Tasty Bits of Several Complex Variables (1)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Polydisc with polyradius $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$ and center $a \in \mathbb{C}^{n}$

$$
\Delta_{\rho}(a) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{n}:\left|z_{k}-a_{k}\right|<\rho_{k} \text { for } k=1,2, \ldots, n\right\} .
$$

(If ρ a number, we mean $\rho_{k}=\rho$ for all k.)

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Polydisc with polyradius $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$ and center $a \in \mathbb{C}^{n}$

$$
\Delta_{\rho}(a) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{n}:\left|z_{k}-a_{k}\right|<\rho_{k} \text { for } k=1,2, \ldots, n\right\} .
$$

(If ρ a number, we mean $\rho_{k}=\rho$ for all k.)
The unit polydisc is
$\mathbb{D}^{n}=\mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D}=\Delta_{1}(0)$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Polydisc with polyradius $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$ and center $a \in \mathbb{C}^{n}$

$$
\Delta_{\rho}(a) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{n}:\left|z_{k}-a_{k}\right|<\rho_{k} \text { for } k=1,2, \ldots, n\right\} .
$$

(If ρ a number, we mean $\rho_{k}=\rho$ for all k.)
The unit polydisc is
$\mathbb{D}^{n}=\mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D}=\Delta_{1}(0)$
Example of a Reinhardt domain.

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Polydisc with polyradius $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$ and center $a \in \mathbb{C}^{n}$

$$
\Delta_{\rho}(a) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{n}:\left|z_{k}-a_{k}\right|<\rho_{k} \text { for } k=1,2, \ldots, n\right\} .
$$

(If ρ a number, we mean $\rho_{k}=\rho$ for all k.)
The unit polydisc is
$\mathbb{D}^{n}=\mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D}=\Delta_{1}(0)$
Example of a Reinhardt domain.

$$
\langle z, w\rangle=z \cdot \bar{w}
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Polydisc with polyradius $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$ and center $a \in \mathbb{C}^{n}$

$$
\Delta_{\rho}(a) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{n}:\left|z_{k}-a_{k}\right|<\rho_{k} \text { for } k=1,2, \ldots, n\right\} .
$$

(If ρ a number, we mean $\rho_{k}=\rho$ for all k.)
The unit polydisc is
$\mathbb{D}^{n}=\mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D}=\Delta_{1}(0)$
Example of a Reinhardt domain.

$$
\langle z, w\rangle=z \cdot \bar{w} \quad\|z\|=\sqrt{\langle z, z\rangle}
$$

Let \mathbb{C}^{n} be the complex Euclidean space.
$z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\mathbb{C}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ via

$$
z=x+i y, \quad \bar{z}=x-i y, \quad x, y \in \mathbb{R}^{n}, \quad i=\sqrt{-1} .
$$

Polydisc with polyradius $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$ and center $a \in \mathbb{C}^{n}$

$$
\Delta_{\rho}(a) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}^{n}:\left|z_{k}-a_{k}\right|<\rho_{k} \text { for } k=1,2, \ldots, n\right\} .
$$

(If ρ a number, we mean $\rho_{k}=\rho$ for all k.)
The unit polydisc is
$\mathbb{D}^{n}=\mathbb{D} \times \mathbb{D} \times \cdots \times \mathbb{D}=\Delta_{1}(0)$
Example of a Reinhardt domain.
$\langle z, w\rangle=z \cdot \bar{w} \quad\|z\|=\sqrt{\langle z, z\rangle}$
$B_{\rho}(a)$ is the ball in metric $\|\cdot\|$.
$\mathbb{B}_{n}=B_{1}(0)($ unit ball)

$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable in each variable separately, that is, if
$z_{\ell} \mapsto f\left(z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right)$ is complex differentiable for every ℓ
$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable in each variable separately, that is, if
$z_{\ell} \mapsto f\left(z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right)$ is complex differentiable for every ℓ
Write $\mathcal{O}(U)$ for set of holomorphic functions on U.
$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable in each variable separately, that is, if
$z_{\ell} \mapsto f\left(z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right)$ is complex differentiable for every ℓ
Write $\mathcal{O}(U)$ for set of holomorphic functions on U.
Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable in each variable separately, that is, if

$$
z_{\ell} \mapsto f\left(z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right) \text { is complex differentiable for every } \ell
$$

Write $\mathcal{O}(U)$ for set of holomorphic functions on U.
Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right)
$$

$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable in each variable separately, that is, if

$$
z_{\ell} \mapsto f\left(z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right) \text { is complex differentiable for every } \ell
$$

Write $\mathcal{O}(U)$ for set of holomorphic functions on U.
Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right) .
$$

These are determined by being the dual bases of $d z$ and $d \bar{z}$

$$
d z_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=\delta_{\ell}^{k}, \quad d z_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=\delta_{\ell}^{k}
$$

$f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable in each variable separately, that is, if

$$
z_{\ell} \mapsto f\left(z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right) \text { is complex differentiable for every } \ell
$$

Write $\mathcal{O}(U)$ for set of holomorphic functions on U.
Exterior derivative leads to 1-forms

$$
d z_{\ell}=d x_{\ell}+i d y_{\ell}, \quad d \bar{z}_{\ell}=d x_{\ell}-i d y_{\ell} .
$$

Define the Wirtinger operators

$$
\frac{\partial}{\partial z_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}-i \frac{\partial}{\partial y_{\ell}}\right), \quad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+i \frac{\partial}{\partial y_{\ell}}\right) .
$$

These are determined by being the dual bases of $d z$ and $d \bar{z}$

$$
d z_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=\delta_{\ell}^{k}, \quad d z_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial z_{\ell}}\right)=0, \quad d \bar{z}_{k}\left(\frac{\partial}{\partial \bar{z}_{\ell}}\right)=\delta_{\ell}^{k}
$$

Alternatively, f is holomorphic if it satisfies

$$
\frac{\partial f}{\partial \bar{z}_{\ell}}=0 \quad \text { for } \ell=1,2, \ldots, n \quad \text { (the Cauchy-Riemann }(C R) \text { equations). }
$$

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

Write a smooth function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

Write a smooth function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
Example: If f is a polynomial (in x and y), write $x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2 i}$ and it really does become a polynomial in z and \bar{z}.

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

Write a smooth function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
Example: If f is a polynomial (in x and y), write $x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2 i}$ and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2} .
$$

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

Write a smooth function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
Example: If f is a polynomial (in x and y), write $x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2 i}$ and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2} .
$$

f is holomorphic if it does not depend on \bar{z}.

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

Write a smooth function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
Example: If f is a polynomial (in x and y), write $x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2 i}$ and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2} .
$$

f is holomorphic if it does not depend on \bar{z}.
Chain rule: Suppose $f: U \subset \mathbb{C}^{n} \rightarrow V \subset \mathbb{C}^{m}$ and $g: V \rightarrow \mathbb{C}$ variables are $z \in \mathbb{C}^{n}$ and $w \in \mathbb{C}^{m}$.

$$
\begin{gathered}
\frac{\partial}{\partial z_{\ell}}[g \circ f]=\sum_{k=1}^{m}\left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial z_{\ell}}+\frac{\partial g}{\partial \bar{w}_{k}} \frac{\partial \bar{f}_{k}}{\partial z_{\ell}}\right) \\
\frac{\partial}{\partial \bar{z}_{\ell}}[g \circ f]=\sum_{k=1}^{m}\left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial \bar{z}_{\ell}}+\frac{\partial g}{\partial \bar{w}_{k}} \frac{\partial \bar{f}_{k}}{\partial \bar{z}_{\ell}}\right)
\end{gathered}
$$

If f is holomorphic, then

$$
\frac{\partial f}{\partial z_{k}}(z)=\lim _{\xi \in \mathbb{C} \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{k}+\xi, \ldots, z_{n}\right)-f(z)}{\xi} .
$$

Write a smooth function $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f(z, \bar{z})$.
Example: If f is a polynomial (in x and y), write $x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2 i}$ and it really does become a polynomial in z and \bar{z}. E.g.,

$$
2 x_{1}+2 y_{1}+4 y_{2}^{2}=(1-i) z_{1}+(1+i) \bar{z}_{1}-z_{2}^{2}+2 z_{2} \bar{z}_{2}-\bar{z}_{2}^{2}
$$

f is holomorphic if it does not depend on \bar{z}.
Chain rule: Suppose $f: U \subset \mathbb{C}^{n} \rightarrow V \subset \mathbb{C}^{m}$ and $g: V \rightarrow \mathbb{C}$ variables are $z \in \mathbb{C}^{n}$ and $w \in \mathbb{C}^{m}$.

$$
\begin{aligned}
& \frac{\partial}{\partial z_{\ell}}[g \circ f]=\sum_{k=1}^{m}\left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial z_{\ell}}+\frac{\partial g}{\partial w_{k}} \frac{\partial \bar{f}_{k}}{\partial z_{\ell}}\right) \\
& \frac{\partial}{\partial \bar{z}_{\ell}}[g \circ f]=\sum_{k=1}^{m}\left(\frac{\partial g}{\partial w_{k}} \frac{\partial f_{k}}{\partial \bar{z}_{\ell}}+\frac{\partial g}{\partial \bar{w}_{k}} \frac{\partial \bar{f}_{k}}{\partial \bar{z}_{\ell}}\right)=0
\end{aligned}
$$

If g and f are holomorphic.

Theorem (Cauchy integral formula): Let $\Delta \subset \mathbb{C}^{n}$ be a polydisc.
Suppose $f: \bar{\Delta} \rightarrow \mathbb{C}$ is a continuous function holomorphic in Δ.
$\Gamma=\partial \Delta_{1} \times \cdots \times \partial \Delta_{n}$ oriented appropriately (each $\partial \Delta_{k}$ oriented positively).
Then for $z \in \Delta$

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right)\left(\zeta_{2}-z_{2}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \wedge d \zeta_{2} \wedge \cdots \wedge d \zeta_{n}
$$

Theorem (Cauchy integral formula): Let $\Delta \subset \mathbb{C}^{n}$ be a polydisc.
Suppose $f: \bar{\Delta} \rightarrow \mathbb{C}$ is a continuous function holomorphic in Δ.
$\Gamma=\partial \Delta_{1} \times \cdots \times \partial \Delta_{n}$ oriented appropriately (each $\partial \Delta_{k}$ oriented positively).
Then for $z \in \Delta$

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right)\left(\zeta_{2}-z_{2}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \wedge d \zeta_{2} \wedge \cdots \wedge d \zeta_{n}
$$

We cheat and write
$\frac{1}{\zeta-z} \stackrel{\text { def }}{=} \frac{1}{\left(\zeta_{1}-z_{1}\right)\left(\zeta_{2}-z_{2}\right) \cdots\left(\zeta_{n}-z_{n}\right)}$
and $d \zeta \stackrel{\text { def }}{=} d \zeta_{1} \wedge d \zeta_{2} \wedge \cdots \wedge d \zeta_{n}$ to get

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta .
$$

Theorem (Cauchy integral formula): Let $\Delta \subset \mathbb{C}^{n}$ be a polydisc. Suppose $f: \bar{\Delta} \rightarrow \mathbb{C}$ is a continuous function holomorphic in Δ. $\Gamma=\partial \Delta_{1} \times \cdots \times \partial \Delta_{n}$ oriented appropriately (each $\partial \Delta_{k}$ oriented positively).
Then for $z \in \Delta$

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right)\left(\zeta_{2}-z_{2}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \wedge d \zeta_{2} \wedge \cdots \wedge d \zeta_{n}
$$

We cheat and write
$\frac{1}{\zeta-z} \stackrel{\text { def }}{=} \frac{1}{\left(\zeta_{1}-z_{1}\right)\left(\zeta_{2}-z_{2}\right) \cdots\left(\zeta_{n}-z_{n}\right)}$
and $d \zeta \stackrel{\text { def }}{=} d \zeta_{1} \wedge d \zeta_{2} \wedge \cdots \wedge d \zeta_{n}$ to get

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta .
$$

First big difference with 1D: Γ (a torus) is a small part of the boundary. Γ is called the distinguished boundary.

For $\alpha \in \mathbb{N}_{0}^{n}$, we cheat some more

$$
\begin{gathered}
z^{\alpha} \stackrel{\text { def }}{=} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}, \quad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text { def }}{=} \frac{\partial^{\alpha_{1}}}{\partial z_{1}^{\alpha_{1}}} \frac{\partial^{\alpha_{2}}}{\partial z_{2}^{\alpha_{2}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial z_{n}^{\alpha_{n}}} \\
\alpha!\stackrel{\text { def }}{=} \alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!, \quad \alpha+1 \stackrel{\text { def }}{=}\left(\alpha_{1}+1, \alpha_{2}+1, \cdots \alpha_{n}+1\right) .
\end{gathered}
$$

For $\alpha \in \mathbb{N}_{0}^{n}$, we cheat some more

$$
\begin{gathered}
z^{\alpha} \stackrel{\text { def }}{=} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}, \quad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text { def }}{=} \frac{\partial^{\alpha_{1}}}{\partial z_{1}^{\alpha_{1}}} \frac{\partial^{\alpha_{2}}}{\partial z_{2}^{\alpha_{2}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial z_{n}^{\alpha_{n}}} \\
\alpha!\stackrel{\text { def }}{=} \alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!, \quad \alpha+1 \stackrel{\text { def }}{=}\left(\alpha_{1}+1, \alpha_{2}+1, \cdots \alpha_{n}+1\right)
\end{gathered}
$$

Let Δ be a polydisc with distinguished boundary Γ, centered at a, of polyradius ρ. Suppose f is continuous on $\bar{\Delta}$, holomorphic on Δ.
Differentiate under the integral $\Rightarrow f$ is infinitely \mathbb{C}-differentiable and

$$
\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{\alpha!f(\zeta)}{(\zeta-z)^{\alpha+1}} d \zeta .
$$

For $\alpha \in \mathbb{N}_{0}^{n}$, we cheat some more

$$
\begin{gathered}
z^{\alpha} \stackrel{\text { def }}{=} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}, \quad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text { def }}{=} \frac{\partial^{\alpha_{1}}}{\partial z_{1}^{\alpha_{1}}} \frac{\partial^{\alpha_{2}}}{\partial z_{2}^{\alpha_{2}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial z_{n}^{\alpha_{n}}} \\
\alpha!\stackrel{\text { def }}{=} \alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!, \quad \alpha+1 \stackrel{\text { def }}{=}\left(\alpha_{1}+1, \alpha_{2}+1, \cdots \alpha_{n}+1\right)
\end{gathered}
$$

Let Δ be a polydisc with distinguished boundary Γ, centered at a, of polyradius ρ. Suppose f is continuous on $\bar{\Delta}$, holomorphic on Δ.
Differentiate under the integral $\Rightarrow f$ is infinitely \mathbb{C}-differentiable and

$$
\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{\alpha!f(\zeta)}{(\zeta-z)^{\alpha+1}} d \zeta
$$

From this we get the Cauchy estimates:

$$
\left|\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a)\right| \leq \frac{\alpha!\|f\|_{\Gamma}}{\rho^{\alpha}}=\frac{\alpha!\sup _{z \in \Gamma}|f(z)|}{\rho^{\alpha}}
$$

For $\alpha \in \mathbb{N}_{0}^{n}$, we cheat some more

$$
z^{\alpha} \stackrel{\text { def }}{=} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}, \quad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} \stackrel{\text { def }}{=} \frac{\partial^{\alpha_{1}}}{\partial z_{1}^{\alpha_{1}}} \frac{\partial^{\alpha_{2}}}{\partial z_{2}^{\alpha_{2}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial z_{n}^{\alpha_{n}}}
$$

$$
\alpha!\stackrel{\text { def }}{=} \alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!, \quad \alpha+1 \stackrel{\text { def }}{=}\left(\alpha_{1}+1, \alpha_{2}+1, \cdots \alpha_{n}+1\right)
$$

Let Δ be a polydisc with distinguished boundary Γ, centered at a, of polyradius ρ. Suppose f is continuous on $\bar{\Delta}$, holomorphic on Δ.

Differentiate under the integral $\Rightarrow f$ is infinitely \mathbb{C}-differentiable and

$$
\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{\alpha!f(\zeta)}{(\zeta-z)^{\alpha+1}} d \zeta .
$$

From this we get the Cauchy estimates:

$$
\left|\frac{\partial^{|\alpha|} \mid}{\partial z^{\alpha}}(a)\right| \leq \frac{\alpha!\|f\|_{\Gamma}}{\rho^{\alpha}}=\frac{\alpha!\sup _{z \in \Gamma}|f(z)|}{\rho^{\alpha}} .
$$

Corollary: The "correct" topology on $\mathcal{O}(U)$ is uniform convergence on compacts (normal convergence). If $f_{n} \in \mathcal{O}(U)$ and $f_{n} \rightarrow f$ uniformly on compacts, then $f \in \mathcal{O}(U)$ and $f_{n}^{(\ell)} \rightarrow f^{(\ell)}$ uniformly on compacts.

Geometric series: For $z \in \mathbb{D}^{n}$
$\frac{1}{1-z}$

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\frac{1}{1-z}=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}
$$

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\frac{1}{1-z}=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}{ }^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}{ }^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}{ }^{k}\right)
$$

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
& \frac{1}{1-z}=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}{ }^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}{ }^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}{ }^{k}\right)
\end{aligned}
$$

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}{ }^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}{ }^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its domain of convergence (interior of the set where it converges).

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its domain of convergence (interior of the set where it converges).
Example: $\sum_{k=0}^{\infty} z_{1} z_{2}^{k}$ converges on $\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\} \cup\left\{z \in \mathbb{C}^{2}: z_{1}=0\right\}$.

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}{ }^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its domain of convergence (interior of the set where it converges).
Example: $\sum_{k=0}^{\infty} z_{1} z_{2}^{k}$ converges on $\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\} \cup\left\{z \in \mathbb{C}^{2}: z_{1}=0\right\}$. Not a polydisc.

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}{ }^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its domain of convergence (interior of the set where it converges).
Example: $\sum_{k=0}^{\infty} z_{1} z_{2}^{k}$ converges on $\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\} \cup\left\{z \in \mathbb{C}^{2}: z_{1}=0\right\}$. Not a polydisc. Neither open nor closed.

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}{ }^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its domain of convergence (interior of the set where it converges).
Example: $\sum_{k=0}^{\infty} z_{1} z_{2}^{k}$ converges on $\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\} \cup\left\{z \in \mathbb{C}^{2}: z_{1}=0\right\}$.
Not a polydisc. Neither open nor closed.
Domain of convergence is
$\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\}$.

Geometric series: For $z \in \mathbb{D}^{n}$

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n}\right)}=\left(\sum_{k=0}^{\infty} z_{1}^{k}\right)\left(\sum_{k=0}^{\infty} z_{2}^{k}\right) \cdots\left(\sum_{k=0}^{\infty} z_{n}^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{\infty} \sum_{\alpha_{2}=0}^{\infty} \cdots \sum_{\alpha_{n}=0}^{\infty}\left(z_{1}{ }^{\alpha_{1}} z_{n}{ }^{\alpha_{2}} \cdots z_{n}{ }^{\alpha_{n}}\right)=\sum_{\alpha} z^{\alpha}
\end{aligned}
$$

Power series $\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}$ converges absolutely uniformly on compact subsets of its domain of convergence (interior of the set where it converges).
Example: $\sum_{k=0}^{\infty} z_{1} z_{2}^{k}$ converges on $\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\} \cup\left\{z \in \mathbb{C}^{2}: z_{1}=0\right\}$.
Not a polydisc. Neither open nor closed.
Domain of convergence is
$\left\{z \in \mathbb{C}^{2}:\left|z_{2}\right|<1\right\}$.
Example:
$\sum_{k=0}^{\infty} z_{1}^{k} z_{2}^{k}$ converges on $\left\{z \in \mathbb{C}^{2}:\left|z_{1} z_{2}\right|<1\right\}$.

Let $\Delta=\Delta_{\rho}(a) \subset \mathbb{C}^{n}$ be a polydisc and f is holomorphic in a neighborhood of $\bar{\Delta}$, let Γ be the distinguished boundary of Δ.

Let $\Delta=\Delta_{\rho}(a) \subset \mathbb{C}^{n}$ be a polydisc and f is holomorphic in a neighborhood of $\bar{\Delta}$, let Γ be the distinguished boundary of Δ. In

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

expand the Cauchy kernel as (interpret properly)

$$
\frac{1}{\zeta-z}=\frac{1}{\zeta-a}\left(\frac{1}{1-\frac{z-a}{\zeta-a}}\right)=\frac{1}{\zeta-a} \sum_{\alpha}\left(\frac{z-a}{\zeta-a}\right)^{\alpha}
$$

Let $\Delta=\Delta_{\rho}(a) \subset \mathbb{C}^{n}$ be a polydisc and f is holomorphic in a neighborhood of $\bar{\Delta}$, let Γ be the distinguished boundary of Δ. In

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

expand the Cauchy kernel as (interpret properly)

$$
\frac{1}{\zeta-z}=\frac{1}{\zeta-a}\left(\frac{1}{1-\frac{z-a}{\zeta-a}}\right)=\frac{1}{\zeta-a} \sum_{\alpha}\left(\frac{z-a}{\zeta-a}\right)^{\alpha}
$$

to get:
Theorem: For $z \in \Delta$,
$f(z)=\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}, \quad$ where $\quad c_{\alpha}=\frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{\alpha+1}} d \zeta$.

Let $\Delta=\Delta_{\rho}(a) \subset \mathbb{C}^{n}$ be a polydisc and f is holomorphic in a neighborhood of $\bar{\Delta}$, let Γ be the distinguished boundary of Δ. In

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

expand the Cauchy kernel as (interpret properly)

$$
\frac{1}{\zeta-z}=\frac{1}{\zeta-a}\left(\frac{1}{1-\frac{z-a}{\zeta-a}}\right)=\frac{1}{\zeta-a} \sum_{\alpha}\left(\frac{z-a}{\zeta-a}\right)^{\alpha}
$$

to get:
Theorem: For $z \in \Delta$,
$f(z)=\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}, \quad$ where $\quad c_{\alpha}=\frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(a)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{\alpha+1}} d \zeta$.
Conversely, iff is defined by a power series, then it is holomorphic.

Theorem (Identity): Let $U \subset \mathbb{C}^{n}$ be a domain (connected open set) and let $f: U \rightarrow \mathbb{C}$ be holomorphic. If $\left.\right|_{N} \equiv 0$ for a nonempty open subset $N \subset U$, then $f \equiv 0$.

Theorem (Identity): Let $U \subset \mathbb{C}^{n}$ be a domain (connected open set) and let $f: U \rightarrow \mathbb{C}$ be holomorphic. If $\left.\right|_{N} \equiv 0$ for a nonempty open subset $N \subset U$, then $f \equiv 0$.

Difference from 1D: The zero set of a holomorphic function in 2 or more variables is always large (always has limit points).

Theorem (Identity): Let $U \subset \mathbb{C}^{n}$ be a domain (connected open set) and let $f: U \rightarrow \mathbb{C}$ be holomorphic. If $\left.f\right|_{N} \equiv 0$ for a nonempty open subset $N \subset U$, then $f \equiv 0$.

Difference from 1D: The zero set of a holomorphic function in 2 or more variables is always large (always has limit points).

Theorem (Maximum principle): Let $U \subset \mathbb{C}^{n}$ be a domain. Let $f: U \rightarrow \mathbb{C}$ be holomorphic and suppose $|f(z)|$ attains a local maximum at some $a \in U$. Then $f \equiv f(a)$.

Theorem (Identity): Let $U \subset \mathbb{C}^{n}$ be a domain (connected open set) and let $f: U \rightarrow \mathbb{C}$ be holomorphic. If $\left.f\right|_{N} \equiv 0$ for a nonempty open subset $N \subset U$, then $f \equiv 0$.

Difference from 1D: The zero set of a holomorphic function in 2 or more variables is always large (always has limit points).

Theorem (Maximum principle): Let $U \subset \mathbb{C}^{n}$ be a domain. Let $f: U \rightarrow \mathbb{C}$ be holomorphic and suppose $|f(z)|$ attains a local maximum at some $a \in U$. Then $f \equiv f(a)$.

Here, even the argument goes back to 1D: just use the maximum principle on every 1D subspace.

We say $f: U \rightarrow V$ is a biholomorphism (and U and V are biholomorphic) if f is bijective, holomorphic, and f^{-1} is holomorphic.

We say $f: U \rightarrow V$ is a biholomorphism (and U and V are biholomorphic) if f is bijective, holomorphic, and f^{-1} is holomorphic.

No Riemann Mapping Theorem in several dimensions!
Theorem (Poincaré, 1907): \mathbb{B}_{2} and \mathbb{D}^{2} are not biholomorphic.

We say $f: U \rightarrow V$ is a biholomorphism (and U and V are biholomorphic) if f is bijective, holomorphic, and f^{-1} is holomorphic.

No Riemann Mapping Theorem in several dimensions!
Theorem (Poincaré, 1907): \mathbb{B}_{2} and \mathbb{D}^{2} are not biholomorphic.
Nonconstant holomorphic $\varphi: \mathbb{D} \rightarrow \mathbb{C}^{n}$ is called an analytic disc.

We say $f: U \rightarrow V$ is a biholomorphism (and U and V are biholomorphic) if f is bijective, holomorphic, and f^{-1} is holomorphic.

No Riemann Mapping Theorem in several dimensions!
Theorem (Poincaré, 1907): \mathbb{B}_{2} and \mathbb{D}^{2} are not biholomorphic.
Nonconstant holomorphic $\varphi: \mathbb{D} \rightarrow \mathbb{C}^{n}$ is called an analytic disc.
Proposition: The unit sphere $S^{2 n-1}=\partial \mathbb{B}_{n} \subset \mathbb{C}^{n}$ contains no analytic discs.

We say $f: U \rightarrow V$ is a biholomorphism (and U and V are biholomorphic) if f is bijective, holomorphic, and f^{-1} is holomorphic.

No Riemann Mapping Theorem in several dimensions!
Theorem (Poincaré, 1907): \mathbb{B}_{2} and \mathbb{D}^{2} are not biholomorphic.
Nonconstant holomorphic $\varphi: \mathbb{D} \rightarrow \mathbb{C}^{n}$ is called an analytic disc.
Proposition: The unit sphere $S^{2 n-1}=\partial \mathbb{B}_{n} \subset \mathbb{C}^{n}$ contains no analytic discs.
Proof: Suppose $g: \mathbb{D} \rightarrow S^{2 n-1} \subset \mathbb{C}^{n}$ is holomorphic:

$$
\left|g_{1}(z)\right|^{2}+\left|g_{2}(z)\right|^{2}+\cdots+\left|g_{n}(z)\right|^{2}=1
$$

We say $f: U \rightarrow V$ is a biholomorphism (and U and V are biholomorphic) if f is bijective, holomorphic, and f^{-1} is holomorphic.

No Riemann Mapping Theorem in several dimensions!
Theorem (Poincaré, 1907): \mathbb{B}_{2} and \mathbb{D}^{2} are not biholomorphic.
Nonconstant holomorphic $\varphi: \mathbb{D} \rightarrow \mathbb{C}^{n}$ is called an analytic disc.
Proposition: The unit sphere $S^{2 n-1}=\partial \mathbb{B}_{n} \subset \mathbb{C}^{n}$ contains no analytic discs.
Proof: Suppose $g: \mathbb{D} \rightarrow S^{2 n-1} \subset \mathbb{C}^{n}$ is holomorphic:

$$
\left|g_{1}(z)\right|^{2}+\left|g_{2}(z)\right|^{2}+\cdots+\left|g_{n}(z)\right|^{2}=1
$$

WLOG suppose $g(0)=(1,0, \cdots, 0) \quad \Rightarrow \quad g_{1}$ attains a max at 0
$\Rightarrow \quad g_{1}$ is constant $\Rightarrow g$ is constant.
"Proof" of Poincaré by (picture):
For contradiction suppose $f: \mathbb{D}^{2} \rightarrow \mathbb{B}_{2}$ is a biholomorphism.
"Proof" of Poincaré by (picture):
For contradiction suppose $f: \mathbb{D}^{2} \rightarrow \mathbb{B}_{2}$ is a biholomorphism.
Pick a disc for fixed $z_{1}=\zeta$ and a sequence $w_{k} \rightarrow e^{i \theta}$.

"Proof" of Poincaré by (picture):
For contradiction suppose $f: \mathbb{D}^{2} \rightarrow \mathbb{B}_{2}$ is a biholomorphism.
Pick a disc for fixed $z_{1}=\zeta$ and a sequence $w_{k} \rightarrow e^{i \theta}$.

$\zeta \mapsto f\left(\zeta, w_{k}\right)$ converges to a holomorphic map to the sphere \Rightarrow constant
"Proof" of Poincaré by (picture):
For contradiction suppose $f: \mathbb{D}^{2} \rightarrow \mathbb{B}_{2}$ is a biholomorphism.
Pick a disc for fixed $z_{1}=\zeta$ and a sequence $w_{k} \rightarrow e^{i \theta}$.

$\zeta \mapsto f\left(\zeta, w_{k}\right)$ converges to a holomorphic map to the sphere \Rightarrow constant

Derivative of $\zeta \mapsto f\left(\zeta, w_{k}\right)$ goes to zero for every $e^{i \theta}$ and every $\left\{w_{k}\right\}$. $\Rightarrow \quad \frac{\partial f}{\partial z_{1}} \equiv 0$ (and by symmetry $\frac{\partial f}{\partial z_{2}} \equiv 0$).

Where did Schwarz's lemma go?

Where did Schwarz's lemma go?
Theorem (Cartan): Suppose $U \subset \mathbb{C}^{n}$ is a bounded domain, $a \in U$, $f: U \rightarrow U$ is a holomorphic mapping, $f(a)=a$, and $\operatorname{Df}(a)$ is the identity. Then $f(z)=z$ for all $z \in U$.

Where did Schwarz's lemma go?
Theorem (Cartan): Suppose $U \subset \mathbb{C}^{n}$ is a bounded domain, $a \in U$, $f: U \rightarrow U$ is a holomorphic mapping, $f(a)=a$, and $D f(a)$ is the identity. Then $f(z)=z$ for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell}=f \circ f \circ \cdots \circ f$.

Where did Schwarz's lemma go?
Theorem (Cartan): Suppose $U \subset \mathbb{C}^{n}$ is a bounded domain, $a \in U$, $f: U \rightarrow U$ is a holomorphic mapping, $f(a)=a$, and $D f(a)$ is the identity. Then $f(z)=z$ for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell}=f \circ f \circ \cdots \circ f$.
Used to compute automorphism groups as in 1D.

Where did Schwarz's lemma go?
Theorem (Cartan): Suppose $U \subset \mathbb{C}^{n}$ is a bounded domain, $a \in U$, $f: U \rightarrow U$ is a holomorphic mapping, $f(a)=a$, and $D f(a)$ is the identity. Then $f(z)=z$ for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell}=f \circ f \circ \cdots \circ f$.
Used to compute automorphism groups as in 1D.
Every automorphism of \mathbb{D}^{n} is of the form

$$
z \mapsto P\left(e^{i \theta_{1}} \frac{a_{1}-z_{1}}{1-\bar{a}_{1} z_{1}}, e^{i \theta_{2}} \frac{a_{2}-z_{2}}{1-\bar{a}_{2} z_{2}}, \ldots, e^{i \theta_{n}} \frac{a_{n}-z_{n}}{1-\bar{a}_{n} z_{n}}\right)
$$

$\theta \in \mathbb{R}^{n}, a \in \mathbb{D}^{n}, P$ a permutation matrix.

Where did Schwarz's lemma go?
Theorem (Cartan): Suppose $U \subset \mathbb{C}^{n}$ is a bounded domain, $a \in U$, $f: U \rightarrow U$ is a holomorphic mapping, $f(a)=a$, and $D f(a)$ is the identity. Then $f(z)=z$ for all $z \in U$.

Argument is to use Cauchy estimates on the first nonzero nonlinear term of the series of $f^{\ell}=f \circ f \circ \cdots \circ f$.

Used to compute automorphism groups as in 1D.
Every automorphism of \mathbb{D}^{n} is of the form

$$
z \mapsto P\left(e^{i \theta_{1}} \frac{a_{1}-z_{1}}{1-\bar{a}_{1} z_{1}}, e^{i \theta_{2}} \frac{a_{2}-z_{2}}{1-\bar{a}_{2} z_{2}}, \ldots, e^{i \theta_{n}} \frac{a_{n}-z_{n}}{1-\bar{a}_{n} z_{n}}\right)
$$

$\theta \in \mathbb{R}^{n}, a \in \mathbb{D}^{n}, P$ a permutation matrix.
Every automorphism of \mathbb{B}_{n} is of the form

$$
z \mapsto U \frac{a-P_{a} z-s_{a}\left(I-P_{a}\right) z}{1-\langle z, a\rangle}
$$

$a \in \mathbb{B}_{n}, U$ a unitary, $s_{a}=\sqrt{1-\|a\|^{2}}$ and $P_{a} z=\frac{\langle z, a\rangle}{\langle a, a\rangle} a$.

Theorem (Riemann extension theorem): Let $U \subset \mathbb{C}^{n}$ be a domain, $g \in \mathcal{O}(U), g \not \equiv 0$, and $N=g^{-1}(0)$. If $f \in \mathcal{O}(U \backslash N)$ is locally bounded in U, then there exists a unique $F \in \mathcal{O}(U)$ such that $\left.F\right|_{U \backslash N}=f$.

Theorem (Riemann extension theorem): Let $U \subset \mathbb{C}^{n}$ be a domain, $g \in \mathcal{O}(U), g \not \equiv 0$, and $N=g^{-1}(0)$. If $f \in \mathcal{O}(U \backslash N)$ is locally bounded in U, then there exists a unique $F \in \mathcal{O}(U)$ such that $\left.F\right|_{U \backslash N}=f$.
"Proof:" Cut N "transversally" by complex lines, apply the 1D Riemann mapping theorem, use Cauchy formula as glue.

Theorem (Riemann extension theorem): Let $U \subset \mathbb{C}^{n}$ be a domain, $g \in \mathcal{O}(U), g \not \equiv 0$, and $N=g^{-1}(0)$. If $f \in \mathcal{O}(U \backslash N)$ is locally bounded in U, then there exists a unique $F \in \mathcal{O}(U)$ such that $\left.F\right|_{U \backslash N}=f$.
"Proof:" Cut N "transversally" by complex lines, apply the 1D Riemann mapping theorem, use Cauchy formula as glue.
Theorem: Let $U \subset \mathbb{C}^{n}$ be a domain, $f \in \mathcal{O}(U), f \not \equiv 0$, and $N=f^{-1}(0)$. Then there exists an open and dense $N_{\text {reg }} \subset N$ such that at each $p \in N_{\text {reg }}$, after possibly reordering variables, N can be locally written as

$$
z_{n}=g\left(z_{1}, \ldots, z_{n-1}\right)
$$

for a holomorphic function g.

Theorem (Riemann extension theorem): Let $U \subset \mathbb{C}^{n}$ be a domain, $g \in \mathcal{O}(U), g \not \equiv 0$, and $N=g^{-1}(0)$. If $f \in \mathcal{O}(U \backslash N)$ is locally bounded in U, then there exists a unique $F \in \mathcal{O}(U)$ such that $\left.F\right|_{U \backslash N}=f$.
"Proof:" Cut N "transversally" by complex lines, apply the 1D Riemann mapping theorem, use Cauchy formula as glue.
Theorem: Let $U \subset \mathbb{C}^{n}$ be a domain, $f \in \mathcal{O}(U), f \not \equiv 0$, and $N=f^{-1}(0)$. Then there exists an open and dense $N_{\text {reg }} \subset N$ such that at each $p \in N_{\text {reg }}$, after possibly reordering variables, N can be locally written as

$$
z_{n}=g\left(z_{1}, \ldots, z_{n-1}\right)
$$

for a holomorphic function g.
"Proof:" Consider all possible derivatives of f, one of them must be nonzero somewhere on N (analyticity). Then apply implicit function theorem.

For holomorphic $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, write the holomorphic Jacobian $D f=\left[\frac{\partial f_{k}}{\partial z_{\ell}}\right]_{k \ell}$.

For holomorphic $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, write the holomorphic Jacobian $D f=\left[\frac{\partial f_{k}}{\partial z_{\ell}}\right]_{k \ell}$.
Remark: $|\operatorname{det} D f|^{2}=\operatorname{det} D_{\mathbb{R}} f$, where $D_{\mathbb{R}} f$ is the real Jacobian matrix.

For holomorphic $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, write the holomorphic Jacobian $D f=\left[\frac{\partial f_{k}}{\partial z_{\ell}}\right]_{k \ell}$.
Remark: $|\operatorname{det} D f|^{2}=\operatorname{det} D_{\mathbb{R}} f$, where $D_{\mathbb{R}} f$ is the real Jacobian matrix. Theorem: Suppose $U \subset \mathbb{C}^{n}$ is open and $f: U \rightarrow \mathbb{C}^{n}$ is holomorphic and one-to-one. Then $\operatorname{det} D f$ is never zero on U.

For holomorphic $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, write the holomorphic Jacobian $D f=\left[\frac{\partial f_{k}}{\partial z_{\ell}}\right]_{k \ell}$.
Remark: $|\operatorname{det} D f|^{2}=\operatorname{det} D_{\mathbb{R}} f$, where $D_{\mathbb{R}} f$ is the real Jacobian matrix. Theorem: Suppose $U \subset \mathbb{C}^{n}$ is open and $f: U \rightarrow \mathbb{C}^{n}$ is holomorphic and one-to-one. Then $\operatorname{det} D f$ is never zero on U.
Proof reduces to the 1D statement, but not trivially.

For holomorphic $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, write the holomorphic Jacobian $D f=\left[\frac{\partial f_{k}}{\partial z_{\ell}}\right]_{k \ell}$.
Remark: $|\operatorname{det} D f|^{2}=\operatorname{det} D_{\mathbb{R}} f$, where $D_{\mathbb{R}} f$ is the real Jacobian matrix.
Theorem: Suppose $U \subset \mathbb{C}^{n}$ is open and $f: U \rightarrow \mathbb{C}^{n}$ is holomorphic and one-to-one. Then $\operatorname{det} D f$ is never zero on U.
Proof reduces to the 1D statement, but not trivially.
So if a holomorphic map $f: U \rightarrow V$ is bijective for two open sets $U, V \subset \mathbb{C}^{n}$, then f is biholomorphic.

For holomorphic $f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, write the holomorphic Jacobian $D f=\left[\frac{\partial f_{k}}{\partial z_{\ell}}\right]_{k \ell}$.
Remark: $|\operatorname{det} D f|^{2}=\operatorname{det} D_{\mathbb{R}} f$, where $D_{\mathbb{R}} f$ is the real Jacobian matrix.
Theorem: Suppose $U \subset \mathbb{C}^{n}$ is open and $f: U \rightarrow \mathbb{C}^{n}$ is holomorphic and one-to-one. Then $\operatorname{det} D f$ is never zero on U.
Proof reduces to the 1D statement, but not trivially.
So if a holomorphic map $f: U \rightarrow V$ is bijective for two open sets $U, V \subset \mathbb{C}^{n}$, then f is biholomorphic.

Example: The theorem does not hold in different dimensions. $f: \mathbb{C} \rightarrow \mathbb{C}^{2}$ given by $z \mapsto\left(z^{2}, z^{3}\right)$ is one-to-one and onto the cusp $\left(z_{1}^{3}-z_{2}^{2}=0\right)$, but $f^{\prime}(0)=0$.

