the 2D MHD equations without dissipation but with magnetic dif-
fusion, namely (1)-(4) with vi = v, = 0 but with n; = 2 = n > 0. In this case, we obtain the
following global a priori bound for o =V x u and j =V x b,

t
\Iw<r>|\§+\|f<r>\|§+n/val\idr<C<n>(\|w<0>\!§+Hf«»l\i) for 1 >0,
0

where C(7n) is a constant depending on 1 only. One consequence of this global bound is the
existence of a global H'-weak solution. It is not clear if such weak solutions are unique or can
be improved to global classical solutions. However, if we know the velocity field u of a solution
obeys

T
sup / [Vu@], dt < oo, ©)
q>24 o 1

then this solution actually becomes a classical solution on [0, 7] and two weak solutions with
one of their velocities satisfying this bound must coincide on [0, 7']. We remark that (6) is weaker
than the standard condition fOT IVu(t)|l o dt < 0o and, as some preliminary evidence shows, is
more likely to be proven true for (1)—(4) with ny =n =n > 0.

This work is partially motivated by the recent progress made by Chae [2], Hou and Li [7] and
Danchin and Paicu [3] on the 2D Boussinesq equations,
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ur+u-Vu=—-Vp+vAu +0ey, (7
V-u=0, (8)
0 +u-VO0=nA60, C))

where the 2D vector u represents the velocity field, the scalar 6 the temperature, and e; = (0, 1).
Chae [2], and Hou and Li [7] established the global regularity of (7)—(8) with either dissipation
or thermal diffusion. Further improvement was recently made by Hmidi, Keraani and Rousset,

who reduced the Laplacian —A to (—A)% [5,6]. Danchin and Paicu [3] constructed global so-
lutions of (7)—(8) with either n = 0 and vAu replaced by vu,, or v =0 and nA6 by n6,,. We
remark that the global regularity issue for the 2D MHD equations (1)—(4) is more sophisticated.
The equations of u and b in (1)—(4) are both nonlinearly coupled vectors equations and the ap-
proaches in [2,3] and [7] do not appear to apply. In fact, it is not clear if (1)—(4) withn; =n, =0
or (1)—(4) with v, = 7 = 0 has global classical solutions.

The rest of this paper is divided into two sections. The second section is devoted to the global
regularity of (1)—(4) with either vy =0, v, =v>0,n1=n>0andn, =0o0rvi =v>0,v, =0,
n1 =0 and 12 = n > 0. The third section handles (1)—(4) with vy = v, =0and n; =n, =n > 0.
Throughout these sections the L?”-norm of a function f is denoted by || f1|,, the H*-norm by
|| /1l s and the norm in the Sobolev space W*:? by || f || ws.».

2. Mixed partial dissipation and magnetic diffusion
This section proves Theorem 1 as well as a parallel result for the case when vi = v > 0,
vy =0, n1 =0 and n, = n > 0. The proof of Theorem 1 is achieved through two stages. The first

stage establishes a global bound for [|w(?)||> and || j(¢)||> while the second obtains a bound for
IVw(t)]l2 and ||V (¢)]]2. The following elementary lemma will play an important role.

2.1. An elementary lemma

Lemma 1. Assume that f, g, gy, h and hy are all in L2(R2). Then,

1/2 1/2 1/2 1/2
/ | Fghldxdy < CIlfl2lglly gy 1y 2 IRl 1hclly . (10)

Proof. Applying Holder’s inequality and the elementary inequality

sup|F (x)] éﬁ(/‘F(x)|2dx>z</!Fx(x)|2dx>z, (11)

xeR

we have

//|fgh|dxdy
<C/[</|fl2dX) (/lglde> <_o§3,¥’<ooh)}dy
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o[ e ()" fora) () o

1/2 1 1
<C||f||z( sup (/|g|2dx) )nhn;nhxn;. (12)

—00<y<00

In addition, by (11) again,

o (Juras) e J(furas) ][ [( framwior) o]
ce(J(Jura) s J[( fura)(fmrs))o
e f[(fura) " (Jra) o)
(Lo wras)( [ acar)

<C||g||§||gy||z( sup f|g|2dx)||gy||%.

—00<y <00

That is,

sup /Iglzdx < Cligl2llgyll2 (13)

—00<y <00
Combining (12) and (13) yields (10). This completes the proof of Lemma 1. O
2.2. A priori bounds for ||w|l2 and || j||2

This subsection establishes a priori bounds for ||wl||> and | j||» as stated in the following
proposition.

Proposition 2. If (u, b) solves (1)—(4) with vi =0, vy =v >0, n; =n > 0 and ny =0, then the
vorticity w =V X u and the current density j =V X b satisfy

lo® |3+ Hj(t)Hi+v/\|wy<r>|\§dr+n/\|jx<r>||§dr <C(lwol3 + 1jol3)  (14)
0 0

where C is a constant depending on v, 1, ||\ugll2 and ||bgll2 only, and wg =V X ug and jo =
V x by.
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Proof. Taking the inner products of (1) with # and (2) with b, adding the results and integrating
by parts, we obtain

t t
|}u(r>||§+|\b<r>\|§+2vf|}uy<r>|}§dr+2n/\|bx<r>|\§dr<||uo||§+||bo||%. (15)
0 0

Since w and j satisfy
w +u-Vo=vwy, +b-Vj, (16)
Jotu-Vj=nj+b-Vo+20,b(0yus+ ayul) — 20xu1(0xb2 + 8ybl)’ (17)
we find that X (t) = (1) [13 + [1j (t) |3 obeys

1dX(t)
2 dt

+V”wy”%+77“]x”% gz‘/[axbl(axu2+ayul) _axul(abe"'aybl)]jdXdy .

Applying Lemma 1, we can bound the terms on the right as follows. C’s in these estimates denote
either pure constants or constants depending on v and n only

. 1/2 /2, ..,1/2,, . ,1/2
/|axb1||axuz||f|dxdy<C||axuz||2/ 1Deyuea |13 217 18 11y 181 112

n, . .
< = [|Bxyuz|3 + gnjxn% + Cl18 uz[2118:b1 112117 112

= A<

n. . .
< anyn% + gnfxu% + Clloll2ll8:b1 1517112
n
. 1 8 1 1 I
/ 18201118y 2e1 |11 dx dy < Clldxby |13 18xxb1 13 18yeer 13 13yyur 131171

1% .
< Zuwyn% + 3+ Cllab 13X (),

1% n .
< Znayyuln% + gnaxxbln% + Cl|axb1 || |3yur 211113

v n. . )
< anyn% + gnjxn% + C (181113 + Ndyur 13) 11113,

‘/8xulaxb2j dXdy’ = ‘/(ulaxxblj +u1dxbrjx)dxdy

1 T
< Clludllz N9yurllz 1715 1 15 18xxb2ll2

1 1 1 1
+ Cllur [l 19y ll3 18xb2ll5 18xxb2ll5 Nl jx 2

1 o3 1 1 TR
< Clludllz 19yurliz 17015 15 + Cllually 19yuill3 19xb2115 1 xll3

n

< < Njell5 + Cllur 13 183yur 1311713 4 Cllur 13118y 13118252113

<

|3 oo

.2 2 20 12
ljxllz + Cllur iz 19yurliz i3,
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‘faxulaybljdxdy' < ‘f(ulaxyblj +u1dybyj)dxdy

1

1 oo
< Cllunliz 19yurliz 1705 115 110xy b1 ll2

1 1 1 1
+ Cllurliy 19yurliy 19ybill3 18xybrlly Il jxll2
1

1 T - 1 1 13
< Clludliz 19yurliz 1703 1y + Cllualiy 19yurlly 19yb1ll5 1 xll3

< < liwll3 + Cllua 311051 1131715 + Cllur 15119y 15 10yb1113

S o033

< <Ll + Cllu 310y 13114113

o0

Combining these estimates, we have

%+V||wy||2+7’l||1x||z C(I3yurll3 + 18xb1113) X (1),
which, together with (15), yields (14). O
2.3. A priori bounds for |Vwl| and |V j||2
This subsection provides global a priori bounds for ||[Vwl|| and ||V j||>.
Proposition 3. If (u, b) solves (1)—(4) with vi =0, vy =v >0, n;y =n > 0 and ny =0, then the

vorticity w and the current density j satisfy

Vo l;+ 19505+ [ [V, @l5ar+n [ [0 ar

C(IVeoll3 + 11V joll3) (18)
where the constant C depends on v, 1, |lug|| g1 and ||bol| g1 only.

Proof. Taking the inner products of (16) with Aw lead to

1d
VT ||Va)||2—|—v||Va)y||2_—wa-Vu-Va)dxdy+/Va)~Vb-dexdy
—I—/b-V(Vj)-Va)dxdy.

Similarly, taking the inner product of (17) with Aj yields

1
2dt||vj||2+n||vjxn2——/Vj-w-wxdy+/v]'-Vb-wxdy

+/b-V(Vco)-dexdy
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+ 2/ V[0xb1(cuz + dyur)] - Vjdxdy

- 2f V([0yu1(0xby + dyb1)] - Vjdxdy.

Adding the above equations and integrating by parts, we find

d ' '
S (IVOIB+ IVJ13) + vIVoy B+ 0V I3 =1+ b+ I3+ s+ s,

where

Vo -Vu-Vodxdy,

=2 | Vo-Vb-Vjdxdy,

fV -Vu-Vjdxdy,

14=2/ [9xb1(Ocuz + dyur)] - Vjdxdy,
Is = —2/ V[0yu1(0xby + dyb1)] - Vjdxdy.
To bound /7, we write the integrand explicitly and further divide it into four terms

I = f(axmw)% + Oxtrwxwy + Ui wxwy + dyurw?) dx dy
=In+ T2+ Lz + La.

By the divergence-free condition dyu; + dyup =0 and Lemma 1,

I = —fayuzw)%dxdy

1 1 1 1
< Clldyuzlly 10xyuzlly llwxll; llwxyll llwx i
1 1

1 1 1 3
< Cloll; llwyll; IVoy 5 I Voll;

v 2 3 3 2
< I—OIIwallz + Clloll; [lwyll; [[Vol|5.

By Lemma 1,

1 1 1 1
Iz < Cllaxuzly 13xyually 19yl 13xywll; lox 2
3112 : >
S Cllol;y loyli; Vaoyli; Vel

v 2 2 3 2
< EIIwallz + Clloll; llwyll; [[Vol|5.
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113 and 114 can be similarly bounded,

v 2 } % 2
I3, Iy < EIIwallz + Clloll; loyll; IVoll5.

I> and I3 can be bounded by applying Lemma 1

1 1 1 1
L<CIVul 2 IVuy I3 IV IV 31V ll2
1 1 3 1
< Clol oy IZ IVl IV}
n .02 2 2 .02
< 1 IVidll3 + Clloly oy I3 1715,
1 1 1 1
I < CIVDIaIVol 2 IV 12 IV I IV jill3
1 1 1 1
<Cljl0VollZ Vay IZ IV IV ji )2
< Vo |2 + LV je |2 + ClIR I Vol IV j
< vll3 Jll3 JlaIVol2lVila
10 16
v n . ) .
< Enwyn% + ann% + CliI5(IIVol3 + 1V]13).

To bound 14, we split it into two parts:
Iy= 2/ O [0xb1 (xuz + dyur) ] jx dx dy + 2/ 3y [3xb1 Btz + dyu1) ] jy dxdy

=141 + Lg2.

Integrating by parts in /4; and applying Lemma 1, we have

Iy = —2/ 0xD1(0xuz + dyuy) jxx dx dy

1 1 1 1
< Cllaxbilly 10xxbrlly 19cuz iy 10xyuall Il jxx ll2
bro ko b
+ Cll9xD1lly 10xxD1ll5 10yurlly 18yyutlls | jxxll2

1 1 1

1 1o 1
S CIIZ IV el lloyll5 1V jxll2

n . . .
< 1—6||VJxII% + Cllol20jll2Voll21IV jll2
n . . .
< 1 IVidl3 + Clloll il (1Vells + 1V j113)-
147 can be further decomposed into two parts:

= I + I422
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and these two terms can be bounded as follows

1 1 1 1
I121 < Clldxybrll2l0xu2ll3 10xyu2lly 1yl 1 jxyll
1 1 1 1
+ Clloxyb1ll2 10y |l 18yyzer 15 iy 15 Hixyll5
1 1 3 1
< Cllolly oyl 1Vl 1Vl
n .2 3 3 2
< EHVJx“z + Clloll; loyll5 IVil3,
1 1 1 1
L4220 < Cl13xb1115 185yl 13xyu2 211y 115 N jxyll 3
1 1 1 1
+ Cl19xb1115 185y D115 18yyut 21l jy 115 N jxyll 3
1 1 1 1
S CUJIZ I3 Ny l2 iy 5 x5

TR SN SN SN
< R”v]xllz + Clljll; 1l IVell; 1Vl

n .2 T 2 .12
< RIIVJxIIZ + ClIjl3 Ljxll; (IVell5 + 1V jI3).

To bound I5, we first write it into three terms,

Is= —2/ O [0xu1(9xby + 0yb1) | je dx dy — 2/ dy[0xu1 (0xb2 + dyb1)]jydx dy
=2/3xu1(8xb2+3yb1)jxx dxdy —2/3xyu1(8xb2+8yb1)jydxdy

- 2/ Oytt1 (Oyyba + dyyby) jy dx dy

= Is51 + Isp + Is3.

‘We bound these terms as follows

1 1 1 1
I51 < CllaxM1||22 ”axyul ”22 ||axb2”22 ||8xxb2||22 | aex [I2
1 1 1 1
+ Cllaur 12 18xyur 13 113yb1 13 1185yb1 113 | jix ll2
1 11 1 _
< ClolZ IVolZIFIZ IV IZ 1V jxll2
n . . .
< 1—6||vjx||% + Clol2lljll2(IVel3 + 1IVjl3),
1 1 1 1
Isy < Clldxyur[21185b2l12 18xyb2ll 3 1y 13 iy 113
1 1 1 1
+ Clldeyur 20135 b1 12 113yy b1 12 11y 12 Nl iy 112

1 1

1 1o 1
< Clloyll; IVolZ 115 1V 7121V jxll;
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2 2 4

n . 203 2 3
< 16 IV Jjx II% + Clloyll; 17l IVl 1Vl
n 2 ¢ % 2 12
< R”v]xnz + Clloy 311713 (IVell5 + 11V jll3),
1 1 1 1
Is3 < Clloxutll; 10xyutlls 10xyb2ll2lljyll5 jxy I3
1 1 1 1
+ Clloxurll5 10xyurll; 10yybrll2 11y lI5 I jxyll3
1 1 1 1
< Clol; oyl 1V ill20iy 15 1 xylls

n ) z 2.
< R”VJx“% + Clloll; oyl IIVJ||§.

Collecting the above estimates, we finally obtain

d . .
E(nw)n% +IVl3) + vIVoyl3 +nlV 3

2 2

2 2 2 2
< C((lloyll + il ) (el +1713) + lilz2(lelz + 1712)) (IVel; + 1V13)-

Applying the bound from Proposition 2, we find

t t
[vowli +[Vio+v [ [Vo@lidr+n [ [Vivo|iar
0 0

<Cw,n(IVeoll3 + 1V joll3)-
This completes the proof of Proposition 3. O
2.4. Proof of Theorem 1
This subsection presents the proof of Theorem 1.
Proof of Theorem 1. With the a priori bounds of Propositions 2 and 3 at our disposal, the
proof of this theorem can be achieved through a parabolic regularization process. Let € > 0 be a

small parameter and consider a family of solutions (u., b.) satisfying the regularized system of
equations

Oiite +tte - Vite = —=Vpe +v0yylte + be - Vbe + € Au, (19)
0tbe + e - Vbe = n0xxbe + be - Vue + € Abe, (20)
V.uc.=0, (21)

V.be =0, (22)

ue(x,0) = ve *ug, be(x,0) = Ve * by, (23)
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where ¥ (x) = € 2y (x /€) with ¢ satisfying

Y20, YeCP(RY) and [yli=1.

Since u.(x,0) and b.(x,0) are smooth, the standard theory on the 2D viscous MHD equations
(see e.g. [9]) guarantees that (19)—(23) has a unique global smooth solution (u, b¢). It is easy to
see that (u¢, be) obeys the a priori bounds in Propositions 2 and 3 uniformly in €. The solution
(u, b) of (1)—(4) is then obtained as a limit of (u, b¢) and obeys the bounds in Propositions 2
and 3.

The uniqueness of the solutions follows from the elementary inequalities (see Lemma 14
of [3])

1 flloo < C(Ifll2 + Ifxll2 + 1 fypll2) and [ flloo < C(IIf 12 + I fyll2 + Il frxll2)-

In fact, applying these inequalities, we have

t t

[(o@ly +liol)dr < [ (ol + loy@], + [Va,@],) e
0 0

t

+ (U@l + 1@l + [Vi@l,) dr < o0
0

for any ¢ > 0. It is well known (see e.g. [1,10]) that this bound yields the uniqueness. 0O
2.5. (1)~(4) withvi=v>0,v,=0,n=0andn =n>0

A global regularity result similar to Theorem 1 can be established for the 2D MHD equations
(1)-(4) withvi =v>0,v,=0,n=0and n, =n > 0.

Theorem 4. Consider the 2D MHD equations (1)—(4) with vi =v >0, v, =0, n1 =0 and
m =n > 0. Assume ug € H*(R?) and by € H*(R*) with V -ug =0 and V - by = 0. Then (1)—(4)
has a unique global classical solution (u, b). In addition, (u, b) satisfies

(u,b) € L*([0,00); H?),  wyeL*([0,00); H'),  j,eL*([0,00); H'), (24)
where w =V x u and j =V X b represent the vorticity and the current density, respectively.
Proof. Although this theorem can be proven in a similar fashion as that of Theorem 1, we provide
an alternative proof. The idea is to convert (1)—(4) withvi =v > 0,v, =0,n; =0and n, =1n >0

into a form dealt with by Theorem 1. Assume that (u, b) solves (1)—(4) with vi =v > 0, v, =0,
n1 =0and n, =n > 0. Set

Ui(x,y, 1) =uz(y, x,1), Ur(x,y,t) =ui(y, x,1), P(x,y,t)=p(y,x,1),
Bi(x,y,t) =ba(y,x,1), By(x,y,t) =b1(y, x,1).
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Then U = (Uy, U>), P and B = (Bq, B») satisfy

U +U-VU=—-VP+vU,, +B-VB, (25)
B,+U-VB=nBy +B VU, (26)
V-U=0, 27)

V.B=0. (28)

The global regularity of (25)—(28) guaranteed by Theorem 1 allows us to obtain the global reg-
ularity for (1)—(4) with vi =v > 0, v =0, n1 =0 and n = n > 0. This completes the proof of
Theorem 4. O

3. The MHD with magnetic diffusion
This section focuses on (1)—(4) with vi = vy, =0 and 11 = n = n > 0. Two major results are
established. The first is the global existence of a weak solution and the second assesses the global

regularity and uniqueness of the weak solution under a suitable condition.

Theorem 5. Consider (1)—(4) with vi = vy =0 and n1 = ny = n > 0. Assume that (ug, bg) € H!
withV -ug=0and V - by = 0. Then (1)—(4) has a global weak solution (u, b) satisfying

ueC([0,00; H'),  beC([0,00); H") N L*([0, 00); H?). (29)
The proof of this result relies on a global a priori bound for o =V x u and j =V x b.

Theorem 6. Assume the initial data (uo, bo) € H3, V -ug =0 and V - by = 0. Let (u, b) be the
corresponding solution of (1)—(4) with vi = v, =0 and n1 =n2 =n > 0. If, for some T > 0,

T
sup ! f |Vu()|, dr < oo, (30)
4>24 !

then (u, b) is regular on [0, T], namely
(u,b) € C([0, T1; H?).

In addition, two weak solutions (u, b) and (u, l;) in the regularity class (29) must be identical on
the time interval [0, T'] if u satisfies (30).

The rest of this section is divided into four subsections. The first subsection presents a global a
priori bound for [[u| ;1 and ||b|| y1 and the second proves Theorem 5. The third subsection estab-
lishes a logarithmic Sobolev inequality, which serves as a preparation for the proof of Theorem 6.
The last subsection proves Theorem 6.
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3.1. An apriori bound for ||Vul|, and ||Vb|2
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Proposition 7. If (u, b) solves the 2D MHD equations (1)—(4) with vi = v, =0 and ny =np =

n > 0, then, for any t > 0,
t
o]+ \|j(r>\|§+nf IVj12dr < C(IVuol3 + IV bol3).
0
where C(n) is a constant depending on n only. Therefore,
t
lu@)||5 + 6@ |51 + n/ 16112, dv < Cp(luoll?,i + boll?))-
0
Proof. It follows easily from (1) and (2) that, for any # > 0,
t
Ju) 3+ [+ 21 [ 960 |3 dx = [u@ [ + [ 3
0

To prove (31), we employ the equations of the vorticity @ and the current density j,

wr+u-Vo=>b-Vj,

Jo+u-Vji=nAj+b-Vo+20,b1(0xus+ dyur) —20,u1(dxby + 9yb1).

Taking the inner products of (34) with w and of (35) with j, we find

1d||w||%

- = | b-Vjwdxdy,
I 2 dt / JOEXEY
1dljl3 .0 .
2 dr +n||V]||2:/b-Vw]dxdy

+ 2[(8xb1(8xu2 + Oyu1) — dxu1(dxba + dyb1)) j dx dy.

Since
/b-Vjcodxdy—l—fb-ijdxdy=O,

we have, for X () = lw (@) |13 + 1| ()13

dX (1)
dt

+271VjlI3 < 81IVull2 VBl la,

where we have applied the Holder inequality. Applying the inequalities

(D

(32)

(33)

(34)
(35)
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Vullz < llwll2, IVolla < 1 jll4, 113 < 1120V 112

and Young’s inequality, we find

dX (1) 16 : :
— 2Vl < —||w||§||JII§+n||VJII%-

In particular,

dX(1)
TJH?IIVJIIZ ||J|| X (1).

By Gronwall’s inequality,

t t
. 2 16 .2
Xt)+n | |Vi@]|ydr < X(O0)exp o Ijll5dz |,
0 0

which, together with (33), yields (31) and (32). O
3.2. Proof of Theorem 5

Let € > 0 be a small parameter and consider the regularized system of equations

e + e - Ve = —Vpe + €Aue + be - Vb,
0tbe +uc - Vbe =nAbe + be - Vu,
V-u.=0,

V-b.=0.

This system of equations admits a unique global solution (u., b.) that satisfies the global a
priori bound stated in Proposition 7 uniformly in terms of €. By going through a standard limit
process, we conclude that (u., b¢) converge to a weak solution of (1)—(4) with vi = v, =0 and
n1 = n2 = n. This completes the proof of Theorem 5.

3.3. A logarithmic inequality

This subsection presents a logarithmic Sobolev inequality, which plays an important role in
the proof of Theorem 6. A similar inequality was previously obtained by P. Zhang [11] and
by Danchin and Paicu [3] and their proofs involve tools from Fourier analysis such as the
Littlewood—Paley decomposition. The proof presented here is different and remains valid for
a general domain other than the whole plane.

Lemma 8. Let f € H*>(R?) and let a > 0 be real. Then the following logarithmic inequality
holds

[ fllzee < C sup

q22

”fllq [In(e + ||f||H2)]a'
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Proof. We follow the approach of Hou and Li [7]. Denote by B, the disk centered at the origin
with radius 7. Let ¢ € C*°(R?) be a smooth cutoff function satisfying

¢(0) =1, Vol < C, |A¢l < C, supp¢ C Bj.

Set w = f¢. According to the solution formula of the 2D Laplace equation, we have, for any
p =2,

1 1
wp(O):§/(1n|y|—lne)Awp(y)dy+E / (In]y| — Ine)Aw? (y) dy

B B1\Be
=1+1I.

Since
Aw? = pw” T Aw + p(p — Dw? 2 |Vw|?,
we obtain by applying Holder’s inequality

2
€3

p
11< 53 [1Awlalwlif,ty, + (= DIVwIRiwlg,,]

By the embedding inequality

IVwll4 < CIIwIIZIIAwIIZ,

we have, for C independent of p,

1< Cp€3||AwII2IIwII6(p 1)+Cp(p—1)63||w||2IIAWIIZIIWIlﬁ(,, 2y

Integrating by parts in /I yields

By Holder’s inequality,

! 1
2 1 3

1\2 1
1| < Cp(ln—) IIVw||4||w||4(,, 1)<Cp(lng) IlelzllAwII2||w||4(,, 1)

Now, set

1
and p=In-.
€

2 3
e3Awlz=1 or e=|Aw|,”’

In the case when [|[Awl||; < 1, it sufficestoset 0 <e < 1.
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We then have
1 1 2
lw(0)] < Cp"llw||6(p 1)+C(p(p—1))”||w||2” I Aw]],” ||w||6(p ~2)

1— 1
+Cp2" ||w||2p IIAwIIZP lwlly,”1)-

1 1
Use the fact that p» < C, (p(p —1))? < C, and

1
= | 1 ||w||
lAw|," =eme =e3,  |lwl, < p*sup —-2,

q=2

we obtain that

|w(0)| < C sup v ”‘1

q22

(In(e + [[Aw]2))".

Noticing that

[fO]=[w©)] and [Awly <C(Ifll2+ 1AFII2) < ClLE .
we conclude the proof of Lemma 8. O
3.4. Proof of Theorem 6

To show the regularity, we bound ||(u, b)|| ;3. According to Proposition 7, ||(u, b)|| 1 admits
a global uniform bound. Now, consider Vw and V j, which satisfy

Vo +u-V(Vo)=—(Vu)Vo +b - V(V ) + (Vb)V],
WVj+u-V(Vj)=nANj)— (Vu)Vj+b-V(Vo)+ (Vb Ve
+2V[0:b1 (Oxuz + dyur) | — 2V[0cu1(3xba + 3yb1) ]

Therefore,
d 2 112 ")
—E(||VCU||2+||VJ||2)+77||AJ||2
—/Va)-Vu-Va)—/Vu-Vj-Vj
+2/Vb~Vj~Vw—|—2/V[8xb1(8yu1+8xu2)]~V]

— 2/ V[0xu1(dyby + 0xb2)] - Vj
=K;+ K, + K3+ K4 + Ks.

The terms on the right can be estimated as follows
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K1 < | VuloollVoll3,
K2=—fw-vj'-v]< IVulla V12

S ClIVull2llVillzllAf 2

<

o3

1Aj1I3 + Cllol51Vill3,
K3 =2/Vb-wo-v]' L2Vl VhI4lIVJll4

1 1 1 1
S CIVallIVBlZ 1AbIZ IVl 1715

2 4

U 3 fio 3
< §||A1||§+C||Vw||§IIVb||§||V1||§
n 2 3 3 2 2
< gIAIz+CliN IVl (IVolz +11Vjl3),
K4 =2fv[axb1(ayu1 + 0cu2)] -V
=2/8xVb1 - Vj @yuy +axu2)+2/8xbl(8yvul +0xVu2) - Vj
<4/|Vj|2|Vu|+4/|Vb||VwIIVj|

Mo , O g .
< ZIA713 + Clel IVl + Clil IV 13 (1Yol + 1V 13).

Putting together these estimates, we have

d . . .
E(nwn% +IVj13) +nllAj 113 < IVullso I VI3 + Cllwli3 1V 113

2 2
+ ClF IV ill3 (IVoll3 + 1V j13)-

We now bound the third-order derivatives of (u, ). For any multi-index 8 with |8| = 3, Dfu
and DPb satisfy

DPu+u-VDPu=—-VDPp+b-VDPb—[DF u-V]u+[DF b-V]b,
DPb+u-VDPb=yADPb+b-VDPu—[DF u-V]b+[DP b-V],

where [D#, f - V]g = DP(f - Vg) — f - VDPg. Taking the inner products of these equations
with DPu and DPb, respectively, and integrating by parts, we have

1 d
5 7 (10Pull5 + [D#6]3) + 0| VDbl = L1+ Lo+ Ls + La

where



1820 C. Cao, J. Wu / Advances in Mathematics 226 (2011) 1803-1822

L= —([Dﬁ,u-V]u,Dﬁu), Ly = ([Dﬁ,b-V]b, Dﬂu),
Ly=—([Df,u-V]b,DPb),  La=([DP b-V]b, DPb).

To bound L1, Ly, L3 and L4, we recall the commutator estimate (see [8, p. 334])

I[D7, 7 -V]g|, <CUVFlp V8l war: + 1 fllysrs Ve py) (36)
valid for any p, p2, p3 € (1, 00) and % = % + % = % + ﬁ. Applying this inequality, we obtain

1Ly < [[[DP,u-V]ul,| DPul, < ClVulloollull g3 | DPu

[
Lo < [[DP,b- V]|, | DPul, < C(IVbIaI VDI yas + bl VDI4) | DPul,.

By the basic calculus inequality, for any f € H!(R?),

1 1
Iflla <CIFIZIV LIS, (37)
we have
1
|Ls| < C||Vb||2||Ab||2||b|| 3||Vb||,33HDﬂu||2-
By Young’s inequality,
n ’ 2 2 2 4
|La| < Zu%nm+C||Vb||3||Ab||§||b||,33HDﬁu||§
< Tivp CIVBI3 1 ABIE (Ib]12 DA
<l 15 +Cl ||2|| 15 (181133 + | DPul)3).-
By (36) again,

L3I < [[DF.u- Vo] s [DPb]l, < C(IVull2I Vol + el 9B11s) | DPb] -

Therefore,

1
IL3] < C||w||2||b||H3||Vb||H%+C||VbII2IIAb||2||bII 3||Vb||§,3||u||H3

n £ £
< 2 IVbIgs + Cllol3 b1, +C||Vb||5 ||Ab||§ (18135 + llull?3)-
Similarly, L4 is bounded as follows
U 2 3 3 2
ILal < IVl + CUVBIZ I AbIF1DI .

Combining all these estimates, we obtain
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d
(s + 161%5) + 0l VDI s < ClIValloo lullgys + 0l 151175

2 2
+ ClIjlI3 IV 13 15155

Applying Lemma 8 with @ = 1 to bound || Vu||~, we obtain the regularity part of Theorem 6.
To prove the uniqueness, we consider the difference

(W, B) = (it, b) — (u, b),

which satisfies the equations

W,+i-VGW+W.-Vu=-—VP+b-VB+ B-Vb, (38)
Bi+i-VB+W-Vb=nAB+b-VW + B -Vu, (39)

where P is the difference between the corresponding pressures. Adding the inner products of
(38) with W and of (39) with B and integrating by parts, we obtain

1d
3 (WIE+ 1B13) + IV BIE < [ W vu-wi+ [ 15-Vu-51+2 [ (wivelis)
< IVuloo (IW I3+ 1B13) + 20 W BIal Vbla (40

By (37), we have

1 1 1

1 1 1 1
2IlWI20IBll4l VDIl < CIW 21 BII; IVBIZ VDI | ADII;

n 4 2 2 2
< EIIVBH% + CIWIS 1B, VD5 1ADI

n 2 2
< < IVBI3 + CIVBI5 1AL (IW13 + [1BII3).

\9}

Inserting the above estimate in (40) and applying Lemma 8 to bound ||Vu|~, we obtain the
desired uniqueness. This completes the proof of Theorem 6.
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