Homepage of 
JaEun Ku
 
Research Interests 
 - Numerical Analysis 
 
 - Finite Element methods for
     Partial differential equations
 
 - Least-Squares Methods for
     Linear Elasticity problems and Navier-Stokes
     equations
 
 - A posteriori error estimates
 
Contact information 
 - Address: Dept. of Mathematics,
     Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078
     
 
·        
E-mail :
jku@math.okstate.edu
·        
Office: Room 437,
Mathematical Sciences 
Education 
 - Ph.D. in
     Mathematics (August 2004), Cornell University 
 
Thesis
advisor: Professor Lars Wahlbin 
  
ETNA (Electronic
Transactions on Numerical Analysis)
 
Journal of Korean Mathematical
Society
 
Special Issue on recent
advances in numerical methods for system of PDEs
 
 
    Publication
 
 
 - Localized pointwise
     error estimates for direct flux approximation, IMA J. Numer.
     Anal. (to appear)
 
 - Local
     error estimates for least-squares finite element methods for first-order
     system, J. Comput. Appl. Math. 299 (2016),
     92-100.
 
 - (with Z. Cai,
     V. Carey and E. Park), Asymptotically
     exact a posteriori error estimators for first-order div least-squares in
     local and global L2 norm, Comput. Math.
     Appl. 70 (2015), no. 4, 648-659.
 
 - Numerical
     Solutions of nonlinear elliptic problems based on first-order system, Comput. Math. Appl. 69 (2015), no.
     7, 601-609.
 
 - Supercloseness of the mixed finite element method for
     the primary function on unstructered meshes and
     its applications, BIT Numerical Mathematics, BIT Numerical Mathematics, 54
     (2014),
     1087-1097.
 
 - Least-squares
     solutions as solutions of a perturbation form of the Galerkin
     methods: Interior Pointwise error estimates and
     pollution effect, J. Comput. Appl.
     Math,  251 (2013), 67-80.
 
 - A comment on Least-Squares
     Finite Element Methods with minimum regularity assumptions, Int. J. Numer.
     Anal. Model, 10 (2013), 899-903.
 
 -   (with A. Schatz), Local a posteriori
     estimates on a nonconvex polygonal domain,
     SIAM J. Numer. Anal., 50, no. 2,   906-924. 
 
 - (with Z. Cai) 
     Goal-oriented local a posteriori error estimators for H(div) least-squares
     finite element methods, SIAM J. Numer.
     Anal., 49 , no. 6, 2564-2575
 
 -    
     Sharp $L_2$-Norm Error Estimates for First-Order div Least-Squares Methods
     , SIAM J. Numer. Anal., 49 , no. 2, 755-769.
     
 
 -    Pointwise Error Estimates for First-Order div
     Least-Squares Finite Element Methods and Applications to Superconvergence and A Posteriori Error Estimators ,
     SIAM J. Numer. Anal., 49 , no. 2, 521-540. 
 
 -  A
     posteriori error estimates for the primary and dual variables for the div
     first-order least-squares finite element method , Computer Methods in
     Applied Mechanics and Engineering, 200 (2011), Issues 5-8, 830-836. 
 
 - (with Z. Cai)
        Optimal
     Error Estimate for the Div Least-Squares Method with Data $f\in L^2$ and
     Application to Nonlinear Problems, SIAM J. Numer.
     Anal., 47 (2010), no. 6, 4098-4111. 
 
 -    Pointwise error estimates for a stablized
     Galerkin method: non-selfadjoint
     problems, BIT Numerical Mathematics, 50 (2010) no.3, 609-630
 
 -    Maximum
     norm error estimates for div least-squares method for Darcy flows,
     Discrete Contin. Dyn.
     Syst. 26 (2010), no. 4, 1305-1318. 
 
 - (with E. Park)    A
     posteriori error estimators for the first-order least-squares finite
     element method, J. Comput. Appl. Math., 235
     (2010), no. 1, 293-300. 
 
 -  Pointwise error estimates and asymptotic error
     expansion inequalities for a stablized Galerkin method, IMA J. Numer.
     Anal. (2011) 31, 165-187.
 
 -   Weak
     Coupling of solutions of first-order least-squares method, Math.
     Comp., 77(2008), pp. 1323-1332. 
 
 -    A
     Remark on the Coercivity for a First-Order
     Least-Squares Method, Numer. method for
     PDE., 23:6(2007), 1577-1581.