Severi's theorem for codimension two CR singular submanifolds of \mathbb{C}^3

Jiří Lebl joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University

Complexification

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is $\operatorname{Im} z = 0$). Suppose $M \subset \mathbb{R}^n$ is a domain and $f \colon M \to \mathbb{C}$ is real-analytic. $\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F \colon V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)

Complexification

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is Im z = 0).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f \colon M \to \mathbb{C}$ is real-analytic.

 $\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F \colon V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)

May not work if M is another submanifold. Two examples:

- (a) Consider $M=\{z\in\mathbb{C}^2\mid {
 m Im}\ z_2=0\}, f\colon M o\mathbb{C}$ given by $f(z)={
 m Re}\ z_1.$
 - $\Rightarrow f$ does not extend holomorphically.
- (b) Consider $M=\{z\in\mathbb{C}^2\mid z_2=|z_1|^2\},\,f\colon M o\mathbb{C}$ given by $f(z)=ar{z}_1.$
 - \Rightarrow f does not extend holomorphically.

Complexification

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is Im z = 0).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f \colon M \to \mathbb{C}$ is real-analytic.

 $\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F \colon V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)

May not work if M is another submanifold. Two examples:

- (a) Consider $M=\{z\in\mathbb{C}^2\mid {
 m Im}\ z_2=0\}, f\colon M o\mathbb{C}$ given by $f(z)={
 m Re}\ z_1.$
 - $\Rightarrow f$ does not extend holomorphically.
- (b) Consider $M=\{z\in\mathbb{C}^2\mid z_2=|z_1|^2\},\,f\colon M o\mathbb{C}$ given by $f(z)=ar{z}_1.$
 - \Rightarrow f does not extend holomorphically.

Note: all my submanifolds are embedded, all issues considered are local, and everything is real-analytic.

Let $M \subset \mathbb{C}^n$ be a submanifold, write

$$T_p^{0,1}M = \left(\mathbb{C} \otimes T_pM
ight) \cap \operatorname{span}_\mathbb{C} \left\{ rac{\partial}{\partial ar{z}_1} \Big|_p, \ldots, rac{\partial}{\partial ar{z}_n} \Big|_p
ight\}$$

Def.: M is CR if

$$T^{0,1}M = \bigcup_{p \in M} T_p^{0,1}M$$
 is a vector bundle.

Let $M \subset \mathbb{C}^n$ be a submanifold, write

$$T_p^{0,1}M = \left(\mathbb{C} \otimes T_pM
ight) \cap \operatorname{span}_\mathbb{C} \left\{ rac{\partial}{\partial ar{z}_1} \Big|_p, \ldots, rac{\partial}{\partial ar{z}_n} \Big|_p
ight\}$$

Def.: M is CR if

$$T^{0,1}M = \bigcup_{p \in M} T_p^{0,1}M$$
 is a vector bundle.

E.g. every real hypersurface is a CR submanifold.

Let $M \subset \mathbb{C}^n$ be a submanifold, write

$$T_p^{0,1}M = \left(\mathbb{C} \otimes T_pM
ight) \cap \operatorname{span}_\mathbb{C} \left\{ rac{\partial}{\partial ar{z}_1} \Big|_p, \ldots, rac{\partial}{\partial ar{z}_n} \Big|_p
ight\}$$

Def.: M is CR if

$$T^{0,1}M = \bigcup_{p \in M} T_p^{0,1}M$$
 is a vector bundle.

E.g. every real hypersurface is a CR submanifold.

$$F$$
 is holomorphic $\Rightarrow \frac{\partial F}{\partial \bar{z}_j} = 0$.

$$\therefore$$
 if M is CR, $\Rightarrow L(F|_{M}) = 0 \ \forall L \in \Gamma(T^{0,1}M)$.

Let $M \subset \mathbb{C}^n$ be a submanifold, write

$$T_p^{0,1}M = \left(\mathbb{C} \otimes T_pM
ight) \cap \operatorname{span}_\mathbb{C} \left\{ rac{\partial}{\partial ar{z}_1} \Big|_p, \ldots, rac{\partial}{\partial ar{z}_n} \Big|_p
ight\}$$

Def.: M is CR if

$$T^{0,1}M = \bigcup_{p \in M} T_p^{0,1}M$$
 is a vector bundle.

E.g. every real hypersurface is a CR submanifold.

F is holomorphic $\Rightarrow \frac{\partial F}{\partial \bar{z}_i} = 0$.

$$\therefore$$
 if M is CR, $\Rightarrow L(F|_M) = 0 \ \forall L \in \Gamma(T^{0,1}M)$.

Def.: $f: M \to \mathbb{C}$ is CR if $Lf = 0 \ \forall L \in \Gamma(T^{0,1}M)$.

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

- Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\bar{z}s$ as possible, and plug that into the expression for f.

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

- Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\bar{z}s$ as possible, and plug that into the expression for f.
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining $\bar{z}s$.

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

- Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\bar{z}s$ as possible, and plug that into the expression for f.
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining $\bar{z}s$.
- Step 4) ...

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function. $\Rightarrow f$ extends holomorphically.

- Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).
- Step 2) Use the defining functions of M to solve for as many of the $\bar{z}s$ as possible, and plug that into the expression for f.
- Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining $\bar{z}s$.
- Step 4) ...
- Step 5) Profit!

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent.

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent. $(\bar{z} \neq \bar{z}, \bar{w} \neq \bar{w})$

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent. $(\bar{z} \neq \bar{z}, \bar{w} \neq \bar{w})$ Write

$$F(z, \bar{z}, w) = f(z, \bar{z}, w, \Phi(z, \bar{z}, w))$$

Find CR vector field:

$$L = rac{\partial}{\partial ar{z}} + rac{\partial \Phi}{\partial ar{z}} rac{\partial}{\partial ar{w}}$$

$$LF=0$$
 \Rightarrow $rac{\partial}{\partial \overline{z}}F=0.$

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent. $(\bar{z} \neq \bar{z}, \bar{w} \neq \bar{w})$ Write

$$F(z,\bar{z},w)=f(z,\bar{z},w,\Phi(z,\bar{z},w))$$

Find CR vector field:

$$L = \frac{\partial}{\partial \bar{z}} + \frac{\partial \Phi}{\partial \bar{z}} \frac{\partial}{\partial \bar{w}}$$

$$LF=0$$
 \Rightarrow $rac{\partial}{\partial \overline{z}}F=0.$

Done! (there's a technicality or two in there, but overall that's the idea)

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if Lf = 0 for all vector fields L that are CR $(L|_p \in T_p^{0,1}M \ \forall p \in M)$.

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if Lf = 0 for all vector fields L that are CR $(L|_p \in T_p^{0,1}M \ \forall p \in M)$.

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} =$ "CR points of M")

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if Lf = 0 for all vector fields L that are CR $(L|_p \in T_p^{0,1}M \ \forall p \in M)$.

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} =$ "CR points of M")

E.g.
$$M=\{w=|z|^2\}\subset\mathbb{C}^2.$$
 $f=ar{z}$ does not extend $(rac{\partial}{\partial ar{z}}|_0f=1
eq0)$

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if Lf = 0 for all vector fields L that are CR $(L|_p \in T_p^{0,1}M \ \forall p \in M)$.

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} =$ "CR points of M")

E.g.
$$M=\{w=|z|^2\}\subset\mathbb{C}^2.$$
 $f=ar{z}$ does not extend $(rac{\partial}{\partialar{z}}|_0f=1
eq0)$

You could even take $f = \bar{z}^2$ to make $\frac{\partial}{\partial \bar{z}}|_0 f = 0$, but f still does not extend.

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if Lf = 0 for all vector fields L that are CR $(L|_p \in T_p^{0,1}M \ \forall p \in M)$.

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} =$ "CR points of M")

E.g.
$$M=\{w=|z|^2\}\subset\mathbb{C}^2.$$
 $f=ar{z}$ does not extend $(rac{\partial}{\partialar{z}}|_0f=1
eq0)$

You could even take $f = \bar{z}^2$ to make $\frac{\partial}{\partial \bar{z}}|_0 f = 0$, but f still does not extend.

There are no CR vector fields, and you can't easily solve for \bar{z} and \bar{w} in terms of z and w:

$$ar{z}=rac{w}{z}, \qquad ar{w}=w$$

Extra conditions needed on f here (codimension 2 in \mathbb{C}^2).

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if Lf = 0 for all vector fields L that are CR $(L|_p \in T_p^{0,1}M \ \forall p \in M)$.

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} =$ "CR points of M")

E.g.
$$M=\{w=|z|^2\}\subset\mathbb{C}^2$$
. $f=ar{z}$ does not extend $(rac{\partial}{\partial ar{z}}|_0f=1
eq0)$

You could even take $f = \bar{z}^2$ to make $\frac{\partial}{\partial \bar{z}}|_0 f = 0$, but f still does not extend.

There are no CR vector fields, and you can't easily solve for \bar{z} and \bar{w} in terms of z and w:

$$\bar{z}=rac{w}{z}, \qquad \bar{w}=w$$

Extra conditions needed on f here (codimension 2 in \mathbb{C}^2).

We will switch to \mathbb{C}^3 , where there is an actual CR vector field.

Some previous work

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

Some previous work

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

In '11 we (L.–Minor–Shroff–Son–Zhang) proved that if a real-analytic CR singular manifold $M=\varphi(N)$ for a real-analytic CR map

$$\varphi \colon N \subset \mathbb{C}^n \to \mathbb{C}^n$$

of a CR submanifold N, and φ is a diffeomorphism onto $\varphi(N)=M$, then there exists a real-analytic CR function on M that does not extend holomorphically.

Some previous work

Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^{ω} case.

In '11 we (L.–Minor–Shroff–Son–Zhang) proved that if a real-analytic CR singular manifold $M=\varphi(N)$ for a real-analytic CR map

$$\varphi \colon N \subset \mathbb{C}^n \to \mathbb{C}^n$$

of a CR submanifold N, and φ is a diffeomorphism onto $\varphi(N)=M$, then there exists a real-analytic CR function on M that does not extend holomorphically.

In '16 we (L.–Noell–Ravisankar) proved that a real-analytic codimension 2 real-analytic CR singular manifold in \mathbb{C}^n $(n \geq 3)$ that is flat (subset of $\mathbb{C}^{n-1} \times \mathbb{R}$) and nondegenerate has the extension property.

Main theorem setup

A CR singular submanifold of codimension 2 in \mathbb{C}^3 is written as (after a rotation by a unitary)

$$egin{aligned} w &=
ho(z,ar{z}) \ &= Q(z,ar{z}) + E(z,ar{z}) \ &= z^*Az + \overline{z^tBz} + z^tCz + E(z,ar{z}), \end{aligned}$$
 $(z,w) \in \mathbb{C}^2 \times \mathbb{C}, \qquad
ho ext{ is } O(\|z\|)^2, \qquad E ext{ is } O(\|z\|^3).$ $A,B,C,2 ext{ \times 2 complex matrices,}$ $z ext{ column vector,}$ $B,C ext{ symmetric.}$

Main theorem setup

A CR singular submanifold of codimension 2 in \mathbb{C}^3 is written as (after a rotation by a unitary)

$$egin{aligned} w &=
ho(z,ar{z}) \ &= Q(z,ar{z}) + E(z,ar{z}) \ &= z^*Az + \overline{z^tBz} + z^tCz + E(z,ar{z}), \end{aligned}$$

$$(z,w)\in\mathbb{C}^2 imes\mathbb{C}, \qquad
ho ext{ is } O(\|z\|)^2, \qquad E ext{ is } O(\|z\|^3).$$

A, B, C, 2×2 complex matrices, z column vector,

B, C symmetric.

M can be parametrized by z (and \bar{z})

Normal forms

Adam Coffman ('09) has a normal form of Q up to local biholomorphisms (and it is a rather long list).

This was extremely useful.

Normal forms

Adam Coffman ('09) has a normal form of Q up to local biholomorphisms (and it is a rather long list).

This was extremely useful.

This might be a good place to note that normal forms for codimension 2 CR singular manifolds has a long history:

C²: Bishop '65, Moser-Webster '83, Moser '85, Kenig-Webster '82, Gong '94, Huang-Krantz '95, Huang-Yin '09, Slapar '16, etc...

 \mathbb{C}^n $(n\geq 3)$ Dolbeault–Tomassini–Zaitsev '05, '11, Huang–Yin '09, '16, '17, Burcea '13, Gong–L. '15, Fang–Huang '18.

Coffman's table

A. COFFMAN 976 Table 1. Normal forms for Theorem 7.1 $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ $a>0, d>0, b\sim -b\in \mathbb{C}$ $\left(\begin{smallmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{smallmatrix}\right) \\ 0 < \theta < \pi$ $\begin{pmatrix} 0 & b \\ b & d \end{pmatrix}$ $\begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$ 3 $b \ge 0, d \ge 0$ 3 $a > 0, b \ge 0$ + - 0 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 2 $0 \le a \le d$ + - 02 $0 \le a \le d$ + - 0 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ b > 00 $\begin{pmatrix} 0 & b \\ b & 1 \end{pmatrix}$ b > 0+0 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$ 2 Im(d) > 05 $b>0, |a|=1, (a,d)\sim (-a,-d)$ + - 0 $\begin{pmatrix} 0 & b \\ b & d \end{pmatrix}$ 3 $b > 0, |d| = 1, d \sim -d$ + - 0 $\begin{pmatrix} b & d \\ 0 & b \\ b & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ \tau & 0 \end{pmatrix} \\ 0 < \tau < 1$ b > 0+ - 0 $d \in \mathbb{C}$ 3 +0 $\begin{pmatrix} a & b \\ b & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & b \\ b & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$ $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $b > 0, a \in \mathbb{C}$ + - 0b > 0+ - 0b > 0+ - 0 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $a \ge 0$ +00 $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ 3 $a > 0, d \in \mathbb{C}$ + - 0 $\begin{pmatrix} 0 & 1 \\ 1 & i \end{pmatrix}$ $\begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$ b > 0+0

 $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$

(0 1) (1 0) 0

 $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

1

0

0

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

 $d \ge 0$

 $a \ge 0$

 $a \ge 0$

+ - 0

Main theorem

$$M \subset \mathbb{C}^3$$
, $(z, w) \in \mathbb{C}^2 \times \mathbb{C}$
 $M : w = \rho(z, \bar{z}) = Q(z, \bar{z}) + E(z, \bar{z}) = z^*Az + \overline{z^tBz} + z^tCz + E(z, \bar{z})$

Theorem (L.-Noell-Ravisankar)

Suppose

$$\operatorname{null} A^* \cap \operatorname{null} B = \{0\}$$

If $f(z, \overline{z})$ is real-analytic CR function defined near the origin, then f extends holomorphically near the origin. That is, $\exists F(z, w)$ such that

$$f(z,\bar{z}) = F(z,\rho(z,\bar{z})).$$

The quadric

Theorem (L.-Noell-Ravisankar)

Suppose $M \subset \mathbb{C}^3$ is a quadric given by

$$w = Q(z, \overline{z}) = z^*Az + \overline{z^tBz} + z^tCz$$

Assume $\bar{\partial} Q \not\equiv 0$. TFAE:

- (a) $\operatorname{null} A^* \cap \operatorname{null} B = \{0\}$
- (b) For every CR polynomial $f(z, \bar{z})$, $\exists ! \ holomorphic \ polynomial \ F(z, w) \ such that <math>f(z, \bar{z}) = F(z, Q(z, \bar{z}))$. If f is homogeneous, then F is weighted homogeneous.
- (c) Every CR real-linear $h(z, \bar{z})$ is holomorphic (does not depend on \bar{z}).

The difficulty

Consider $f(z, \bar{z})$ on

$$w = z_1^2 + z_2^2 + \bar{z}_1^2 + \bar{z}_2^2$$
 $(B = I, A = 0, E = 0)$

Solve for say \bar{z}_1 :

$$ar{z}_1 = \pm \sqrt{w - z_1^2 + z_2^2 + ar{z}_2^2}$$

We can get rid of all but the first power of \bar{z}_1 :

$$f = lpha(z_1, z_2, w, ar{z}_2) + ar{z}_1 eta(z_1, z_2, w, ar{z}_2)$$

The difficulty

Consider $f(z, \bar{z})$ on

$$w = z_1^2 + z_2^2 + \bar{z}_1^2 + \bar{z}_2^2$$
 $(B = I, A = 0, E = 0)$

Solve for say \bar{z}_1 :

$$ar{z}_1 = \pm \sqrt{w - z_1^2 + z_2^2 + ar{z}_2^2}$$

We can get rid of all but the first power of \bar{z}_1 :

$$f=lpha(\mathit{z}_{1},\mathit{z}_{2},\mathit{w},ar{\mathit{z}}_{2})+ar{\mathit{z}}_{1}eta(\mathit{z}_{1},\mathit{z}_{2},\mathit{w},ar{\mathit{z}}_{2})$$

Lf=0 (CR vector field) must get rid of not only the dependence on \bar{z}_2 in α , but also force $\beta \equiv 0$.

Optimal conditions

Fix Q, $\bar{\partial}Q \not\equiv 0$, and suppose null $A^* \cap \text{null } B \neq \{0\}$.

Let

$$f=\bar{v}_2\bar{z}_1-\bar{v}_1\bar{z}_2,$$

where (v_1, v_2) is a nonzero vector in null $A^* \cap \text{null } B$.

Then f is not a restriction to M of a holomorphic function (in any neighborhood of the origin)

Everything in z

As M is a graph of w over z:

$$w=
ho(z,ar{z}),$$

write everything on M in terms of z.

A function on M is a function $f(z, \bar{z})$.

The CR vector field in terms of z as a parameter on M is

$$L =
ho_{ar{z}_2} rac{\partial}{\partial ar{z}_1} -
ho_{ar{z}_1} rac{\partial}{\partial ar{z}_2}$$

Everything in z

As M is a graph of w over z:

$$w = \rho(z, \bar{z}),$$

write everything on M in terms of z.

A function on M is a function $f(z, \bar{z})$.

The CR vector field in terms of z as a parameter on M is

$$L =
ho_{ar{z}_2} rac{\partial}{\partial ar{z}_1} -
ho_{ar{z}_1} rac{\partial}{\partial ar{z}_2}$$

Normally to complexify in \mathbb{C}^3 : we consider (z, \bar{z}, w, \bar{w}) in \mathbb{C}^6 . But we only need to complexify into \mathbb{C}^5 and consider (z, \bar{z}, w) .

$$\bar{\partial} Q \equiv 0$$

If $\bar{\partial} Q \equiv 0$, things can be complicated.

$$\bar{\partial}Q\equiv 0$$

If $\bar{\partial} Q \equiv 0$, things can be complicated.

 $E\equiv 0)$ M is complex and every "CR function" extends holomorphically. So for some E we may have extension.

$$\bar{\partial}Q\equiv 0$$

If $\bar{\partial} Q \equiv 0$, things can be complicated.

 $E\equiv 0)$ M is complex and every "CR function" extends holomorphically.

So for some E we may have extension.

 $E = ||z||^4$) M is given by

$$\|w=\|z\|^4=\left(\left|z_1
ight|^2+\left|z_2
ight|^2
ight)^2$$

and

$$f(z,ar{z}) = \|z\|^2 = |z_1|^2 + |z_2|^2$$

is CR but equal to \sqrt{w} on M, so does not extend. So for some E we do not have extension.

$\operatorname{null} A^* \cap \operatorname{null} B \neq \{0\}$

Suppose null $A^* \cap \text{null } B \neq \{0\}$.

 $E \equiv 0$) Extension does not hold. E.g. if

$$w = \bar{z}_1 z_2$$

then $ar{z}_1$ is CR as the CR vector field is $L=-z_2 rac{\partial}{\partial ar{z}_2}$

Note: The theorem is an if-and-only-if when $E \equiv 0$.

$\operatorname{null} A^* \cap \operatorname{null} B \neq \{0\}$

Suppose null $A^* \cap \text{null } B \neq \{0\}$.

 $E \equiv 0$) Extension does not hold. E.g. if

$$w = \bar{z}_1 z_2$$

then $ar{z}_1$ is CR as the CR vector field is $L=-z_2 rac{\partial}{\partial ar{z}_2}$

Note: The theorem is an if-and-only-if when $E \equiv 0$.

 $E \not\equiv 0$) Extension may or may not hold depending on E. E.g. if

$$w=\bar{z}_1z_2+\bar{z}_2^3$$

then extension holds (explicit computation), but if

$$w=\bar{z}_1z_2+\bar{z}_1^3$$

then extension does not hold (\bar{z}_1 again).

Proof outline

The proof has the following outline:

- Step 1) Prove theorem for homogeneous polys. and quadrics.
- Step 2) Prove a formal extension theorem.
- Step 3) Prove that in \mathbb{C}^2 a formal solution is convergent.
- Step 4) Use this to prove convergence of F in \mathbb{C}^3 .

Proof sketch for the quadrics I

Suppose
$$\bar{\partial} Q \not\equiv 0$$
 and M is a quadric: $w = Q(z, \bar{z}) = z^*Az + \overline{z^tBz} + z^tCz$.

Suppose $f(z, \bar{z})$ is a homogeneous polynomial that is CR.

Proof sketch for the quadrics I

Suppose
$$\bar{\partial} Q \not\equiv 0$$
 and M is a quadric: $w = Q(z, \bar{z}) = z^*Az + \overline{z^tBz} + z^tCz$.

Suppose $f(z, \bar{z})$ is a homogeneous polynomial that is CR.

There are two cases:

 $B \neq 0$) Let's tackle that one first.

B=0) Special case, needs to be handled differently.

Proof sketch for the quadrics II $(B \neq 0)$

If $B \neq 0$, then it can be diagonalized by a transformation in z:

$$Q(z,\bar{z}) = z^*Az + \bar{z}_1^2 + \epsilon \bar{z}_2^2 + z^tCz$$

where $\epsilon = 0, 1$.

Proof sketch for the quadrics II $(B \neq 0)$

If $B \neq 0$, then it can be diagonalized by a transformation in z:

$$Q(z,\bar{z}) = z^*Az + \bar{z}_1^2 + \epsilon \bar{z}_2^2 + z^tCz$$

where $\epsilon = 0, 1$.

Weierstrass division algorithm (using \bar{z}_1) says

$$f(z,ar{z})=h(z,ar{z},w)ig(Q(z,ar{z})-wig)+lphaig(z,ar{z}_2,wig)+eta(z,ar{z}_2,wig)ar{z}_1.$$

The remainder in Weierstrass is unique:

Any equality on M, as long \bar{z}_1 appears up to first power holds everywhere.

Proof sketch for the quadrics II $(B \neq 0)$

If $B \neq 0$, then it can be diagonalized by a transformation in z:

$$Q(z,\bar{z}) = z^*Az + \bar{z}_1^2 + \epsilon \bar{z}_2^2 + z^tCz$$

where $\epsilon = 0, 1$.

Weierstrass division algorithm (using \bar{z}_1) says

$$f(z,ar{z})=h(z,ar{z},w)(\mathit{Q}(z,ar{z})-w)+lpha(z,ar{z}_{\!2},w)+eta(z,ar{z}_{\!2},w)ar{z}_{\!1}.$$

The remainder in Weierstrass is unique:

Any equality on M, as long \bar{z}_1 appears up to first power holds everywhere.

f equals a holomorphic polynomial g(z,w) if and only if $\alpha+\beta\bar{z}_1-g\equiv 0$, or in other words if

$$\alpha_{\bar{z}_2} \equiv 0$$
, and $\beta \equiv 0$.

Proof sketch for the quadrics III $(B \neq 0)$

Solving Lf = 0 we get differential equations for α and β , in fact a single equation for β .

Then it is an almost-undergraduate-first-order-DE computation to find for which coefficients in A (and B) do we get a polynomial solution.

Proof sketch for the quadrics III $(B \neq 0)$

Solving Lf = 0 we get differential equations for α and β , in fact a single equation for β .

Then it is an almost-undergraduate-first-order-DE computation to find for which coefficients in A (and B) do we get a polynomial solution.

QED!

Proof sketch for the quadrics IV (B = 0)

Let L be the CR vector field.

Proof outline.

- Step 1) For each degree d, compute L as a matrix taking homogeneous polynomials of fixed degree to themselves.
- Step 2) Compute the dimension of the kernel of L for each d.
- Step 3) Compute the dimension of weighted homogeneous polynomials F(z, w) of degree d.
- Step 4) ... the two dimensions match!

 (if the nullspace condition is met)
- Step 5) QED!

Matrix for L in degree 3

	73	$\overline{z}_1^2 \overline{z}_2$	z ₁ z ₂	223	$z_1 \overline{z_1^2}$	$z_1 \overline{z_1} \overline{z_2}$	$z_1\overline{z}_2$	$z_2\overline{z}_1^2$	$z_2 \overline{z_1} \overline{z_2}$	22.22	$z_1^2 \bar{z}_1$	$z_1^2 \overline{z}_2$	$z_1 z_2 \overline{z_1}$	21 22 22	$z_2^2 \overline{z}_1$	22 22	23	$z_1^2 z_2$	$z_1 z_2^2$	23.3
$egin{array}{c} ar{z}_1^3 \\ ar{z}_1^2 ar{z}_2 \\ ar{z}_1 ar{z}_2^2 \\ ar{z}_2^3 \\ ar{z}_2^3 \\ \end{array}$																				
$\bar{z}_{1}^{2}\bar{z}_{2}$																				
$\bar{z}_1 \bar{z}_2^2$																				
\bar{z}_2^3																				
$z_1 \bar{z}_1^2$		-1																		
$z_1\bar{z}_1\bar{z}_2$			-2								١.						١.			
$z_1 \bar{z}_2^2$ $z_1 \bar{z}_2^2$ $z_2 \bar{z}_1^2$ $z_2 \bar{z}_1 \bar{z}_2$				-3																
$z_2 \bar{z}_1^2$	3δ	$-\beta$									١.						١.			
$z_2 \overline{z}_1 \overline{z}_2$	١.	2δ	-2β																	
$z_2 \bar{z}_2^2$			δ	-3β																
$ \begin{array}{c} z_2 \bar{z}_2^2 \\ \hline z_1^2 \bar{z}_1 \\ z_1^2 \bar{z}_2 \end{array} $						-1														
$z_1^2 \overline{z}_2$							-2				١.						١.			
$z_1 z_2 \overline{z}_1$					2δ	$-\beta$			-1											
$z_1 z_2 \overline{z}_2$						δ	-2β			-2										
$z_2^2 \bar{z}_1$	۱.							2δ	$-\beta$		١.						١.			
$z_1 z_2 \overline{z}_2$ $z_2^2 \overline{z}_1$ $z_2^2 \overline{z}_2$									δ	-2β										
z_1^3												-1								
$z_1^2 z_2$											δ	$-\beta$		-1						
$z_1 z_2^2$											١.		δ	$-\beta$		-1	١.			
$ \begin{array}{c} z_1^3 \\ z_1^2 z_2 \\ z_1 z_2^2 \\ z_1^3 z_2^3 \end{array} $.														δ	$-\beta$				

One subblock, degree 9

Thanks for listening!