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This paper furthers the study of Adhikari et al. (2010) [2] on the
global regularity issue concerning the 2D Boussinesq equations
with vertical dissipation and vertical thermal diffusion. It is shown
here that the vertical velocity v of any classical solution in the
Lebesgue space Lq with 2 � q < ∞ is bounded by C1q for C1
independent of q. This bound significantly improves the previous
exponential bound. In addition, we prove that, if v satisfies∫ T

0 supq�2
‖v(·,t)‖2

Lq

q dt < ∞, then the associated solution of the
2D Boussinesq equations preserve its smoothness on [0, T ]. In
particular, ‖v‖Lq � C2

√
q implies global regularity.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper continues our study on the global regularity issue concerning the 2D Boussinesq equa-
tions with vertical dissipation and vertical thermal diffusion,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + uux + vu y = −px + νu yy,

vt + uvx + v v y = −p y + νv yy + θ,

ux + v y = 0,

θt + uθx + vθy = κθyy,

u(x, y,0) = u0(x, y), v(x, y,0) = v0(x, y), θ(x, y,0) = θ0(x, y),

(1.1)
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where u, v, p and θ are scalar functions of (x, y) ∈ R2 and t � 0, ν > 0 and κ > 0 are parameters.
(1.1) is a very important special case of the full 2D Boussinesq equations

⎧⎪⎪⎨
⎪⎪⎩

ut + uux + vu y = −px + ν1uxx + ν2u yy,

vt + uvx + v v y = −p y + ν1 vxx + ν2 v yy + θ,

ux + v y = 0,

θt + uθx + vθy = κ1θxx + κ2θyy .

(1.2)

The Boussinesq equations model buoyancy-driven flows such as atmospheric fronts and oceanic cir-
culation (see e.g. [19,21]). In these equations u and v denote the horizontal and the vertical velocity,
respectively, p the pressure, θ the temperature in the content of thermal convection and the density
in the modeling of geophysical fluids. The Boussinesq equations with only vertical dissipation are use-
ful in modeling dynamics of geophysical flows for which the vertical dissipation dominates such as in
the large-time dynamics of certain strongly stratified flows (see [18] and the references therein).

One fundamental issue concerning the 2D Boussinesq equations (1.2) is whether all of their classi-
cal solutions are global in time. When the parameters ν1, ν2, κ1 and κ2 are all positive, this issue is
not very difficult to resolve and any sufficiently smooth data leads to a global solution (see e.g. [5]). In
the case of inviscid Boussinesq equations, namely (1.2) with ν1 = ν2 = κ1 = κ2 = 0, the global regu-
larity problem turns out to be extremely difficult and remains outstandingly open. Important progress
has recently been made on the intermediate cases. The global regularity for the case ν1 = ν2 > 0
and κ1 = κ2 = 0 was proven by Chae [7] and by Hou and Li [16]. The case when ν1 = ν2 = 0 and
κ1 = κ2 > 0 was dealt with in [7]. Further progress on these two cases was made recently by Hmidi
and Keraani, who were able to establish the global regularity with the full Laplacian operator −� re-
placed by

√−� [14,15]. Danchin and Paicu very recently explored the global regularity issue for the
cases when there is either horizontal dissipation (ν1 > 0 and ν2 = κ1 = κ2 = 0) or horizontal thermal
diffusion (κ1 > 0 and ν1 = ν2 = κ2 = 0) and obtained global solutions at several regularity levels (see
[11]). Other interesting recent results on the 2D Boussinesq equations can be found in [1,9,10,12,13,
17,20,22].

The global regularity problem for the Boussinesq equations with vertical dissipation and thermal
diffusion, namely (1.1), was first studied by Adhikari et al. in [2]. As pointed out in [2], this is an
extremely difficult problem. One main reason is that we have no global (in time) bound for any
Sobolev norm of the solutions. As we can see from the equation for the vorticity ω = vx − u y ,

∂tω + uωx + vωy = νωyy + θx,

the estimate of any Lq-norm of ω is coupled with the estimate of ∇θ in Lq because of the “mismatch”
between the partial derivatives of ωyy and of θx . This is exactly where the problem studied here
differs from the cases previously studied. In [2] we discovered that the norm of the vertical velocity v
in Lebesgue space plays a crucial role in controlling the Sobolev norms of the solutions. It was shown
there, among other results, that the Lq-norm of the vertical velocity v with 2 � q < ∞ is bounded at
any time. The bound obtained in [2] depends exponentially on q. This paper still aims at the global
regularity issue of (1.1) and we establish two major results. The first one improves the bound for
‖v‖Lq to a linear function of q. More precisely, we have the following theorem. Here and in the rest
of this paper ‖ f ‖Lq or simply ‖ f ‖q denotes the norm in the Lebesgue space Lq , and ‖ f ‖W s,q or simply
‖ f ‖s,q denotes the norm in the Sobolev space W s,q .

Theorem 1.1. Let 2 � q < ∞. Let (u0, v0) ∈ L2 ∩ L4 ∩ Lq and θ0 ∈ L2 ∩ L∞ . Let (u, v, θ) be a smooth solution
of (1.1) with the initial data (u0, v0, θ0). Let T > 0. Then, for any 0 � t � T ,

∥∥v(·, t)
∥∥

q � C(ν, T , u0, v0, θ0)q

where C depends on ν , T and ‖(u0, v0)‖L2∩L4∩Lq and ‖θ0‖L2∩L∞ .
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The bound above in the case when q is an integer is obtained by mathematical induction and in
the general case by interpolation. A basic ingredient of the proof is the following global bounds on
the pressure p,

∥∥p(·, t)
∥∥

2 � C(ν, T , u0, v0, θ0),

t∫
0

∥∥∇p(·, τ )
∥∥2

2 dτ � C(ν, T , u0, v0, θ0).

In order to prove these bounds on p, we first establish a global inequality that bounds the L4-norm
of (u, v, θ), namely

∥∥u2 + v2
∥∥2

2 + ν

t∫
0

∫ (
u2

y + v2
y

)(
u2 + v2) + ν

t∫
0

∫
(uu y + v v y)

2 � C(ν, T , u0, v0, θ0)

and then relate p to (u, v, θ) through the divergence free condition.
Our second major result is the following conditional global regularity result.

Theorem 1.2. Let (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding solution of (1.1). Let T > 0. If
v satisfies

T∫
0

(
sup

2�q<∞
‖v(·, t)‖q√

q

)2

dt < ∞, (1.3)

then (u, v, θ) remains in H2(R2) on [0, T ].

In particular, if there exists a constant C that may depend on T and (u0, v0, θ0) such that

∥∥v(·, t)
∥∥

q � C
√

q,

then the corresponding solution (u, v, θ) remains regular on [0, T ]. In order to prove this theorem,
we combine the following interpolation inequality

‖ f ‖∞ � sup
2�q<∞

‖ f ‖q√
q

(
ln

(
1 + ‖ f ‖Hs

))1/2
, s > 1 (1.4)

with a bound that controls the H2-norm of the solution by ‖v‖L∞ , namely

∥∥(u, v, θ)
∥∥2

H2 + ∥∥ω2 + |∇θ |2∥∥2
2 � C(ν, T , u0, v0, θ0)exp

( t∫
0

∥∥v(·, τ )
∥∥2

L∞ dτ

)
. (1.5)

A more general version of (1.4) is presented in Section 5. We remark that (1.5) involves the estimate
of ‖(u, v, θ)‖W 1,4 , which serves as a bridge to the estimate in H2. (1.5) is necessary for the proof of
Theorem 1.2. The previous approach of controlling H2-norm by ‖(u, v)‖H1 in [2] is not good enough
for this purpose.

The rest of this paper is arranged as follows. Section 2 presents the global in time L4-bound. Sec-
tion 3 establishes the global bounds for the pressure p. Section 4 proves Theorem 1.1. Section 5 proves
a general version of (1.4), (1.5) and Theorem 1.2. Section 6 briefly discusses some of the potential ap-
proaches that lead to a complete resolution of the global regularity problem.
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2. Global L4-bound

This section establishes the global L4-bound. This result serves as a preparation for the global
bounds presented in the next two sections.

Theorem 2.1. Let (u0, v0, θ0) ∈ L2 ∩ L4 . Let (u, v, θ) be a smooth solution of (1.1) emanating from
(u0, v0, θ0). Let T > 0. Then, for any 0 � t � T ,

∥∥u2 + v2
∥∥2

2 + ν

t∫
0

∫ (
u2

y + v2
y

)(
u2 + v2) + ν

t∫
0

∫
(uu y + v v y)

2 � C(ν, T , u0, v0, θ0), (2.1)

where C(ν, T , u0, v0, θ0) is a constant depending on ν , T and ‖(u0, v0, θ0)‖L2∩L4 .

We need two basic ingredients to prove this theorem and they are recalled here. The first one is a
lemma that controls the integral of a triple product by the norms of the functions and of their partial
derivatives. This type of inequality is very useful in the study of partial differential equations with
anisotropic dissipation. The proof of this lemma can be found in [6].

Lemma 2.2. Assume that f , g, g y , h and hx are all in L2(R2). Then,

∫ ∫
| f gh|dx dy � C‖ f ‖2‖g‖1/2

2 ‖g y‖1/2
2 ‖h‖1/2

2 ‖hx‖1/2
2 . (2.2)

The second ingredient is the global L2-bound for the velocity and Lq-bound for θ . The derivation
of these inequalities can be found in [2].

Lemma 2.3. Let (u, v, θ) be a smooth solution of (1.1). Then

∥∥(
u(t), v(t)

)∥∥2
2 + 2ν

t∫
0

∥∥(
u y(τ ), v y(τ )

)∥∥2
2 dτ = (∥∥(u0, v0)

∥∥
2 + t‖θ0‖2

)2
(2.3)

and, for any 2 � q < ∞,

∥∥θ(t)
∥∥q

q + κq(q − 1)

t∫
0

∥∥θy|θ | q−2
2 (τ )

∥∥2
2 dτ = ‖θ0‖q

q. (2.4)

In particular, for 2 � q � ∞,

∥∥θ(t)
∥∥

q � ‖θ0‖q. (2.5)

Proof of Theorem 2.1. Let r � 1. Multiplying the first equation in (1.1) by u2r−1(u2r + v2r) and the
second equation by v2r−1(u2r + v2r), integrating in space and performing integration by parts, we
obtain

1

4r

∫ (
u2r + v2r)2 + ν(2r − 1)

∫ (
u2

yu2r−2 + v2
y v2r−2)(u2r + v2r)

+ 2νr

∫ (
u2r−1u y + v2r−1 v y

)2 = I1 + I2 + I3
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where

I1 = −
∫

pxu2r−1(u2r + v2r),
I2 = −

∫
p y v2r−1(u2r + v2r),

I3 =
∫

θ v2r−1(u2r + v2r).
We first estimate I1 for the case r = 1. By Lemma 2.2,

I1 � ‖px‖2‖u‖1/2
2 ‖ux‖1/2

2

∥∥u2 + v2
∥∥1/2

2 ‖2uu y + 2v v y‖1/2
2 .

Taking the divergence of the first two equations in (1.1) leads to

−�p = 2(vu y)x + 2(v v y)y − θy . (2.6)

By the boundedness of Riesz transforms on L2,

‖px‖2 � C
(‖vu y‖2 + ‖v v y‖2 + ‖θ‖2

)
.

Therefore, by Young’s inequality and ux + v y = 0,

I1 � ν

2
‖uu y + v v y‖2

2 + ν

2

(‖vu y‖2 + ‖v v y‖2 + ‖θ‖2
)2 + C‖u‖2

2‖v y‖2
2

∥∥u2 + v2
∥∥2

2.

To estimate I2, we first integrate by parts to obtain

I2 = (2r − 1)

∫
pv2r−2 v y

(
u2r + v2r) + 2r

∫
pv2r−1(u2r−1u y + v2r−1 v y

)
≡ I21 + I22.

By Hölder’s inequality, Young’s inequality and the Sobolev inequality

‖ f ‖4r � Cr‖∇ f ‖ 4r
2r+1

,

we have

I22 � 2r‖p‖4r‖u2r−1u y + v2r−1 v y‖2
∥∥v2r−1

∥∥ 4r
2r−1

� Cr2‖∇p‖ 4r
2r+1

∥∥u2r−1u y + v2r−1 v y
∥∥

2

∥∥v2r−1
∥∥ 4r

2r−1

� Cr2(‖vu y + v v y‖ 4r
2r+1

+ ‖θ‖ 4r
2r+1

)∥∥u2r−1u y + v2r−1 v y
∥∥

2‖v‖2r−1
4r

� Cr2(‖v‖4r
(‖u y‖2 + ‖v y‖2

) + ‖θ‖ 4r
2r+1

)∥∥u2r−1u y + v2r−1 v y
∥∥

2‖v‖2r−1
4r

= Cr2(‖v‖2r
4r

(‖u y‖2 + ‖v y‖2
) + ‖θ‖ 4r

2r+1
‖v‖2r−1

4r

)∥∥u2r−1u y + v2r−1v y
∥∥

2

� νr
∥∥u2r−1u y + v2r−1 v y

∥∥2
2 + Cr3(‖u y‖2 + ‖v y‖2

)2‖v‖4r
4r + ‖θ‖2

4r ‖v‖4r−2
4r .
2r+1
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To estimate I21, we split it into two terms

I21 = (2r − 1)

∫
pv2r−2 v yu2r + (2r − 1)

∫
pv2r−2 v y v2r = I211 + I212.

The two terms on the right can be bounded as follows.

I211 � 2r‖p‖4r
∥∥ur vr−1

∥∥ 4r
2r−1

∥∥ur vr−1 v y
∥∥

2.

Since ‖p‖4r can be bounded as before, we have

I211 � Cr2(‖v‖4r‖u y + v y‖2 + ‖θ‖ 4r
2r+1

)‖ur‖4
∥∥vr−1

∥∥ 4r
r−1

∥∥ur vr−1 v y
∥∥

2

� νr

2

∥∥ur vr−1 v y
∥∥2

2 + Cr3‖v‖2r
4r‖u y + v y‖2

2‖u‖2r
4r + ‖θ‖2

4r
2r+1

‖u‖2r
4r‖v‖r

4r .

I212 can be similarly estimated as I211. In fact,

I212 � νr

2

∥∥v2r−1v y
∥∥2

2 + Cr3‖v‖4r
4r‖u y + v y‖2

2 + ‖θ‖2
4r

2r+1
‖v‖3r

4r .

Collecting the estimates for I2, we have

I2 � νr
∥∥u2r−1u y + v2r−1 v y

∥∥2
2 + νr

2

∥∥ur vr−1 v y
∥∥2

2 + νr

2

∥∥v2r−1v y
∥∥2

2

+ Cr3(‖u y‖2 + ‖v y‖2
)2‖v‖2r

4r

(‖u‖2r
4r + ‖v‖2r

4r

)
+ ‖θ‖2

4r
2r+1

(‖v‖4r−2
4r + ‖u‖2r

4r‖v‖r
4r + ‖v‖3r

4r

)
.

The estimate for I3 is easy.

I3 � ‖θ‖4r
∥∥v2r−1

∥∥ 4r
2r−1

∥∥u2r + v2r
∥∥

2 � ‖θ‖4r
∥∥u2r + v2r

∥∥2− 1
4r

2 .

In the special case when r = 1, we obtain

d

dt

∫ (
u2 + v2)2 + ν

∫ (
u2

y + v2
y

)(
u2 + v2) + ν

∫
(uu y + v v y)

2

� C‖u‖2
2‖v y‖2

2

∥∥u2 + v2
∥∥2

2 + C
(‖u y‖2 + ‖v y‖2

)2‖v‖2
4

(‖u‖2
4 + ‖v‖2

4

)
+ ‖θ‖2

4
3

(‖v‖2
4 + ‖u‖2

4‖v‖4 + ‖v‖3
4

) + ‖θ‖4
∥∥u2 + v2

∥∥2− 1
4

2 .

This inequality, together with Gronwall’s inequality, yields (2.1). �
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3. Global bounds for the pressure

The pressure can also be bounded globally.

Theorem 3.1. Let (u, v, θ) be the solution as stated in Theorem 2.1. Let p the associated pressure. Let T > 0.
Then, for any 0 � t � T ,

∥∥p(·, t)
∥∥

2 � C(ν, T , u0, v0, θ0),

t∫
0

∥∥∇p(·, τ )
∥∥2

2 dτ � C(ν, T , u0, v0, θ0), (3.1)

where C(T ) depends on ν , T and ‖(u0, v0, θ0)‖L2∩L4 .

Proof. According to Theorem 2.1, (u, v) obeys the L4-bound

t∫
0

∫ (
u2 + v2)(u2

y + v2
y

)
dx dτ � C(ν, T , u0, v0, θ0).

According to (2.6) and the boundedness of Riesz transforms on L2,

‖∇p‖2 � C‖v v y + vu y‖2 + ‖θ0‖2.

Integrating in time and invoking Lemma 2.3 lead to

t∫
0

∥∥∇p(·, τ )
∥∥2

2 dτ � C(ν, T , u0, v0, θ0).

To prove the first inequality in (3.1), we have from (2.6)

−�p = (
u2)

xx + (uv)xy + (uv)yx + (
v2)

yy − θy .

Since the Riesz transforms are bounded in L2, we have

‖p‖2 � C
∥∥(u, v)

∥∥2
4 + ∥∥(−�)−1∂yθ

∥∥
2.

According to Theorem 2.1,

∥∥(u, v)
∥∥

4 � C(ν, T , u0, v0, θ0).

By the boundedness of Riesz transforms on L2, we have

∥∥(−�)−1∂yθ
∥∥

2 = ∥∥Λ−1∂yΛ
−1θ

∥∥
2 �

∥∥Λ−1θ
∥∥

2,

where Λ = (−�)1/2. The boundedness of ‖Λ−1θ‖2 follows from a simple energy estimate. In fact,
applying Λ−1 to the equation for θ , namely the fourth equation in (1.1) and taking the inner product
with Λ−1θ , we obtain
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d

dt

∥∥Λ−1θ
∥∥2

2 + 2κ
∥∥Λ−1θy

∥∥2
2 �

∥∥Λ−1(uθ)x + Λ−1(vθ)y
∥∥

2

∥∥Λ−1θ
∥∥

2

�
(‖uθ‖2 + ‖vθ‖2

)∥∥Λ−1θ
∥∥

2

�
∥∥(u, v)

∥∥
4‖θ0‖4

∥∥Λ−1θ
∥∥

2.

Using the L4-bound for (u, v), we have

∥∥Λ−1θ
∥∥

2 �
∥∥Λ−1θ0

∥∥
2 + C(ν, T , u0, v0, θ0).

Therefore,

∥∥p(·, t)
∥∥

2 � C(ν, T , u0, v0, θ0).

This completes the proof of Theorem 3. �
4. Global Lq-bound for the vertical velocity

This section establishes a global Lq-bound for the vertical velocity. This bound is linear in q and
significantly improves the exponential bound of [2].

Theorem 4.1. Let 2 � q < ∞. Let (u0, v0) ∈ L2 ∩ L4 ∩ Lq and θ0 ∈ L2 ∩ L∞ . Let (u, v, θ) be a smooth solution
of (1.1) with the initial data (u0, v0, θ0). Let T > 0. Then, for any 0 � t � T ,

∥∥v(·, t)
∥∥

q � C(ν, T , u0, v0, θ0)q

where C depends on ν , T and ‖(u0, v0)‖L2∩L4∩Lq and ‖θ0‖L2∩L∞ .

Proof. It suffices to prove this for positive integers q. The bound for a general real number q � 2 then
follows from interpolation.

The proof for the case of positive integers q is done by induction. In fact, we prove inductively
that, for any q � 2,

‖v‖q
q + ν

2
q(q − 1)

t∫
0

∫
v2

y|v|q−2 dx dy dτ � Cqqq (4.1)

where C = C(ν, T , u0, v0, θ0). First of all, the bound holds for q = 2,

‖v‖2
2 + 2ν

t∫
0

∫
v2

y dx dy dτ � ‖θ0‖2
(‖v0‖2 + t‖θ0‖2

)
,

which is a special consequence of Lemma 2.3. Similarly we can easily obtain (4.1) with q = 3. Mul-
tiplying the equation for v in (1.1) by v|v|, integrating in space and applying Hölder’s inequality, we
have

d ‖v‖3
3 + 6ν

∫
v2

y|v| � (‖p y‖2 + ‖θ0‖2
)‖v‖2

4.
dt
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The desired inequality then follows from the global bounds in Theorems 2.1 and 3.1. Now we make
the inductive assumption, for any k � q − 1,

‖v‖k
k + ν

2
k(k − 1)

t∫
0

∫
v2

y vk−2 dx dy dτ � Ckkk

and prove that

‖v‖q
q + ν

2
q(q − 1)

t∫
0

∫
v2

y vq−2 dx dy dτ � Cqqq.

Multiplying the equation for v in (1.1) by v|v|q−2 and integrating by parts, we obtain

1

q

d

dt
‖v‖q

q + ν(q − 1)

∫
v2

y|v|q−2 dx dy = I1 + I2,

where

I1 = −
∫

p y v|v|q−2, I2 =
∫

θ v|v|q−2.

I2 is easily bounded,

|I2| � ‖θ‖∞‖v‖q−1
q−1.

Integrating by parts and applying Lemma 2.2, we have

I1 = (q − 1)

∫
pv y|v|q−2

� (q − 1)
∥∥v y|v|q/2−1

∥∥
2‖p‖1/2

2 ‖px‖1/2
2

∥∥vq/2−1
∥∥1/2

2

∥∥(
vq/2−1)

y

∥∥1/2
2

� ν

2
(q − 1)

∥∥v y vq/2−1
∥∥2

2 + C(ν)(q − 2)(q − 1)‖p‖2‖px‖2‖v‖
q−2

2
q−2

(∫
v2

y|v|q−4
)1/2

.

Therefore,

1

q

d

dt
‖v‖q

q + (q − 1)ν

2

∫
v2

y vq−2 dx

� C(ν)(q − 2)(q − 1)‖p‖2‖px‖2‖v‖
q−2

2
q−2

(∫
v2

y|v|q−4
)1/2

+ ‖θ‖∞‖v‖q−1
q−1. (4.2)

By Hölder’s inequality,

(q − 2)‖px‖2‖v‖
q−2

2
q−2

(∫
v2

y|v|q−4
)1/2

� ‖px‖2
2‖v‖q−2

q−2 + (q − 2)2
∫

v2
y|v|q−4.

Inserting the above inequality in (4.2), integrating in t , applying Theorem 3.1 and the inductive as-
sumption, we have



1646 D. Adhikari et al. / J. Differential Equations 251 (2011) 1637–1655
‖v‖q
q + ν

2
(q − 1)q

t∫
0

∫
v2

y vq−2

� C2q(q − 1)Cq−2(q − 2)q−2 + q‖θ0‖∞T Cq−1(q − 1)q−1

� Cqqq.

This completes the proof of Theorem 4.1. �
5. A conditional global regularity

This section proves the conditional global regularity result stated in Theorem 1.2. It is restated
here.

Theorem 5.1. Let (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding solution of (1.1). Let T > 0. If v
satisfies

T∫
0

(
sup

2�q<∞
‖v(·, t)‖q√

q

)2

dt < ∞, (5.1)

then (u, v, θ) remains in H2(R2) on [0, T ].

The proof of this theorem relies on two major propositions. The first one provides an interpolation
inequality that bounds the L∞-norm of a function f in terms of

sup
2�q<∞

‖ f ‖q√
q

and the logarithm of ‖ f ‖Hs with s > 1. The second one establishes a bound for the norms of any
classical solution in W 1,4 and H2 in terms of ‖v‖∞ .

The interpolation inequality is stated and proven in the Besov space setting and the desired in-
equality is a special consequence. The definition of Besov space and related useful facts can be found
in several books (see e.g. [4] or [8]).

Proposition 5.2. Assume f ∈ Bs
r,2(R

d) with 2 � r � ∞ and s > d/r. Let a > 0. If

sup
2�q<∞

‖ f ‖q

qa
< ∞,

then

‖ f ‖∞ � sup
2�q<∞

‖ f ‖q

qa

(
ln

(
1 + ‖ f ‖Bs

r,2

))a
.

Specifically, when d = 2, a = 1/2, r = 2 and s > 1, we have

‖ f ‖∞ � sup
2�q<∞

‖ f ‖q√
q

(
ln

(
1 + ‖ f ‖Hs

))1/2
.
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Proposition 5.3. Assume (u0, v0, θ0) ∈ H2 . Let (u, v, θ) be the corresponding classical solution of (1.1). Then
the quantity

Y (t) = ‖ω‖2
H1 + ‖θ‖2

H2 + ∥∥ω2 + |∇θ |2∥∥2
2

satisfies

d

dt
Y (t) + ‖ωy‖2

H1 + ‖θy‖2
H2 +

∫ (
ω2 + |∇θ |2)(ω2

y + |∇θy|2
) +

∫
(ωωy + ∇θ · ∇θy)

2

� C
(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖u y‖2

2 + (
1 + ‖u‖2

2

)‖v y‖2
2

)
Y (t),

where C is a constant.

Theorem 5.1 follows as a consequence of the two propositions above.

Proof of Theorem 5.1. Integrating the inequality in Proposition 5.3 in time and employing the basic
inequalities ‖ω‖2

H1 = ‖∇(u, v)‖2
H1 and ‖∇(u, v)‖4 � C‖ω‖4, we find

Z(t) ≡ ∥∥(u, v, θ)(·, t)
∥∥2

H2 + ∥∥(u, v, θ)(·, t)
∥∥4

W 1,4

obeys

Z(t) �
t∫

0

(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖u y‖2

2 + (
1 + ‖u‖2

2

)‖v y‖2
2

)
Z(τ )dτ . (5.2)

By Proposition 5.2,

‖v‖2∞ �
(

sup
2�q<∞

‖v‖q√
q

)2

ln
(
1 + ‖v‖H2

)
�

(
sup

2�q<∞
‖v‖q√

q

)2

ln
(
1 + Z(t)

)
. (5.3)

Inserting (5.3) in (5.2) and applying Gronwall’s inequality then lead to Theorem 5.1. �
We now prove Propositions 5.2 and 5.3.

Proof of Proposition 5.2. By the Littlewood–Paley decomposition, we can write

f = SN+1 f +
∞∑

j=N+1

� j f ,

where � j denotes the Fourier localization operator and

SN+1 =
N∑

j=−1

� j .

The precise definition of � j and SN can be found in several books and many papers (see e.g. [8]).
Therefore,
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‖ f ‖∞ � ‖SN+1 f ‖∞ +
∞∑

j=N+1

‖� j f ‖∞.

We denote the terms on the right by I and I I . By Bernstein’s inequality, for any p � 2,

I � 2
Nd
p ‖SN+1 f ‖p � 2

Nd
p ‖ f ‖L p � 2

Nd
p pa sup

q�2

‖ f ‖q

qa
.

For any s > d/r,

II �
∞∑

j=N+1

2
jd
r ‖� j f ‖r =

∞∑
j=N+1

2 j( d
r −s)2sj‖� j f ‖r = C2(N+1)( d

r −s)‖ f ‖Bs
r,2

,

where C is a constant depending on s only. Therefore,

‖ f ‖∞ � 2
Nd
p pa sup

q�2

‖ f ‖q

qa
+ C2(N+1)( d

r −s)‖ f ‖Bs
r,2

.

Setting p = N and N to be the largest integer satisfying

N � 1

s − d
r

log2(1 + ‖ f ‖Bs
r,2

),

the desired inequality then follows. �
The proof of Proposition 5.3 is completed in three steps. The first step bounds the L2-norm

of (ω,∇θ), the second bounds the L4-norm of (ω,∇θ) while the third controls the L2-norm of
(∇ω,�θ). For the sake of clarity, we divide the whole proof into three subsections.

5.1. H1-bound

This subsection provides an H1-bound for classical solutions of (1.1) in terms of ‖v‖∞ . This bound
is essentially Proposition 3.3 in [2].

Proposition 5.4. Let (u, v, θ) be a classical solution of (1.1) emanating from the initial data (u0, v0, θ0). Then

d

dt

(‖ω‖2
2 + ‖∇θ‖2

2

) + ‖ωy‖2
2 + ‖∇θy‖2

2

� C
(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖u y‖2

2 + ‖v y‖2
2

)(‖ω‖2
2 + ‖∇θ‖2

2

)
.

Proof. The proof is similar to the one for Proposition 3.3 in [2]. The only difference is that we esti-
mate ‖ω‖2 here instead of ‖(∇u,∇v)‖2. We omit further details. �
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5.2. W 1,4-bound

This subsection presents a proposition that bounds the W 1,4-norm of classical solutions to (1.1) in
terms of ‖v‖∞ .

Proposition 5.5. Let (u, v, θ) be a classical solution of (1.1) corresponding to the initial data (u0, v0, θ0). Then

d

dt

∫
E2 +

∫
E
(
ω2

y + |∇θy|2
) +

∫
(ωωy + ∇θ · ∇θy)

2

� C
(‖v‖2∞ + ‖u‖2

2‖v y‖2
2 + ‖θ0‖2∞

)∫
E2,

where

E = ω2 + |∇θ |2.

Proof. We estimate the L4-norm of (ω,∇θ). For the sake of simplicity, we set ν = κ = 1. It is clear
from (1.1) that ω ≡ vx − u y satisfies

∂tω + uωx + vωy = ωyy + θx. (5.4)

Multiplying (5.4) by ωE , dotting ∇ of the equation for θ by ∇θ E , integrating on R
2 and applying the

divergence-free condition ux + v y = 0, we obtain after integration by parts,

1

4

d

dt

∫
E2 +

∫
E
(
ω2

y + |∇θy |2
) + 2

∫
(ωωy + ∇θ · ∇θy)

2 = I1 + I2 + I3 + I4 + I5,

where

I1 =
∫

θxωE, I2 = −
∫

uxθ
2
x E, I3 = −

∫
u yθxθy E,

I4 = −
∫

vxθxθy E, I5 = −
∫

v yθ
2
y E.

These terms can be bounded as follows. Clearly,

|I1| � 1

2

∫
E2.

By the divergence-free condition ux + v y = 0 and integration by parts,

I2 =
∫

v yθ
2
x E = −2

∫
vθxθxy E − 2

∫
vθ2

x (ωωy + ∇θ · ∇θy).

Therefore, by Young’s inequality,

|I2| � 1

4

∫
θ2

xy E + 4
∫

v2θ2
x E + 1

4

∫
(ωωy + ∇θ · ∇θy)

2 + 4
∫

v2θ4
x

� 1
∫

θ2
xy E + 1

∫
(ωωy + ∇θ · ∇θy)

2 + 8‖v‖2∞
∫

E2.

4 4



1650 D. Adhikari et al. / J. Differential Equations 251 (2011) 1637–1655
I5 can be bounded similarly.

|I5| � 1

4

∫
θ2

yy E + 1

4

∫
(ωωy + ∇θ · ∇θy)

2 + 8‖v‖2∞
∫

E2.

The estimates for I3 and I4 are more complex. To estimate I3, we first integrate by parts to obtain

I3 =
∫

uθxyθy E +
∫

uθxθyy E + 2
∫

uθxθy(ωωy + ∇θ · ∇θy)

= I31 + I32 + I33.

By Lemma 2.2,

I31 =
∫

uθxy E1/2θy E1/2 � C
∥∥θxy E1/2

∥∥
2‖u‖1/2

2 ‖ux‖1/2
2

∥∥θy E1/2
∥∥1/2

2

∥∥(
θy E1/2)

y

∥∥1/2
2 . (5.5)

Since |θy E−1/2| � 1,

∥∥(
θy E1/2)

y

∥∥
2 = ∥∥θyy E1/2 + θy E−1/2(ωωy + ∇θ · ∇θy)

∥∥
2

�
∥∥θyy E1/2

∥∥
2 + ∥∥(ωωy + ∇θ · ∇θy)

∥∥
2. (5.6)

Inserting (5.6) in (5.5) and applying Young’s inequality, we have

|I31| � 1

16

∥∥|∇θy|E1/2
∥∥2

2 + 1

16
‖ωωy + ∇θ · ∇θy‖2

2 + C‖u‖2
2‖v y‖2

2

∥∥θy E1/2
∥∥2

2.

The estimate for I32 is similar.

|I32| � 1

16

∥∥|∇θy|E1/2
∥∥2

2 + 1

16
‖ωωy + ∇θ · ∇θy‖2

2 + C‖u‖2
2‖v y‖2

2

∥∥θx E1/2
∥∥2

2.

To bound I33, we apply Lemma 2.2 again to obtain

I33 = 2
∫

uθxθy(ωωy + ∇θ · ∇θy)

� C‖ωωy + ∇θ · ∇θy‖2‖u‖1/2
2 ‖ux‖1/2

2 ‖θxθy‖1/2
2

∥∥(θxθy)y
∥∥1/2

2

� 1

16
‖ωωy + ∇θ · ∇θy‖2

2 + 1

16
‖θxyθy + θyyθx‖2

2 + C‖u‖2
2‖v y‖2

2‖θxθy‖2
2

� 1

16
‖ωωy + ∇θ · ∇θy‖2

2 + 1

16

∥∥|∇θ ||∇θy |
∥∥2

2 + C‖u‖2
2‖v y‖2

2

∫
E2.

Substituting vx = u y + ω in I4, we have

I4 = −
∫

ωθxθy E − I3.

Integration by parts yields



D. Adhikari et al. / J. Differential Equations 251 (2011) 1637–1655 1651
∫
ωθxθy E = −

∫
ωyθxθ E −

∫
ωθxyθ E − 2

∫
ωθxθ(ωωy + ∇θ · ∇θy).

Thus ∣∣∣∣
∫

ωθxθy E

∣∣∣∣ � 1

16

∫
ω2

y E + C‖θ‖2∞
∫

θ2
x E + 1

16

∫
θ2

xy E + C‖θ‖2∞
∫

ω2 E

+ 1

16
‖ωωy + ∇θ · ∇θy‖2

2 + C‖θ‖2∞
∫

ω2θ2
x

� 1

16

∫
E
(
ω2

y + |∇θy|2
) + 1

16
‖ωωy + ∇θ · ∇θy‖2

2 + C‖θ‖2∞
∫

E2.

Collecting all the estimates, we obtain

d

dt

∫
E2 +

∫
E
(
ω2

y + |∇θy|2
) +

∫
(ωωy + ∇θ · ∇θy)

2

� C
(‖v‖2∞ + ‖u‖2

2‖v y‖2
2 + ‖θ0‖2∞

)∫
E2.

This completes the proof of Proposition 5.5. �
5.3. H2-bound

This subsection presents an a priori estimate for the H2-norm of classical solutions to (1.1). When
combined with the W 1,4 estimate in the previous subsection, this bound would result in a global
bound in terms of ‖v‖∞ .

Proposition 5.6. If (u, v, θ) is a classical solution of (1.1) emanating from (u0, v0, θ0). Then

d

dt

(‖∇ω‖2
2 + ‖�θ‖2

2

) + ‖∇ωy‖2
2 + ‖�θy‖2

2

� 1

8

∥∥|∇θ ||∇θy |
∥∥2

2 + C‖E‖2
2 + C

(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖u y‖2

2 + ‖v y‖2
2

)(‖∇ω‖2
2 + ‖�θ‖2

2

)
.

Proof. Dotting ∇ of (5.4) with ∇ω, multiplying � of the equation for θ in (1.1) by �θ , integrating
over R

2 and applying the divergence-free condition ux + v y = 0, we obtain after integration by parts

1

2

d

dt

∫ (|∇ω|2 + (�θ)2) + ‖∇ωy‖2
2 + ‖�θy‖2

2 = J1 + · · · + J9,

where

J1 =
∫

∇θx · ∇ω, J2 = −
∫

uxω
2
x , J3 = −

∫
u yωxωy,

J4 = −
∫

vxωxωy, J5 = −
∫

v yω
2
y, J6 = −

∫
�uθx�θ,

J7 = −
∫

�vθy�θ, J8 = −2
∫

∇u · ∇θx�θ, J9 = −2
∫

∇v · θy�θ.

The rest of the proof is devoted to bounding these terms.
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| J1| � ‖∇θx‖2‖∇ω‖2 � 1

2

(‖�θ‖2
2 + ‖∇ω‖2

2

)
.

Using ux + v y = 0 and integrating by parts, we obtain

J2 = −
∫

vωxωxy � 1

16
‖ωxy‖2

2 + C‖v‖2∞‖ωx‖2
2.

By Lemma 2.2,

| J3| � C‖u y‖2‖wx‖1/2
2 ‖wxy‖1/2

2 ‖w y‖1/2
2 ‖wxy‖1/2

2 � 1

16
‖ωxy‖2

2 + C‖u y‖2
2‖∇ω‖2

2.

By substituting vx = ω + u y in J4, we have

J4 = J3 −
∫

ωωxωy .

Integration by parts yields

∣∣∣∣
∫

ωωxωy

∣∣∣∣ � 1

16
‖ωxy‖2

2 + C‖ω‖4
4.

J5 can be similarly bounded as J2.

| J5| � 1

16
‖∇ωy‖2

2 + C‖v y‖2
2‖w y‖2

2.

To deal with J6, we split it into two terms. Integration by parts yields

J6 = −
∫

(�uθxθxx + �uθxθyy) = 1

2

∫
�uxθ

2
x −

∫
�uθxθyy

= −1

2

∫
�v yθ

2
x −

∫
�uθxθyy =

∫
�vθxθxy −

∫
�uθxθyy .

Therefore,

| J6| �
∥∥�(u, v)

∥∥
2‖θx∇θy‖2 � 1

16
‖θx∇θy‖2

2 + C‖∇ω‖2
2.

By integration by parts,

J7 = −
∫

(vxxθyθxx + v yyθyθxx + �vθyθyy)

=
∫

(vxxyθθxx + vxxθθxxy + v yyyθθxx + v yyθθxxy + �vθyθyy).

Thus,

| J7| � 1 ‖∇ωy‖2
2 + 1 ‖�θy‖2

2 + 1 ‖θy∇θy‖2
2 + C

(
1 + ‖θ0‖2∞

)(‖∇ω‖2
2 + ‖�θ‖2

2

)
.

16 16 16



D. Adhikari et al. / J. Differential Equations 251 (2011) 1637–1655 1653
For J8, we use ux + v y = 0 and integrate by parts to obtain

J8 = −2
∫

(uxθxx�θ + u yθxy�θ) = −2
∫

(vθxxy�θ + vθxx�θy + u yθxy�θ).

By Hölder’s inequality and Lemma 2.2,

| J8| � 1

32
‖�θy‖2

2 + C‖v‖2∞‖�θ‖2
2 + C‖u y‖2‖θxy‖1/2

2 ‖θxyx‖1/2
2 ‖�θ‖1/2

2 ‖�θy‖1/2
2

� 1

16
‖�θy‖2

2 + C
(‖v‖2∞ + ‖u y‖2

2

)‖�θ‖2
2.

To estimate J9, we need to redistribute the derivatives. By integration by parts,

J9 = −2
∫

∇v · ∇θy(θxx + θyy)

= 2
∫

(∇vx · ∇θyθx + ∇v · ∇θxyθx + ∇v y · ∇θyθy + ∇v · ∇θyyθy).

Therefore,

| J9| � 1

16

∥∥|∇θ ||∇θy |
∥∥2

2 + 1

16
‖�θy‖2

2 + C‖∇ω‖2
2 + C‖ω‖2

4‖∇θ‖2
4.

Connecting all the estimates, we obtain

d

dt

(‖∇ω‖2
2 + ‖�θ‖2

2

) + ‖∇ωy‖2
2 + ‖�θy‖2

2

� 1

8

∥∥|∇θ ||∇θy |
∥∥2

2 + C‖E‖2
2 + C

(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖u y‖2

2 + ‖v y‖2
2

)(‖∇ω‖2
2 + ‖�θ‖2

2

)
.

This completes the proof of Proposition 5.6. �
6. Conclusion and discussion

We have investigated the global regularity issue concerning solutions of the 2D Boussinesq equa-
tions with vertical dissipation and vertical thermal diffusion. We established that the vertical velocity
v of any classical solution (u, v, θ) must satisfy, for any T > 0,

∥∥v(·, t)
∥∥

q � Cq, 2 � q < ∞, 0 � t � T

for some constant C depending on T , ν, u0, v0 and θ0 only. On the other hand, if the condition

T∫
0

sup
2�q<∞

‖v(·, t)‖2
q

q
dt < ∞

is fulfilled, then the corresponding solution preserves its smoothness on [0, T ]. In particular,

∥∥v(·, t)
∥∥ � C

√
q (6.1)
q
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for some C independent of q is sufficient for the global regularity. It remains open if (6.1) is indeed
satisfied. Some preliminary numerical results computed for (1.1) involving several initial data indicate
that (6.1) is actually true [3].

We have made attempts to verify (6.1). One direction would be to verify that the pressure p
satisfies the global bound, for any T > 0,

t∫
0

‖p‖2
2r dt � C(T ), t � T (6.2)

for some constant C independent of r. It is not very hard to check that

‖v(·, t)‖2
2r

2r − 1
� e2‖θ0‖2rt

(
‖v0‖2

2r

2r − 1
+ C

t∫
0

‖p‖2
2r dt

)

and (6.1) is an immediate consequence of (6.2). The global bounds on p stated in Theorem 3.1 in
Section 3 is not sufficient to prove (6.2). The Sobolev embedding inequality

‖p‖2r � Cr‖p‖
1
r
2 ‖∇p‖1− 1

r
2

generates a coefficient that depends linearly on r. Some potential approaches to prove (6.1) include
the use of the duality of the BMO space and the Hardy space H1. The motivation behind this is to
combine the inequality ‖p‖BMO � C‖p‖H1 and the global bound

∫ T
0 ‖p‖2

H1 dt < ∞.
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