Study Guide for Exam 1

8.7: Distribution functions. Know what is a distribution function. Know how to compute proportion of population with the studied quantity within certain limits. Know what is the cumulative distribution function.
8.8: Probability, mean, and median. Know how to find the probability of a quantity falling within a certain range given a distribution function. Know how to compute mean and median. Know what is the normal distribution.
9.2: Geometric series. Know finite geometric series and infinite geometric series. Know how to compute what is their sum.
10.1: Taylor polynomials. Know how to compute a Taylor polynomial of some degree for a function at a given point.
12.1: Functions of two variables. Know what is a function of two variables. Know how to read a table of values. Know how to plot a point in 3 -space. Know how to compute distance between points. Know what are the coordinate ($x y, y z$, and $x z$) planes, know when a point lies on one of them.
12.2: Graphs of functions of two variables. Know what is a graph of a function of two variables. Be able to identify which graph belongs to which function. Know how to construct a cross section and sketch its graph.
12.3: Contour diagrams. Know what is a contour diagram. Be able to identify a hill, a valley, a saddle. Be able to sketch a cross section based on a contour diagram.
12.4: Linear functions. Know what is a linear function. Know how to find linear function if you know a point on the graph and the slopes in x and y directions. Be able to complete a table of values for a linear functions. Be able to find the graph of a linear function (equation of a plane) through 3 points (when it is possible to discover the x and y slopes).
13.1: Displacement vectors. Know what is a displacement vector and a position vector. Know what is a sum of vectors, what is a scalar multiple of a vector. Know what is the zero vector. Know how to write a vector in components. Know $\vec{l}, \vec{\jmath}, \vec{k}$. Know how to add, subtract, and rescale vectors when written in components. Know how to compute magnitude of vectors in components. Know what is a unit vector and know how to compute a unit vector in the same direction as a given vector.

