Tasty Bits of Several Complex Variables (1)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

z = x + iy, $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

z = x + iy, $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Polydisc with *polyradius* $\rho = (\rho_1, \rho_2, ..., \rho_n)$ and *center* $a \in \mathbb{C}^n$

$$\Delta_{\rho}(a) \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^n : |z_k - a_k| < \rho_k \text{ for } k = 1, 2, \dots, n \}.$$

(If ρ a number, we mean $\rho_k = \rho$ for all k.)

z = x + iy, $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Polydisc with *polyradius* $\rho = (\rho_1, \rho_2, ..., \rho_n)$ and *center* $a \in \mathbb{C}^n$

$$\Delta_{\rho}(a) \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^n : |z_k - a_k| < \rho_k \text{ for } k = 1, 2, \dots, n \}.$$

(If ρ a number, we mean $\rho_k = \rho$ for all k.)

z = x + iy, $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Polydisc with *polyradius* $\rho = (\rho_1, \rho_2, ..., \rho_n)$ and *center* $a \in \mathbb{C}^n$

$$\Delta_{\rho}(a) \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^n : |z_k - a_k| < \rho_k \text{ for } k = 1, 2, \dots, n \}.$$

(If ρ a number, we mean $\rho_k = \rho$ for all k.)

The unit polydisc is $\mathbb{D}^n = \mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D} = \Delta_1(0)$ Example of a *Reinhardt domain*.

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Polydisc with *polyradius* $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ and *center* $a \in \mathbb{C}^n$

$$\Delta_{\rho}(a) \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^n : |z_k - a_k| < \rho_k \text{ for } k = 1, 2, \dots, n \}.$$

(If ρ a number, we mean $\rho_k = \rho$ for all *k*.)

The *unit polydisc* is $|z_2|$ $\mathbb{D}^n = \mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D} = \Delta_1(0)$ Example of a *Reinhardt domain*. \mathbb{D}^2 $\langle z, w \rangle = z \cdot \bar{w}$

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Polydisc with *polyradius* $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ and *center* $a \in \mathbb{C}^n$

$$\Delta_{\rho}(a) \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^n : |z_k - a_k| < \rho_k \text{ for } k = 1, 2, \dots, n \}.$$

(If ρ a number, we mean $\rho_k = \rho$ for all *k*.)

The unit polydisc is $\mathbb{D}^{n} = \mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D} = \Delta_{1}(0)$ Example of a *Reinhardt domain*. $\langle z, w \rangle = z \cdot \overline{w} \qquad ||z|| = \sqrt{\langle z, z \rangle}$ \mathbb{D}^{2}

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Polydisc with *polyradius* $\rho = (\rho_1, \rho_2, ..., \rho_n)$ and *center* $a \in \mathbb{C}^n$

$$\Delta_{\rho}(a) \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^n : |z_k - a_k| < \rho_k \text{ for } k = 1, 2, \dots, n \}.$$

(If ρ a number, we mean $\rho_k = \rho$ for all *k*.)

The *unit polydisc* is $\mathbb{D}^{n} = \mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D} = \Delta_{1}(0)$ Example of a *Reinhardt domain*. $\langle z, w \rangle = z \cdot \overline{w} \qquad ||z|| = \sqrt{\langle z, z \rangle}$ $B_{\rho}(a)$ is the ball in metric $|| \cdot ||$. $\mathbb{B}_{n} = B_{1}(0)$ (*unit ball*)

 $z_{\ell} \mapsto f(z_1, \ldots, z_{\ell}, \ldots, z_n)$ is complex differentiable for every ℓ

 $z_{\ell} \mapsto f(z_1, \ldots, z_{\ell}, \ldots, z_n)$ is complex differentiable for every ℓ

Write $\mathfrak{O}(U)$ for set of holomorphic functions on *U*.

 $z_{\ell} \mapsto f(z_1, \ldots, z_{\ell}, \ldots, z_n)$ is complex differentiable for every ℓ

Write $\mathfrak{O}(U)$ for set of holomorphic functions on *U*.

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

 $z_{\ell} \mapsto f(z_1, \dots, z_{\ell}, \dots, z_n)$ is complex differentiable for every ℓ Write $\mathfrak{O}(U)$ for set of holomorphic functions on U.

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

 $z_{\ell} \mapsto f(z_1, \ldots, z_{\ell}, \ldots, z_n)$ is complex differentiable for every ℓ

Write $\mathfrak{O}(U)$ for set of holomorphic functions on *U*.

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k\left(\frac{\partial}{\partial z_\ell}\right) = \delta_\ell^k, \quad dz_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial z_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = \delta_\ell^k$$

 $z_{\ell} \mapsto f(z_1, \ldots, z_{\ell}, \ldots, z_n)$ is complex differentiable for every ℓ

Write $\mathfrak{O}(U)$ for set of holomorphic functions on *U*.

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k\left(\frac{\partial}{\partial z_\ell}\right) = \delta_\ell^k, \quad dz_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial z_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = \delta_\ell^k$$

Alternatively, *f* is holomorphic if it satisfies

 $\frac{\partial f}{\partial \bar{z}_{\ell}} = 0 \quad \text{for } \ell = 1, 2, \dots, n \quad (\text{the Cauchy-Riemann (CR) equations}).$

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

Write a smooth function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

Write a smooth function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

Example: If *f* is a polynomial (in *x* and *y*), write $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and it really does become a polynomial in *z* and \overline{z} .

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

Write a smooth function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

Example: If *f* is a polynomial (in *x* and *y*), write $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and it really does become a polynomial in *z* and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1-i)z_1 + (1+i)\bar{z}_1 - z_2^2 + 2z_2\bar{z}_2 - \bar{z}_2^2$$

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

Write a smooth function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

Example: If *f* is a polynomial (in *x* and *y*), write $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and it really does become a polynomial in *z* and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2.$$

f is holomorphic if it does not depend on \bar{z} .

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

Write a smooth function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

Example: If *f* is a polynomial (in *x* and *y*), write $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and it really does become a polynomial in *z* and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2.$$

f is holomorphic if it does not depend on \bar{z} .

Chain rule: Suppose $f: U \subset \mathbb{C}^n \to V \subset \mathbb{C}^m$ and $g: V \to \mathbb{C}$ variables are $z \in \mathbb{C}^n$ and $w \in \mathbb{C}^m$.

$$\frac{\partial}{\partial z_{\ell}} \left[g \circ f \right] = \sum_{k=1}^{m} \left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial z_{\ell}} + \frac{\partial g}{\partial \bar{w}_{k}} \frac{\partial \bar{f}_{k}}{\partial z_{\ell}} \right)$$
$$\frac{\partial}{\partial \bar{z}_{\ell}} \left[g \circ f \right] = \sum_{k=1}^{m} \left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial \bar{z}_{\ell}} + \frac{\partial g}{\partial \bar{w}_{k}} \frac{\partial \bar{f}_{k}}{\partial \bar{z}_{\ell}} \right)$$

$$\frac{\partial f}{\partial z_k}(z) = \lim_{\xi \in \mathbb{C} \to 0} \frac{f(z_1, \dots, z_k + \xi, \dots, z_n) - f(z)}{\xi}.$$

Write a smooth function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

Example: If *f* is a polynomial (in *x* and *y*), write $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and it really does become a polynomial in *z* and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2.$$

f is holomorphic if it does not depend on \bar{z} .

Chain rule: Suppose $f: U \subset \mathbb{C}^n \to V \subset \mathbb{C}^m$ and $g: V \to \mathbb{C}$ variables are $z \in \mathbb{C}^n$ and $w \in \mathbb{C}^m$.

$$\frac{\partial}{\partial z_{\ell}} \left[g \circ f \right] = \sum_{k=1}^{m} \left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial z_{\ell}} + \frac{\partial g}{\partial w_{k}} \frac{\partial \tilde{f}_{k}}{\partial z_{\ell}} \right)$$
$$\frac{\partial}{\partial \bar{z}_{\ell}} \left[g \circ f \right] = \sum_{k=1}^{m} \left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial \bar{z}_{\ell}} + \frac{\partial g}{\partial \bar{w}_{k}} \frac{\partial \tilde{f}_{k}}{\partial \bar{z}_{\ell}} \right) = 0$$

If g and f are holomorphic.

Theorem (Cauchy integral formula): Let $\Delta \subset \mathbb{C}^n$ be a polydisc. Suppose $f: \overline{\Delta} \to \mathbb{C}$ is a continuous function holomorphic in Δ . $\Gamma = \partial \Delta_1 \times \cdots \times \partial \Delta_n$ oriented appropriately (each $\partial \Delta_k$ oriented positively). Then for $z \in \Delta$

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta_1, \zeta_2, \dots, \zeta_n)}{(\zeta_1 - z_1)(\zeta_2 - z_2)\cdots(\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n.$$

Theorem (Cauchy integral formula): Let $\Delta \subset \mathbb{C}^n$ be a polydisc. Suppose $f: \overline{\Delta} \to \mathbb{C}$ is a continuous function holomorphic in Δ . $\Gamma = \partial \Delta_1 \times \cdots \times \partial \Delta_n$ oriented appropriately (each $\partial \Delta_k$ oriented positively). Then for $z \in \Delta$

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta_1, \zeta_2, \dots, \zeta_n)}{(\zeta_1 - z_1)(\zeta_2 - z_2)\cdots(\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n.$$

Theorem (Cauchy integral formula): Let $\Delta \subset \mathbb{C}^n$ be a polydisc. Suppose $f: \overline{\Delta} \to \mathbb{C}$ is a continuous function holomorphic in Δ . $\Gamma = \partial \Delta_1 \times \cdots \times \partial \Delta_n$ oriented appropriately (each $\partial \Delta_k$ oriented positively). Then for $z \in \Delta$

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta_1, \zeta_2, \dots, \zeta_n)}{(\zeta_1 - z_1)(\zeta_2 - z_2)\cdots(\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n.$$

First big difference with 1D: Γ (a torus) is a small part of the boundary. Γ is called the *distinguished boundary*.

$$z^{\alpha} \stackrel{\text{def}}{=} z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}, \qquad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text{def}}{=} \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}},$$
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \cdots \alpha_n!, \qquad \alpha + 1 \stackrel{\text{def}}{=} (\alpha_1 + 1, \alpha_2 + 1, \cdots \alpha_n + 1).$$

$$z^{\alpha} \stackrel{\text{def}}{=} z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}, \qquad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text{def}}{=} \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}},$$
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \cdots \alpha_n!, \qquad \alpha + 1 \stackrel{\text{def}}{=} (\alpha_1 + 1, \alpha_2 + 1, \cdots \alpha_n + 1).$$

Let Δ be a polydisc with distinguished boundary Γ , centered at *a*, of polyradius ρ . Suppose *f* is continuous on $\overline{\Delta}$, holomorphic on Δ .

Differentiate under the integral \Rightarrow *f* is infinitely \mathbb{C} -differentiable and

$$\frac{\partial^{|\alpha|}f}{\partial z^{\alpha}}(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{\alpha! f(\zeta)}{\left(\zeta - z\right)^{\alpha+1}} d\zeta.$$

$$z^{\alpha} \stackrel{\text{def}}{=} z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}, \qquad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text{def}}{=} \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}},$$
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \cdots \alpha_n!, \qquad \alpha + 1 \stackrel{\text{def}}{=} (\alpha_1 + 1, \alpha_2 + 1, \cdots \alpha_n + 1).$$

Let Δ be a polydisc with distinguished boundary Γ , centered at *a*, of polyradius ρ . Suppose *f* is continuous on $\overline{\Delta}$, holomorphic on Δ .

Differentiate under the integral \Rightarrow *f* is infinitely \mathbb{C} -differentiable and

$$\frac{\partial^{|\alpha|}f}{\partial z^{\alpha}}(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{\alpha! f(\zeta)}{(\zeta - z)^{\alpha + 1}} \, d\zeta.$$

From this we get *the Cauchy estimates*:

$$\left|\frac{\partial^{|\alpha|}f}{\partial z^{\alpha}}(a)\right| \leq \frac{\alpha! \|f\|_{\Gamma}}{\rho^{\alpha}} = \frac{\alpha! \sup_{z \in \Gamma} |f(z)|}{\rho^{\alpha}}$$

$$z^{\alpha} \stackrel{\text{def}}{=} z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}, \qquad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text{def}}{=} \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}},$$
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \cdots \alpha_n!, \qquad \alpha + 1 \stackrel{\text{def}}{=} (\alpha_1 + 1, \alpha_2 + 1, \cdots \alpha_n + 1).$$

Let Δ be a polydisc with distinguished boundary Γ , centered at *a*, of polyradius ρ . Suppose *f* is continuous on $\overline{\Delta}$, holomorphic on Δ .

Differentiate under the integral \Rightarrow *f* is infinitely \mathbb{C} -differentiable and

$$\frac{\partial^{|\alpha|}f}{\partial z^{\alpha}}(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{\alpha! f(\zeta)}{(\zeta - z)^{\alpha + 1}} \, d\zeta.$$

From this we get *the Cauchy estimates*:

$$\left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a) \right| \leq \frac{\alpha! \, \|f\|_{\Gamma}}{\rho^{\alpha}} = \frac{\alpha! \, \sup_{z \in \Gamma} |f(z)|}{\rho^{\alpha}}$$

Corollary: The "correct" topology on $\mathfrak{G}(U)$ is uniform convergence on compacts (normal convergence). If $f_n \in \mathfrak{G}(U)$ and $f_n \to f$ uniformly on compacts, then $f \in \mathfrak{G}(U)$ and $f_n^{(\ell)} \to f^{(\ell)}$ uniformly on compacts.

$$\frac{1}{1-z}$$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)}$$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$

$$=\sum_{\alpha_1=0}^{\infty}\sum_{\alpha_2=0}^{\infty}\cdots\sum_{\alpha_n=0}^{\infty}(z_1^{\alpha_1}z_n^{\alpha_2}\cdots z_n^{\alpha_n})$$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$

$$=\sum_{\alpha_1=0}^{\infty}\sum_{\alpha_2=0}^{\infty}\cdots\sum_{\alpha_n=0}^{\infty}(z_1^{\alpha_1}z_n^{\alpha_2}\cdots z_n^{\alpha_n})=\sum_{\alpha}z^{\alpha}.$$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$
$$= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} (z_1^{\alpha_1} z_n^{\alpha_2} \cdots z_n^{\alpha_n}) = \sum_{\alpha} z^{\alpha}.$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its *domain of convergence* (interior of the set where it converges).

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$
$$= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} (z_1^{\alpha_1} z_n^{\alpha_2} \cdots z_n^{\alpha_n}) = \sum_{\alpha} z^{\alpha}.$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its *domain of convergence* (interior of the set where it converges).

Example:
$$\sum_{k=0}^{\infty} z_1 z_2^k \text{ converges on } \{z \in \mathbb{C}^2 : |z_2| < 1\} \cup \{z \in \mathbb{C}^2 : z_1 = 0\}.$$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$
$$= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} (z_1^{\alpha_1} z_n^{\alpha_2} \cdots z_n^{\alpha_n}) = \sum_{\alpha} z^{\alpha}.$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its *domain of convergence* (interior of the set where it converges).

Example: $\sum_{k=0}^{\infty} z_1 z_2^k \text{ converges on } \{z \in \mathbb{C}^2 : |z_2| < 1\} \cup \{z \in \mathbb{C}^2 : z_1 = 0\}.$ Not a polydisc.
Geometric series: For $z \in \mathbb{D}^n$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$
$$= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} (z_1^{\alpha_1} z_n^{\alpha_2} \cdots z_n^{\alpha_n}) = \sum_{\alpha} z^{\alpha}.$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its *domain of convergence* (interior of the set where it converges).

Example: $\sum_{k=0}^{\infty} z_1 z_2^k \text{ converges on } \{z \in \mathbb{C}^2 : |z_2| < 1\} \cup \{z \in \mathbb{C}^2 : z_1 = 0\}.$ Not a polydisc. Neither open nor closed.

Geometric series: For $z \in \mathbb{D}^n$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right) \cdots \left(\sum_{k=0}^{\infty} z_n^k\right)$$
$$= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} (z_1^{\alpha_1} z_n^{\alpha_2} \cdots z_n^{\alpha_n}) = \sum_{\alpha} z^{\alpha}.$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its *domain of convergence* (interior of the set where it converges).

Example: $\sum_{k=0}^{\infty} z_1 z_2^k \text{ converges on } \{z \in \mathbb{C}^2 : |z_2| < 1\} \cup \{z \in \mathbb{C}^2 : z_1 = 0\}.$ Not a polydisc. Neither open nor closed. Domain of convergence is $\{z \in \mathbb{C}^2 : |z_2| < 1\}.$ Geometric series: For $z \in \mathbb{D}^n$

$$\frac{1}{1-z} = \frac{1}{(1-z_1)(1-z_2)\cdots(1-z_n)} = \left(\sum_{k=0}^{\infty} z_1^k\right) \left(\sum_{k=0}^{\infty} z_2^k\right)\cdots\left(\sum_{k=0}^{\infty} z_n^k\right)$$
$$= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} (z_1^{\alpha_1} z_n^{\alpha_2} \cdots z_n^{\alpha_n}) = \sum_{\alpha} z^{\alpha}.$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its *domain of convergence* (interior of the set where it converges).

Example: $\sum_{k=0}^{\infty} z_1 z_2^k \text{ converges on } \{z \in \mathbb{C}^2 : |z_2| < 1\} \cup \{z \in \mathbb{C}^2 : z_1 = 0\}.$ Not a polydisc. Neither open nor closed. Domain of convergence is $\{z \in \mathbb{C}^2 : |z_2| < 1\}.$

Example:

$$\sum_{k=0}^{\infty} z_1^k z_2^k \text{ converges on } \{z \in \mathbb{C}^2 : |z_1 z_2| < 1\}.$$

 $|z_1|$

Let $\Delta = \Delta_{\rho}(a) \subset \mathbb{C}^n$ be a polydisc and f is holomorphic in a neighborhood of $\overline{\Delta}$, let Γ be the distinguished boundary of Δ .

Let $\Delta = \Delta_{\rho}(a) \subset \mathbb{C}^n$ be a polydisc and f is holomorphic in a neighborhood of $\overline{\Delta}$, let Γ be the distinguished boundary of Δ . In

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

expand the Cauchy kernel as (interpret properly)

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \left(\frac{1}{1 - \frac{z - a}{\zeta - a}} \right) = \frac{1}{\zeta - a} \sum_{\alpha} \left(\frac{z - a}{\zeta - a} \right)^{\alpha}$$

Let $\Delta = \Delta_{\rho}(a) \subset \mathbb{C}^n$ be a polydisc and f is holomorphic in a neighborhood of $\overline{\Delta}$, let Γ be the distinguished boundary of Δ . In

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

expand the Cauchy kernel as (interpret properly)

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \left(\frac{1}{1 - \frac{z - a}{\zeta - a}} \right) = \frac{1}{\zeta - a} \sum_{\alpha} \left(\frac{z - a}{\zeta - a} \right)^{\alpha}$$

to get:

Theorem: For $z \in \Delta$,

$$f(z) = \sum_{\alpha} c_{\alpha} (z-a)^{\alpha}, \quad \text{where} \quad c_{\alpha} = \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{\alpha+1}} d\zeta.$$

Let $\Delta = \Delta_{\rho}(a) \subset \mathbb{C}^n$ be a polydisc and f is holomorphic in a neighborhood of $\overline{\Delta}$, let Γ be the distinguished boundary of Δ . In

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

expand the Cauchy kernel as (interpret properly)

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \left(\frac{1}{1 - \frac{z - a}{\zeta - a}} \right) = \frac{1}{\zeta - a} \sum_{\alpha} \left(\frac{z - a}{\zeta - a} \right)^{\alpha}$$

to get:

Theorem: For $z \in \Delta$,

$$f(z) = \sum_{\alpha} c_{\alpha} (z-a)^{\alpha}, \quad \text{where} \quad c_{\alpha} = \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{\alpha+1}} d\zeta.$$

Conversely, if f is defined by a power series, then it is holomorphic.

Difference from 1D: The zero set of a holomorphic function in 2 or more variables is always large (always has limit points).

Difference from 1D: The zero set of a holomorphic function in 2 or more variables is always large (always has limit points).

Theorem (Maximum principle): Let $U \subset \mathbb{C}^n$ be a domain. Let $f: U \to \mathbb{C}$ be holomorphic and suppose |f(z)| attains a local maximum at some $a \in U$. Then $f \equiv f(a)$.

Difference from 1D: The zero set of a holomorphic function in 2 or more variables is always large (always has limit points).

Theorem (Maximum principle): Let $U \subset \mathbb{C}^n$ be a domain. Let $f: U \to \mathbb{C}$ be holomorphic and suppose |f(z)| attains a local maximum at some $a \in U$. Then $f \equiv f(a)$.

Here, even the argument goes back to 1D: just use the maximum principle on every 1D subspace.

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): \mathbb{B}_2 and \mathbb{D}^2 are not biholomorphic.

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): \mathbb{B}_2 and \mathbb{D}^2 are not biholomorphic.

Nonconstant holomorphic $\varphi \colon \mathbb{D} \to \mathbb{C}^n$ is called an *analytic disc*.

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): \mathbb{B}_2 and \mathbb{D}^2 are not biholomorphic.

Nonconstant holomorphic $\varphi \colon \mathbb{D} \to \mathbb{C}^n$ is called an *analytic disc*.

Proposition: The unit sphere $S^{2n-1} = \partial \mathbb{B}_n \subset \mathbb{C}^n$ contains no analytic discs.

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): \mathbb{B}_2 and \mathbb{D}^2 are not biholomorphic.

Nonconstant holomorphic $\varphi \colon \mathbb{D} \to \mathbb{C}^n$ is called an *analytic disc*.

Proposition: The unit sphere $S^{2n-1} = \partial \mathbb{B}_n \subset \mathbb{C}^n$ contains no analytic discs. Proof: Suppose $g: \mathbb{D} \to S^{2n-1} \subset \mathbb{C}^n$ is holomorphic:

$$|g_1(z)|^2 + |g_2(z)|^2 + \dots + |g_n(z)|^2 = 1.$$

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): \mathbb{B}_2 and \mathbb{D}^2 are not biholomorphic.

Nonconstant holomorphic $\varphi \colon \mathbb{D} \to \mathbb{C}^n$ is called an *analytic disc*.

Proposition: The unit sphere $S^{2n-1} = \partial \mathbb{B}_n \subset \mathbb{C}^n$ contains no analytic discs. Proof: Suppose $g: \mathbb{D} \to S^{2n-1} \subset \mathbb{C}^n$ is holomorphic:

$$|g_1(z)|^2 + |g_2(z)|^2 + \dots + |g_n(z)|^2 = 1.$$

WLOG suppose $g(0) = (1, 0, \dots, 0) \implies g_1$ attains a max at $0 \implies g_1$ is constant $\implies g$ is constant.

For contradiction suppose $f: \mathbb{D}^2 \to \mathbb{B}_2$ is a biholomorphism.

For contradiction suppose $f: \mathbb{D}^2 \to \mathbb{B}_2$ is a biholomorphism. Pick a disc for fixed $z_1 = \zeta$ and a sequence $w_k \to e^{i\theta}$.

For contradiction suppose $f : \mathbb{D}^2 \to \mathbb{B}_2$ is a biholomorphism. Pick a disc for fixed $z_1 = \zeta$ and a sequence $w_k \to e^{i\theta}$.

 $\zeta \mapsto f(\zeta, w_k)$ converges to a holomorphic map to the sphere \Rightarrow constant

For contradiction suppose $f : \mathbb{D}^2 \to \mathbb{B}_2$ is a biholomorphism. Pick a disc for fixed $z_1 = \zeta$ and a sequence $w_k \to e^{i\theta}$.

 $\zeta \mapsto f(\zeta, w_k)$ converges to a holomorphic map to the sphere \Rightarrow constant

Derivative of $\zeta \mapsto f(\zeta, w_k)$ goes to zero for every $e^{i\theta}$ and every $\{w_k\}$. $\Rightarrow \quad \frac{\partial f}{\partial z_1} \equiv 0 \text{ (and by symmetry } \frac{\partial f}{\partial z_2} \equiv 0 \text{).}$

Theorem (Cartan): Suppose $U \subset \mathbb{C}^n$ is a **bounded** domain, $a \in U$, $f: U \to U$ is a holomorphic mapping, f(a) = a, and Df(a) is the identity. Then f(z) = z for all $z \in U$.

Theorem (Cartan): Suppose $U \subset \mathbb{C}^n$ is a **bounded** domain, $a \in U$, $f: U \to U$ is a holomorphic mapping, f(a) = a, and Df(a) is the identity. Then f(z) = z for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell} = f \circ f \circ \cdots \circ f$.

Theorem (Cartan): Suppose $U \subset \mathbb{C}^n$ is a **bounded** domain, $a \in U$, $f: U \to U$ is a holomorphic mapping, f(a) = a, and Df(a) is the identity. Then f(z) = z for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell} = f \circ f \circ \cdots \circ f$.

Used to compute automorphism groups as in 1D.

Theorem (Cartan): Suppose $U \subset \mathbb{C}^n$ is a **bounded** domain, $a \in U$, $f: U \to U$ is a holomorphic mapping, f(a) = a, and Df(a) is the identity. Then f(z) = z for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell} = f \circ f \circ \cdots \circ f$.

Used to compute automorphism groups as in 1D.

Every automorphism of \mathbb{D}^n is of the form

$$z \mapsto P\left(e^{i\theta_1} \frac{a_1 - z_1}{1 - \bar{a}_1 z_1}, e^{i\theta_2} \frac{a_2 - z_2}{1 - \bar{a}_2 z_2}, \dots, e^{i\theta_n} \frac{a_n - z_n}{1 - \bar{a}_n z_n}\right)$$

 $\theta \in \mathbb{R}^n$, $a \in \mathbb{D}^n$, *P* a permutation matrix.

Theorem (Cartan): Suppose $U \subset \mathbb{C}^n$ is a **bounded** domain, $a \in U$, $f: U \to U$ is a holomorphic mapping, f(a) = a, and Df(a) is the identity. Then f(z) = z for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell} = f \circ f \circ \cdots \circ f$.

Used to compute automorphism groups as in 1D.

Every automorphism of \mathbb{D}^n is of the form

$$z \mapsto P\left(e^{i\theta_1} \frac{a_1 - z_1}{1 - \bar{a}_1 z_1}, e^{i\theta_2} \frac{a_2 - z_2}{1 - \bar{a}_2 z_2}, \dots, e^{i\theta_n} \frac{a_n - z_n}{1 - \bar{a}_n z_n}\right)$$

 $\theta \in \mathbb{R}^n$, $a \in \mathbb{D}^n$, *P* a permutation matrix.

Every automorphism of \mathbb{B}_n is of the form

$$z \mapsto U \frac{a - P_a z - s_a (I - P_a) z}{1 - \langle z, a \rangle}$$

 $a \in \mathbb{B}_n$, U a unitary, $s_a = \sqrt{1 - ||a||^2}$ and $P_a z = \frac{\langle z, a \rangle}{\langle a, a \rangle} a$.

"Proof:" Cut *N* "transversally" by complex lines, apply the 1D Riemann mapping theorem, use Cauchy formula as glue.

"Proof:" Cut *N* "transversally" by complex lines, apply the 1D Riemann mapping theorem, use Cauchy formula as glue.

Theorem: Let $U \subset \mathbb{C}^n$ be a domain, $f \in \mathfrak{S}(U)$, $f \not\equiv 0$, and $N = f^{-1}(0)$. Then there exists an open and dense $N_{reg} \subset N$ such that at each $p \in N_{reg}$, after possibly reordering variables, N can be locally written as

$$z_n = g(z_1,\ldots,z_{n-1})$$

for a holomorphic function g.

"Proof:" Cut *N* "transversally" by complex lines, apply the 1D Riemann mapping theorem, use Cauchy formula as glue.

Theorem: Let $U \subset \mathbb{C}^n$ be a domain, $f \in \mathfrak{S}(U)$, $f \not\equiv 0$, and $N = f^{-1}(0)$. Then there exists an open and dense $N_{reg} \subset N$ such that at each $p \in N_{reg}$, after possibly reordering variables, N can be locally written as

$$z_n = g(z_1,\ldots,z_{n-1})$$

for a holomorphic function g.

"*Proof:*" Consider all possible derivatives of *f*, one of them must be nonzero somewhere on *N* (analyticity). Then apply implicit function theorem.

Remark: $|\det Df|^2 = \det D_{\mathbb{R}}f$, where $D_{\mathbb{R}}f$ is the real Jacobian matrix.

Remark: $|\det Df|^2 = \det D_{\mathbb{R}}f$, where $D_{\mathbb{R}}f$ is the real Jacobian matrix.

Theorem: Suppose $U \subset \mathbb{C}^n$ is open and $f: U \to \mathbb{C}^n$ is holomorphic and one-to-one. Then det Df is never zero on U.

Remark: $|\det Df|^2 = \det D_{\mathbb{R}}f$, where $D_{\mathbb{R}}f$ is the real Jacobian matrix.

Theorem: Suppose $U \subset \mathbb{C}^n$ is open and $f: U \to \mathbb{C}^n$ is holomorphic and one-to-one. Then det Df is never zero on U.

Proof reduces to the 1D statement, but not trivially.

Remark: $|\det Df|^2 = \det D_{\mathbb{R}}f$, where $D_{\mathbb{R}}f$ is the real Jacobian matrix.

Theorem: Suppose $U \subset \mathbb{C}^n$ is open and $f: U \to \mathbb{C}^n$ is holomorphic and one-to-one. Then det Df is never zero on U.

Proof reduces to the 1D statement, but not trivially.

So if a holomorphic map $f: U \to V$ is bijective for two open sets $U, V \subset \mathbb{C}^n$, then f is biholomorphic.
For holomorphic $f: U \subset \mathbb{C}^n \to \mathbb{C}^n$, write the holomorphic Jacobian $Df = \begin{bmatrix} \frac{\partial f_k}{\partial z_\ell} \end{bmatrix}_{k\ell}$.

Remark: $|\det Df|^2 = \det D_{\mathbb{R}}f$, where $D_{\mathbb{R}}f$ is the real Jacobian matrix.

Theorem: Suppose $U \subset \mathbb{C}^n$ is open and $f: U \to \mathbb{C}^n$ is holomorphic and one-to-one. Then det Df is never zero on U.

Proof reduces to the 1D statement, but not trivially.

So if a holomorphic map $f: U \to V$ is bijective for two open sets $U, V \subset \mathbb{C}^n$, then f is biholomorphic.

Example: The theorem does not hold in different dimensions. $f: \mathbb{C} \to \mathbb{C}^2$ given by $z \mapsto (z^2, z^3)$ is one-to-one and onto the cusp $(z_1^3 - z_2^2 = 0)$, but f'(0) = 0.