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Suppose M C R” is a domain and f: M — C is real-analytic.

= Jadomain V CC", M C V, and F: V — C holomorphic
such that F|y = f. (We say f extends holomorphically)

May not work if M is another submanifold. Two examples:

(a) Consider M = {z € C? |Imz =0}, f: M — C given by
f(z) =Rez.
= f does not extend holomorphically.

(b) Consider M = {z € C? | z, = |z|*}, f: M — C given by
f(Z) = 2.

= f does not extend holomorphically.

Note: all my submanifolds are embedded, all issues considered are
local, and everything is real-analytic.
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CR vectors

Let M C C™ be a submanifold, write

15} 15}
01nrs
T, M = <(C® TpM> ﬂspanc{azl p,...,azn‘p}
Def.: M is CR if
Tl M = T}?’lM 1s a vector bundle.

peEM

E.g. every real hypersurface is a CR submanifold.

F' is holomorphic = g—g =0.
- if M is CR, = L(F|y) =0VL € T(T M).

Def.: f: M — Cis CRif Lf =0 VL € I'(T% M).
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Theorem (Severi)

Suppose M C C™ s a real-analytic CR submanifold and
f: M — C is a real-analytic CR function.
= f extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and z
(both f and the defining functions for M).

Step 2) Use the defining functions of M to solve for as many of the
zs as possible, and plug that into the expression for f.

Step 3) That f is killed by the CR vector fields magically means
that f does not depend on the remaining Zzs.

Step 4) ...
Step 5) Profit!
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Example:

Suppose M C C? is a real-analytic real hypersurface.
Write M as
W = é(zx 27 ’LU),

and consider a real-analytic CR function f(z, z, w, ).
Treat z and W as independent. (Z # z, W # W )

Write
F(z,z,w) = f(z,%,w,®(2,z,w))

Find CR vector field:

0,028
8z 8z Bw
LF =0 =
8

—F=0.
0z

DO’ne./ (there’s a technicality or two in there, but overall that’s the idea)
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CR singular submanifolds

Def.: If M is not CR, then M is CR singular.

Def.: f: M — Cis CR if Lf = 0 for all vector fields L that are
CR (L|, € Ty' M ¥p € M).

A function f: M — C is CR if and only if it is CR on the CR
submanifold Mcr C M (Mcr = “CR points of M)

E.g. M ={w = |z|*} C C2 f = z does not extend
(Zlf=1#0)

You could even take f = 22 to make %|0f =0,
but f still does not extend.

There are no CR. vector fields,
and you can’t easily solve for Z and w in terms of 2z and w:
- w _
z=—, W=w
z
Extra conditions needed on f here (codimension 2 in C?).

We will switch to C3, where there is an actual CR vector field.
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Some previous work

Harris (’78) provides a complete (but difficult to apply)
criterion for f on an arbitrary CR singular M to be a
restriction of a holomorphic function in C*% case.

In ’11 we (L.-Minor-Shroff-Son-Zhang) proved that if a
real-analytic CR singular manifold M = ¢(N) for a
real-analytic CR map

p: NCC"—>C"

of a CR submanifold N, and g is a diffeomorphism onto
@(N) = M, then there exists a real-analytic CR function on M
that does not extend holomorphically.

In '16 we (L.—Noell-Ravisankar) proved that a real-analytic
codimension 2 real-analytic CR singular manifold in C" (n > 3)
that is flat (subset of C"~! x R) and nondegenerate has the
extension property.
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Main theorem setup

A CR singular submanifold of codimension 2 in C? is written as
(after a rotation by a unitary)

(2,2)
= Q(Z, 53) + E(zi 2)
=2*Az + 2Bz + 2'Cz + E(z, 2),

w =

B~

(z,w) €C?xC,  pis O(2])?,  Eis O(||z[*).

A, B, C, 2 x 2 complex matrices,
z column vector,
B, C symmetric.

M can be parametrized by z (and z)



Normal forms

Adam Coffman (’09) has a normal form of @ up to local
biholomorphisms (and it is a rather long list).

This was extremely useful.



Normal forms

Adam Coffman (’09) has a normal form of @ up to local
biholomorphisms (and it is a rather long list).

This was extremely useful.

This might be a good place to note that normal forms for
codimension 2 CR singular manifolds has a long history:

C?: Bishop '65, Moser—Webster ’83, Moser '85, Kenig—Webster
'82, Gong '94, Huang—Krantz 95, Huang—Yin '09, Slapar ’16,
etc...

C™ (n > 3) Dolbeault—-Tomassini-Zaitsev '05, '11, Huang-Yin
'09, 16, '17, Burcea ’13, Gong-L. '15, Fang—Huang ’18.



Coffman'’s table

976 A. COFFMAN
TABLE 1. Normal forms for Theorem 7.1
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G2 (5o 1 b>0 N
G 0 4
© (5 1 b>0 0
v (b 2 In(d) >0 L
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Main theorem

MCC? (z,u)eC*xC
M:w=p(z,2) = Q(2,2) + E(2,2) = 2* Az + 2t Bz + 2' Cz + E(z,2)
Theorem (L.—Noell-Ravisankar)

Suppose
null A* N null B = {0}

If f(z,Z2) s real-analytic CR function defined near the
origin, then f extends holomorphically near the origin.
That s, 3 F(z,w) such that

f(Z,Z) = F(Z,p(Z,Z)).




The quadric

Theorem (L.—Noell-Ravisankar)
Suppose M C C3 is a quadric given by

w= Q(z2,2) =2*Az+ 2tBz + 2’ Cz

Assume 8Q % 0. TFAE:

(a) null A* Nnull B = {0}

(b) For every CR polynomial f(z,Z),
3! holomorphic polynomial F(z,w) such that
f(z,2) = F(z, Q(z,2)).

If f 1s homogeneous, then F' 1s weighted homogeneous.
(c) EBvery CR real-linear h(z,Z) is holomorphic
(does not depend on z).




The difficulty

Consider f(z,z) on
w=z2+2Z+2+2 (B=I1,A=0,E

Solve for say z;:

2= £yJw— 2+ 22+ 2
We can get rid of all but the first power of 2;:

f = Ol(Zl, 22, W, z2) + 21,3(2«'1, 22, W, z2)



The difficulty

Consider f(z,z) on

w=z'+2+2z2+z22 (B=I1,A=0,E=

Solve for say z;:

2= £yJw— 2+ 22+ 2
We can get rid of all but the first power of 2;:

f = Ol(Zl, 22, W, z2) + 21,3(21, 22, W, z2)

Lf =0 (CR vector field) must get rid of not only the
dependence on 2; in «,
but also force § = 0.



Optimal conditions

Fix Q, 8Q # 0, and suppose null A* Nnull B # {0}.
Let

f =11z — 12,
where (v, v2) is a nonzero vector in null A* N null B.

Then f is not a restriction to M of a holomorphic function
(in any neighborhood of the origin)



Everything in 2

As M is a graph of w over z:

w = p(z,2),
write everything on M in terms of z.
A function on M is a function f(z, z).
The CR vector field in terms of z as a parameter on M is
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Everything in 2

As M is a graph of w over z:

w = p(z,2),
write everything on M in terms of z.
A function on M is a function f(z, z).

The CR vector field in terms of z as a parameter on M is
0 0
L = P5.—— — P35, ——
Pz 9z Pz 9%

Normally to complexify in C3: we consider (z, Z, w, @) in CS.
But we only need to complexify into C° and consider (z, z, w).



If 5Q = 0, things can be complicated.
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If 5Q = 0, things can be complicated.

E =0) M is complex and every “CR function” extends
holomorphically.
So for some E we may have extension.

E =||z||*) M is given by
4 2 2)2
w=|z]" = (|a]" + |2[)

and
f(z,2) = |lz|* = |z’ + ||

is CR but equal to /w on M, so does not extend.
So for some E we do not have extension.
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Suppose null A* Nnull B # {0}.

E = 0) Extension does not hold. E.g. if

W= Z12

then 7 is CR as the CR vector field is L = — 2,2

82Zs

Note: The theorem is an if-and-only-if when E = 0.



null A* N null B # {0}

Suppose null A* Nnull B # {0}.
E = 0) Extension does not hold. E.g. if
W= Z12

then 7 is CR as the CR vector field is L = — 2,2

82Zs

Note: The theorem is an if-and-only-if when E = 0.

E #0) Extension may or may not hold depending on E. E.g. if
w =212+ 223
then extension holds (explicit computation), but if
_ = =3
W =212+ 2

then extension does not hold (z; again).



Proof outline

The proof has the following outline:
Step 1) Prove theorem for homogeneous polys. and quadrics.
Step 2) Prove a formal extension theorem.
Step 3) Prove that in C2? a formal solution is convergent.
)

Step 4) Use this to prove convergence of F' in C3.
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Proof sketch for the quadrics I

Suppose Q % 0 and M is a quadric:
w=Q(z2,2) = 2*Az + 2tBz + 2! Cz.

Suppose f(z,z) is a homogeneous polynomial that is CR.

There are two cases:
B #0) Let’s tackle that one first.
B = 0) Special case, needs to be handled differently.
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The remainder in Weierstrass is unique:
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everywhere.



Proof sketch for the quadrics II (B # 0)

If B # 0, then it can be diagonalized by a transformation in z:
Q(2,2) = 2*Az + 22 + €22 + 2" C2

where € = 0, 1.

Weierstrass division algorithm (using z;) says

f(2,2) = h(2,2,w)(Q(2,2) — w) + a(z, 22, w) + B(2, 22, w)Z.

The remainder in Weierstrass is unique:
Any equality on M, as long z; appears up to first power holds
everywhere.

f equals a holomorphic polynomial g(z,w) if and only if
a+ Bz — g =0, or in other words if

oz =0, and B

I
o



Proof sketch for the quadrics III (B # 0)

Solving Lf = 0 we get differential equations for a and g,
in fact a single equation for S.

Then it is an almost-undergraduate-first-order-DE computation
to find for which coefficients in A (and B) do we get a
polynomial solution.



Proof sketch for the quadrics III (B # 0)

Solving Lf = 0 we get differential equations for a and g,
in fact a single equation for S.

Then it is an almost-undergraduate-first-order-DE computation
to find for which coefficients in A (and B) do we get a
polynomial solution.

QED!



Proof sketch for the quadrics IV (B = 0)

Let L be the CR vector field.

Proof outline.

Step 1) For each degree d, compute L as a matrix taking
homogeneous polynomials of fixed degree to themselves.

Step 2) Compute the dimension of the kernel of L for each d.

Step 3) Compute the dimension of weighted homogeneous
polynomials F'(z, w) of degree d.

Step 4) ... the two dimensions match!
(if the nullspace condition is met)

Step 5) QED!



Matrix for L in degree 3

QG

52
1

2

21212,

2212,

N
QA

212 Z
212221

3
K

2
2

2
212y

022
2%

34

_3p

7,12 z
2z
2127

2

_2p

P



One subblock, degree 9
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Thanks for listening!
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