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1. Introduction

This paper continues our study on the global regularity issue concerning the 2D Boussinesq equa-
tions with vertical dissipation and vertical thermal diffusion,

U + Ulx + VUy = —DPx + Vlyy,

Ve+UVy+VVy=—py+VVy, +0,

uy+vy =0, (1.1)
Or + ubx + vOy = Kk 0yy,

u,y,0)=uox,y), vxy,0)=voxy), 0y, 0=>0b(Xy,
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where u, v, p and 6 are scalar functions of (x,y) € RZandt>0, v>0 and k > 0 are parameters.
(1.1) is a very important special case of the full 2D Boussinesq equations

Up + Ulx + VUy = —Px + Vilxx + Valyy,

Ve +UVx+VVy = —DPy + V1Vax + V2 Vyy + 6,
Uy +vy =0,

Or + ubx + vOy = K10xx + K20yy.

(1.2)

The Boussinesq equations model buoyancy-driven flows such as atmospheric fronts and oceanic cir-
culation (see e.g. [19,21]). In these equations u and v denote the horizontal and the vertical velocity,
respectively, p the pressure, 6 the temperature in the content of thermal convection and the density
in the modeling of geophysical fluids. The Boussinesq equations with only vertical dissipation are use-
ful in modeling dynamics of geophysical flows for which the vertical dissipation dominates such as in
the large-time dynamics of certain strongly stratified flows (see [18] and the references therein).

One fundamental issue concerning the 2D Boussinesq equations (1.2) is whether all of their classi-
cal solutions are global in time. When the parameters vq, v, k1 and k» are all positive, this issue is
not very difficult to resolve and any sufficiently smooth data leads to a global solution (see e.g. [5]). In
the case of inviscid Boussinesq equations, namely (1.2) with v{ = vy = k1 =k = 0, the global regu-
larity problem turns out to be extremely difficult and remains outstandingly open. Important progress
has recently been made on the intermediate cases. The global regularity for the case vi = v, >0
and k1 = k2 = 0 was proven by Chae [7] and by Hou and Li [16]. The case when v; = v; =0 and
K1 = k3 > 0 was dealt with in [7]. Further progress on these two cases was made recently by Hmidi
and Keraani, who were able to establish the global regularity with the full Laplacian operator —A re-
placed by «/—A [14,15]. Danchin and Paicu very recently explored the global regularity issue for the
cases when there is either horizontal dissipation (V1 > 0 and v, = k1 = k2 = 0) or horizontal thermal
diffusion (k1 > 0 and v = v, = k2 =0) and obtained global solutions at several regularity levels (see
[11]). Other interesting recent results on the 2D Boussinesq equations can be found in [1,9,10,12,13,
17,20,22].

The global regularity problem for the Boussinesq equations with vertical dissipation and thermal
diffusion, namely (1.1), was first studied by Adhikari et al. in [2]. As pointed out in [2], this is an
extremely difficult problem. One main reason is that we have no global (in time) bound for any
Sobolev norm of the solutions. As we can see from the equation for the vorticity w = vx — uy,

0w + Uwy + Vwy = Vwyy + Oy,

the estimate of any L9-norm of w is coupled with the estimate of V6 in L9 because of the “mismatch”
between the partial derivatives of wy, and of 6y. This is exactly where the problem studied here
differs from the cases previously studied. In [2] we discovered that the norm of the vertical velocity v
in Lebesgue space plays a crucial role in controlling the Sobolev norms of the solutions. It was shown
there, among other results, that the L9-norm of the vertical velocity v with 2 < q < oo is bounded at
any time. The bound obtained in [2] depends exponentially on g. This paper still aims at the global
regularity issue of (1.1) and we establish two major results. The first one improves the bound for
lvllre to a linear function of q. More precisely, we have the following theorem. Here and in the rest
of this paper || f1zs or simply || f|lq denotes the norm in the Lebesgue space L?, and | f|lwsa or simply
| flls,q denotes the norm in the Sobolev space W*1.

Theorem 1.1. Let 2 < q < oo. Let (ug, vo) € L2NL*N L9 and g € L2 N L. Let (u, v, §) be a smooth solution
of (1.1) with the initial data (ug, vo, 6p). Let T > 0. Then, forany 0 <t < T,

[ve o], <Cw. T, uo. vo.60)q

where C depends on v, T and ||(uo, vo)ll;2nr4nze and [|6oll j2pce-
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The bound above in the case when q is an integer is obtained by mathematical induction and in
the general case by interpolation. A basic ingredient of the proof is the following global bounds on
the pressure p,

t
[pC.0)], < C, T, uo, vo, o), /\|Vp(-,r)||§drgC(v,T,uo,vo,oo).

In order to prove these bounds on p, we first establish a global inequality that bounds the L*-norm
of (u, v, #), namely

t t
2
Ju + 2|5+ v//(ujz, +v3) (W +v?) + v//(uuy +vvy)? < C(v, T, up, vo, o)
0 0
and then relate p to (u, v, 6) through the divergence free condition.
Our second major result is the following conditional global regularity result.

Theorem 1.2. Let (ug, Vg, 69) € H2(R?) and let (u, v, 0) be the corresponding solution of (1.1). Let T > 0. If

v satisfies
T
t
/( Ive, ”'") dt < oo, (1.3)
o 2<q<oo q

then (u, v, 0) remains in H%(R2) on [0, T].

In particular, if there exists a constant C that may depend on T and (ug, Vg, 6p) such that

Ive.o,<c

then the corresponding solution (u, v,6) remains regular on [0, T]. In order to prove this theorem,
we combine the following interpolation inequality

Ifloe < sup_ ”’%(lnu +1flms)) 2 s> 1 (14)

with a bound that controls the H2-norm of the solution by ||v|/;~, namely

t
|, v, 0)| 5 + |0 + V6P| < Cw, T, uo, vo, Hg)exp</||v(~, D7 dr). (15)
0

A more general version of (1.4) is presented in Section 5. We remark that (1.5) involves the estimate
of |[(u, v,0)|ly1.4, which serves as a bridge to the estimate in H2. (1.5) is necessary for the proof of
Theorem 1.2. The previous approach of controlling H2-norm by ||(u, v)| ;1 in [2] is not good enough
for this purpose.

The rest of this paper is arranged as follows. Section 2 presents the global in time L*-bound. Sec-
tion 3 establishes the global bounds for the pressure p. Section 4 proves Theorem 1.1. Section 5 proves
a general version of (1.4), (1.5) and Theorem 1.2. Section 6 briefly discusses some of the potential ap-
proaches that lead to a complete resolution of the global regularity problem.
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2. Global L*-bound

This section establishes the global L*-bound. This result serves as a preparation for the global
bounds presented in the next two sections.

Theorem 2.1. Let (ug, vo,0p) € L?> N L% Let (u,v,0) be a smooth solution of (1.1) emanating from
(ug, vo, 00). Let T > 0. Then, forany0 <t < T

t t
}|u2+v2||§+v//(uf,+v§,)(u2+vz)—i—v//(uuy—i—vvy)zgC(v,T,uo,vo,Oo), (2.1)
0 0

where C(v, T, ug, vo, 6p) is a constant depending on v, T and || (ug, vo, 60) |l 214

We need two basic ingredients to prove this theorem and they are recalled here. The first one is a
lemma that controls the integral of a triple product by the norms of the functions and of their partial
derivatives. This type of inequality is very useful in the study of partial differential equations with
anisotropic dissipation. The proof of this lemma can be found in [6].

Lemma 2.2. Assume that f, g, gy, h and hy are all in L2(R?). Then,

[/|fgh|dxdy < Clfl2lgn gy 121 1Y 2 kgl 2. (22)

The second ingredient is the global L2-bound for the velocity and L9-bound for 6. The derivation
of these inequalities can be found in [2].

Lemma 2.3. Let (u, v, 0) be a smooth solution of (1.1). Then

t
| (@), vo)[; +2v / | (uy (). vy (@)[5d7 = (|| @wo. vo) |, + tl60ll2)? (23)

0

and, forany 2 < q < oo,

||9(r>||3+xq(q—1>/||6y|9|¥<r>||§dr= 160115. (24)
0

In particular, for 2 < q < o0
le®], < 16ollg- (2.5)

Proof of Theorem 2.1. Let r > 1. Multiplying the first equation in (1.1) by u?~!? + v?") and the
second equation by v~ 1(u2r + v%), integrating in space and performing integration by parts, we
obtain

/u +v¥) +v(2r—l)/ ubuP 2+ vIvA ) (WP 4 v

+2vr/(u2r’1uy + vzr’lv},)2 =h+L+1;
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where
Ih= —fpxuzr“(uzr +v?),
Ih=— / pyvA 1 (u? 4+ v?),
I3 :/0v2’_1(u2r +v¥).

We first estimate I for the case r =1. By Lemma 2.2,

1/2 1/2

I < pxlalluly 2 ul Y2 [u2 +v2 )3

2uuy +2vvy[l)/.
Taking the divergence of the first two equations in (1.1) leads to
—Ap =2(Vuy)x+2(vvy)y — 0y. (2.6)

By the boundedness of Riesz transforms on L2,

Ipxll2 < C(lIlvuyllz + llvvyllz + 16112).

Therefore, by Young's inequality and uy 4+ vy =0,

V V 2 2
I < 5ty +vvyl3 + S (lvuylla +1veyllz +16112)° + Clul vy 13 Ju? + v2 5.

To estimate I, we first integrate by parts to obtain

I =@2r—1) f pv2 vy (U + v + Zr/ pv W uy + v )
=D + 1.

By Holder’s inequality, Young's inequality and the Sobolev inequality

I fllar SCrIV Il _ar_,
2r+1

we have

2r—1 2r—1 vy ”2 ” V2r71 ”

Iz <2r|[pllarlu™ uy +v

4r
2r—1
vy [ v

<P |Vpll a [Ju*uy +v i
2r+1 2r—1
2r—1
P

2r—-1

<cr¥(llvuy + vyl a +||0||%)||u2r*1uy+v2r*1vy|

2r 2r

2r—1

< Cr (1 llar(luyla + 1y l2) + 101 ar ) [y +v2 vy [, I

2r+1

Cr2 (VI (luyllz + 1vyll2) + 101 s V15 [0y +vZ vy |

2r—1 2r—1 2 3 2 4 2 4r—2
<vrfu? tuy + v vy |5+ Cr (luy 2 + vy ) IvIi + ||9||24r1 Vg =
T+
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To estimate I1, we split it into two terms

I =(2r—1)/pv2r—2vyu2r+(2r—1)/pv2r—2vyv2r=lzn + I12.

The two terms on the right can be bounded as follows.

r,r—1

I LT 7 %

Iy <2r)Ipllarfju’v

Since ||p|l4r can be bounded as before, we have

I <Cr2(||v||4r||uy+vy||z+||0||2r4;1)||u V'] e fur vy

1 2 3 2 2 2 2 2
Hur vy |y +Cr IIVI|4£IIuy+vy||2|IUII4§+IIOIIZ‘L lullgr v G-
T

I12 can be similarly estimated as I»11. In fact,

vr _ 2
2r—1 34,114 2 2 3
Iz < 2 HV ' VyHZ‘f‘C" Ivilgrliuy + vylls + ||9||24r1 v
r+

Collecting the estimates for I, we have

2r—1 Tyr= 1 2r—1

I <vrlu?tuy +v2!

2 2 vr 2
vy vty 2 et

3 2 2 2 2
+Cr(lluyllz + vy ll2)“Iviigr(lullg + Ivigr)

4r—2 2 3
+ o) i (vl + g g, + 1vigr).
The estimate for I3 is easy.
p2r-1 2 2 2r 12—
<UOar v a0 + v [, < N0Nar|u® + v
In the special case when r =1, we obtain

c(ljt (u® +v?)° +v/(u +vy) (W +v? +v/(uuy+vvy)

< Clullvyl3]u® +v2]5 + C(lluyllz + lvyll2) v I3 (lul + 1vi3)

21
+||6||%3_1(||v||i+||u||ﬁ||v||4+||v||?1)+||9||4||u2+v2{|2 1,

This inequality, together with Gronwall’s inequality, yields (2.1). O
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3. Global bounds for the pressure

The pressure can also be bounded globally.

Theorem 3.1. Let (u, v, 6) be the solution as stated in Theorem 2.1. Let p the associated pressure. Let T > 0.
Then, forany 0 <t < T,

t
IpC.0)], <C. T, ug, vo.6o). /HVp(-,r)”;dr<C(v,T,uo,vo,90), (3.1)
0

where C(T) depends on v, T and ||(ug, Vo, 60) | ;2A14-

Proof. According to Theorem 2.1, (u, v) obeys the L*-bound
t
//(uz + vz)(uf, + vf,) dxdt <C(, T, ug, vo, 6p).
0

According to (2.6) and the boundedness of Riesz transforms on L2,

IVpl2 < Cllvvy + vuyll2 + [|6oll2-

Integrating in time and invoking Lemma 2.3 lead to

t
f”Vp(-, D)|3dT <C(v, T, uo, vo, 6o).
0

To prove the first inequality in (3.1), we have from (2.6)

—Ap= (uz)xx + UV)xy + UV)yx + (vz)y —Oy.

y

Since the Riesz transforms are bounded in L?, we have
Ipllz < Cllw, |5+ [ (=) a6,
According to Theorem 2.1,
. v)||, < C. T, up, vo.6bo).
By the boundedness of Riesz transforms on L%, we have

[8)1ay6], = [a~'a, 4], < [ 4~"6]

2

where A = (—A)"/2. The boundedness of ||A~16], follows from a simple energy estimate. In fact,
applying A~! to the equation for 6, namely the fourth equation in (1.1) and taking the inner product
with A~16, we obtain
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d
E||A—1e||§ 121 ATty |5 < AT wo + AT ey |, | 476,
< (Il + Ivelz) | A6,

<@ v, 60l a™ 0],

Using the L*-bound for (u, v), we have

|A=%], < [ 460l + Cv. T, o, v0, ).

Therefore,
IpC.0O), < C, T, ug, vo,bo).
This completes the proof of Theorem 3. O

4. Global L7-bound for the vertical velocity

This section establishes a global L9-bound for the vertical velocity. This bound is linear in q and
significantly improves the exponential bound of [2].

Theorem 4.1. Let 2 < q < co. Let (ug, vo) € L2NL4N LT and 6y € L> N L. Let (u, v, 0) be a smooth solution
of (1.1) with the initial data (uo, vo, 6p). Let T > 0. Then, forany 0 <t < T,

[ve. ], <C. T, uo. vo.60)g
where C depends on v, T and ||(uo, vo) |l ;2n14ne and (0ol 2Apce-

Proof. It suffices to prove this for positive integers q. The bound for a general real number q > 2 then
follows from interpolation.

The proof for the case of positive integers g is done by induction. In fact, we prove inductively
that, for any q > 2,

t
vV
Iviig + Eq(q - l)/fv§,|v|q’2dxdydr < Ciqt (41)
0

where C = C(v, T, ug, Vo, 6p). First of all, the bound holds for q =2,

t
||v||§+zv/fv§axdydr < I16oll2(lIvoll2 + tlléoll2),
0

which is a special consequence of Lemma 2.3. Similarly we can easily obtain (4.1) with g = 3. Mul-
tiplying the equation for v in (1.1) by v|v|, integrating in space and applying Hoélder’s inequality, we
have

d
E||V||§+6V/V§,|V| < (lpyll2 + l6oll2) V13-
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The desired inequality then follows from the global bounds in Theorems 2.1 and 3.1. Now we make
the inductive assumption, for any k <q —1,

t
vl + ;k(k— 1)//v§v’<—2 dxdy dr < C*Kk*
0

and prove that
t
Iviig+ EQ(Q - 1)//v§vq_2 dxdydt < ClqA.
0

Multiplying the equation for v in (1.1) by v|v|9~2 and integrating by parts, we obtain

LI+ v@ =1 [ vy =1+
where
I :—/pyv|v|q_2, 12:f9v|v|q_2.
I is easily bounded,
2| < 10 lloollVIIEZS.

Integrating by parts and applying Lemma 2.2, we have

I =<q—1)/pvy|v|"‘2

<@= vy v 2 Ip 0y 2l 2 v P (002, [
v 2-12 a2 2 4 12
< E(Q—l)HVyVQ/ B H2+C(V)(Q—2)(q—1)||13||2||Px||2||V||qu(/ Vyl‘/lq_> .
Therefore,

1d (q@—1Dv 2 g—2
aa||v||g+7/‘vyvq dx

-2 1/2 -
<C(v)(q—2><q—1>||p||z||px||z||v||q32(/ v§|v|q—“> +lollvIZT).  (42)

By Holder’s inequality,
-2

q 1/2
o2 B , B
(q—z)npxnznvnqiz(/ vylv[ 4) < ||px||§||v||3,2+(q—2)2/v§|v|" 4.

Inserting the above inequality in (4.2), integrating in t, applying Theorem 3.1 and the inductive as-
sumption, we have
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t
Vv _
Ivilg + 5@ - 1)q//v§vq 2
0

C%q(q — 1)CI72(q —2)72 +qllfollo TCT ' (g — D!

<
< Cigf.

This completes the proof of Theorem 4.1. O

5. A conditional global regularity

This section proves the conditional global regularity result stated in Theorem 1.2. It is restated
here.

Theorem 5.1. Let (g, Vo, 60) € H2(R2) and let (u, v, 0) be the corresponding solution of (11). Let T > 0.If v

satisfies
T
t
/( Ive, ”'") dt < oo, (5.1)
; 2<q<oo NG

then (u, v, 0) remains in H2(R?) on [0, T].

The proof of this theorem relies on two major propositions. The first one provides an interpolation
inequality that bounds the L®°-norm of a function f in terms of

sup 1 fllq
2<g<c0 /4

and the logarithm of || f|gs with s > 1. The second one establishes a bound for the norms of any
classical solution in W14 and H? in terms of ||V|c.

The interpolation inequality is stated and proven in the Besov space setting and the desired in-
equality is a special consequence. The definition of Besov space and related useful facts can be found
in several books (see e.g. [4] or [8]).

Proposition 5.2. Assume f € BS 2(Rd) with2 <r<ooands>d/r.Leta > 0.If

I flig
2 oo,
2<q<c0 ¢°
then
||f||q
[fllo < sup (ln(l+||fllss )) .
2<g<00

Specifically, whend =2,a=1/2,r =2 and s > 1, we have

Iflloo < sup ||%(I“(l+||f||Hs))”2~

2<g<0o0
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Proposition 5.3. Assume (ug, vg, 6p) € H2. Let (u, v, ) be the corresponding classical solution of (1.1). Then
the quantity

Y(© = ol + 1613 + | @ + V617 ]5

satisfies

%Y(t) + llwyl2 + 110y 117, + /(a)2 +IVOP) (@) + [Voy1?) + /(wwy + V0 - V,)>
< C(1+ 160113 + IVIZ + luyll3 + (1 + uld) vy 12)Y ©),
where C is a constant.
Theorem 5.1 follows as a consequence of the two propositions above.

Proof of Theorem 5.1. Integrating the inequality in Proposition 5.3 in time and employing the basic
inequalities Ilelﬁl =V, V)Ilﬁ1 and |V(u, v)|ls < Cllw|l4, we find

Z@®) = W, v, )¢, 05 + | W, v, 0,0 s
obeys

t
Z@t) < /(1 + 1160112, + IVIIZ, + lluyll3 + (1 + lull3)lvyl3) Z(t)dz. (52)
0

By Proposition 5.2,
2 2
||v||§o<< sup m) 1n(1+||v||Hz)<( sup m) In(1+Z()). (5.3)
2<g<c0 2<g<00 /4

Inserting (5.3) in (5.2) and applying Gronwall’s inequality then lead to Theorem 5.1. O
We now prove Propositions 5.2 and 5.3.

Proof of Proposition 5.2. By the Littlewood-Paley decomposition, we can write

o

f=Snf+ Z Ajf,

j=N+1
where A denotes the Fourier localization operator and
N
SN+1 = Z Aj.
j==1

The precise definition of A; and Sy can be found in several books and many papers (see e.g. [8]).
Therefore,
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o0
1f oo <USNt1flloo+ D 1A llco-

j=N+1

We denote the terms on the right by I and II. By Bernstein’s inequality, for any p > 2,

L1l
<27 ISna1 fllp <27 1 flle <27 p®sup qa"
q/
For any s > d/r,
s jd ad - d . d
< Y0 27018 lle= Y 207927 Af [l = C2NVG) fgs
j=N+1 j=N+1

where C is a constant depending on s only. Therefore,

1£fllq
q°

Ifllse <27 psup 214 +c2<”“><””||f||3s

q=>2

Setting p = N and N to be the largest integer satisfying

N< —5log(1+1fls,)

T

the desired inequality then follows. O

The proof of Proposition 5.3 is completed in three steps. The first step bounds the L2-norm
of (w, V), the second bounds the L*-norm of (w, V@) while the third controls the L2-norm of
(Vw, AO). For the sake of clarity, we divide the whole proof into three subsections.

5.1. H'-bound

This subsection provides an H!-bound for classical solutions of (1.1) in terms of ||V||s. This bound
is essentially Proposition 3.3 in [2].

Proposition 5.4. Let (u, v, ) be a classical solution of (1.1) emanating from the initial data (ug, vo, 6o). Then

d
a(nwn% +IVO13) + lwy 13 + IV6y 13
< C(1+ 1601120 + V112, + lluylI3 + 1vy13) (Ilwll3 + VO113).

Proof. The proof is similar to the one for Proposition 3.3 in [2]. The only difference is that we esti-
mate |||, here instead of ||[(Vu, Vv)||2. We omit further details. O
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5.2. Wl4-pound

This subsection presents a proposition that bounds the W14-norm of classical solutions to (1.1) in
terms of ||V o-

Proposition 5.5. Let (u, v, 0) be a classical solution of (1.1) corresponding to the initial data (ug, vg, 6o). Then

%/EZ+/5(¢0§+|v9y|2)+/(wwy+v9.vey)2
<c(||v||io+||u||§||vy||%+||eo||?,o)/E2,
where
E=w?+|Vo%

Proof. We estimate the L*-norm of (w, V6). For the sake of simplicity, we set v =« = 1. It is clear
from (1.1) that w = vx — u, satisfies

0w + Uwy + Vy = wyy + Ox. (5.4)

Multiplying (5.4) by wE, dotting V of the equation for & by VAE, integrating on R? and applying the
divergence-free condition uy 4 vy, =0, we obtain after integration by parts,

1d

25/52+/E(w§+IV9y|2)+2/(wwy+ve.vey)zzzl+12+13+I4+157

where
I :/QXa)E, Izz—/uxexzs, I3 :—/uyexeyls,

14=—/vxex9y5, Isz—/vyejs.

These terms can be bounded as follows. Clearly,

1
1< = | E2.
[I1] 2/

By the divergence-free condition uy + vy =0 and integration by parts,

12:/vyefsz—zfvexexﬂ—2/v9,§(wwy+ve-vey).

Therefore, by Young’s inequality,
L[ g2 202F 4 | 2 244
|12|<Z OE+4 | v GxE+Z (wwy + VO -VO,)? +4 [ v2o;

1/
<=
4

52 E+l/(ww +V0-VOy)? +8v|? sz
Xy 4 Y y * .



1650 D. Adhikari et al. / ]. Differential Equations 251 (2011) 1637-1655

I5 can be bounded similarly.

1 2 1 2 2 2
"5|<21 0ny+1 (wwy + VO -Voy)* +8|vis | E-

The estimates for I3 and 14 are more complex. To estimate I3, we first integrate by parts to obtain

I3 = / ugxyeyE + / uexeny + Z/HQXQy(a)a)y + Vo . VHy)

=131+ 132 + I33.

By Lemma 2.2,
I3t = f Uy E'20y 2 < Clloy EV2 | luly sy * [y B2 1, [ 64 EY2), 1,2 (55)
Since |0yE~12] <1,
[(6yE™?), I, = 16y E' + 6y E~' 2 (wwy + V6 - V6y) |,
<[y E"? ], + [y + V6. Vo) . (56)

Inserting (5.6) in (5.5) and applying Young’s inequality, we have
1 1/22 1 2 2 2 1/2)2
lI31] < T lIveylEY2 |5 + Enwwy + V0 - Vo 5+ Cllullslvyls]|6yE'?]5.
The estimate for I3y is similar.

1 1
1321 < 72 |16y 1EV2 |+ = lwwy + V6 - Voy 3+ Cllul3 vy 113 6"/ .

To bound I33, we apply Lemma 2.2 again to obtain

Is3=2 / U0y (wwy + V6 - Voy)
1/2 1/2 1/2 1/2
< Cllwwy + VO - Voy [ llully luxlly > 16x6y 15/ 6x8y)y |5
<l||ww 1+V6-V8 ||2+l||9 0y + 0y, 0|2 + CllullZ vy 1121160y I3
\]6 y yi2 16 Xyvy yyvxii2 200V y 02 1¥xVy 12
1 1 2
< E||wwy+ve.vey||§+Euwenvoywb+C||u||§||vy||%f152.

Substituting vy =uy + w in I4, we have

Iy = —/w@XGyE — .

Integration by parts yields
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fw@nyEz—[a)yOXQE—/wexy@E—Z/w(?x@(a)a)y—i-ve-VQy).

Thus

’/ wOx0yE

< :—G/wf,E—i—ClI@”f,o/@fE—i— 11—6/9§y5+cn9||§0/w25
+11—6||wwy+v9-v9y||§+cu9||§o/w29x2
<1 E(w} +|V6y1%) + 11—6||wa)y+ve.vey||§ +C||9||§0/52.
Collecting all the estimates, we obtain
%/Ez+/5(w§+|V9y|2)+/(wwy+ve-vey)2
<C(||v||§o+||u||%||vy||§+||eo||§o)/52.
This completes the proof of Proposition 5.5. O

5.3. H2-bound

This subsection presents an a priori estimate for the H%-norm of classical solutions to (1.1). When
combined with the W14 estimate in the previous subsection, this bound would result in a global
bound in terms of ||| sc.

Proposition 5.6. If (u, v, 0) is a classical solution of (1.1) emanating from (ug, vo, 6o). Then
d
a(nw)n% +1A013) + IVwylI3 + 116y 113
1 2
<glivenveyl; + CIENS + C(1+ 11602 + IVIZ, + luyll3 + vy 13) (IVel3 + [ A013).

Proof. Dotting V of (5.4) with Vw, multiplying A of the equation for 6 in (1.1) by A6, integrating
over R? and applying the divergence-free condition uy + v y =0, we obtain after integration by parts

33p [ (R + @02) 4 1V0, 1+ 186,13 = 1+ -+ Jo,
where
Ja =/V9x~Va), ]2:—/uxwf, ]3:—/uya)xwy,
Ja=— / Vixwy,  Js=-— / vyws,  Jo=-— / Auby A0,
j7=—/Av9yA0, ]3:—2/VU-V9XA6’, ]9=—2/VV~9yA9.

The rest of the proof is devoted to bounding these terms.
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111 < IV&I2 Vol < = (14015 + [ Voll3).

N =

Using uy + vy =0 and integrating by parts, we obtain

1 2 2 2
J2= —/Va)xwxy < E”‘”X}’”Z + ClvIgo ol
By Lemma 2.2,

1/2 1/2 1/2

1/2 2 2 2
[J31 < Clluyllzlwxlly " Twxy " Twy " Twxy Il < — llwxy Iz + Clluy 51 Voll5.

! |
16
By substituting vy = w4 uy in J4, we have

Ja=1]3 —/U)U)xa)y~

Integration by parts yields
< Loy I3 + Cllol.
16

‘/ WWxWy

J5 can be similarly bounded as J,.

1 2 2 2
[sl < g5 IVeylla + ClivylizIwy ;-

To deal with Jg, we split it into two terms. Integration by parts yields

1
J6 = —/(Au&xexx—i- Aubibyy) = 5 / Auyb; — / Aubybyy
1 2
=-3 AvyOy — | Aubylyy = [ AvOxOxy — | Auby0yy.
Therefore,
1
sl < A )|, 18:V6y ll2 < 75 16:V6y I3 +ClI Vol5.
By integration by parts,
Ji=- /(Vxxeyexx + Vyyeyexx + AV@yny)
= /(vxxy%xx + VaxO0xxy + VyyyO6xx + Vyy06xxy + AVOy0yy).
Thus,

1 1 1
71 < 15 IVey 1% + EnAeyn% + 1616y V6y 15+ C(1+ 160l1%,) (IVell5 + 1A6]5).
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For Jg, we use uy + vy, =0 and integrate by parts to obtain

Jg=—2 /(uxexer + Uybry AB) = =2 /(v@xxyAG + VO Aby + 116y AB).

By Hélder’s inequality and Lemma 2.2,

1 1/2 12 1/2 1/2
|Js|<3—2||A9y||§+6||v||§o||A9||§+C||uy||z||9xy||2/ 16xyxl13 2118611521 A6y 11/

< ]]—GnAeyu% + C(IVIZ, + lluy 15) 12615
To estimate Jg, we need to redistribute the derivatives. By integration by parts,
Jo= —Z/Vv - VOy (Oxx + Oyy)
=2 /(va VOO + Vv - VOy s + Vv, - VO,0), + Vv - VO, ,0,).
Therefore,
Jol < 11—6|||ve||vey|||§ + 11—6||A9y||% +ClIVol3 + ClolZ1Vol;.

Connecting all the estimates, we obtain

E(“V‘””% +1A01I3) + IVay I3 + 1146y 113
1 2
<glvenveyll, + CIENZ 4+ C(1+ 160l% + IVIZ + luyl3 + vy l3) (IVel3 + 1A0]3).
This completes the proof of Proposition 5.6. O

6. Conclusion and discussion

We have investigated the global regularity issue concerning solutions of the 2D Boussinesq equa-
tions with vertical dissipation and vertical thermal diffusion. We established that the vertical velocity
v of any classical solution (u, v, ) must satisfy, for any T > 0,

[ve.ol,<Cq 2<g<oo, 0<t<T

for some constant C depending on T, v, ug, vo and 6y only. On the other hand, if the condition

T 2
v D2
sup ————dt <oo
. 2<g<00 q

is fulfilled, then the corresponding solution preserves its smoothness on [0, T]. In particular,

[ve.0], <Cva (61)
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for some C independent of q is sufficient for the global regularity. It remains open if (6.1) is indeed
satisfied. Some preliminary numerical results computed for (1.1) involving several initial data indicate
that (6.1) is actually true [3].

We have made attempts to verify (6.1). One direction would be to verify that the pressure p
satisfies the global bound, for any T > 0,

[ a<ca. <t 62)
for some constant C independent of r. It is not very hard to check that

v, O3 o2 || 0||
<e 6o l2rt 2r C/ dt
S +C [ 1pl3,

and (6.1) is an immediate consequence of (6.2). The global bounds on p stated in Theorem 3.1 in
Section 3 is not sufficient to prove (6.2). The Sobolev embedding inequality

Ipll2r < Crllpllzllvpllz

generates a coefficient that depends linearly on r. Some potential approaches to prove (6.1) include
the use of the duality of the BMO space and the Hardy space H!. The motivation behind this is to
combine the inequality ||p|lsmo < Cliplly: and the global bound fo |\p|| dt < oo.
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