
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Available online at www.sciencedirect.com

Advances in Mathematics 230 (2012) 1618–1645
www.elsevier.com/locate/aim

The 2D Boussinesq equations with logarithmically
supercritical velocities

Dongho Chaea, Jiahong Wub,∗

a Department of Mathematics, Chung-Ang University, Dongjak-gu Heukseok-ro 84 Seoul 156-756, Republic of Korea
b Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078, USA

Received 9 November 2011; accepted 6 April 2012

Communicated by C. Fefferman

Abstract

This paper investigates the global (in time) regularity of solutions to a system of equations that generalize
the vorticity formulation of the 2D Boussinesq–Navier–Stokes equations. The velocity u in this system is
related to the vorticity ω through the relations u = ∇

⊥ψ and ∆ψ = Λσ (log(I − ∆))γω, which reduces
to the standard velocity–vorticity relation when σ = γ = 0. When either σ > 0 or γ > 0, the velocity
u is more singular. The “quasi-velocity” v determined by ∇ × v = ω satisfies an equation of very special
structure. This paper establishes the global regularity and uniqueness of solutions for the case when σ = 0
and γ ≥ 0. In addition, the vorticity ω is shown to be globally bounded in several functional settings such
as L2 for σ > 0 in a suitable range.
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1. Introduction

This paper aims at the global regularity problem on the generalized 2D Boussinesq equations
∂tω + u · ∇ω + Λω = θx1 ,

u = ∇
⊥ψ ≡ (−∂x2 , ∂x1)ψ, 1ψ = Λσ (log(I − ∆))γω,

∂tθ + u · ∇θ = 0,
(1.1)

where ω = ω(x, t), ψ = ψ(x, t) and θ = θ(x, t) are scalar functions of x ∈ R2 and
t ≥ 0, u = u(x, t) : R2

→ R2 is a vector field, σ ≥ 0 and γ ≥ 0 are real parameters, and
Λ = (−∆)

1
2 and Λσ are Fourier multiplier operators withΛσ f (ξ) = |ξ |σ f (ξ).

For a given initial data

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x), (1.2)

we would like to determine whether or not the corresponding solution is global in time.
The model studied here can be regarded as a generalization of the vorticity formulation of the

2D Boussinesq equations∂t u + u · ∇u = ν1u − ∇ p + θe2,

∇ · u = 0
∂tθ + u · ∇θ = κ1θ,

(1.3)

where ν ≥ 0 and κ ≥ 0 are real parameters and e2 = (0, 1) is the unit vector in the x2-
direction. Boussinseq type equations model geophysical flows such as atmospheric fronts and
ocean circulations (see, e.g., [25,30]). Mathematically the 2D Boussinesq equations serve as
a lower-dimensional model of the 3D hydrodynamics equations. In fact, the 2D Boussinesq
equations retain some key features of the 3D Euler and Navier–Stokes equations such as the
vortex stretching mechanism and, as pointed out in [26], the inviscid 2D Boussinesq equations
are identical to the Euler equations for the 3D axisymmetric swirling flows outside the symmetry
axis. It is hoped that the study of the 2D Boussinesq equations may shed light on the global
regularity problem concerning the 3D Euler and Navier–Stokes equations.

The global regularity problem for the 2D Boussinesq equations has been extensively studied
and important progress has been made (see, e.g., [1–3,6–8,13,15–22,24,27]). When ν > 0, κ >
0, (1.3) with any sufficiently smooth data has a global solution (see, e.g., [6]). In the case of
inviscid Boussinesq equations, namely (1.3) with ν = κ = 0, the global regularity problem
remains outstandingly open. The global regularity for the case ν > 0 and κ = 0 was obtained
by Chae [8] and by Hou and Li [22]. The case when ν = 0 and κ > 0 was dealt with in [8].
Their results successfully resolved one of the open problems proposed by Moffatt [29]. Further
progress on these two cases was recently made by Hmidi et al., who were able to establish the
global regularity even when the full Laplacian dissipation is replaced by the critical dissipation
represented in terms of

√
−∆ [20,21]. The work of Hmidi et al. was further generalized by

Miao and Xue to accommodate both fractional dissipation and fractional thermal diffusion [27].
In a very recent preprint [13], Constantin and Vicol applied the nonlinear maximum principle
for linear nonlocal operators to obtain another global regularity result when the fractional
powers of the Laplacians for the dissipation and thermal diffusion obey certain conditions.
The global well-posedness for the anisotropic Boussinesq equations with horizontal dissipation
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or thermal diffusion was first studied by Danchin and Paicu [17]. Recently Larios et al. [24]
further investigated the Boussinesq equations with horizontal dissipation via more elementary
approaches and re-established some results of Danchin and Paicu under milder assumptions. The
global regularity problem for the 2D Boussinesq equations with vertical dissipation has been
studied by Adhikari et al. [2,3] and was successively resolved by Cao and Wu [7].

We first point out that the vorticity equation in (1.1) does have a corresponding velocity
formulation

∂tv + u · ∇v −

2
j=1

u j∇v j + Λv = −∇ p + θe2, (1.4)

where v satisfies

∇ · v = 0, u = Λσ (log(I − ∆))γ v or ∇ × v = ω.

When σ = γ = 0, u = v and (1.4) reduces to the Boussinesq velocity equation after redefining
the pressure by p −

1
2 |u|

2. The details of the derivation is left in the second section.
Our motivation for studying the global regularity of (1.1) comes from two different sources:

the first being the models generalizing the surface quasi-geostrophic equation and the 2D
hydrodynamics equations (see, e.g., [11,10,9,12,14,23,28]) and the second being the the
Boussinesq–Navier–Stokes system with critical dissipation [20]. In a recent work [20], Hmidi
et al. successfully established the global regularity of the Boussinesq–Navier–Stokes system
with critical dissipation, namely (1.1) with σ = 0 and γ = 0. Their key idea is to consider
the combined quantity

G = ω −Rθ,
which satisfies

∂t G + u · ∇G + ΛG = −[R, u · ∇]θ. (1.5)

Here R = Λ−1∂x1 stands for a Riesz transform and the brackets denote the commutator. The
advantage of (1.5) is that we can avoid evaluate the derivatives of θ when estimating the Lebesgue
norm of G. This approach is also useful in the handling of the generalized Boussinesq equations
(1.1).

Our goal here is to extend their work to cover more singular velocities and explore how far
one can go beyond the critical case. When either σ > 0 or γ > 0, the corresponding velocity
field u is more singular. We are able to obtain the global regularity and uniqueness of solutions
to (1.1) for the special case when σ = 0 and γ > 0.

Theorem 1.1. Consider the generalized Boussinesq equations (1.1) with σ = 0 and γ ≥ 0.
Assume the initial data (ω0, θ0) satisfies

ω0 ∈ L2
∩ Lq

∩ B0,γ
∞,1, θ0 ∈ L2

∩ B0,γ
∞,1

for some q > 2. Then (1.1) has a unique global solution (ω, θ) satisfying, for any t > 0,

ω ∈ L2
∩ Lq

∩ L1
t B0,γ

∞,1, θ ∈ L2
∩ L∞

∩ L1
t B0,γ

∞,1.

Here B0,γ
∞,1 is a space of Besov type and its definition is provided in the Appendix. Although

it is not clear if this global regularity result still holds for the more singular case when σ > 0,
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we can still show that the L2-norm of the vorticity ω is bounded at any time for 0 ≤ σ < 1
2 and

γ ≥ 0. More precisely, we have the following theorem.

Theorem 1.2. Consider (1.1) with 0 ≤ σ < 1
2 and γ ≥ 0. Assume (ω0, θ0) satisfies the

conditions stated in Theorem 1.1. Let (ω, θ) be the corresponding solution. Then, for any t > 0,

∥ω(t)∥L2 ≤ B(t)

for a smooth function B(t) of t depending on the initial data only. In addition, G satisfies the
basic energy bound

∥G(t)∥2
L2 +

 t

0
∥Λ

1
2 G∥

2
L2dt ≤ B(t). (1.6)

Further regularity can also be established for certain σ > 0. In fact, ∥ω∥Lq for q ∈ (2, 4
1+2σ ]

is also globally bounded in time when 0 ≤ σ < 1
2 and γ ≥ 0 (q ≠

4
1+2σ when γ > 0). In

addition, for 0 ≤ σ < 1
4 and γ ≥ 0, the space–time norm Lr

t Bs
q,1 of G is also bounded for any

t > 0. The precise statement is given in Theorem 4.3. This bound especially implies that G is in
L1

t L∞
x . However, we need to assume σ = 0 in order to obtain the global bounds for ω and θ in

L1
t L∞

x .
The rest of this paper is divided into four sections. The second section derives the velocity

formulation of a generalized Boussinesq vorticity equation. The third section proves the global
L2 vorticity bound stated in Theorem 1.2. It requires a commutator estimate involving the
Riesz transform R. Section 4 proves the aforementioned global regularity bounds and part of
Theorem 1.1 while Section 5 establishes the uniqueness part of Theorem 1.1. Throughout the
rest of this paper, B(t)’s denote bounds that depend on t and the initial data.

2. Derivation of the velocity equation

This section derives the velocity formulation for the generalized 2D Boussineq vorticity
equation given by

∂tω + u · ∇ω + νΛαω = θx1 ,

u = ∇
⊥ψ ≡ (−∂x2 , ∂x1)ψ, 1ψ = P(Λ)ω,

∂tθ + u · ∇θ + κΛβθ = 0
(2.1)

where ν ≥ 0, κ ≥ 0, 0 < α ≤ 1, 0 < β ≤ 1 are real parameters, and P(Λ) is a Fourier multiplier
operator with

P(Λ) f (ξ) = P(|ξ |)f (ξ).
Clearly, (1.1) is a special case of (2.1). A special consequence of Theorem 2.1 is the derivation
of (1.4).

Theorem 2.1. For classical solutions of (2.1) that decay sufficiently fast as |x | → ∞, (2.1) is
equivalent to the following equations∂tv + u⊥(∇⊥

· v)+ νΛαv = −∇ p + θe2,

∇ · v = 0, u = P(Λ)v,
∂tθ + u · ∇θ + κΛβθ = 0.

(2.2)
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In addition, the equation for v can be written in the more familiar form

∂tv + u · ∇v −

2
j=1

u j∇v j + νΛαv = −∇ p + θe2. (2.3)

Proof. It follows from the second equation in (2.1) that

u = ∇
⊥∆−1 P(Λ)ω, ∇ × u = ∇

⊥
· u = 1ψ = P(Λ)ω.

Therefore, if we set

v = P(Λ)−1u, (2.4)

then

v = ∇
⊥∆−1ω and ω = P(Λ)−1

∇ × u = ∇ × v. (2.5)

Applying ∇
⊥∆−1 to the first equation in (2.1), we obtain

∂tv + ∆−1
∇

⊥(u · ∇ω)+ νΛαv = ∆−1
∇

⊥θx1 .

To rewrite the nonlinear term, we consider the components of ∇
⊥(u · ∇ω):

−∂x2(u · ∇ω) = −∂x2(∇ · (uω))
= −∂x2(∂x1(u1ω)+ ∂x2(u2ω))

= ∂x1(−∂x2(u1ω))− ∆(u2ω)+ ∂x1(∂x1(u2ω))

= −∆(u2ω)+ ∂x1(−∂x2(u1ω)+ ∂x1(u2ω)),

∂x1(u · ∇ω) = ∂x1(∇ · (uω))
= ∂x1(∂x1(u1ω)+ ∂x2(u2ω))

= ∂x1∂x1(u1ω)+ ∂x2(∂x1(u2ω))

= ∆(u1ω)+ ∂x2(∂x1(u2ω)− ∂x2(u1ω)).

That is,

∆−1
∇

⊥(u · ∇ω) = u⊥ω − ∆−1
∇(∇ · (u⊥ω)). (2.6)

In addition,

∇
⊥θx1 =


−∂x1∂x2θ

∂2
x1
θ


=


∂x1(−∂x2θ)

∂x2(−∂x2θ)


+


0
1θ


and

∆−1
∇

⊥θx1 = θe2 + ∆−1
∇(−∂x2θ). (2.7)

Inserting (2.6) and (2.7) in (2.5), we obtain, after noting ω = ∇
⊥

· v

∂tv + u⊥(∇⊥
· v)+ νΛαv = −∇ p + θe2 (2.8)

where

p = −∆−1

∇ · (u⊥

∇
⊥

· v)− ∂x2θ

. (2.9)
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Clearly, (2.9) is a simple consequence of (2.8) with ∇ · v = 0. We can rewrite the nonlinear term
into more familiar form. Inserting the identity

u⊥(∇⊥
· v) = u · ∇v −

2
j=1

u j∇v j

in (2.8), we find

∂tv + u · ∇v −

2
j=1

u j∇v j + νΛαv = −∇ p + θe2. (2.10)

(2.2) is a combination of (2.8), (2.9) and the last equation in (2.1). (2.3) is just (2.10). This
completes the proof of Theorem 2.1. �

3. Global (in time) bound for ∥ω∥L2

This section proves Theorem 1.2, the global a priori L2-bound for the vorticity ω. To do so,
one considers the equation for G = ω −Rθ ,

∂t G + u · ∇G + ΛG = −[R, u · ∇]θ. (3.1)

Clearly, in order to control ∥G∥L2 , we need a bound for the commutator [R, u · ∇]θ . For this
purpose, we start with the following lemma.

Lemma 3.1. Let p ∈ [1,∞] and δ ∈ (0, 1). If |x |
δφ ∈ L1, f ∈ B̊δp,∞ and g ∈ L∞, then

∥φ ∗ ( f g)− f (φ ∗ g)∥L p ≤ C∥|x |
δφ∥L1∥ f ∥B̊δp,∞

∥g∥L∞ . (3.2)

In the case when δ = 1, (3.2) is replaced by

∥φ ∗ ( f g)− f (φ ∗ g)∥L p ≤ C∥|x |φ∥L1∥∇ f ∥L p∥g∥L∞ . (3.3)

B̊δp,∞ here denotes a homogeneous Besov space, which is defined in the Appendix. (3.3) was
previously obtained in Lemma 3.2 of [20, p. 2153]. Our extension to cover the case for δ ∈ (0, 1)
is necessary in order to deal with the generalized Boussinesq equations (1.1). Since now the
velocity field u is more singular, namely

u = ∇
⊥∆−1Λσ (log(I − ∆))γω,

it is necessary to consider the fractional derivative Λ1−σu, which, roughly speaking, is more or
less ω when evaluated in a Lebesgue space. When σ > 0, we can no longer control ∇u in terms
of ω, as in [20].

Proof. By Minkowski’s inequality, for any p ∈ [1,∞],

∥φ ∗ ( f g)− f (φ ∗ g)∥L p =

  φ(z) ( f (x)− f (x − z))g(x − z) dz
p

dx
1/p

≤

 
|φ(z) ( f (x)− f (x − z))g(x − z)|pdx

1/p

dz

≤ ∥g∥L∞


|φ(z)| ∥ f (·)− f (· − z)∥L p dz
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≤ ∥g∥L∞ sup
|z|>0

∥ f (·)− f (· − z)∥L p

|z|δ
∥|z|δ|φ(z)|∥L1

(3.2) then follows from the definition of B̊δp,∞. �

We now present a general proposition that provides an estimate for the commutator as in (3.1).
The proof of this proposition is obtained by modifying that of Proposition 3.3 in [20]. Since the
proof is slightly long, we leave it to the end of this section.

Proposition 3.2. Let u : Rd
→ Rd be a vector field. Let R = ∂x1Λ

−1 denote a Riesz transform.
Let s ∈ (0, 1), s < δ < 1, p ∈ (1,∞) and q ∈ [1,∞]. Then

∥[R, u]F∥Bs
p,q ≤ C1 ∥u∥B̊δp,∞

∥F∥Bs−δ
∞,q

+ C2

3
j=−1

∥∆ j u ∆ j F∥L p , (3.4)

where C1 is a constant depending on d, s, δ, p and q only and C2 is an absolute constant. When
δ = 1, ∥u∥B̊δp,∞

is replaced by ∥∇u∥L p .

We now apply Proposition 3.2 to the special case when u is determined by ω through the
relations in (1.1). We obtain a bound for the commutator involved in the equation for G, namely
(3.1).

Corollary 3.3. Let u : R2
→ R2 be a vector field determined by a scalar function ω through the

relations

u = ∇
⊥ψ, 1ψ = Λσ (log(I − ∆))γ ω, (3.5)

where 0 ≤ σ < 1
2 and γ ≥ 0 are real parameters. Then, for any 0 ≤ s < 1 − σ, p ∈ (1,∞) and

q ∈ [1,∞],

∥[R, u]θ∥Bs
p,q ≤ C ∥ω∥L p∥θ∥Bs+σ−1

∞,q
+ C ∥ω∥L p1 ∥θ∥L p2 , (3.6)

where p1 and p2 satisfy

p1 ∈ [1,∞), p2 ∈ [1,∞],
1
p1

+
1
p2

=
1
p

+
1 − σ

2

and C’s are constants depending on σ, γ, s, p, q, p1 and p2. Furthermore, for any p3 ≥
2

1−s−σ ,

∥[R, u]θ∥H s ≤ C ∥ω∥L2


∥θ∥L p3 + ∥θ∥

L
2

1−σ


, (3.7)

where C is a constant depending on σ, s and p3 only.

Proof of Corollary 3.3. By Proposition 3.2,

∥[R, u]θ∥Bs
p,q ≤ C ∥u∥B̊δp,∞

∥θ∥Bs−δ
∞,q

+ C
3

j=−1

∥∆ j u ∆ jθ∥L p .

According to (3.5),

u = ∇
⊥Λ−2+σ (log(I − ∆))γ ω.
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Since s + σ < 1, we choose ϵ > 0 such that s + σ + ϵ = 1. Then,

∥u∥B̊s
p,∞

≤ ∥ (log(I − ∆))γ ω∥B̊s+σ−1
p,∞

≤ C ∥ω∥B̊s+σ+ϵ−1
p,∞

≤ C ∥ω∥L p .

In addition, for any −1 ≤ j ≤ 3, we have

∥∆ j u ∆ jθ∥L p ≤ ∥∆ j u∥Lq1 ∥∆ jθ∥L p2 ≤ C ∥Λσ−1ω∥Lq1 ∥θ∥L p2

where q1 ∈ (1,∞), p2 ∈ [1,∞] and 1
q1

+
1
p2

=
1
p . By the Hardy–Littlewood–Sobolev inequality,

∥Λσ−1ω∥Lq1 ≤ C∥ω∥L p1

where 1 ≤ p1 < q1 < ∞ and 1
q1

=
1
p1

−
1−σ

2 . Therefore,

3
j=−1

∥∆ j u ∆ jθ∥L p ≤ C ∥ω∥L p1 ∥θ∥L p2

with p1 and p2 satisfying 1
p1

+
1
p2

=
1
p +

1−σ
2 . (3.7) is obtained by taking p = q = p1 =

2, p2 =
2

1−σ
in (3.6) and applying the embedding relation

L p3 ↩→ Bs+σ−1
∞,2 .

This completes the proof of Corollary 3.3. �
With Corollary 3.3 at our disposal, we now prove Theorem 1.2.

Proof of Theorem 1.2. Multiplying (3.1) by G and integrating over R2, we obtain

1
2

d
dt

∥G∥
2
L2 + ∥Λ

1
2 G∥

2
L2 = −


G ∇ · [R, u]θ dx .

By Hölder’s inequality, G ∇ · [R, u]θ dx
 ≤ ∥Λ

1
2 G∥L2 ∥[R, u]θ∥H̊1/2 . (3.8)

By (3.7) in Corollary 3.3,

∥[R, u]θ∥H̊1/2 ≤ C ∥ω∥L2


∥θ0∥L p3 + ∥θ0∥

L
2

1−σ


, (3.9)

where p3 ≥
2

1/2−σ
is any constant. In addition,

∥ω∥L2 ≤ ∥G∥L2 + ∥Rθ∥L2 ≤ ∥G∥L2 + ∥θ0∥L2 . (3.10)

Inserting (3.9) and (3.10) in (3.8) and applying Young’s inequality, we obtain

d
dt

∥G∥
2
L2 + ∥Λ

1
2 G∥

2
L2 ≤ C ∥G∥

2
L2 + C,

where C’s are constants depending on the initial norm ∥θ0∥L1∩L∞ . It then follows from
Gronwall’s inequality that, for any t > 0,

∥G(t)∥2
L2 +

 t

0
∥Λ

1
2 G∥

2
L2dt ≤ B(t),
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where B(t) is an explicit smooth function of t . The global bound for ∥ω∥L2 is then provided by
(3.10). This concludes the proof of Theorem 1.2. �

Finally we prove Proposition 3.2.

Proof of Proposition 3.2. By the definition of the Besov space Bs
p,q ,

∥[R, u]F∥
q
Bs

p,q
=

∞
j=−1

2qs j
∥∆ j [R, u]F∥

q
L p .

We decompose ∆ j [R, u]F into paraproducts,

∆ j [R, u]F = I1 + I2 + I3,

where

I1 =


|k− j |≤2

∆ j (R(Sk−1u∆k F)− Sk−1uR∆k F),

I2 =


|k− j |≤2

∆ j (R(∆ku Sk−1 F)− ∆kuRSk−1 F),

I3 =


k≥ j−1

∆ j (R(∆ku∆k F)− ∆kuR∆k F).

Here ∆k = ∆k−1 + ∆k + ∆k+1. For k ≥ 3, the Fourier transform of Sk−1u∆k F is supported
in the annulus 2kA, where A denotes a fixed annulus. By Proposition 3.1 of [20], there is a
smooth function h with compact support such that R acting on this term can be represented as a
convolution with the kernel hk(x) ≡ 2dkh(2k x). More precisely,

R(Sk−1u∆k F)− Sk−1uR∆k F = hk ∗ (Sk−1u∆k F)− Sk−1u (hk ∗ ∆k F).

Since

∥|x |
δ2dkh(2k x)∥L1 ≤ C2−δk,

we apply Lemma 3.1 to obtain

∥R(Sk−1u∆k F)− Sk−1uR∆k F∥L p ≤ C 2−δk
∥Sk−1u∥B̊δp,∞

∥∆k F∥L∞ .

For k < 3, we do not need the commutator structure and this difference can be directly estimated
as follows. By the boundedness of R on L p for p ∈ (1,∞) and Bernstein’s inequality (see
Proposition A.6 in the Appendix),

∥R(Sk−1u∆k F)− Sk−1uR∆k F∥L p ≤ C ∥Sk−1u ∆k F∥L p

≤ C
3

j=−1

∥∆ j u ∆ j F∥L p .

Therefore,
∞

j=−1

2qs j
∥I1∥

q
L p ≤ C

∞
j≥3

2(s−δ) jq
∥S j−1u∥

q
B̊δp,∞

∥∆ j F∥
q
L∞ + C

3
j=−1

∥∆ j u ∆ j F∥
q
L p

≤ C ∥u∥
q
B̊δp,∞

∥F∥
q
Bs−δ

∞,q
+ C

3
j=−1

∥∆ j u ∆ j F∥
q
L p .
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The idea of bounding I2 is similar. In fact, we have

∞
j=−1

2qs j
∥I2∥

q
L p ≤ C

∞
j≥3

2(s−δ) jq
∥∆ j u∥

q
B̊δp,∞

∥S j−1 F∥
q
L∞ + C

3
j=−1

∥∆ j u ∆ j F∥
q
L p .

Furthermore,
∞
j≥3

2(s−δ) jq
∥∆ j u∥

q
B̊δp,∞

∥S j−1 F∥
q
L∞

≤ ∥u∥
q
B̊δp,∞

∞
j=−1

2(s−δ) jq

 
m≤ j−1

∥∆m F∥L∞

q

≤ ∥u∥
q
B̊δp,∞

∞
j=−1

 
m≤ j−1

2(s−δ)( j−m) 2(s−δ)m∥∆m F∥L∞

q

≤ C ∥u∥
q
B̊δp,∞

∥F∥
q
Bs−δ

∞,q

where we have used the fact that s < δ and the series inside the bracket can be viewed as a
convolution of two other series. The contribution from I3 is bounded by

∞
j=−1

2qs j
∥I3∥

q
L p ≤ C

∞
j≥3

2s jq


k≥ j−1

2−δkq
∥∆ku∥

q
B̊δp,∞

∥∆k F∥
q
L∞

+ C
3

j=−1

∥∆ j u ∆ j F∥
q
L p .

The first part can be further controlled by
∞
j≥3

2s jq


k≥ j−1

2−δkq
∥∆ku∥

q
B̊δp,∞

∥∆k F∥
q
L∞

≤ ∥u∥
q
B̊δp,∞

∞
j=−1


k≥ j−1

2s( j−k)q2(s−δ)kq
∥∆k F∥

q
L∞

≤ ∥u∥
q
B̊δp,∞

∥F∥
q
Bs−δ

∞,q
.

We obtain (3.4) by combining the estimates above. This completes the proof of
Proposition 3.2. �

4. Global bound for ∥ω∥Lq for q > 2

This section establishes the global bounds stated in Theorem 1.1. For the sake of clarity, this
section is divided into four subsections. This first one provides a global bound for ∥ω∥Lq for
q ∈ (2, 4

2σ+1 ]. This bound holds for 0 ≤ σ < 1
2 and γ ≥ 0. The second subsection proves the

global bound for G in the space–time norm Lr Bs
q,1. This bound requires that 0 ≤ σ < 1

4 and
γ ≥ 0. The third subsection shows that, for σ = 0 and any γ ≥ 0, both ω and θ are bounded
globally in L1

t B0
∞,1. The final subsection presents the global Lq -bound for any q ≥ 2 as long as

σ = 0 and γ ≥ 0.
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4.1. Global bound for ∥ω∥Lq for q ∈ (2, 4
2σ+1 ]

This subsection proves a global bound for ∥ω∥Lq for q ∈ (2, 4
2σ+1 ]. This result holds for any

0 ≤ σ < 1
2 and γ ≥ 0. More precisely, we have the following theorem.

Theorem 4.1. Consider (1.1) with 0 ≤ σ < 1
2 and γ ≥ 0. Assume that (ω0, θ0) satisfies

the conditions in Theorem 1.1, especially (ω0, θ0) ∈ Lq for q ∈ (2, 4
2σ+1 ]. Let (ω, θ) be the

corresponding solution of (1.1). Then, for q ∈ (2, 4
2σ+1 ) with γ > 0 and q ∈ (2, 4

2σ+1 ] with
γ = 0, and any t > 0,

∥ω(t)∥Lq ≤ B(t), (4.1)

∥G(t)∥q
Lq + C

 t

0
∥G(τ )∥q

L2q dτ ≤ B(t), (4.2)

where C is a constant depending on q only and B(t)’s are smooth functions of t .

The following lemma, proven in [20], will be used in the proof of Theorem 4.1.

Lemma 4.2. Let q ∈ [2,∞) and s ∈ (0, 1). Then, for any smooth function f ,

∥ f | f |
q−2

∥H̊ s ≤ C∥ f ∥
q−2
L2q ∥ f ∥

H̊ s+1−
2
q
.

Proof of Theorem 4.1. Multiplying (3.1) by G|G|
q−2 and integrating with respect to x over R2,

we obtain
1
q

d
dt

∥G∥
q
Lq +


G|G|

q−2ΛG dx = −


G|G|

q−2
∇ · [R, u]θ dx .

The dissipative part admits the lower bound
G|G|

q−2ΛG dx ≥ C
 Λ 1

2


|G|

q
2

2 ≥ C∥G∥
q
L2q ,

where C is a constant depending on q only. When γ = 0, we take

s ≥ σ, q ∈


2,

4
2σ + 1


, s + 1 −

2
q

=
1
2
.

In the case when γ > 0, we take s > σ . By Hölder’s inequality,

K =

 G|G|
q−2

∇ · [R, u]θ

 ≤ ∥G|G|
q−2

∥H̊ s ∥[R, u]θ∥H̊1−s .

By Lemma 4.2,

∥G|G|
q−2

∥H s ≤ C∥G∥
H̊ s+1−

2
q
∥G∥

q−2
L2q = C ∥Λ

1
2 G∥L2 ∥G∥

q−2
L2q .

By Corollary 3.3, for 1 − s ≤ 1 − σ or s ≥ σ

∥[R, u]θ∥H1−s ≤ C ∥ω∥L2


∥θ∥L p3 + ∥θ∥

L
2

1−σ


.

Therefore, by Theorem 1.2.

∥[R, u]θ∥H1−s ≤ C B(t).
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Combining the estimates above, we obtain

d
dt

∥G∥
q
Lq + Cq∥G∥

q
L2q ≤ C B(t) ∥Λ

1
2 G∥L2 ∥G∥

q−2
L2q .

Splitting the right-hand side by Young’s inequality and using the bound in (1.6), we obtain
(4.2). (4.1) follows from (4.2) together with ∥Rθ∥Lq ≤ ∥θ0∥Lq . This completes the proof of
Theorem 4.1. �

4.2. Global bound for ∥G∥L̃r
t Bs

q,1

This subsection presents a global bound on G in the space–time space L̃r
t Bs

q,1. The precise
theorem can be stated as follows.

Theorem 4.3. Consider (1.1) with 0 ≤ σ < 1
4 and γ ≥ 0. Assume that (ω0, θ0) satisfies the

conditions in Theorem 1.1. Let (ω, θ) be the corresponding solution of (1.1). Let r, q and s
satisfy

r ∈ [1,∞], s < 1 − σ,
2

1 − σ
< q <

4
1 + 2σ

.

In the case when γ = 0, we can take q = 4/(1 + 2σ). Then, for any t > 0,

∥G∥L̃r
t Bs

q,1
≤ B(t). (4.3)

Proof. Let j ≥ −1 be an integer. Applying ∆ j to (1.5) yields

∂t∆ j G + u · ∇∆ j G + Λ∆ j G = −[∆ j , u · ∇]G − ∆ j [R, u · ∇]θ.

Taking the inner product with ∆ j G|∆ j G|
q−2, we have

1
q

d
dt

∥∆ j G∥
q
q +


∆ j G|∆ j G|

q−2Λ∆ j G = J1 + J2,

where

J1 = −


∆ j (u · ∇G)∆ j G|∆ j G|

q−2,

J2 = −


∆ j [R, u · ∇]θ ∆ j G|∆ j G|

q−2.

For j ≥ 0, the dissipative part can be bounded below by
∆ j G|∆ j G|

q−2 Λ∆ j G ≥ C2 j
∥∆ j G∥

q
q ,

where C is a constant depending on q only. For j = −1, the dissipative part is nonnegative and
can be neglected. To estimate J1, we write

∆ j (u · ∇G) = J11 + J12 + J13 + J14 + J15

with

J11 =


| j−k|≤2

[∆ j , Sk−1u · ∇]∆k G,
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J12 =


| j−k|≤2

(Sk−1u − S j u) · ∇∆ j∆k G,

J13 = S j u · ∇∆ j G,

J14 =


| j−k|≤2

∆ j (∆ku · ∇Sk−1G),

J15 =


k≥ j−1

∆ j (∆ku∆k G).

Since ∇ · u = 0, we have
J13|∆ j G|

q−2∆ j G = 0.

By Hölder’s inequality, J11|∆ j G|
q−2∆ j G

 ≤ ∥J11∥Lq ∥∆ j G∥
q−1
Lq .

We write the commutator in terms of the integral,

J11 =


Φ j (x − y) (Sk−1u(y)− Sk−1u(x)) · ∇∆k G(y) dy,

where Φ j is the kernel of the operator ∆ j and more details can be found in the Appendix. As in
the proof of Lemma 3.1, we have, for any ϵ > 0,

∥J11∥Lq ≤ ∥|x |
1−σ−ϵΨ j (x)∥L1 ∥Sk−1u∥B̊1−σ−ϵ

q,∞
∥∇∆k G∥L∞ .

Throughout the rest of this proof, ϵ > 0 is taken to be a small number such that

2
q

+ σ + ϵ − 1 < 0.

By the definition of Φ j and Bernstein’s inequality (see Appendix), we have

∥J11∥Lq ≤ ∥|x |
1−σ−ϵΨ0(x)∥L1 2 j (σ+ϵ)

∥S j−1u∥B̊1−σ−ϵ
q,∞

∥∆ j G∥L∞

≤ C 2
j

σ+ϵ+ 2

q


∥ω∥Lq ∥∆ j G∥Lq .

For j ≥ j0 with j0 = 2,

∥J12∥Lq ≤ C∥∆ j u∥Lq ∥∇∆ j G∥L∞

≤ C2
j

σ+ϵ+ 2

q


∥ω∥Lq ∥∆ j G∥Lq .

Similarly, for j ≥ j0 with j0 = 2,

∥J14∥Lq ≤ C∥∆ j u∥Lq ∥∇S j−1G∥L∞

≤ C2
j

σ+ϵ+ 2

q


∥Λ1−σ−ϵ∆ j u∥Lq


m≤ j−2

2
(m− j)


1+

2
q


∥∆m G∥Lq

≤ C2
j

σ+ϵ+ 2

q


∥ω∥Lq


m≤ j−2

2
(m− j)


1+

2
q


∥∆m G∥Lq .
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J15 is bounded by

∥J15∥Lq ≤ C2
j

σ+ϵ+ 2

q

 
k≥ j−1

∥Λ1−σ−ϵ∆ku∥Lq 2
( j−k)


1−σ−ϵ− 2

q


∥∆k G∥Lq

≤ C2
j

σ+ϵ+ 2

q


∥ω∥Lq


k≥ j−1

2
( j−k)


1−σ−ϵ− 2

q


∥∆k G∥Lq .

Thus, we have obtained that

∥J1∥Lq ≤ C 2
j

σ+ϵ+ 2

q


∥ω∥Lq


∥∆ j G∥Lq +


m≤ j−2

2
(m− j)


1+

2
q


∥∆m G∥Lq

+


k≥ j−1

2
( j−k)


1−σ−ϵ− 2

q


∥∆k G∥Lq


.

By Hölder’s inequality and an argument as in the proof of Proposition 3.2,

|J2| ≤ ∥∆ j [R, u · ∇]θ∥Lq ∥∆ j G∥
q−1
Lq

≤ C 2 j (σ+ϵ)
∥ω∥Lq ∥∆ jθ∥L∞ ∥∆ j G∥

q−1
Lq .

Collecting the estimates, we have

d
dt

∥∆ j G∥Lq + C 2 j
∥∆ j G∥q ≤ C 2 j (σ+ϵ)

∥ω∥Lq ∥θ0∥L∞ + C 2
j

σ+ϵ+ 2

q


∥ω∥Lq L(t),

where

L(t) = ∥∆ j G∥Lq +


m≤ j−2

2
(m− j)


1+

2
q


∥∆m G∥Lq +


k≥ j−1

2
( j−k)


1−σ−ϵ− 2

q


∥∆k G∥Lq .

Integrating in time and using the fact that ∥ω∥Lq ≤ B(t), we have

∥∆ j G(t)∥Lq ≤ e−2 j t
∥∆ j G(0)∥Lq + C 2 j (σ+ϵ−1)

∥θ0∥L∞ B(t)+ C 2
j

σ+ϵ+ 2

q


B(t)

×

 t

0
e−2 j (t−s)L(s) ds.

Taking Lr -norm in time and applying Young’s inequality, we obtain

∥∆ j G∥Lr
t Lq ≤ C 2−

1
r j

∥∆ j G(0)∥Lq + C 2 j (−1+σ+ϵ)
∥θ0∥L∞ B(t)

+ C 2
j

−1+σ+ϵ+ 2

q


B(t) ∥L∥Lr

t
.

Multiplying 2 js , summing over j ≥ −1 and using the fact s < 1 − σ , we obtain

∥G∥Lr Bs
q,1

≤ C ∥G(0)∥
B

s− 1
r

q,1

+ C ∥θ0∥L∞ B1(t)+ K1 + K2 + K3, (4.4)

where

K1 = C1

j≥−1

2
j

−1+σ+ϵ+ 2

q


B(t) 2 js

∥∆ j G∥Lr
t Lq ,
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K2 = C1

j≥−1

2
j

−1+σ+ϵ+ 2

q


B(t) 2 js


m≤ j−2

2
(m− j)


1+

2
q


∥∆m G∥Lr

t Lq ,

K3 = C1

j≥−1

2
j

−1+σ+ϵ+ 2

q


B(t) 2 js


k≥ j−1

2
( j−k)


1−σ−ϵ− 2

q


∥∆k G∥Lr

t Lq .

Since −1 + σ + ϵ +
2
q < 0, we can choose an integer N > 0 such that

C1 2
N

−1+σ+ϵ+ 2

q


B(t) ≤

1
8
.

We then decompose the sums in K1, K2 and K3 into two parts: j ≤ N and j > N . Using the fact
that ∥G∥Lq is bounded, the sum for j ≤ N can be bounded by B(t)2s N for a smooth function
B(t). The sum for j > N is bounded by 1

8∥G∥Lr Bs
q,1

. That is,

K1, K2, K3 ≤ B(t)2s N
+

1
8
∥G∥Lr Bs

q,1
. (4.5)

Inserting (4.5) in (4.4) yields (4.3). This completes the proof of Theorem 4.3. �

4.3. Bounds for ∥ω∥B0,γ
∞,1

and ∥θ∥B0,γ
∞,1

This subsection provides global bounds for ∥ω∥B0,γ
∞,1

and ∥θ∥B0,γ
∞,1

.

Theorem 4.4. Consider (1.1) with σ = 0 and γ ≥ 0. Assume that (ω0, θ0) satisfies the
conditions in Theorem 1.1, especially (ω0, θ0) ∈ B0,γ

∞,1. Let (ω, θ) be the corresponding solution
of (1.1). Then, for any t > 0,

∥ω∥L1
t B0,γ

∞,1
≤ B(t), ∥θ∥L1

t B0,γ
∞,1

≤ B(t). (4.6)

Proof. Taking r = 1 and 2
q < s < 1 − σ , we obtain from Theorem 4.3 that

∥G∥L1
t Bs

q,1
≤ B(t).

This bound especially imply that

∥G∥L1
t B0,γ

∞,1
≤ B(t).

In fact, by Bernstein’s inequality,

∥G∥B0,γ
∞,1

=


j≥−1

(1 + | j |)γ ∥∆ j G∥L∞ ≤


j≥−1

(1 + | j |)γ 2
2
q j

∥∆ j G∥Lq ≤ C∥G∥Bs
q,1
.

Since G = ω − Rθ ,

∥ω∥B0,γ
∞,1

≤ ∥G∥B0,γ
∞,1

+ ∥Rθ∥B0,γ
∞,1
.

In addition,

∥Rθ∥B0,γ
∞,1

≤ ∥∆−1θ∥L∞ + ∥θ∥B0,γ
∞,1

≤ ∥θ0∥L2 + ∥θ∥B0,γ
∞,1
.
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By Lemma 4.5 and

∥∇u∥L∞ ≤ ∥ω∥L2 + ∥ω∥B0,γ
∞,1
,

we obtain

∥θ∥B0,γ
∞,1

≤ ∥θ0∥B0,γ
∞,1


1 +

 t

0
∥ω∥L2 dt


+ ∥θ0∥B0,γ

∞,1

 t

0
∥ω∥B0,γ

∞,1
dt.

Therefore, we have obtained

∥ω∥B0,γ
∞,1

≤ ∥G∥B0,γ
∞,1

+ ∥θ0∥L2 + ∥θ0∥B0,γ
∞,1


1 +

 t

0
∥ω∥L2 dt


+ ∥θ0∥B0,γ

∞,1

 t

0
∥ω∥B0,γ

∞,1
dt.

If we set Z(t) = ∥ω∥L1
t B0,γ

∞,1
, then

Z(t) ≤ B(t)+ ∥θ0∥B0,γ
∞,1

 t

0
Z(τ ) dτ.

(4.6) then follows from Gronwall’s inequality. �

The following lemma has been used in the proof of Theorem 4.4.

Lemma 4.5. Let θ satisfy

∂tθ + u · ∇θ + Λθ = f.

Let γ ≥ 0 and ρ ∈ [1,∞]. Then, for any t > 0,

∥θ(t)∥B0,γ
ρ,1

≤


∥θ0∥B0,γ

ρ,1
+ ∥ f ∥L1

t B0,γ
ρ,1


1 +

 t

0
∥∇u∥L∞ dt


.

Proof. Theorem 4.5 of [21, p. 432] states a similar result for the Besov space B0
ρ,1. The

generalization to the Besov space B0,γ
ρ,1 presented here is not completely trivial. For an integer

k ≥ −1, consider the solution θk of the equation

∂tθk + u · ∇θk + Λθk = ∆k f, θ(x, 0) = ∆kθ0.

For any s ∈ (−1, 1) and ρ ∈ [1,∞], we have the standard Besov estimate

∥θk∥Bs
ρ,∞

≤ C

∥∆kθ0∥Bs

ρ,∞
+ ∥∆k f ∥L1

t Bs
ρ,∞


eCV (t), (4.7)

where V (t) = ∥∇u∥L1
t L∞ . Setting s = ±

1
2 in (4.7), we obtain

∥∆ jθk∥Lρ ≤ C2−
1
2 | j−k|


∥∆kθ0∥Lρ + ∥∆k f ∥L1

t Lρ


eCV (t). (4.8)

Clearly θ =


∆kθ and thus

∥θ(t)∥B0,γ
ρ,1

=

∞
j=−1

(1 + | j |)γ ∥∆ jθ∥Lρ ≤

∞
j=−1

∞
k=−1

(1 + | j |)γ ∥∆ jθk∥Lρ .
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For an integer N to be fixed later, we decompose the double summation in the inequality above
into two parts: J1 for | j − k| ≥ N and J2 for | j − k| < N . Invoking (4.8), we have

J1 ≤ C
∞

j=−1


| j−k|≥N

(1 + | j |)γ 2−
1
2 | j−k|


∥∆kθ0∥Lρ + ∥∆k f ∥L1

t Lρ


eCV (t)

= C
∞

j=−1


| j−k|≥N

(1 + | j |)γ

(1 + |k|)γ
2−

1
2 | j−k|(1 + |k|)γ


∥∆kθ0∥Lρ + ∥∆k f ∥L1

t Lρ


eCV (t).

In the summation above, in the case when k ≥ j +N , we certainly have (1+| j |)γ /(1+|k|)γ ≤ 1.
In the case when j ≥ k + N , we have

(1 + | j |)γ

(1 + |k|)γ
2−δ( j−k)

≤ C

for any fixed δ > 0, where C is independent of j and k. Therefore, for 0 < δ < 1
2 , we have

J1 ≤ 2
−


1
2 −δ


N

eCV (t)


∥θ0∥B0,γ
ρ,1

+ ∥ f ∥L1
t B0,γ

ρ,1


.

To bound J2, we handle ∥∆ jθk∥Lρ differently. Through a standard Lρ-estimate,

∥∆ jθk∥Lρ ≤ ∥θk∥Lρ ≤ ∥∆kθ0∥Lρ + ∥∆k f ∥L1
t Lρ .

Therefore,

J2 =

∞
j=−1


| j−k|<N

(1 + | j |)γ

∥∆kθ0∥Lρ + ∥∆k f ∥L1

t Lρ


.

We have, for each k satisfying | j − k| < N ,

∞
j=−1

(1 + | j |)γ

∥∆kθ0∥Lρ + ∥∆k f ∥L1

t Lρ


=

∞
j=−1

(1 + | j |)γ

(1 + |k|)γ
(1 + |k|)γ


∥∆kθ0∥Lρ + ∥∆k f ∥L1

t Lρ


≤ C


∥θ0∥B0,γ

ρ,1
+ ∥ f ∥L1

t B0,γ
ρ,1


+ C sup

j≥−1
(1 + | j |)1+γ


∥∆ jθ0∥Lρ + ∥∆ j f ∥L1

t Lρ


≤ C


∥θ0∥B0,γ

ρ,1
+ ∥ f ∥L1

t B0,γ
ρ,1


where C’s are constants independent of N . In the last inequality we have used the fact that
B0,γ
ρ,1 ↩→ B0,1+γ

ρ,∞ . The inequality above can be established by writing k = j − m with
−N < m < N and splitting the summation for j into two parts: one part for j ≤ 2N and
the other for j > 2N . We omit further details. Therefore,

J2 ≤ C N


∥θ0∥B0,γ
ρ,1

+ ∥ f ∥L1
t B0,γ

ρ,1


.

Consequently,
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∥θ(t)∥B0,γ
ρ,1

≤ J1 + J2

≤ 2
−


1
2 −δ


N

eCV (t)


∥θ0∥B0,γ
ρ,1

+ ∥ f ∥L1
t B0,γ

ρ,1


+ C N


∥θ0∥B0,γ

ρ,1
+ ∥ f ∥L1

t B0,γ
ρ,1


.

The desired inequality follows by taking N such that 2−( 1
2 −δ)N eCV (t) is of order 1. This

completes the proof of Lemma 4.5. �

4.4. Global bound ∥ω∥Lq for any q > 2

The goal of this subsection is to establish a global bound for ∥ω∥Lq for any q > 2.

Theorem 4.6. Consider (1.1) with σ = 0 and γ ≥ 0. Assume (ω0, θ0) satisfies the conditions
stated in Theorem 1.1. Let (ω, θ) be the corresponding solution. Then, for any q ≥ 2,

∥ω(t)∥Lq ≤ B(t). (4.9)

Proof. It is clear from (1.5) that, for any q ≥ 2,

∥G∥Lq ≤ ∥G0∥Lq +

 t

0
∥[R, u · ∇θ ]∥Lq dt.

According to the commutator estimate of Proposition 4.7,

∥G∥Lq ≤ ∥G0∥Lq +

 t

0
∥ω(s)∥Lq ∥θ(s)∥B0,γ

∞,1
ds.

Therefore,

∥ω(t)∥Lq ≤ ∥θ0∥Lq + ∥G0∥Lq +

 t

0
∥ω(s)∥Lq ∥θ(s)∥B0,γ

∞,1
ds.

Gronwall’s inequality combined with the bound in Theorem 4.4 yields (4.9). �

Proposition 4.7. Let γ ≥ 0. Assume that u and ω are related by

u = ∇
⊥ψ, 1ψ = (log(I − ∆))γω.

Then, for any q ≥ 2, we have

∥[R, u · ∇]θ∥B0
q,1

≤ C∥ω∥Lq ∥θ∥B0,γ
∞,1
.

Proof. For any integer j ≥ −1, we write

∆ j [R, u · ∇]θ = J1 + J2 + J3,

where

J1 =


|k− j |≤2

∆ j (RSk−1u · ∇∆kθ)− ∆ j (Sk−1u · ∇R∆kθ),

J2 =


|k− j |≤2

∆ j (R(∆ku · ∇Sk−1θ)− ∆ku · ∇RSk−1θ),

J3 =


k≥ j−1

∆ j (R(∆ku · ∇∆kθ)− ∆kuR · ∇∆kθ).
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Estimating these terms in a similar fashion as in the proof of Proposition 3.2, we have

∥J1∥Lq ≤ C ∥S j−1ω∥Lq (1 + | j |)γ ∥∆ jθ∥L∞ .

For j ≥ j0 with j0 = 2, we have

∥J2∥Lq ≤ C ∥ω∥Lq 2− j (1 + | j |)γ ∥S j−1∇θ∥L∞

≤ C ∥ω∥Lq


m≤ j−1

2m(1 + | j |)γ

2 j (1 + |m|)γ
(1 + |m|)γ ∥∆mθ∥L∞

and

∥J3∥Lq ≤ C ∥ω∥Lq


k≥ j−1

2( j−k)(1 + |k|)γ ∥∆kθ∥L∞ .

Therefore,

∥[R, u · ∇]θ∥B0
q,1

≤


j≥−1

∥∆ j [R, u · ∇]θ∥Lq ≤ C∥ω∥Lq ∥θ∥B0,γ
∞,1
.

This completes the proof of Proposition 4.7. �

5. Uniqueness

This section proves the uniqueness part of Theorem 1.1. For the sake of clarity, we state it as
a theorem.

Theorem 5.1. Assume that (ω0, θ0) satisfies the conditions stated in Theorem 1.1. Let σ =

0, γ ≥ 0 and q > 2. Let (ω(1), θ (1)) and (ω(2), θ (2)) be two solutions of (1.1) satisfying, for
any t > 0,

ω(1), ω(2) ∈ L2
∩ Lq

∩ L1
t B0,γ

∞,1, θ (1), θ (2) ∈ L2
∩ L∞

∩ L1
t B0,γ

∞,1.

Then they must coincide.

Proof of Theorem 5.1. Let u(1) and u(2) be the corresponding velocity fields, namely

u( j)
= ∇

⊥ψ ( j), 1ψ ( j)
= (log(I − ∆))γω( j), j = 1, 2.

Let v( j)
= (log(I − ∆))γ u( j), j = 1, 2. Then the differences

u = u(2) − u(1), θ = θ (2) − θ (1), v = v(2) − v(1), p = p(2) − p(1)

satisfy

∂tv + u(2) · ∇v + u · ∇v(1) −

2
j=1


u(2)j ∇v j + u j∇v

(1)
j


+ Λv = −∇ p + θe2,

∂tθ + u · ∇θ (1) + u(2) · ∇θ = 0.

By Lemmas 5.2 and 5.3,

∥θ(t)∥B−1
2,∞

≤ ∥θ(0)∥B−1
2,∞

+ C
 t

0
∥v(s)∥L2 ∥θ (1)(s)∥B0,γ

∞,1
ds

+ C
 t

0
∥ω(2)(s)∥B0,γ

∞,1
∥θ(s)∥B−1

2,∞
ds,
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∥v(t)∥B0
2,∞

≤ ∥v(0)∥B0
2,∞

+ ∥θ(s)∥B−1
2,∞

+ C
 t

0
∥v(s)∥L2


∥ω(1)(s)∥B0,γ

∞,1
+ ∥ω(2)(s)∥B0,γ

∞,1


ds.

To further the estimate, we bound ∥v∥L2 in terms of ∥v∥B0
2,∞

by the interpolation inequality (see
Lemma 6.11 of [20, p. 2173])

∥v∥L2 ≤ C ∥v∥B0
2,∞

log


1 +

∥v∥H1

∥v∥B0
2,∞



and use the fact that ∥v∥H1 ≤ ∥ω(1)∥L2 +∥ω(2)∥L2 . Combining the inequalities above and setting

Y (t) = ∥θ(t)∥B−1
2,∞

+ ∥v(t)∥B0
2,∞
,

we obtain

Y (t) ≤ 2 Y (0)+ C
 t

0
D1(s)Y (s) log(1 + D2(s)/Y (s)) ds

where D1(s) = ∥θ (1)(s)∥B0,γ
∞,1

+ ∥ω(1)(s)∥B0,γ
∞,1

+ ∥ω(2)(s)∥B0,γ
∞,1

, and D2(s) = ∥ω(1)(s)∥L2 +

∥ω(2)(s)∥L2 . Since D1 and D2 are integrable, we obtain by Osgood’s inequality that Y (t) ≡ 0.
A statement of Osgood’s theorem is provided in the Appendix. This completes the proof of
Theorem 5.1. �

Lemma 5.2. Assume that θ satisfies

∂tθ + u · ∇θ (1) + u(2) · ∇θ = 0, (5.1)

where u, θ (1) and u(2) are as defined in the proof of Theorem 5.1. Then, for any t > 0,

∥θ(t)∥B−1
2,∞

≤ ∥θ(0)∥B−1
2,∞

+ C
 t

0
∥v(s)∥L2 ∥θ (1)(s)∥B0,γ

∞,1
ds

+ C
 t

0
∥ω(2)(s)∥B0,γ

∞,1
∥θ(s)∥B−1

2,∞
ds (5.2)

where v is as defined in the proof of Theorem 5.1.

Proof. Let j ≥ −1. Applying ∆ j to (5.1), taking the inner product of ∆ jθ with the resulting
equation and applying Hölder’s inequality, we obtain

1
2

d
dt

∥∆ jθ∥
2
L2 ≤ ∥∆ j (u · ∇θ (1))∥L2∥∆ jθ∥L2 −


∆ jθ∆ j (u(2) · ∇θ) dx . (5.3)

To estimate the first term, we write

∆ j (u · ∇θ (1)) = J1 + J2 + J3, (5.4)

where J1, J2 and J3 are given by

J1 =


| j−k|≤2

∆ j (Sk−1u · ∇∆kθ
(1)),

J2 =


| j−k|≤2

∆ j (∆ku · ∇Sk−1θ
(1)),
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J3 =


k≥ j−1

∆ j (∆ku · ∇∆kθ
(1)).

J1, J2 and J3 can be estimated as follows.

∥J1∥L2 ≤ C 2 j
∥S j−1u∥L2∥∆ jθ

(1)
∥L∞

≤ C 2 j
∥v∥L2(1 + | j |)γ ∥∆ jθ

(1)
∥L∞

≤ C 2 j
∥v∥L2 ∥θ (1)∥B0,γ

∞,∞
.

∥J2∥L2 ≤ C ∥∆ j u∥L2∥S j−1∇θ∥L∞

≤ C ∥∆ jv∥L2(1 + | j |)γ


m≤ j−2

2m
∥∆mθ

(1)
∥L∞

≤ C 2 j
∥v∥B0

2,∞


m≤ j−2

2m(1 + |m|)−γ

2 j (1 + | j |)−γ
(1 + |m|)γ ∥∆mθ

(1)
∥L∞

≤ C 2 j
∥v∥B0

2,∞


m≤ j−2

(1 + |m|)γ ∥∆mθ
(1)

∥L∞

≤ C 2 j
∥v∥B0

2,∞
∥θ (1)∥B0,γ

∞,1
.

∥J3∥L2 ≤ C 2 j


k≥ j−1

(1 + |k|)γ ∥∆kv∥L2 ∥∆kθ
(1)

∥L∞

≤ C 2 j
∥v∥B0

2,∞
∥θ (1)∥B0,γ

∞,1
.

To estimate the second term in (5.3), we write

∆ j (u(2) · ∇θ) = K1 + K2 + K3 + K4 + K5, (5.5)

where

K1 =


| j−k|≤2

[∆ j , Sk−1u(2) · ∇]∆kθ,

K2 =


| j−k|≤2

(Sk−1u(2) − S j u(2)) · ∇∆ j∆kθ,

K3 = S j u(2) · ∇∆ jθ,

K4 =


| j−k|≤2

∆ j (∆ku(2) · ∇Sk−1θ),

K5 =


k≥ j−1

∆ j (∆ku(2) · ∇∆kθ).

Correspondingly the second term in (5.3) can be decomposed into five integrals. Since
∇ · u(2) = 0,

∆ jθK3 dx = 0.

Therefore, by Hölder’s inequality, ∆ jθ∆ j (u(2) · ∇θ) dx
 ≤ ∥∆ jθ∥L2


∥K1∥L2 + ∥K2∥L2 + ∥K4∥L2 + ∥K5∥L2


.

By a standard commutator estimate,
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∥K1∥L2 ≤ C ∥xΦ j (x)∥L1 ∥∇S j−1u(2)∥L∞∥∇∆ jθ∥L2

≤ C ∥xΦ0(x)∥L1 ∥ω(2)∥B0,γ
∞,1

∥∆ jθ∥L2 .

For j ≥ j0 with j0 = 2, we apply Berstein’s inequality to obtain

∥K2∥L2 ≤ C ∥∆ j u(2)∥L∞ ∥∇∆ jθ∥L2

≤ C ∥∆ j∇u(2)∥L∞ ∥∆ jθ∥L2

≤ C ∥ω(2)∥B0,γ
∞,1

∥∆ jθ∥L2 .

Again, for j ≥ j0 with j0 = 2, we have

∥K4∥L2 ≤ C ∥∆ j u(2)∥L∞ ∥S j−1∇θ∥L2

≤ C 2 j
∥∆ j∇u(2)∥L∞


m≤ j−2

22(m− j)2−m
∥∆mθ∥L2

≤ C 2 j
∥ω(2)∥B0,γ

∞,1
∥θ∥B−1

2,∞
.

∥K5∥L2 ≤ C 2 j


k≥ j−1

∥∆ku(2)∥L∞ ∥∆kθ∥L2

≤ C 2 j


k≥ j−1

2−k
∥∆k∇u(2)∥L∞∥∆kθ∥L2

≤ C 2 j
∥ω(2)∥B0,γ

∞,1
∥θ∥B−1

2,∞
.

Inserting the estimates in (5.3), we find

d
dt

∥∆ jθ∥L2 ≤ C 2 j
∥v∥L2 ∥θ (1)∥B0,γ

∞,1
+ C 2 j

∥ω(2)∥B0,γ
∞,1

∥θ∥B−1
2,∞
.

Integrating in time leads to

2− j
∥∆ jθ(t)∥L2 ≤ 2− j

∥∆ jθ(0)∥L2 + C
 t

0
∥v(s)∥L2 ∥θ (1)(s)∥B0,γ

∞,1
ds

+ C
 t

0
∥ω(2)(s)∥B0,γ

∞,1
∥θ(s)∥B−1

2,∞
ds.

Taking the supremum with respect to j yields (5.2). �

Lemma 5.3. Assume that v satisfies

∂tv + u(2) · ∇v + u · ∇v(1) −

2
j=1


u(2)j ∇v j + u j∇v

(1)
j


+ Λv = −∇ p + θe2. (5.6)

Then

∥v(t)∥B0
2,∞

≤ ∥v(0)∥B0
2,∞

+ ∥θ(s)∥B−1
2,∞

+ C
 t

0
∥v(s)∥L2


∥ω(1)(s)∥B0,γ

∞,1
+ ∥ω(2)(s)∥B0,γ

∞,1


ds.

Proof. Let k ≥ −1. After applying ∆k to (5.6), taking the inner product with ∆kv and integrating
by parts, we find
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1
2

d
dt

∥∆kv∥
2
L2 + 2k

∥∆kv∥
2
L2 = L1 + L2 + L3 + L4 + L5, (5.7)

where

L1 = −


∆kv · ∆k(u(2) · ∇v), L2 = −


∆kv · ∆k(u · ∇v(1)),

L3 = −

2
j=1


∆kv · ∆k(u

(2)
j ∇v j ), L4 = −

2
j=1


∆kv · ∆k(u j∇v

(1)
j ),

L5 = −


∆kv2 · ∆kθ.

To estimate L1, we decompose ∆k(u(2) · ∇v) as in (5.5) and bound the components in a similar
fashion as in the proof of Lemma 5.2. We obtain after applying Hölder’s inequality

|L1| ≤ C ∥∆kv∥L2 ∥v∥L2∥ω
(2)

∥B0,γ
∞,1
.

To handle L2, we decompose ∆k(u · ∇v(1)) as in (5.4) and obtain

|L2| ≤ C ∥∆kv∥L2 ∥v∥L2 ∥ω(1)∥B0,γ
∞,1
.

For L3, we integrate by parts and use the divergence-free condition to obtain

L3 =

2
j=1


∆kv · ∆k(v j∇u(2)j ).

Decomposing ∆k(v j∇u(2)j ) as in (5.4) and estimate the resulting components as in the proof of
Lemma 5.2, we obtain

|L3| ≤ C ∥∆kv∥L2 ∥v∥L2 ∥ω(2)∥B0,γ
∞,1
.

Clearly L4 admits the same bound as L2. L5 can be bounded by applying Hölder’s inequality

|L5| ≤ ∥∆kv∥L2 ∥∆kθ∥L2 ≤ 2k
∥∆kv∥L2 ∥θ∥B−1

2,∞
.

Inserting the estimates above in (5.7), we find

d
dt

∥∆kv∥L2 + 2k
∥∆kv∥L2 ≤ C ∥v∥L2


∥ω(1)∥B0,γ

∞,1
+ ∥ω(2)∥B0,γ

∞,1


+ 2k

∥θ∥B−1
2,∞
.

Integrating in time yields

∥∆kv(t)∥L2 ≤ e−2k t
∥∆kv(0)∥L2 +

 t

0
e−2k (t−s)2k

∥θ(s)∥B−1
2,∞

ds

+ C
 t

0
e−2k (t−s)

∥v(s)∥L2


∥ω(1)(s)∥B0,γ

∞,1
+ ∥ω(2)(s)∥B0,γ

∞,1


ds.

Therefore,

∥v(t)∥B0
2,∞

≤ ∥v(0)∥B0
2,∞

+ ∥θ(s)∥B−1
2,∞

+ C
 t

0
∥v(s)∥L2


∥ω(1)(s)∥B0,γ

∞,1
+ ∥ω(2)(s)∥B0,γ

∞,1


ds.

This completes the proof of Lemma 5.3. �
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Appendix. Besov spaces and the Osgood inequality

This appendix provides the definitions of some of the function spaces and related facts used
in the previous sections. In addition, the Osgood inequality used in Section 5 is also provided
here for the convenience of readers. Materials presented in this appendix can be found in several
books and many papers (see, e.g., [4,5,31,32]).

We start with several notations. S denotes the usual Schwarz class and S ′ its dual, the space
of tempered distributions. S0 denotes a subspace of S defined by

S0 =


φ ∈ S :


Rd
φ(x) xγ dx = 0, |γ | = 0, 1, 2, . . .


and S ′

0 denotes its dual. S ′

0 can be identified as

S ′

0 = S ′/S⊥

0 = S ′/P
where P denotes the space of multinomials.

To introduce the Littlewood–Paley decomposition, we write for each j ∈ Z

A j =


ξ ∈ Rd

: 2 j−1
≤ |ξ | < 2 j+1


. (A.1)

The Littlewood–Paley decomposition asserts the existence of a sequence of functions {Φ j } j∈Z ∈

S such that

suppΦ j ⊂ A j , Φ j (ξ) = Φ0(2− jξ) or Φ j (x) = 2 jdΦ0(2 j x),

and
∞

j=−∞

Φ j (ξ) =


1, if ξ ∈ Rd

\ {0},

0, if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∞

j=−∞

Φ j (ξ)ψ(ξ) = ψ(ξ) for ξ ∈ Rd
\ {0}.

In addition, if ψ ∈ S0, then
∞

j=−∞

Φ j (ξ)ψ(ξ) = ψ(ξ) for any ξ ∈ Rd .

That is, for ψ ∈ S0,
∞

j=−∞

Φ j ∗ ψ = ψ
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and hence
∞

j=−∞

Φ j ∗ f = f, f ∈ S ′

0

in the sense of weak-∗ topology of S ′

0. For notational convenience, we define

∆ j f = Φ j ∗ f, j ∈ Z. (A.2)

Definition A.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space B̊s
p,q consists of

f ∈ S ′

0 satisfying

∥ f ∥B̊s
p,q

≡ ∥2 js
∥∆ j f ∥L p ∥lq < ∞.

We now choose Ψ ∈ S such that

Ψ(ξ) = 1 −

∞
j=0

Φ j (ξ), ξ ∈ Rd .

Then, for any ψ ∈ S,

Ψ ∗ ψ +

∞
j=0

Φ j ∗ ψ = ψ

and hence

Ψ ∗ f +

∞
j=0

Φ j ∗ f = f (A.3)

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

∆′

j f =

0, if j ≤ −2,
Ψ ∗ f, if j = −1,
Φ j ∗ f, if j = 0, 1, 2, . . . .

(A.4)

Definition A.2. The inhomogeneous Besov space Bs
p,q with 1 ≤ p, q ≤ ∞ and s ∈ R consists

of functions f ∈ S ′ satisfying

∥ f ∥Bs
p,q ≡ ∥2 js

∥∆′

j f ∥L p ∥lq < ∞.

The Besov spaces B̊s
p,q and Bs

p,q with s ∈ (0, 1) and 1 ≤ p, q ≤ ∞ can be equivalently
defined by the norms

∥ f ∥B̊s
p,q

=


Rd

(∥ f (x + t)− f (x)∥L p )q

|t |d+sq dt
1/q

,

∥ f ∥Bs
p,q = ∥ f ∥L p +


Rd

(∥ f (x + t)− f (x)∥L p )q

|t |d+sq dt
1/q

.

When q = ∞, the expressions are interpreted in the normal way. Sometimes it is also necessary
to generalize the Besov spaces to include an algebraic part of the modes.
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Definition A.3. For s, γ ∈ R and 1 ≤ p, q ≤ ∞, the generalized Besov spaces B̊s,γ
p,q and Bs,γ

p,q
are defined by

∥ f ∥B̊s,γ
p,q

≡ ∥2 js(1 + | j |)γ ∥∆ j f ∥L p ∥lq < ∞,

∥ f ∥Bs,γ
p,q

≡ ∥2 js(1 + | j |)γ ∥∆′

j f ∥L p ∥lq < ∞.

We have also used the space–time spaces defined below.

Definition A.4. For t > 0, s, γ ∈ R and 1 ≤ p, q, r ≤ ∞, the space–time spaces Lr
t B̊s,γ

p,q andLr
t Bs,γ

p,q are defined though the norms

∥ f ∥Lr
t B̊s,γ

p,q
≡ ∥2 js(1 + | j |)γ ∥∆ j f ∥Lr

t L p ∥lq ,

∥ f ∥Lr
t Bs,γ

p,q
≡ ∥2 js(1 + | j |)γ ∥∆′

j f ∥Lr
t L p ∥lq .

These spaces are related to the classical space–time spaces Lr
t B̊s,γ

p,q and Lr
t Bs,γ

p,q via the
Minkowski inequality.

Many frequently used function spaces are special cases of Besov spaces. The following
proposition lists some useful equivalence and embedding relations.

Proposition A.5. For any s ∈ R,

H̊ s
∼ B̊s

2,2, H s
∼ Bs

2,2.

For any s ∈ R and 1 < q < ∞,

B̊s
q,min{q,2}

↩→ W̊ s
q ↩→ B̊s

q,max{q,2}
.

In particular, B̊0
q,min{q,2}

↩→ Lq ↩→ B̊0
q,max{q,2}

.

For notational convenience, we write ∆ j for ∆′

j . There will be no confusion if we keep
in mind that ∆ j ’s associated the homogeneous Besov spaces is defined in (A.2) while those
associated with the inhomogeneous Besov spaces are defined in (A.4). Besides the Fourier
localization operators ∆ j , the partial sum S j is also a useful notation. For an integer j ,

S j ≡

j−1
k=−1

∆k,

where ∆k is given by (A.4). For any f ∈ S ′, the Fourier transform of S j f is supported on the
ball of radius 2 j .

Bernstein’s inequalities is a useful tool on Fourier localized functions and these inequalities
trade integrability for derivatives. The following proposition provides Bernstein type inequalities
for fractional derivatives.

Proposition A.6. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

(1) If f satisfies

supp f ⊂ {ξ ∈ Rd
: |ξ | ≤ K 2 j

},

for some integer j and a constant K > 0, then

∥(−∆)α f ∥Lq (Rd ) ≤ C1 2
2α j+ jd


1
p −

1
q


∥ f ∥L p(Rd ).
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(2) If f satisfies

supp f ⊂ {ξ ∈ Rd
: K12 j

≤ |ξ | ≤ K22 j
}

for some integer j and constants 0 < K1 ≤ K2, then

C1 22α j
∥ f ∥Lq (Rd ) ≤ ∥(−∆)α f ∥Lq (Rd ) ≤ C2 2

2α j+ jd


1
p −

1
q


∥ f ∥L p(Rd ),

where C1 and C2 are constants depending on α, p and q only.

Finally we recall the Osgood inequality.

Proposition A.7. Let α(t) > 0 be a locally integrable function. Assume ω(t) ≥ 0 satisfies
∞

0

1
ω(r)

dr = ∞.

Suppose that ρ(t) > 0 satisfies

ρ(t) ≤ a +

 t

t0
α(s)ω(ρ(s))ds

for some constant a ≥ 0. Then if a = 0, then ρ ≡ 0; if a > 0, then

−Ω(ρ(t))+ Ω(a) ≤

 t

t0
α(τ)dτ,

where

Ω(x) =

 1

x

dr
ω(r)

.
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