
Chapter 7

Power series methods

7.1 Power series
Note: 1 or 1.5 lecture , §3.1 in [EP], §5.1 in [BD]

Many functions can be written in terms of a power series
∞∑

k=0

ak(x − x0)k.

If we assume that a solution of a differential equation is written as a power series, then perhaps we
can use a method reminiscent of undetermined coefficients. That is, we will try to solve for the
numbers ak. Before we can carry out this process, let us review some results and concepts about
power series.

7.1.1 Definition
As we said, a power series is an expression such as

∞∑
k=0

ak(x − x0)k = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · , (7.1)

where a0, a1, a2, . . . , ak, . . . and x0 are constants. Let

S n(x) =

n∑
k=0

ak(x − x0)k = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · + an(x − x0)n,

denote the so-called partial sum. If for some x, the limit

lim
n→∞

S n(x) = lim
n→∞

n∑
k=0

ak(x − x0)k
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248 CHAPTER 7. POWER SERIES METHODS

exists, then we say that the series (7.1) converges at x. Note that for x = x0, the series always
converges to a0. When (7.1) converges at any other point x , x0, we say that (7.1) is a convergent
power series. In this case we write

∞∑
k=0

ak(x − x0)k = lim
n→∞

n∑
k=0

ak(x − x0)k.

If the series does not converge for any point x , x0, we say that the series is divergent.

Example 7.1.1: The series
∞∑

k=0

1
k!

xk = 1 + x +
x2

2
+

x3

6
+ · · ·

is convergent for any x. Recall that k! = 1 · 2 · 3 · · · k is the factorial. By convention we define 0! = 1.
In fact, you may recall that this series converges to ex.

We say that (7.1) converges absolutely at x whenever the limit

lim
n→∞

n∑
k=0

|ak| |x − x0|
k

exists. That is, if the series
∑∞

k=0|ak| |x − x0|
k is convergent. Note that if (7.1) converges absolutely

at x, then it converges at x. However, the opposite is not true.

Example 7.1.2: The series
∞∑

k=1

1
k

xk

converges absolutely at any x ∈ (−1, 1). It converges at x = −1, as
∑∞

k=1
(−1)k

k converges (condition-
ally) by the alternating series test. But the power series does not converge absolutely at x = −1,
because

∑∞
k=1

1
k does not converge. The series diverges at x = 1.

7.1.2 Radius of convergence
If a series converges absolutely at some x1, then for all x such that |x − x0| ≤ |x0 − x1| we have
that |ak(x − x0)k| ≤ |ak(x1 − x0)k| for all k. As the numbers |ak(x1 − x0)k| sum to some finite limit,
summing smaller positive numbers |ak(x − x0)k| must also have a finite limit. Therefore, the series
must converge absolutely at x. We have the following result.

Theorem 7.1.1. For a power series (7.1), there exists a number ρ (we allow ρ = ∞) called the
radius of convergence such that the series converges absolutely on the interval (x0 − ρ, x0 + ρ) and
diverges for x < x0 − ρ and x > x0 + ρ. We write ρ = ∞ if the series converges for all x.
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x0 x0 + ρx0 − ρ

diverges converges absolutely diverges

Figure 7.1: Convergence of a power series.

See Figure 7.1. In Example 7.1.1 the radius of convergence is ρ = ∞ as the series converges
everywhere. In Example 7.1.2 the radius of convergence is ρ = 1. We note that ρ = 0 is another
way of saying that the series is divergent.

A useful test for convergence of a series is the ratio test. Suppose that

∞∑
k=0

ck

is a series such that the limit
L = lim

n→∞

∣∣∣∣∣ck+1

ck

∣∣∣∣∣
exists. Then the series converges absolutely if L < 1 and diverges if L > 1.

Let us apply this test to the series (7.1). That is we let ck = ak(x − x0)k in the test. We let

L = lim
n→∞

∣∣∣∣∣ck+1

ck

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣ak+1(x − x0)k+1

ak(x − x0)k

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ |x − x0|.

Define A by

A = lim
n→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ .
Then if 1 > L = A|x − x0| the series (7.1) converges absolutely. If A = 0, then the series always
converges. If A > 0, then the series converges absolutely if |x− x0| < 1/A, and diverges if |x− x0| > 1/A.
That is, the radius of convergence is 1/A. Let us summarize.

Theorem 7.1.2. Let
∞∑

k=0

ak(x − x0)k

be a power series such that

A = lim
n→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣
exists. If A = 0, then the radius of convergence of the series is ∞. Otherwise the radius of
convergence is 1/A.
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Example 7.1.3: Suppose we have the series

∞∑
k=0

2−k(x − 1)k.

First we compute,

A = lim
k→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣2−k−1

2−k

∣∣∣∣∣∣ = 2−1 = 1/2.

Therefore the radius of convergence is 2, and the series converges absolutely on the interval (−1, 3).

The ratio test does not always apply. That is the limit of
∣∣∣ak+1

ak

∣∣∣ might not exist. There exist more
sophisticated ways of finding the radius of convergence, but those would be beyond the scope of
this chapter.

7.1.3 Analytic functions
Functions represented by series are called analytic functions. Not every function is analytic, although
the majority of the functions you have seen in calculus are.

An analytic function f (x) is equal to its Taylor series∗ near a point x0. That is, for x near x0 we
have

f (x) =

∞∑
k=0

f (k)(x0)
k!

(x − x0)k, (7.2)

where f (k)(x0) denotes the kth derivative of f (x) at the point x0.
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Figure 7.2: The sine function and its Taylor approximations around x0 = 0 of 5th and 9th degree.

∗Named after the English mathematician Sir Brook Taylor (1685 – 1731).

http://en.wikipedia.org/wiki/Brook_Taylor
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For example, sine is an analytic function and its Taylor series around x0 = 0 is given by

sin(x) =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

In Figure 7.2 on the facing page we plot sin(x) and the truncations of the series up to degree 5 and 9.
You can see that the approximation is very good for x near 0, but gets worse for larger x. This is
what will happen in general. To get good approximation far away from x0 you will need to take
more and more terms of the Taylor series.

7.1.4 Manipulating power series
One of the main properties of power series that we will use is that we can differentiate them term by
term. That is Suppose that

∑
ak(x − x0)k is a convergent power series. Then for x in the radius of

convergence we have
d
dx

 ∞∑
k=0

ak(x − x0)k

 =

∞∑
k=1

kak(x − x0)k−1.

Notice that the term corresponding to k = 0 disappeared as it was constant. The radius of conver-
gence of the differentiated series is the same as that of the original.

Example 7.1.4: Let us show that the exponential y = ex solves y′ = y. First write

y = ex =

∞∑
k=0

1
k!

xk.

Now differentiate

y′ =

∞∑
k=1

k
1
k!

xk−1 =

∞∑
k=1

1
(k − 1)!

xk−1.

For convenience we reindex the series by simply replacing k with k + 1. The series does not change,
what changes is simply how we write it. After reindexing the series starts at k = 0 again.

∞∑
k=1

1
(k − 1)!

xk−1 =

∞∑
k=0

1
k!

xk.

That was precisely the power series for ex that we started with, so we showed that d
dxex = ex.

Convergent power series can be added and multiplied together, and multiplied by constants
using the following rules. Firstly, we can add series by adding term by term, ∞∑

k=0

ak(x − x0)k

 +

 ∞∑
k=0

bk(x − x0)k

 =

∞∑
k=0

(ak + bk)(x − x0)k.
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We can multiply by constants,

α

 ∞∑
k=0

ak(x − x0)k

 =

∞∑
k=0

αak(x − x0)k.

We can also multiply series together, ∞∑
k=0

ak(x − x0)k

  ∞∑
k=0

bk(x − x0)k

 =

∞∑
k=0

ck(x − x0)k,

where ck = a0bk + a1bk−1 + · · · + akb0. The radius of convergence of the sum or the product is at
least the minimum of the radii of convergence of the two series involved.

7.1.5 Power series for rational functions

Note that a series for a function only defines the function on an interval. For example, for −1 < x < 1
we have

1
1 − x

=

∞∑
k=0

xk = 1 + x + x2 + · · ·

This series is called the geometric series. The ratio test tells us that the radius of convergence is 1.
The series diverges for x ≤ −1 and x ≥ 1, even though 1

1−x is defined for all x , 1.
Notice that polynomials are simply finite power series. That is a polynomial is a power series

where the ak beyond a certain point are all zero. We can always expand a polynomial as a power
series about any point x0 by writing the polynomial as a polynomial of (x − x0). For example, let us
write 2x2 − 3x + 4 as a power series around x0 = 1:

2x2 − 3x + 4 = 3 + (x − 1) + 2(x − 1)2.

In other words a0 = 3, a1 = 1, a2 = 2, and all other ak = 0. To do this, we know that ak = 0 for
all k ≥ 3. So we write a0 + a1(x − 1) + a2(x − 1)2, we expand, and we solve for a0, a1, and a2. We
could have also differentiated at x = 1 and used the Taylor series formula (7.2).

We can use the geometric series together with rules for addition and multiplication of power
series to expand rational functions around a point, as long as the denominator is not zero at x0. Note
that as for polynomials, we could equivalently use the Taylor series expansion (7.2).

Example 7.1.5: Expand x
1+2x+x2 as a power series around the origin and find the radius of conver-

gence.
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First, write 1 + 2x + x2 = (1 + x)2 =
(
1 − (−x)

)2. Now we compute

x
1 + 2x + x2 = x

(
1

1 − (−x)

)2

= x

 ∞∑
k=0

(−1)kxk


= x

 ∞∑
k=0

ckxk


=

∞∑
k=0

ckxk+1,

where using the formula for product of product of series we obtain, c0 = 1, c1 = −1 − 1 = −2,
c2 = 1 + 1 + 1 = 3, etc. . . . Therefore

x
1 + 2x + x2 =

∞∑
k=1

(−1)k+1kxk = x − 2x2 + 3x3 − 4x4 + · · ·

The radius of convergence is at least 1. We use the ratio test

lim
k→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣ (−1)k+2(k + 1)
(−1)k+1k

∣∣∣∣∣∣ = lim
k→∞

k + 1
k

= 1.

So the radius of convergence is actually equal to 1.

7.1.6 Exercises

Exercise 7.1.1: Is the power series
∞∑

k=0

ekxk convergent? If so, what is the radius of convergence?

Exercise 7.1.2: Is the power series
∞∑

k=0

kxk convergent? If so, what is the radius of convergence?

Exercise 7.1.3: Is the power series
∞∑

k=0

k!xk convergent? If so, what is the radius of convergence?

Exercise 7.1.4: Is the power series
∞∑

k=0

1
(2k)!

(x − 10)k convergent? If so, what is the radius of

convergence?

Exercise 7.1.5: Determine the Taylor series for sin x around the point x0 = π.
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Exercise 7.1.6: Determine the Taylor series for ln x around the point x0 = 1, and find the radius of
convergence.

Exercise 7.1.7: Determine the Taylor series and its radius of convergence of
1

1 + x
around x0 = 0.

Exercise 7.1.8: Determine the Taylor series and its radius of convergence of
x

4 − x2 around x0 = 0.
Hint: you will not be able to use the ratio test.

Exercise 7.1.9: Expand x5 + 5x + 1 as a power series around x0 = 5.

Exercise 7.1.10: Suppose that the ratio test applies to a series
∞∑

k=0

akxk. Show, using the ratio test,

that the radius of convergence of the differentiated series is the same as that of the original series.
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7.2 Series solutions of linear second order ODEs
Note: 1 or 1.5 lecture , §3.1 in [EP], §5.2 and §5.3 in [BD]

Suppose we have a linear second order homogeneous ODE of the form

p(x)y′′ + q(x)y′ + r(x)y = 0. (7.3)

Suppose that p(x), q(x), and r(x) are polynomials. We will try a solution of the form

y =

∞∑
k=0

ak(x − x0)k (7.4)

and solve for the ak to try to obtain a solution defined in some interval around x0.
The point x0 is called an ordinary point if p(x0) , 0. That is, the functions

q(x)
p(x)

and
r(x)
p(x)

(7.5)

are defined for x near x0. If p(x0) = 0, then we say x0 is a singular point. Handling singular points
is harder than ordinary points and so we will focus only on ordinary points.

Example 7.2.1: Let us start with a very simple example

y′′ − y = 0.

Let us try a power series solution near x0 = 0, which is an ordinary point. Every point is an ordinary
point in fact, as the equation is constant coefficient. We already know we should obtain exponentials
or the hyperbolic sine and cosine, but let us pretend we do not know this.

We try

y =

∞∑
k=0

akxk.

If we differentiate, the k = 0 term is a constant and hence disappears. We therefore get

y′ =

∞∑
k=1

kakxk−1.

We differentiate yet again to obtain (now the k = 1 term disappears)

y′′ =

∞∑
k=2

k(k − 1)akxk−2.
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We reindex the series (replace k with k + 2) to obtain

y′′ =

∞∑
k=0

(k + 2) (k + 1) ak+2xk.

Now we plug y and y′′ into the differential equation

0 = y′′ − y =

( ∞∑
k=0

(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k=0

akxk

)
=

∞∑
k=0

(
(k + 2) (k + 1) ak+2xk − akxk

)
=

∞∑
k=0

(
(k + 2) (k + 1) ak+2 − ak

)
xk.

As y′′ − y is supposed to be equal to 0, we know that the coefficients of the resulting series must be
equal to 0. Therefore,

(k + 2) (k + 1) ak+2 − ak = 0, or ak+2 =
ak

(k + 2)(k + 1)
.

The above equation is called a recurrence relation for the coefficients of the power series. It did
not matter what a0 or a1 was, they can be arbitrary. But once we pick a0 and a1, then all other
coefficients are determined by the recurrence relation.

So let us see what the coefficients must be. First, a0 and a1 are arbitrary

a2 =
a0

2
, a3 =

a1

(3)(2)
, a4 =

a2

(4)(3)
=

a0

(4)(3)(2)
, a5 =

a3

(5)(4)
=

a1

(4)(3)(2)
, . . .

So we note that for even k, that is k = 2n we get

ak = a2n =
a0

(2n)!
, (7.6)

and for odd k, that is k = 2n + 1 we have

ak = a2n+1 =
a1

(2n + 1)!
. (7.7)

Let us write down the series

y =

∞∑
k=0

akxk =

∞∑
n=0

(
a0

(2n)!
x2n +

a1

(2n + 1)!
x2n+1

)
= a0

∞∑
n=0

1
(2n)!

x2n + a1

∞∑
n=0

1
(2n + 1)!

x2n+1.

Now we recognize the two series as the hyperbolic sine and cosine. Therefore,

y = a0 cosh x + a1 sinh x.
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Of course, in general we will not be able to recognize the series that appears, since usually there
will not be any elementary function that matches it. In that case we will be content with the series.

Example 7.2.2: Let us do a more complex example. Suppose we wish to solve Airy’s equation†,
that is

y′′ − xy = 0,

near the point x0 = 0. Note that x0 = 0 is an ordinary point.
We try

y =

∞∑
k=0

akxk.

We differentiate twice (as above) to obtain

y′′ =

∞∑
k=2

k (k − 1) akxk−2.

Now we plug into the equation

0 = y′′ − xy =

( ∞∑
k=2

k (k − 1) akxk−2
)
− x

( ∞∑
k=0

akxk

)
=

( ∞∑
k=2

k (k − 1) akxk−2
)
−

( ∞∑
k=0

akxk+1
)
.

Now we reindex to make things easier to sum

0 = y′′ − xy =

(
2a2 +

∞∑
k=1

(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k=1

ak−1xk

)
.

= 2a2 +

∞∑
k=1

(
(k + 2) (k + 1) ak+2 − ak−1

)
xk.

Again y′′ − xy is supposed to be 0 so first we notice that a2 = 0 and also

(k + 2) (k + 1) ak+2 − ak−1 = 0, or ak+2 =
ak−1

(k + 2)(k + 1)
.

Now we jump in steps of three. First we notice that since a2 = 0 we must have that, a5 = 0, a8 = 0,
a11 = 0, etc. . . . In general a2+3n = 0.

The constants a0 and a1 are arbitrary and we obtain

a3 =
a0

(3)(2)
, a4 =

a1

(4)(3)
, a6 =

a3

(6)(5)
=

a0

(6)(5)(3)(2)
, a7 =

a4

(7)(6)
=

a1

(7)(6)(4)(3)
, . . .

†Named after the English mathematician Sir George Biddell Airy (1801 – 1892).

http://en.wikipedia.org/wiki/George_Biddell_Airy
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For ak where k is a multiple of 3, that is k = 3n we notice that

a3n =
a0

(2)(3)(5)(6) · · · (3n − 1)(3n)
.

For ak where k = 3n + 1, we notice

a3n+1 =
a1

(3)(4)(6)(7) · · · (3n)(3n + 1)
.

In other words, if we write down the series for y we notice that it has two parts

y =

(
a0 +

a0

6
x3 +

a0

180
x6 + · · · +

a0

(2)(3)(5)(6) · · · (3n − 1)(3n)
x3n + · · ·

)
+

(
a1x +

a1

12
x4 +

a1

504
x7 + · · · +

a1

(3)(4)(6)(7) · · · (3n)(3n + 1)
x3n+1 + · · ·

)
= a0

(
1 +

1
6

x3 +
1

180
x6 + · · · +

1
(2)(3)(5)(6) · · · (3n − 1)(3n)

x3n + · · ·

)
+ a1

(
x +

1
12

x4 +
1

504
x7 + · · · +

1
(3)(4)(6)(7) · · · (3n)(3n + 1)

x3n+1 + · · ·

)
.

We define

y1(x) = 1 +
1
6

x3 +
1

180
x6 + · · · +

1
(2)(3)(5)(6) · · · (3n − 1)(3n)

x3n + · · · ,

y2(x) = x +
1

12
x4 +

1
504

x7 + · · · +
1

(3)(4)(6)(7) · · · (3n)(3n + 1)
x3n+1 + · · · ,

and write the general solution to the equation as y(x) = a0y1(x) + a1y2(x). Notice from the power
series that y1(0) = 1 and y2(0) = 0. Also, y′1(0) = 0 and y′2(0) = 1. If we obtained a solution that
satisfies the initial conditions y(0) = a0 and y′(0) = a1.

The functions y1 and y2 cannot be written in terms of the elementary functions that you know.
See Figure 7.3 for the plot of the solutions y1 and y2. These functions have very intersting properties.
For example, they are oscillatory for negative x and for positive x they grow without bound.

Sometimes at least on of the solutions turns out to be a polynomial.

Example 7.2.3: Let us find a solution to the so-called Hermite’s equation of order n‡ is the equation

y′′ − 2xy′ + 2ny = 0.

Let us find a solution around the point x0 = 0. We try

y =

∞∑
k=0

akxk.

‡Named after the French mathematician Charles Hermite (1822–1901).

http://en.wikipedia.org/wiki/Hermite
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Figure 7.3: The two solutions y1 and y2 to Airy’s equation.

We differentiate (as above) to obtain

y′ =

∞∑
k=1

kakxk−1,

y′′ =

∞∑
k=2

k (k − 1) akxk−2.

Now we plug into the equation

0 = y′′ − 2xy′ + 2ny =

( ∞∑
k=2

k (k − 1) akxk−2
)
− 2x

( ∞∑
k=1

kakxk−1
)

+ 2n
( ∞∑

k=0

akxk

)
=

( ∞∑
k=2

k (k − 1) akxk−2
)
−

( ∞∑
k=1

2kakxk

)
+

( ∞∑
k=0

2nakxk

)
=

(
2a2 +

∞∑
k=1

(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k=1

2kakxk

)
+

(
2na0 +

∞∑
k=1

2nakxk

)
= 2a2 + 2na0 +

∞∑
k=1

(
(k + 2) (k + 1) ak+2 − 2kak + 2nak

)
xk.

As y′′ − 2xy′ + 2ny = 0 we have

(k + 2) (k + 1) ak+2 + (−2k + 2n)ak = 0, or ak+2 =
(2k − 2n)

(k + 2)(k + 1)
ak.

This recurrence relation actually includes a2 = −na0 (which comes about from 2a2 + 2na0 = 0).
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Again a0 and a1 are arbitrary.

a2 =
2n

(2)(1)
a0, a3 =

2(1 − n)
(3)(2)

a1,

a4 =
2(2 − n)
(4)(3)

a2 =
22(2 − n)(−n)
(4)(3)(2)(1)

a0,

a5 =
2(3 − n)
(5)(4)

a3 =
22(3 − n)(1 − n)

(5)(4)(3)(2)
a1, . . .

Let us separate the even and odd coefficients. We find that

a2m =
2m(−n)(2 − n) · · · (2m − 2 − n)

(2m)!
,

a2m+1 =
2m(1 − n)(3 − n) · · · (2m − 1 − n)

(2m + 1)!
.

Let us write down the two series, one with the even powers and one with the odd.

y1(x) = 1 +
2(−n)

2!
x2 +

22(−n)(2 − n)
4!

x4 +
23(−n)(2 − n)(4 − n)

6!
x6 + · · · ,

y2(x) = x +
2(1 − n)

3!
x3 +

22(1 − n)(3 − n)
5!

x5 +
23(1 − n)(3 − n)(5 − n)

7!
x7 + · · · .

We then write
y(x) = a0y1(x) + a1y2(x). (7.8)

We also notice that if n is a positive even integer, then y1(x) is a polynomial as all the coefficients
in the series beyond a certain degree are zero. If n is a positive odd integer, then y2(x) is a polynomial.
For example if n = 4, then

y1(x) = 1 +
2(−4)

2!
x2 +

22(−4)(2 − 4)
4!

x4 = 1 − 4x2 +
4
3

x4. (7.9)

7.2.1 Exercises
In the following exercises, when asked to solve an equation using power series methods, you should
find the first few terms of the series, and if possible find a general formula for the kth coefficient.

Exercise 7.2.1: Use power series methods to solve y′′ + y = 0 at the point x0 = 1.

Exercise 7.2.2: Use power series methods to solve y′′ + 4xy = 0 at the point x0 = 0.

Exercise 7.2.3: Use power series methods to solve y′′ − xy = 0 at the point x0 = 1.

Exercise 7.2.4: Use power series methods to solve y′′ + x2y = 0 at the point x0 = 0.
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Exercise 7.2.5: The methods work for other orders than second order. Try the methods of this
section to solve the first order system y′ − xy = 0 at the point x0 = 0.

Exercise 7.2.6 (Chebyshev’s equation of order p): a) Solve (1 − x2)y′′ − xy′ + p2y = 0 using power
series methods at x0 = 0. b) For what p is there a polynomial solution.

Exercise 7.2.7: Find a polynomial solution to (x2 +1)y′′−2xy′+2y = 0 using power series methods.

Exercise 7.2.8: a) Use power series methods to solve (1 − x)y′′ + y = 0 at the point x0 = 0. b) Use
the solution to part a) to find a solution for xy′′ + y = 0 around the point x0 = 1.


