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Abstract
The initial- and boundary-value problem for the Kawahara equation, a fifth-
order KdV type equation, is studied in weighted Sobolev spaces. This functional
framework is based on the dual-Petrov–Galerkin algorithm, a numerical method
proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third
and higher odd-order partial differential equations. The theory presented here
includes the existence and uniqueness of a local mild solution and of a global
strong solution in these weighted spaces. If the L2-norm of the initial data
is sufficiently small, these solutions decay exponentially in time. Numerical
computations are performed to complement the theory.

Mathematics Subject Classification: 35Q53, 35A05, 65M70

1. Introduction

Fifth-order Korteweg–de Vries type equations

ut − uxxxxx = F(x, t, u, ux, uxx, uxxx)

arise naturally in modelling many wave phenomena (see, e.g., [5, 6, 8]). In particular, the
Kawahara equation

ut + uux + βuxxx − uxxxxx = f (1.1)

has been derived to model magneto-acoustic waves in plasmas [6] and shallow water waves
with surface tension [4]. In this equation, β is related to the Bond number in the presence of
surface tension and β = 0 corresponds to the critical Bond number 1

3 (see, e.g., [13]).
Our attention is focused on the initial- and boundary-value problem (IBVP) of (1.1) in the

spatial domain I = (−1, 1) with the boundary and initial conditions{
u(−1, t) = g(t), ux(−1, t) = h(t), u(1, t) = ux(1, t) = uxx(1, t) = 0, t � 0,

u(x, 0) = u0(x), x ∈ I.
(1.2)
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Since (1.1) and (1.2) can be reformulated as an equivalent problem with homogeneous boundary
conditions, we assume in the rest of the paper g(t) = h(t) ≡ 0. In fact, through the transform

u(x, t) = v(x, t) + B(x, t)

with

B(x, t) = − (x − 1)3

4
(2g(t) + h(t)) − (x − 1)4

16
(3g(t) + 2h(t)),

(1.1) and (1.2) can be converted into an IBVP with homogeneous boundary condition{
vt + Bxv + (v + B)vx + βvxxx − vxxxxx = −Bt − BBx − βBxxx,

v(−1, t) = vx(−1, t) = v(1, t) = vx(1, t) = vxx(1, t) = 0.

In principle, this homogeneous problem can be studied in a similar fashion as (1.1)
and (1.2). There are many good reasons for studying the IBVPs rather than pure initial-
value problems. For example, waves generated by a wavemaker are naturally set in a
semi-infinite interval and (1.1) and (1.2) serve as a good approximate model before the
waves reach the right boundary. In fact, the Kawahara equation has been studied in many
works ( [1, 2, 4, 5, 7, 11, 14]).

It is difficult to compute solutions of the fifth-order KdV equations numerically due to the
fifth-order term. In [12] Shen proposed the dual-Petrov–Galerkin algorithm for third and higher
odd-order differential equations that involves an innovative choice of test and trial functions,
which allow free integration by parts without generating boundary terms. This algorithm is
equivalent to the spectral-Galerkin approximation in weighted spaces. Numerical experiments
involving the usual third-order KdV equation in [12] indicate that the dual-Petrov–Galerkin
algorithm is very accurate and efficient. In a recent work [3], Goubet and Shen studied the
IBVP for the third-order KdV equation in a functional framework based on the dual-Petrov–
Galerkin method. More precisely, they established the existence and uniqueness of solutions
to this IBVP in weighted Sobolev spaces.

The dual-Petrov–Galerkin algorithm was recently further developed and implemented for
a fifth-order KdV equation in [15]. The goal of this paper is to build a corresponding theory
on the existence and uniqueness of solutions to the IBVP (1.1) and (1.2) in Sobolev spaces.
We follow the approach of Goubet and Shen [3], but the situation here is more complex. The
dispersive part consists of two terms βuxxx − uxxxxx and its corresponding weak formulation
fails to be coercive for β � − 3

80 (see section 2 for more details). For β > − 3
80 , the IBVP (1.1)

and (1.2) is shown to possess a unique global solution for u0 in any one of a sequence
of weighted Sobolev spaces with increasing regularity (theorem 3.2). If, in addition, the
L2-norm of u0 is small, then the solution in these weighted Sobolev spaces decays exponentially
in time.

The IBVP (1.1) and (1.2) is also studied numerically to complement our theoretical results.
In fact, we computed solutions of a slightly more general problem than (1.1) and (1.2). This
problem involves two parameters β1 and β2 and the existence and uniqueness theory applies
to the case when

β1 > − 3
80β2. (1.3)

We computed the solutions of this problem corresponding to β1 and β2 in different ranges and
plotted their standard L2-norms and weighted L2-norms. The graphs show that the solution
corresponding to β1 and β2 violating (1.3) may not exist for all time and thus the IBVP (1.1)
and (1.2) with β violating the condition may not be globally well posed. Comparisons are also
made between the weighted Sobolev norms and the standard Sobolev norms.
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The rest of the paper is divided into three sections. Section 2 focuses on a weak formulation
of the stationary and the linearized equation

βuxxx − uxxxxx = f

and establishes the existence and uniqueness of solutions to this formulation with any f in
a weighted L2-space (theorem 2.2). In particular, the solution operator is shown to be the
generator of a contraction semi-group. Section 3 presents the existence and uniqueness results
for the full IBVP (1.1) and (1.2) (theorems 3.2 and 3.4). Section 4 contains the numerical
results.

2. Weak formulation of the stationary linear equation

This section presents a weak formulation of the boundary-value problem for the stationary
equation {

βuxxx − uxxxxx = f, x ∈ (−1, 1),

u(−1) = u(1) = ux(−1) = ux(1) = uxx(1) = 0
(2.1)

and establishes a theory on the existence and uniqueness of solutions to this formulation.
We first introduce some notation. Let I = (−1, 1). Let Lp(I) with p ∈ [1, ∞] denote

the usual Lebesgue space and Hk(I) the usual L2-based Sobolev space. Let Hk
0 (I ) denote the

completion of C∞
0 (I ) under Hk-norm. For a nonnegative weight ω, define

L2
ω =

{
u ∈ L1

loc(I ),

∫
I

u2(x) ω(x) dx < ∞
}

,

V (I ) = {
u ∈ H 2

0 (I ) : uxx ∈ L2
ω′

}
,

W(I) =
{
u ∈ V (I), uxxx ∈ L2

ω2

ω′

}
. (2.2)

For the purpose of eliminating boundary terms, we choose ω(x) = 1 + x
1−x

. Correspondingly,

ω′(x) = 2
(1−x)2 and ω2(x)

ω′(x)
= (1+x)2

2 . In addition, we write H(I) for L2
ω and denote the inner

product in H by (·, ·)H .

Lemma 2.1. V endowed with the norm ‖uxx‖L2
ω′ and W with ‖uxxx‖L2

ω2
ω′

are Hilbert spaces.

The embedding relations

C∞
0 ↪→ W ↪→ V ↪→ H

are dense and continuous and the following Hardy type inequalities hold:∫
I

u2

(1 − x)6
dx � 4

25

∫
I

u2
x

(1 − x)4
dx,

∫
I

u2
x

(1 − x)4
dx � 4

9

∫
I

u2
xx

(1 − x)2
dx ∀u ∈ V,

(2.3)

r2
∫

I

u2
xx

(1 − x)2
dx − (2r + 3qr − q2)

∫
I

u2
x

(1 − x)4
dx + (1 − 5q + 20r)

∫
I

u2

(1 − x)6
dx � 0

(2.4)

for any real number r and q and∫
I

u2
xx

(1 − x)2
dx �

∫
I

u2
xxx(1 + x)2 dx ∀u ∈ W. (2.5)
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The general form in (2.4) is very useful and can be tailored for special needs. For example,
by letting (r, q) = ( 1

2 , 3
2 ) and (r, q) = ( 1

2 , 1), we have∫
I

u2
x

(1 − x)4
dx � 1

4

∫
I

u2
xx

(1 − x)2
dx +

7

2

∫
I

u2

(1 − x)6
dx,

∫
I

u2
x

(1 − x)4
dx � 1

6

∫
I

u2
xx

(1 − x)2
dx + 4

∫
I

u2

(1 − x)6
dx,

respectively. The proof of this lemma follows the ideas in [3] and [12]. It will be provided in
the appendix for the reader’s convenience.

For u ∈ V , v ∈ W and f ∈ H , we define

a(u, v) =
∫

I

uxx(−β(vω)x + (vω)xxx) dx (2.6)

and consider the following weak formulation of (2.1):

a(u, v) = (f, v)H .

We now establish the existence and uniqueness of solutions to this formulation.

Theorem 2.2. For any β > − 3
80 and for any f ∈ H , there exists a unique solution u ∈ W

such that

a(u, v) = (f, v)H ∀v ∈ W. (2.7)

As a consequence, we can define an operator A: D(A) → H by

Au = f,

where D(A) = {u ∈ W, Au ∈ H }.
The proof of this theorem relies on the following general version of the Lax–Milgram

theorem (see, e.g., [9]).

Lemma 2.3. Let W ⊂ V be two Hilbert spaces with W being dense and continuously
embedded in V . Let a(u, v) be a bilinear form on V × W satisfying

a(u, v) � M‖u‖V ‖v‖W ∀u ∈ V, v ∈ W, (2.8)

a(v, v) � m‖v‖2
V ∀v ∈ W, (2.9)

where M > m > 0 are two constants. Then, for any f ∈ V ′, there exists u ∈ V such that

a(u, v) = (f, v) ∀v ∈ W.

If u is also known to be in W , then u is unique.

Proof of theorem 2.2.. It suffices to show that a(u, v) defined in (2.6) verifies the condition
of lemma 2.3. This can be checked directly. For u ∈ V and v ∈ W , we can write

a(u, v) =
∫

I

uxx(−βvxω − βvω′ + vxxxω + 3vxxω
′ + 3vxω

′′ + vω′′′) dx

with ω′′ = 4
(1−x)3 and ω′′′ = 12

(1−x)4 . The terms on the right can be bounded as follows:

−β

∫
I

uxxvxω dx � 16

27

√
2 |β|

(∫
I

2u2
xx

(1 − x)2
dx

)1/2 (∫
I

v2
x

(1 − x)4
dx

)1/2

� 32

81
|β|‖u‖V ‖v‖V ,
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−β

∫
I

uxxvω′ dx � 4
√

2 |β|
(∫

I

2u2
xx

(1 − x)2
dx

)1/2 (∫
I

v2

(1 − x)6
dx

)1/2

� 16

15
|β|‖u‖V ‖v‖V ,

∫
I

uxxvxxxω dx �
(∫

I

u2
xxω

′ dx

)1/2 (∫
I

v2
xxx

ω2

ω′ dx

)1/2

= ‖u‖V ‖v‖W,

∫
I

uxxvxxω
′ dx � ‖u‖V ‖v‖V ,

∫
I

uxxvxω
′′ dx �

(∫
I

2u2
xx

(1 − x)2
dx

)1/2 (∫
I

8v2
x

(1 − x)4
dx

)1/2

� 4

3
‖u‖V ‖v‖V ,

∫
I

uxxvw′′′ dx �
(∫

I

2u2
xx

(1 − x)2
dx

)1/2 (∫
I

72v2

(1 − x)6
dx

)1/2

� 8

5
‖u‖V ‖v‖V .

Here we have applied Hardy inequalities of lemma 2.1. According to (2.5),

‖v‖V � 2‖v‖W ∀v ∈ W

and we have thus verified (2.8) with M = 1184
405 |β| + 91

5 .
To prove (2.9), we let v ∈ W and integrate by parts to obtain

a(v, v) =
∫

I

vxx(−βvxω − βvω′ + vxxxω + 3vxxω
′ + 3vxω

′′ + vω′′′) dx

= 3

2
β

∫
I

v2
xω

′ dx − 1

2
β

∫
I

v2w′′′ dx

+
5

2

∫
I

v2
xxω

′ dx − 5

2

∫
I

v2
xω

′′′ dx +
1

2

∫
I

v2ω(5) dx. (2.10)

For β � 0, we apply (2.3) to obtain

3

2
β

∫
I

v2
xω

′ dx − 1

2
β

∫
I

v2w′′′ dx � 3β

∫
I

v2
x

(1 − x)2
dx − 8

3
β

∫
I

v2
x

(1 − x)2
dx

= 1

3
β

∫
I

v2
x

(1 − x)2
dx.

Since ω′′′ = 12
(1−x)4 and ω(5) = 240

(1−x)6 , we have, for β � 0,

a(v, v) � 1

3
β

∫
I

v2
x

(1 − x)2
dx + 5

∫
I

v2
xx

(1 − x)2
dx − 30

∫
I

v2
x

(1 − x)4
dx + 120

∫
I

v2

(1 − x)6
dx.

After ignoring the first term and applying (2.4) with r = 0.4 and q = 1, we get

a(v, v) � 0.2
∫

I

v2
xx

(1 − x)2
dx = 0.1‖v‖2

V .
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In the case when β < 0, we apply (2.3) to obtain

3

2
β

∫
I

v2
xω

′ dx − 1

2
β

∫
I

v2w′′′ dx � 3β

∫
I

v2
x

(1 − x)2
dx

� 12β

∫
I

v2
x

(1 − x)4
dx � 16

3
β

∫
I

v2
xx

(1 − x)2
dx.

Thus, for β < 0,

a(v, v) �
(

5 +
16

3
β

) ∫
I

v2
xx

(1 − x)2
dx − 30

∫
I

v2
x

(1 − x)4
dx + 120

∫
I

v2

(1 − x)6
dx.

Applying (2.4) with r and q satisfying

1 − 5q + 20r = 4(2r + 3qr − q2) > 0,

we have

a(v, v) �
(

5 +
16

3
β − 30r2

2r + 3qr − q2

) ∫
I

v2
xx

(1 − x)2
dx.

In order for a to be coercive, β has to satisfy

β >
15

16

(
6r2

2r + 3qr − q2
− 1

)
= 15(16q2 − 18q + 5)

32(5q − 2)
.

The optimal range β > − 3
80 is reached when r = 1

10 and q = 11
20 , and

a(v, v) �
(

1

5
+

16

3
β

) ∫
I

v2
xx

(1 − x)2
dx = γ ‖v‖2

V ,

where

γ = 1
10 + 8

3β. (2.11)

Lemma 2.3 then implies the existence of u ∈ V satisfying (2.7).
We now establish the uniqueness of u. If there are u1 ∈ V and u2 ∈ V satisfying (2.7),

then

a(u1 − u2, v) = 0 for all v ∈ W. (2.12)

According to lemma 2.1, C∞
0 is densely embedded in V ; there is a sequence vn ∈ C∞

0
such that

vn → u1 − u2 in V .

Since vn ∈ C∞
0 ⊂ W , we have, thanks to (2.12),

γ ‖vn‖2
V � a(vn, vn) = a(u1 − u2, vn) + a(vn − (u1 − u2), vn)

� M‖vn − (u1 − u2)‖V ‖vn‖W . (2.13)

Furthermore, for any v ∈ W ,

a(vn, v) = a(vn − (u1 − u2), v) � M‖vn − (u1 − u2)‖V ‖v‖W → 0 as n → ∞.

In particular, for any v ∈ C∞
0 ,

a(vn, v) =
∫

I

(vn)xx

(
− β(vω)x + (vω)xxx

)
dx

=
∫

I

(
β(vn)xxx − (vn)xxxxx

)
vω dx → 0 as n → ∞. (2.14)
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Letting

β(vn)xxx − (vn)xxxxx = fn (2.15)

and choosing v = fn in (2.14), we have

‖fn‖2
H =

∫
I

f 2
n ω dx → 0 as n → ∞. (2.16)

Equations (2.15) and (2.16) allow us to show that

‖vn‖2
W � C‖vn‖V (‖vn‖V + ‖fn‖H ). (2.17)

Combining (2.13) and(2.17) yields

γ ‖vn‖2
V � C‖vn − (u1 − u2)‖V ‖vn‖

1
2
V (‖vn‖V + ‖fn‖H )

1
2 .

Letting n → ∞, we have vn → 0 in V and consequently

‖u1 − u2‖V � ‖vn‖V + ‖vn − (u1 − u2)‖V → 0 as n → ∞.

That is, u1 = u2 in V .
To obtain (2.17), we have used the fact that if u is smooth and satisfies

βuxxx − uxxxxx = f

with the homogeneous boundary condition, then

‖u‖2
W � C‖u‖V (‖u‖V + ‖f ‖H ). (2.18)

We now prove this fact. Noting that ω2

ω′ = (1+x)2

2 and integrating by parts, we have

‖u‖2
W =

∫
I

u2
xxx

ω2

ω′ dx = −1

2

∫
I

uxxuxxxx(1 + x)2 dx +
1

2

∫
I

u2
xx dx. (2.19)

Obviously,

1

2

∫
I

u2
xx dx �

∫
I

2u2
xx

(1 − x)2
dx = ‖u‖2

V . (2.20)

By Hölder’s inequality, the first term is bounded by

1

2

∫
I

uxxuxxxx(1 + x)2 dx � ‖u‖V

(
1

8

∫
I

u2
xxxx(1 + x)4(1 − x)2 dx

)1/2

.

Applying the inequality in lemma 2.4, we find

1

8

∫
I

u2
xxxx(1 + x)4(1 − x)2 dx � 1

2

∫
I

u2
xxxx(1 + x)4 dx � 1

8

∫
I

u2
xxxxx(1 + x)6 dx.

Since uxxxxx = βuxxx − f and

1

2

∫
I

(βuxxx − f )2(1 + x)6 dx � β2
∫

I

u2
xxx(1 + x)6 dx +

∫
I

f 2(1 + x)6 dx

� 16β2
∫

I

u2
xxx(1 + x)2 dx + 16

∫
I

f 2 1 + x

1 − x
dx,

we find
1

2

∫
I

uxxuxxxx(1 + x)2 dx � 4
√

2|β|‖u||V ‖u‖W + 2‖u‖V ‖f ‖H

� 1
2‖u‖2

W + C‖u‖2
V + 2‖u‖V ‖f ‖H . (2.21)

Putting together (2.19), (2.20) and (2.21), we conclude (2.18).
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This uniqueness of u allows us to show that u ∈ W . Since C∞
0 is dense in H , we assume

without loss of generality that f ∈ C∞
0 . Because of the uniqueness, the corresponding solution

u is smooth and satisfies

βuxxx − uxxxxx = f

with the homogeneous boundary condition. Therefore, u ∈ W by (2.18). This completes the
proof of theorem 2.2.

The following lemma is used in the proof of theorem 2.2.

Lemma 2.4. If ‖uxxxxx(1 + x)3‖L2(I ) < ∞, then∫
I

u2
xxxx(1 + x)4 dx � 1

4

∫
I

u2
xxxxx(1 + x)6 dx. (2.22)

Proof of lemma 2.4. For u satisfying ‖uxxxxx(1 + x)3‖L2(I ) < ∞, we consider

0 �
∫

I

(
uxxxx(1 + x)2 + uxxxxx(1 + x)3

)2
dx

=
∫

I

u2
xxxx(1 + x)4 dx +

∫
I

u2
xxxxx(1 + x)6 dx + 2uxxxxuxxxxx(1 + x)5 dx

= − 4
∫

I

u2
xxxx(1 + x)4 dx +

∫
I

u2
xxxxx(1 + x)6 dx, (2.23)

which implies (2.22).

3. The full initial- and boundary-value problem

This section focuses on the full IBVP

ut + uux + βuxxx − uxxxxx = 0, x ∈ (−1, 1), t > 0,

u(±1, t) = ux(±1, t) = uxx(1, t) = 0, t > 0, (3.1)

u(x, 0) = u0(x), x ∈ (−1, 1).

We study its solutions at two regularity levels: mild solutions and strong solutions. For this
purpose, we first examine the operator A defined in theorem 2.2. We show that −A is an
infinitesimal generator of a semi-group.

Theorem 3.1. Let H , A and D(A) be defined as in the previous section. Then −A is an
infinitesimal generator of a contraction semi-group e−At .

Proof. We apply the Hille–Yosida theorem (see, e.g., [10]). It suffices to show that A is closed,
D(A) is dense in H and ‖(λ − A)−1‖H � 1

λ
‖f ‖H for any λ > 0. That A is closed can be

established by showing that A−1 is one to one. D(A) is dense in H since C∞
0 ⊂ D(A). For

f ∈ H , let u = (λ + A)−1f . Then (λ + A)u = f and

(f, u)H = ((λ + A)u, u)H = λ‖u‖2
H + (Au, u)H .

Since (Au, u)H = a(u, u) � 0, we obtain that ‖u‖H � 1
λ
‖f ‖H . This concludes the

proof.

To study the mild solution, we first define the bilinear form

B(u, v) = (uv)x, (u, v) ∈ V × V.
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Let T > 0. A mild solution of the IBVP (3.1) is a function u ∈ C([0, T ]; H) ∩ L2(0, T ; V )

satisfying

du

dt
+ Au = −B(u, u) in V ′, (3.2)

u(0) = u0. (3.3)

Since −A is the generator of the semi-group e−At , (3.2) and (3.3) can be written in the
integral form:

u(t) = e−Atu0 −
∫ t

0
e−A(t−s)B(u, u)(s) ds.

We now show that the IBVP (3.1) has a unique local (in time) mild solution for any initial
data u0 ∈ H .

Theorem 3.2. Let β > − 3
80 and let u0 ∈ H . Then there exists T = T (‖u0‖H ) such that the

IBVP (3.1) has a unique mild solution u satisfying

u ∈ C([0, T ]; H) ∩ L2(0, T ; V ).

In addition, u obeys the bound

‖u(t)‖2
H + γ

∫ t

0
‖u(τ)‖2

V dτ � ‖u0‖2
H +

∫ t

0
‖u(τ)‖3

H‖u(τ)‖V dτ, (3.4)

where γ is as defined in (2.11).

Proof. We apply the contraction mapping principle to the integral equation

u(t) = e−Atu0 −
∫ t

0
e−A(t−s)B(u, u)(s) ds. (3.5)

To this end, let X = C([0, T ]; H) ∩ L2(0, T ; V ) and define, for u ∈ X,

‖u‖X = sup
t∈[0,T ]

‖u(t)‖H + ‖u‖L2(0,T ;V ).

Let R = ‖u0‖H and B2R = {u ∈ X, ‖u‖X � 2R}. We show that the right-hand side of (3.5),
denoted by G(u), defines a contraction mapping from B2R to B2R .

Let u ∈ B2R . G(u) satisfies

d

dt
G(u) + AG(u) = −B(u, u),

and we obtain after taking the inner product of this equation with G(u) in H

d

dt
‖G(u)‖2

H + 2a(G(u), G(u)) = −2(B(u, u), G(u))H .

According to the proof of theorem 2.2 and the bilinear estimate in lemma 3.3,

2a(G(u), G(u)) � 2γ ‖G(u)‖2
V ,

2|(B(u, u), G(u))H | � 2‖B(u, u)‖V ′ ‖G(u)‖V � γ ‖G(u)‖2
V + C‖u‖3

H‖u‖V .

Therefore,

‖G(u)‖2
H + γ

∫ t

0
‖u(τ)‖2

V dτ � ‖u0‖2
H + C

∫ t

0
‖u(τ)‖3

H‖u(τ)‖V dτ.

If we choose T > 0 such that R2 + 16C
√

T R4 < 2 min(1, γ )R2, then

‖G(u)‖X < 2R.
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To show G is a contraction, we first note that

G(u) − G(v) = −
∫ t

0
e−A(t−s)(B(u − v, u) + B(v, u − v)) ds.

A similar process as in the estimate of ‖G(u)‖H yields

‖G(u) − G(v)‖2
H + γ

∫ t

0
‖G(u) − G(v)‖2

V ds

�
∫ t

0
(‖u − v‖2

H‖u‖H‖u‖V + ‖v‖2
H‖u − v‖H‖u − v‖V ) ds

� C
√

T ‖u − v‖2
X(‖u‖2

X + ‖v‖2
X).

If we further restrict T to 4C
√

T R2 < min(1, γ ), then

‖G(u) − G(v)‖X � ν‖u − v‖X,

where ν2 = (4C
√

T R2)/ min(1, γ ) < 1. Applying the contraction mapping principle
completes the proof of this theorem.

In the proof of the previous theorem, we have used the following bilinear estimate.

Lemma 3.3. For any (u, v) ∈ V × V ,

‖B(u, v)‖V ′ � C‖u‖H‖v‖1/2
H ‖v‖1/2

V ,

where C is a constant independent of u and v.

Proof. Let ψ ∈ V . We obtain by integrating by parts

(B(u, v), ψ)H =
∫

I

(uv)xψω dx = −
∫

I

uvψxω dx −
∫

I

uvψω′ dx. (3.6)

By the first inequality in lemma 2.1,∫
I

u(x)v(x)ψx(x)ω(x) dx =
∫

I

u(x)ω1/2ψx(x)ω′(x)v(x)
ω1/2

ω′ dx

� ‖u‖H‖ψx(1 − x)−2‖L2 sup
x∈I

∣∣∣∣v(x)
ω1/2

ω′

∣∣∣∣
� C‖u‖H‖ψ‖V sup

x∈I

∣∣∣∣v(x)
ω1/2

ω′

∣∣∣∣ .
To complete the estimate, we write∣∣∣∣v(x)

ω1/2

ω′

∣∣∣∣
2

= 1

4
v2(x)(1 + x)(1 − x)3

= 1

2

∫ x

−1
v(y)vy(y)(1 + y)(1 − y)3 dy − 1

4

∫ x

−1
v2(y)(1 − y)2(2 + 4y) dy.

It is clear that these integrals are bounded by C(‖v‖H‖v‖V + ‖v‖2
H ). Therefore,∫

I

u(x)v(x)ψx(x)ω(x) dx � C‖u‖H‖ψ‖V ‖v‖1/2
H ‖v‖1/2

V .

The second term in (3.6) can be bounded similarly. In fact,∫
I

uvψω′ dx � C‖u‖H‖v‖H sup
x∈I

|ψ(x)ω′(x)ω−1(x)|.
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To show that supx∈I |ψ(x)ω′(x)ω−1(x)| � C, we note that ω′(x)ω−1(x) = 2(1−x)−1(1+x)−1

and show that

ψ2(x)

(1 − x)4
∈ W 1,1(I ) and

ψ2(x)

(1 + x)4
∈ W 1,1(I ).

Then the embedding W 1,1(I ) ⊂ L∞(Ī ) leads to the conclusion. By the first inequality in
lemma 2.1, ∫

I

ψ2(x)

(1 − x)4
dx � 4

∫
I

ψ2(x)

(1 − x)6
dx � 32

225
‖ψ‖2

V .

In addition,

∂x

(
ψ2(x)

(1 − x)4

)
= 2ψ(x)ψx(x)

(1 − x)4
+

4ψ2(x)

(1 − x)5

and ∫
I

2ψ(x)ψx(x)

(1 − x)4
dx � C‖ψ(1 − x)−3‖L2‖ψx(1 − x)−2‖L2 � C‖ψ‖2

V ,

∫
I

4ψ2(x)

(1 − x)5
dx � C‖ψ(1 − x)−3‖2

L2 � C‖ψ‖2
V .

Therefore, ψ2(x)

(1−x)4 ∈ W 1,1(I ) and similarly ψ2(x)

(1+x)4 ∈ W 1,1(I ). This concludes the proof of
lemma 3.3.

We now study solutions of the IBVP (3.1) in a stronger sense and establish the global
existence and uniqueness of such solutions. To this end, we define

H1(I ) = {u ∈ H(I), ux ∈ H(I)} and V1(I ) = {u ∈ V (I), ux ∈ V (I)} .

Theorem 3.4. Assume β > − 3
80 and u0 ∈ H1(I ) ∩ L2(I ). Let T > 0 be arbitrarily fixed.

Then the IBVP (3.1) has a unique solution u satisfying

u ∈ C([0, T ]; H1 ∩ L2) ∩ L2(0, T ; V1).

Furthermore, if the L2-norm of u0 is small in the sense that

‖u0‖L2(I ) � Cγ (3.7)

for some suitable constant C, then ‖u(t)‖H and ‖ux(t)‖H decay exponentially in time.

Proof. Since u0 ∈ H , theorem 3.2 asserts the existence of a local solution u satisfying

u ∈ C([0, T ]; H) ∩ L2(0, T ; V ). (3.8)

Thanks to u0 ∈ L2(I ), u obeys the global a priori bound

‖u(t)‖L2(I ) � ‖u0‖L2 for all t > 0. (3.9)

This can be established by first noticing that smooth solutions of (3.2) satisfy

‖u(t)‖2
L2 +

∫ t

0
u2

xx(0, τ ) dτ = ‖u0‖2
L2

and then going through a limiting process. We now apply (3.9) to show that, for t � T ,

‖u(t)‖H � C(T )‖u0‖H , (3.10)
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where C(T ) is a constant depending on T only. Taking the inner product of (3.2) with u in H

and applying lemma 3.5, we have

d

dt
‖u‖2

H + 2γ ‖u‖2
V � C‖u‖L2‖u‖H‖u‖V . (3.11)

Inserting the inequality

C‖u‖L2‖u‖H‖u‖V � γ ‖u‖2
V + 1

4C2γ −1‖u‖2
L2‖u‖2

H

in (3.11) and applying Gronwall’s inequality, we obtain (3.10). If ‖u0‖2
L satisfies (3.7), (3.9)

and (3.10) imply

d

dt
‖u‖2

H + (2γ − C‖u0‖L2) ‖u‖2
V � 0,

where we have used ‖u‖H � ‖u‖V . Consequently, ‖u(t)‖H decays exponentially in time.

We further show that, for some constant C depending on T only,

‖ux(t)‖H � C(T )‖u0x‖H . (3.12)

To prove (3.12), we start with the equation that v = ux satisfies

dv

dt
+ Av = −(uv)x.

Taking the inner product with v in H and applying lemma 3.5, we obtain

d

dt
‖v‖2

H + 2γ ‖v‖2
V � C‖u‖H‖v‖2

V .

The desired inequality then follows from Gronwall’s inequality. This concludes the proof of
theorem 3.4.

The following estimates have been used in the proof of theorem 3.4.

Lemma 3.5. The constants C in the bounds are absolute constants.

(1) For any u ∈ V ,∣∣∣∣
∫

I

u2uxω dx

∣∣∣∣ � C‖u‖L2‖u‖H‖u‖V . (3.13)

(2) For u ∈ H and v ∈ V ,∣∣∣∣
∫

I

(uvx)xvω dx

∣∣∣∣ � C‖u‖H‖v||2V . (3.14)

The proof of this lemma will be given in the appendix.
Finally we remark that theorems 3.2 and 3.4 can be easily extended to a slightly more

general problem than (3.1). In fact, the following corollaries can be established by modifying
the proofs of theorems 3.2 and 3.4.

Corollary 3.6. Let L > 0 and J = (−L, L). Let β2 > 0 and consider

ut + uux + β1uxxx − β2uxxxxx = 0, x ∈ J, t > 0,

u(±L, t) = ux(±L, t) = uxx(L, t) = 0, t > 0, (3.15)

u(x, 0) = u0(x), x ∈ J.
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Assume u0 ∈ H(J ) and

L2β1 > − 3
80β2. (3.16)

Then there exists T = T (‖u0‖H(J )) such that the IBVP (3.15) has a unique mild solution u

satisfying

u ∈ C([0, T ]; H(J )) ∩ L2(0, T ; V (J )).

In addition, u obeys the bound

‖u(t)‖2
H + µ

∫ t

0
‖u(τ)‖2

V dτ � ‖u0‖2
H +

∫ t

0
‖u(τ)‖3

H‖u(τ)‖V dτ,

where µ = 5
14β2 + 8

3L2 min(0, β1).

Corollary 3.7. Consider the IBVP (3.15). Assume β1 and β2 satisfying (3.16) and u0 ∈
H1(J ) ∩ L2(J ). Let T > 0 be arbitrarily fixed. Then the IBVP (3.15) has a unique solution u

satisfying

u ∈ C([0, T ]; H1(J ) ∩ L2(J )) ∩ L2(0, T ; V1(J )).

Furthermore, if the L2-norm of u0 is small in the sense that

‖u0‖L2(J ) � Cγ

for some suitable constant C, then ‖u(t)‖H and ‖ux(t)‖H decay exponentially in time.

4. Numerical results

This section numerically studies the behaviour of solutions of (3.15) with L = 1 and for β1

and β2 in different ranges. The numerical scheme is the dual Petrov–Galerkin algorithm that
has previously been developed in [12] and [15]. The results presented here indicate clearly
that solutions of (3.15) with β1 and β2 violating (3.16) may not exist for all time.

First, we compute the solution of the Kawahara equation

ut + u ux +
1

M2
uxxx − 1

M4
uxxxxx = 0, x ∈ (−1, 1), t ∈ [0, 100] (4.1)

with zero boundary data and with the initial data

u(x, 0) = uex(x, 0), (4.2)

where

uex(x, t) = 105

169
sech4

[
M

2
√

13

(
x − 36t

169

)]
(4.3)

is an exact soliton solution of (4.1) before it hits the right boundary.
In (4.1), β1 = 1/M2 and β2 = 1/M4 and they trivially satisfy condition (3.16). Corollary

3.7 assesses that the IBVP (4.1) and (4.2) has a global solution. We take M = 200 and plot
the standard norm ‖u(·, t)‖L2 versus the weighted norm ‖u(·, t)‖L2

ω
and ‖ux(·, t)‖L2 versus

‖ux(·, t)‖L2
ω

as functions of t (figures 1 and 2). We take the number of modes N in the
dual-Petrov–Galerkin scheme to be 1000 and the time step 
t = 0.001.

The solution of (4.1) and (4.2) is the solitary wave given by (4.3) and its standard L2-norm
remains a constant before it hits the right boundary. Its L2-norm starts decaying after it reaches
the boundary. The weighted L2-norm decays exponentially after the time when the wave hits
the right boundary. The derivative of the solution (in both norms) also decays in time after an
initial surge.
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Figure 1. Left: ‖u(·, t)‖L2 versus t . Right: ‖u(·, t)‖L2
ω

versus t .
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Figure 2. Left: ‖ux(·, t)‖L2 versus t . Right: ‖ux(·, t)‖L2
ω

versus t .

Second, we examine the solution of the Kawahara equation:

ut + u ux + β1 uxxx − β2 uxxxxx = 0, x ∈ (−1, 1), t ∈ [0, 10],
u(x, 0) = uex(x, 0),

(4.4)

where β1 = −0.01 and β2 = 1/M4, and the boundary conditions are set to be homogeneous.
It is clear that β1 and β2 violate (3.16) when

M �
(

15
4

)1/4 ≈ 1.3916

and the existence and uniqueness theory presented in the previous section does not cover this
case. To see how the solution behaves, we choose M = 200 and plotted both the L2-norm
‖u(·, t)‖L2 and the weighted L2-norm ‖u(·, t)‖L2

ω
(figure 3). The graphs clearly show that both

norms quickly grow in time after an initial decay. This is an indication that the IBVP (3.15)
may not be globally well posed when condition (3.16) is not met.
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Appendix

We provide in this appendix the proofs of lemmas 2.1 and 3.5.

Proof of lemma 2.1. The proof follows the ideas of Goubet and Shen [3] and Shen [12]. First
of all, ‖uxx‖L2

w′ and ‖uxxx‖L2
w2
w′

are clearly norms in V and W , respectively. To show that C∞
0

is dense in V , it suffices to show C∞
0 (I )⊥ = {0}. To this end, let u ∈ C∞

0 (I )⊥, namely,∫
I

uxxφxxω
′(x) dx = 0 for all φ ∈ C∞

0 .

Since ω′(x) = 2/(1 − x)2, we obtain by integrating by parts

∂xx

(
uxx(1 − x)−2

) = 0,

which implies

uxx = a(1 − x)3 + b(1 − x)2.

Therefore, for some constants c and d ,

u(x) = 1

20
a(1 − x)5 +

b

12
(1 − x)4 + c(1 − x) + d.

The boundary conditions u(±1) = ux(±1) = uxx(1) = 0 imply that a = b = c = d = 0.
That is, u = 0. Similar arguments show that C∞

0 is dense in H and in W .
We now prove inequalities (2.3), (2.4) and (2.5). Since C∞

0 are dense in W , V and H , it
suffices to prove them for u ∈ C∞

0 . To prove (2.3), we have, for any number a,

0 �
∫

I

(
u

1 − x
+ aux

)2 1

(1 − x)4
dx

=
∫

I

u2

(1 − x)6
dx + 2a

∫
I

u ux

(1 − x)5
dx + a2

∫
I

(ux)
2

(1 − x)4
dx.



1504 N Khanal et al

Integrating by parts in the second term leads to

2a

∫
I

u ux

(1 − x)5
dx = −5a

∫
I

u2

(1 − x)6
dx.

Taking a = 2
5 yields the first inequality in (2.3). Similarly, we can show

∫
I

u2
x

(1 − x)4
dx � 4

9

∫
I

u2
xx

(1 − x)2
dx for all u ∈ V .

To prove (2.4), it suffices to consider

0 �
∫

I

(
u

(1 − x)2
+

qux

(1 − x)
+ ruxx

)2 1

(1 − x)2
dx

= (1 − 5q + 20r)

∫
I

u2

(1 − x)6
dx − (2r + 3qr − q2)

∫
I

u2
x

(1 − x)4
dx + r2

∫
I

u2
xx

(1 − x)2
dx.

In particular, when q = 3
2 and r = 1

2 , we have

0 � 7

2

∫
I

u2

(1 − x)6
dx −

∫
I

u2
x

(1 − x)4
dx +

1

4

∫
I

u2
xx

(1 − x)2
dx.

Equation (2.5) is obtained by considering

0 �
∫

I

(
uxxx(1 + x) +

uxx

1 − x

)2

dx

=
∫

I

u2
xxx(1 + x)2 dx + 2

∫
I

1 + x

1 − x
uxxuxxx dx +

∫
I

u2
xx

(1 − x)2
dx

and integrating by parts in the second term.
To see that V ↪→ H , we apply (2.3) to obtain

‖u‖2
H =

∫
I

u2(x)ω(x) dx � C

∫
I

u2

(1 − x)6
dx � C

∫
I

u2
xx

(1 − x)2
dx = C‖u‖2

V .

This concludes the proof of lemma 2.1.

Proof of lemma 3.5. Integrating by parts and applying Hölder’s inequality, we have∫
I

u2uxω dx � ||u‖L2‖u‖H sup
x∈I

|uxω
1/2|. (A.1)

To bound supx∈I |uxω
1/2|, we apply (2.3) in lemma 2.1 to obtain

u2
x(x)ω(x) = 2

∫ x

−1
uxuxx

1 + x

1 − x
dx +

∫ x

−1

2u2
x

(1 − x)2
dx

� 16‖ux(1 − x)−2‖L2‖uxx(1 − x)−1‖L2 + 8‖ux(1 − x)−2‖L2

� C‖u‖2
V .

Inserting this bound in (A.1) yields (3.13). Equation (3.14) can be established similarly. In
fact,∫

I

(uvx)xvω dx = −
∫

I

uv2
xω dx −

∫
I

uv vxw
′ dx

� C‖u‖H‖v‖V sup
x∈I

|vx | + C‖u‖H‖v‖V sup
x∈I

|vω−1/2|. (A.2)
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supx∈I |vω−1/2| can be bounded as in lemma 3.3,

sup
x∈I

|vω−1/2| � C‖v‖V .

supx∈I |vx | can be estimated as follows:

v2
x(x) = 2

∫ x

−1
vxvxx dx � 16

∫ x

−1

|vx |
(1 − x)2

|vxx |
(1 − x)

dx

� 16‖vx(1 − x)−2‖L2 ‖vxx(1 − x)−1‖L2

� 16

3
‖v‖2

V .

Inserting these bounds in (A.2) leads to (3.14).
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