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Hypersurface in C"

Any smooth hypersurface M can be locally written as

n
Imw=> €lz>+ E(z,%,Rew)
=1

for E € O(3), and ¢; = —1,0, 1.
The form 377 ; €; |2j|® is the Levi-form at the origin.
Define manifold with boundary H, by
n
Imw > Zej z|> + E(2, %, Re w)
j=1

If fe O(Hy \ M)N C*®(H,), then f has to be CR, that is,
let Ty M = spanc { %, &5} N COT,M

f: M — C is CR whenever vf = 0 for every v € I'( T%! M)



n n
M : Imw:Z€j|Zj|2+E H, : ImeZ€j|zj|2+E
j=1 Jj=1
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Lewy extension

n n
M: Imw=) ¢lz|°+E H : Imw>> ¢lgz*+E

Theorem (Lewy extension)

Let M,H, C C*, n > 2, be as above. There exists a
neighbourhood U of the origin such that given any
f € CR(M)n C®(M) we have:

(i) If the Levi-form at the origin has a positive etgenvalue,
there exists FF € C®(HyNU)YNO((Hy N U)\ M) such
that F|ynu = flunu

(ii) If the Leuvi-form at the origin has eigenvalues of both
signs, there exists F' € O(U) such that F|ynv = flunu




Write coordinates as (z,s) € C™ x R.

4/19



Hypersurfaces in C" x R

Write coordinates as (z,s) € C™ x R.

Call the sets C™ x {s} the leaves of C" x R.
For X C C™ x R define X(5) = {2 € C" | (2,s) € X}



Hypersurfaces in C™* x R

Write coordinates as (z,s) € C™ x R.

Call the sets C™ x {s} the leaves of C" x R.
For X C C™ x R define X(5) = {2 € C" | (2,s) € X}

Let M C C™ x R be a smooth real hypersurface.
TS’IM = spangc {B%C} NCRT,M = TS’IM(S)



Hypersurfaces in C™* x R

Write coordinates as (z,s) € C™ x R.

Call the sets C™ x {s} the leaves of C" x R.
For X C C™ x R define X(5) = {2 € C" | (2,s) € X}

Let M C C™ x R be a smooth real hypersurface.
TS’IM = spangc {B%C} NCRT,M = TS’IM(S)

M is CR at p if dim Tg’lM is constant on M near p.
Let Mcg be the set of CR points of M.

Otherwise M has a CR singularity at p.



Hypersurfaces in C™* x R

Write coordinates as (z,s) € C™ x R.

Call the sets C™ x {s} the leaves of C" x R.
For X C C™ x R define X(5) = {2 € C" | (2,s) € X}

Let M C C™ x R be a smooth real hypersurface.
TS’IM = spangc {B%C} NCRT,M = TS’IM(S)

M is CR at p if dim Tg’lM is constant on M near p.
Let Mcg be the set of CR points of M.
Otherwise M has a CR singularity at p.

f € C®(M)is CRif vf =0 for all v € I'(T%' Mcg).



Hypersurfaces in C™* x R

Write coordinates as (z,s) € C™ x R.

Call the sets C™ x {s} the leaves of C" x R.
For X C C™ x R define X(5) = {2 € C" | (2,s) € X}

Let M C C™ x R be a smooth real hypersurface.
TS’IM = spangc {B%C} NCRT,M = TS’IM(S)

M is CR at p if dim Tg’lM is constant on M near p.
Let Mcg be the set of CR points of M.

Otherwise M has a CR singularity at p.

f € C®(M)is CRif vf =0 for all v € I'( T%! Mcg).

(Equivalently, vf = 0 for all v € I'(C ® TM) where v, € T;,? M
for all p).



Extension in the CR case

Theorem (Special case of Hill-Taiani '84)

Let M C C" xR, n > 2, be a real smooth CR hypersurface
of CR dimension n — 1 (not complez). Let p = (2, 50) € M.
Then there exists a neighborhood U C C™ x R of p, such
that given a smooth CR function f: M — C, we have:

(1) If the Levi-form of M(s,) at z has at least one positive
etgenvalue, and H. 1s the side of M wn U
corresponding to the positive eigenvalue, then there
ezists a smooth function F': H. — C, which is CR in
Hy\ M, and f|unv = Flunu-

(ii) If the Levi-form of M, at z has eigenvalues of both
signs, then there exists a smooth CR function
F:U— (C, such that f|MﬂU = F|M("|U.




CR singular submanifolds

Real dimension 2 CR singular manifolds in C? first studied by
Bishop.

Later by Moser-Webster, Moser, Kenig-Webster, Gong,
Huang-Krantz, Huang, Huang-Yin, etc...

Mostly interested in normal form.



CR singular submanifolds

Real dimension 2 CR singular manifolds in C? first studied by
Bishop.

Later by Moser-Webster, Moser, Kenig-Webster, Gong,
Huang-Krantz, Huang, Huang-Yin, etc...

Mostly interested in normal form.

In two dimensions we (at least formally) can generally realize
such manifolds as real hypersurfaces in C x R.



CR singular submanifolds

Real dimension 2 CR singular manifolds in C? first studied by
Bishop.

Later by Moser-Webster, Moser, Kenig-Webster, Gong,
Huang-Krantz, Huang, Huang-Yin, etc...

Mostly interested in normal form.

In two dimensions we (at least formally) can generally realize
such manifolds as real hypersurfaces in C x R.

Higher dimensions far less understood.

See e.g. Huang-Yin, Burcea, Gong-L.,
Dolbeault-Tomassini-Zaitsev, Coffman, Slapar,
(and of course L.-Noell-Ravisankar), etc...

In C™ for m > 2 generally a codimension 2 submanifold is not
realizable as a submanifold of C™ ! x R.



CR singular submanifolds

Real dimension 2 CR singular manifolds in C? first studied by
Bishop.

Later by Moser-Webster, Moser, Kenig-Webster, Gong,
Huang-Krantz, Huang, Huang-Yin, etc...

Mostly interested in normal form.

In two dimensions we (at least formally) can generally realize
such manifolds as real hypersurfaces in C x R.

Higher dimensions far less understood.

See e.g. Huang-Yin, Burcea, Gong-L.,
Dolbeault-Tomassini-Zaitsev, Coffman, Slapar,
(and of course L.-Noell-Ravisankar), etc...

In C™ for m > 2 generally a codimension 2 submanifold is not
realizable as a submanifold of C™ ! x R.

In early 20th century several authors considered extensions of
holomorphic functions (e.g. Hartogs phenomenon) in C" x R*
(e.g. Bochner, Brown, Severi, etc...)



CR singular hypersurface in C" x R

Let M C C™ x R be a hypersurface with a CR singularity.
Write M as
s = Q(Z, Z) + E(Z, 2)

where @ is a real quadratic form, and £ € O(3).
If @ is nondegenerate then the CR singularity is isolated.



CR singular hypersurface in C" x R

Let M C C™ x R be a hypersurface with a CR singularity.
Write M as
s=Q(2,Z)+ E(z,2)
where @ is a real quadratic form, and £ € O(3).
If @ is nondegenerate then the CR singularity is isolated.

Write Q(z,2) = A(z,Zz) + B(z, 2) + B(z, 2)
for Hermitian form A and bilinear B.



CR singular hypersurface in C" x R

Let M C C™ x R be a hypersurface with a CR singularity.
Write M as

s=Q(2,Z)+ E(z,2)
where @ is a real quadratic form, and £ € O(3).
If @ is nondegenerate then the CR singularity is isolated.
Write Q(z,2) = A(z,Zz) + B(z, 2) + B(z, 2)
for Hermitian form A and bilinear B.

Suppose A is nondegenerate and diagonalize
a n
S:Z]zj\z— Z \zjjz—|—B(z,z)+B(z,z)+E(z,2),
J=1 j=a+1

We can’t generally also diagonalize B (unless a = n).



CR singular hypersurface in C" x R

Let M C C™ x R be a hypersurface with a CR singularity.
Write M as

s=Q(2,Z)+ E(z,2)
where @ is a real quadratic form, and £ € O(3).
If @ is nondegenerate then the CR singularity is isolated.

Write Q(z,2) = A(z,Zz) + B(z, 2) + B(z, 2)
for Hermitian form A and bilinear B.

Suppose A is nondegenerate and diagonalize
a n
S:Z]zj\z— Z \zjjz—|—B(z,z)+B(z,z)+E(z,2),
j=1 j=at1
We can’t generally also diagonalize B (unless a = n).

Define manifold with boundary H, by

a n
s> > |z — > |5l*+ B(z,2) + B(z,2) + E(z,2)
j=1 j=a+1



CR singular extension

)
)

Wl

H+ 28 Z E?:l’zj‘z_Z;L:a+l‘zj|2+B(z:z)+B(Z7z)+E(z;
M: s=3711%* - Xj—ailzl? + B(z,2) + B(z, 2) + E(z,

wlI

Theorem (L.-Noell-Ravisankar)

Suppose @ is nondegenerate.
Then there exists a neighborhood U of the origin, such that
gwen a smooth CR function f: M — C:
(i) If a > 2, then there exists a function F € C*(Hy N U)
such that F' is CR on (Hy \ M)N U and
Flunu = flunu-
(ii) If a > 2 and n — a > 2, then there ezists a CR
function F € C*®(U) such that F|ynv = flunu-

In either case, F' has a formal power series in z and w at 0.




Some sort of nondegeneracy is necessary

Define M by s = ||z||*.
The function +/s is smooth on M (it equals ||z||? on M).

It is CR, and the unique extension to H, is 4/s, not smooth at
the origin.



CR case: one nonzero eigenvalue is necessary

Define M C C2 xR and f by

e—l/s2

mz=slaf, flzs) =] ate 1570
0 ifs=0.

The Levi-form is only zero when s = 0, and the extension of f
to neither side is possible near the origin.



CR singular case: two eigenvalues of the same sign are
necessary

Define M C C2 x R and f by

1,-1/s%
e /s if s >0,

M: s=|al*—|zf, f(zs) =10 if 5 =0,
Le s ifs<o.

f is smooth, CR, and cannot be extended to either side because
of the poles.



CR singular case: two eigenvalues of the same sign are
necessary

Define M C C2 x R and f by

%6*1/32 if s >0,
M: s=|al*—|zf, f(zs) =10 if 5 =0,
Le s ifs<o.

f is smooth, CR, and cannot be extended to either side because
of the poles.

(To see that f is smooth suppose s > 0. Write

2
f(z,|z]* = |2)?) = L e=1/(In’~12")"  Derivatives are of the

21
- 2
form % e~ (al -zl ,and as s > 0, then
zf (|z]"—122[7)

1
21

—t )
= lal —|zl*



Two eigenvalues of both signs needed for extension to
a neighbourhood

Define M C C3 x R and f by

0 ifs>0
L 2 2 2 _ 2 0,
M: s=|al"+|z|" - =",  f(z,s) {16_1/32 s <0

23

Again, f is smooth and CR.
And f extends above M, but not below M.



There exists an example that extends only to one side
at every point.

Let M C C? xR be

s =l|af + |2 = ||2]1%

g: S C C?2 = C a smooth CR function not extending to the
outside of S3 through any point (e.g. Catlin or Hakim-Sibony).

“1/s? [z
flas) =] IR He<O
0 if s =0,

is smooth, CR, extends above M (to H,), but not below
through any point.



Extension fails in n = 1.

Let M C C x R be a nonparabolic Bishop surface
s = |z|* + Az% + Az?, (where 0 < A < 00 and X # 1).

Define a smooth f: C — R that is zero on the first quadrant of
C and positive elsewhere.

Parametrize M by z, then f(z, z) is smooth on M.
The CR condition is vacuous.



Extension fails in n = 1.

Let M C C x R be a nonparabolic Bishop surface
s = |z|* + Az% + Az?, (where 0 < A < 00 and X # 1).

Define a smooth f: C — R that is zero on the first quadrant of
C and positive elsewhere.

Parametrize M by z, then f(z, z) is smooth on M.
The CR condition is vacuous.

For every s # 0, the leaf
(Hi)s) ={z €C|s > |z| + Az® + Az%}

is either empty, or has part of its boundary in the first
quadrant. So f cannot extend.
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Levi-form on the leaves

There are two problems for the extension:
1) existence of the extension

2) regularity up to the boundary

For the first problem, the two eigenvalues are needed.

M: s=A(z,Z)+ B(z,2) + B(z,2) + E(z,2)

If A has two positive eigenvalues, then the Levi-form of My
has at least one positive eigenvalues.
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Proof of the theorem

1) Solve the problem for homogeneous polynomial CR functions
on the model manifold s = Q(z, z).

2) Iterate the above to obtain a formal power series solution.

3) Construct families of analytic discs inside a single leaf
attached to CR points of M shrinking to a CR point of M.

4) Apply Kontinuitdtssatz to find an extension F. (technicality:
proving single valuedness, M) and (H,)(,) need not be
connected, and (H, )(s) may not be simply connected.)

5) Prove regularity at the CR points using Hill-Taiani.



Proof of the theorem, cont. _

6) Prove that F' is continuous up to the CR singularity.
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6) Prove that F' is continuous up to the CR singularity.

7) Suppose M given by s = p(z, z). Parametrize M by z and
differentiate f outside the origin.

fy = (Fs|u)pz

Division works formally at the origin by the formal solution.
By Malgrange F|y is smooth. Similarly F |y is smooth.



Proof of the theorem, cont.

6) Prove that F' is continuous up to the CR singularity.
7) Suppose M given by s = p(z, z). Parametrize M by z and

differentiate f outside the origin.

fzj = (Fs’M)PzJ
Division works formally at the origin by the formal solution.
By Malgrange F|y is smooth. Similarly F |y is smooth.

8) Fs|m and Fy |y are smooth CR functions, therefore their
extensions are continuous up to the boundry. Now iterate.
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Notes/Questions...

In the real-analytic (or formal) case functions always extend if
A is nondegenerate (previous work)

Not sure how much nondegeneracy is necessary.

Question: Is isolated singularity needed?
Is nondegeneracy of @ needed?
(It is not in the real-analytic/formal case).

Question: Is the nondegeneracy of A needed?
(we needed this in the real-analytic/formal case,
though it does not seem totally necessary)



Thank you

19/19



