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Let ℂn be the complex Euclidean space.
z = (z1 , z2 , . . . , zn) ∈ ℂn and ℂn � ℝn ×ℝn = ℝ2n via

z = x + iy, z̄ = x − iy, x, y ∈ ℝn , i =
√
−1.

Polydisc with polyradius 𝜌 = (𝜌1 , 𝜌2 , . . . , 𝜌n) and center a ∈ ℂn

Δ𝜌(a)
def
=

{
z ∈ ℂn : |zk − ak | < 𝜌k for k = 1, 2, . . . , n

}
.

(If 𝜌 a number, we mean 𝜌k = 𝜌 for all k.)

The unit polydisc is
𝔻n = 𝔻 ×𝔻 × · · · ×𝔻 = Δ1(0)

|z1 |

|z2 |

𝜕𝔻2

𝔻2
Example of a Reinhardt domain.

⟨z,w⟩ = z · w̄ ∥z∥ =
√
⟨z, z⟩

B𝜌(a) is the ball in metric ∥·∥.

𝔹n = B1(0) (unit ball) |z1 |

|z2 |

𝜕𝔹2

𝔹2
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f : U ⊂ ℂn → ℂ is holomorphic if f is complex differentiable in each
variable separately, that is, if

zℓ ↦→ f (z1 , . . . , zℓ , . . . , zn) is complex differentiable for every ℓ

Write O(U) for set of holomorphic functions on U.

Exterior derivative leads to 1-forms

dzℓ = dxℓ + i dyℓ , dz̄ℓ = dxℓ − i dyℓ .

Define the Wirtinger operators

𝜕

𝜕zℓ
def
=

1
2

(
𝜕

𝜕xℓ
− i 𝜕

𝜕yℓ

)
,

𝜕

𝜕z̄ℓ
def
=

1
2

(
𝜕

𝜕xℓ
+ i 𝜕

𝜕yℓ

)
.

These are determined by being the dual bases of dz and dz̄

dzk

(
𝜕

𝜕zℓ

)
= 𝛿k

ℓ , dzk

(
𝜕

𝜕z̄ℓ

)
= 0, dz̄k

(
𝜕

𝜕zℓ

)
= 0, dz̄k

(
𝜕

𝜕z̄ℓ

)
= 𝛿k

ℓ

Alternatively, f is holomorphic if it satisfies

𝜕f
𝜕z̄ℓ

= 0 for ℓ = 1, 2, . . . , n (the Cauchy–Riemann (CR) equations).
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If f is holomorphic, then

𝜕f
𝜕zk

(z) = lim
𝜉∈ℂ→0

f (z1 , . . . , zk + 𝜉, . . . , zn) − f (z)
𝜉

.

Write a smooth function f : U ⊂ ℂn → ℂ as f (z, z̄).

Example: If f is a polynomial (in x and y), write x =
z + z̄

2 , y =
z − z̄

2i
and it really does become a polynomial in z and z̄. E.g.,

2x1 + 2y1 + 4y2
2 = (1 − i)z1 + (1 + i)z̄1 − z2

2 + 2z2z̄2 − z̄2
2.

f is holomorphic if it does not depend on z̄.

Chain rule: Suppose f : U ⊂ ℂn → V ⊂ ℂm and g : V → ℂ

variables are z ∈ ℂn and w ∈ ℂm.
𝜕

𝜕zℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕zℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
𝜕zℓ

)
𝜕

𝜕z̄ℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕z̄ℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
𝜕z̄ℓ

)
= 0

If g and f are holomorphic.
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f is holomorphic if it does not depend on z̄.

Chain rule: Suppose f : U ⊂ ℂn → V ⊂ ℂm and g : V → ℂ

variables are z ∈ ℂn and w ∈ ℂm.
𝜕

𝜕zℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕zℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
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If g and f are holomorphic.



4 / 14

If f is holomorphic, then

𝜕f
𝜕zk

(z) = lim
𝜉∈ℂ→0

f (z1 , . . . , zk + 𝜉, . . . , zn) − f (z)
𝜉

.

Write a smooth function f : U ⊂ ℂn → ℂ as f (z, z̄).

Example: If f is a polynomial (in x and y), write x =
z + z̄

2 , y =
z − z̄

2i
and it really does become a polynomial in z and z̄. E.g.,

2x1 + 2y1 + 4y2
2 = (1 − i)z1 + (1 + i)z̄1 − z2

2 + 2z2z̄2 − z̄2
2.

f is holomorphic if it does not depend on z̄.

Chain rule: Suppose f : U ⊂ ℂn → V ⊂ ℂm and g : V → ℂ

variables are z ∈ ℂn and w ∈ ℂm.
𝜕

𝜕zℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕zℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
𝜕zℓ

)
𝜕

𝜕z̄ℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕z̄ℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
𝜕z̄ℓ

)

= 0

If g and f are holomorphic.



4 / 14

If f is holomorphic, then

𝜕f
𝜕zk

(z) = lim
𝜉∈ℂ→0

f (z1 , . . . , zk + 𝜉, . . . , zn) − f (z)
𝜉

.

Write a smooth function f : U ⊂ ℂn → ℂ as f (z, z̄).

Example: If f is a polynomial (in x and y), write x =
z + z̄

2 , y =
z − z̄

2i
and it really does become a polynomial in z and z̄. E.g.,

2x1 + 2y1 + 4y2
2 = (1 − i)z1 + (1 + i)z̄1 − z2

2 + 2z2z̄2 − z̄2
2.

f is holomorphic if it does not depend on z̄.

Chain rule: Suppose f : U ⊂ ℂn → V ⊂ ℂm and g : V → ℂ

variables are z ∈ ℂn and w ∈ ℂm.
𝜕

𝜕zℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕zℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
𝜕zℓ

)
𝜕

𝜕z̄ℓ
[g ◦ f ] =

m∑
k=1

(
𝜕g
𝜕wk

𝜕fk
𝜕z̄ℓ

+ 𝜕g
𝜕w̄k

𝜕f̄k
𝜕z̄ℓ

)
= 0

If g and f are holomorphic.



5 / 14

Theorem (Cauchy integral formula): Let Δ ⊂ ℂn be a polydisc.
Suppose f : Δ → ℂ is a continuous function holomorphic in Δ.
Γ = 𝜕Δ1 × · · · × 𝜕Δn oriented appropriately (each 𝜕Δk oriented positively).
Then for z ∈ Δ

f (z) = 1
(2𝜋i)n

∫
Γ

f (𝜁1 , 𝜁2 , . . . , 𝜁n)
(𝜁1 − z1)(𝜁2 − z2) · · · (𝜁n − zn)

d𝜁1 ∧ d𝜁2 ∧ · · · ∧ d𝜁n.

We cheat and write
1

𝜁 − z
def
=

1
(𝜁1 − z1)(𝜁2 − z2) · · · (𝜁n − zn)

and d𝜁 def
= d𝜁1 ∧ d𝜁2 ∧ · · · ∧ d𝜁n to get

f (z) = 1
(2𝜋i)n

∫
Γ

f (𝜁)
𝜁 − z

d𝜁. |z1 |

|z2 |

𝜕𝔻2

𝔻2

Γ = 𝜕𝔻 × 𝜕𝔻

First big difference with 1D: Γ (a torus) is a small part of the
boundary. Γ is called the distinguished boundary.
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For 𝛼 ∈ ℕn
0 , we cheat some more

z𝛼 def
= z𝛼1

1 z𝛼2
2 · · · z𝛼n

n ,
𝜕|𝛼 |

𝜕z𝛼
def
=

𝜕𝛼1

𝜕z𝛼1
1

𝜕𝛼2

𝜕z𝛼2
2

· · · 𝜕𝛼n

𝜕z𝛼n
n

,

𝛼! def
= 𝛼1!𝛼2! · · · 𝛼n!, 𝛼 + 1 def

= (𝛼1 + 1, 𝛼2 + 1, · · · 𝛼n + 1).

Let Δ be a polydisc with distinguished boundary Γ, centered at a, of
polyradius 𝜌. Suppose f is continuous on Δ, holomorphic on Δ.

Differentiate under the integral ⇒ f is infinitely ℂ-differentiable and

𝜕|𝛼 |f
𝜕z𝛼

(z) = 1
(2𝜋i)n

∫
Γ

𝛼! f (𝜁)
(𝜁 − z)𝛼+1 d𝜁.

From this we get the Cauchy estimates:����𝜕|𝛼 |f𝜕z𝛼
(a)

���� ≤ 𝛼! ∥f ∥Γ
𝜌𝛼 =

𝛼! supz∈Γ |f (z)|
𝜌𝛼 .

Corollary: The “correct” topology on O(U) is uniform convergence on
compacts (normal convergence). If fn ∈ O(U) and fn → f uniformly on
compacts, then f ∈ O(U) and f (ℓ )n → f (ℓ ) uniformly on compacts.
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Geometric series: For z ∈ 𝔻n

1
1 − z

=
1

(1 − z1)(1 − z2) · · · (1 − zn)
=

( ∞∑
k=0

z1
k

) ( ∞∑
k=0

z2
k

)
· · ·

( ∞∑
k=0

zn
k

)

=

∞∑
𝛼1=0

∞∑
𝛼2=0

· · ·
∞∑

𝛼n=0
(z1

𝛼1zn
𝛼2 · · · zn

𝛼n) =
∑
𝛼

z𝛼 .

Power series
∑

𝛼 c𝛼(z− a)𝛼 converges absolutely uniformly on compact
subsets of its domain of convergence (interior of the set where it
converges).

Example:
∞∑

k=0
z1zk

2 converges on
{
z ∈ ℂ2 : |z2 | < 1

}
∪

{
z ∈ ℂ2 : z1 = 0

}
.

Not a polydisc. Neither open nor closed.
Domain of convergence is{
z ∈ ℂ2 : |z2 | < 1

}
.

Example:
∞∑

k=0
zk

1zk
2 converges on

{
z ∈ ℂ2 : |z1z2 | < 1

}
.

|z1 |

|z2 |

· · ·

...
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Let Δ = Δ𝜌(a) ⊂ ℂn be a polydisc and f is holomorphic in a
neighborhood of Δ, let Γ be the distinguished boundary of Δ.

In

f (z) = 1
(2𝜋i)n

∫
Γ

f (𝜁)
𝜁 − z

d𝜁

expand the Cauchy kernel as (interpret properly)

1
𝜁 − z

=
1

𝜁 − a

(
1

1 − z−a
𝜁−a

)
=

1
𝜁 − a

∑
𝛼

(
z − a
𝜁 − a

)𝛼
to get:

Theorem: For z ∈ Δ,

f (z) =
∑
𝛼

c𝛼(z − a)𝛼 , where c𝛼 =
1
𝛼!

𝜕|𝛼 |f
𝜕z𝛼

(a) = 1
(2𝜋i)n

∫
Γ

f (𝜁)
(𝜁 − a)𝛼+1 d𝜁.

Conversely, if f is defined by a power series, then it is holomorphic.
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Theorem (Identity): Let U ⊂ ℂn be a domain (connected open set) and let
f : U → ℂ be holomorphic. If f |N ≡ 0 for a nonempty open subset N ⊂ U,
then f ≡ 0.

Difference from 1D: The zero set of a holomorphic function in 2 or
more variables is always large (always has limit points).

Theorem (Maximum principle): Let U ⊂ ℂn be a domain. Let
f : U → ℂ be holomorphic and suppose |f (z)| attains a local maximum at
some a ∈ U. Then f ≡ f (a).

Here, even the argument goes back to 1D: just use the maximum
principle on every 1D subspace.
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We say f : U → V is a biholomorphism (and U and V are biholomorphic)
if f is bĳective, holomorphic, and f−1 is holomorphic.

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): 𝔹2 and 𝔻2 are not biholomorphic.

Nonconstant holomorphic 𝜑 : 𝔻 → ℂn is called an analytic disc.

Proposition: The unit sphere S2n−1 = 𝜕𝔹n ⊂ ℂn contains no analytic discs.

Proof: Suppose g : 𝔻 → S2n−1 ⊂ ℂn is holomorphic:

|g1(z)|2 + |g2(z)|2 + · · · + |gn(z)|2 = 1.

WLOG suppose g(0) = (1, 0, · · · , 0) ⇒ g1 attains a max at 0
⇒ g1 is constant ⇒ g is constant. □
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“Proof” of Poincaré by (picture):

For contradiction suppose f : 𝔻2 → 𝔹2 is a biholomorphism.

Pick a disc for fixed z1 = 𝜁 and a sequence wk → ei𝜃.

|z2 |

|z1 |

(𝜁,wk)
(𝜁, ei𝜃)

ei𝜃
w2

w1 wk
(𝜁,w2)
(𝜁,w1)

𝜁 ↦→ f (𝜁,wk) converges to a holomorphic map to the sphere
⇒ constant

Derivative of 𝜁 ↦→ f (𝜁,wk) goes to zero for every ei𝜃 and every {wk}.
⇒ 𝜕f

𝜕z1
≡ 0 (and by symmetry 𝜕f

𝜕z2
≡ 0). □
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Where did Schwarz’s lemma go?

Theorem (Cartan): Suppose U ⊂ ℂn is a bounded domain, a ∈ U,
f : U → U is a holomorphic mapping, f (a) = a, and Df (a) is the identity.
Then f (z) = z for all z ∈ U.

Argument is to use Cauchy estimates on the first nonzero nonlinear
term of the series of f ℓ = f ◦ f ◦ · · · ◦ f .

Used to compute automorphism groups as in 1D.

Every automorphism of 𝔻n is of the form

z ↦→ P
(
ei𝜃1

a1 − z1
1 − ā1z1

, ei𝜃2 a2 − z2
1 − ā2z2

, . . . , ei𝜃n an − zn
1 − ānzn

)
𝜃 ∈ ℝn, a ∈ 𝔻n, P a permutation matrix.

Every automorphism of 𝔹n is of the form

z ↦→ U a − Paz − sa(I − Pa)z
1 − ⟨z, a⟩

a ∈ 𝔹n, U a unitary, sa =
√

1 − ∥a∥2 and Paz =
⟨z,a⟩
⟨a,a⟩ a.
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Then f (z) = z for all z ∈ U.

Argument is to use Cauchy estimates on the first nonzero nonlinear
term of the series of f ℓ = f ◦ f ◦ · · · ◦ f .

Used to compute automorphism groups as in 1D.

Every automorphism of 𝔻n is of the form

z ↦→ P
(
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Theorem (Riemann extension theorem): Let U ⊂ ℂn be a domain,
g ∈ O(U), g . 0, and N = g−1(0). If f ∈ O(U \ N) is locally bounded in U,
then there exists a unique F ∈ O(U) such that F|U\N = f .

“Proof:” Cut N “transversally” by complex lines, apply the 1D
Riemann mapping theorem, use Cauchy formula as glue.

Theorem: Let U ⊂ ℂn be a domain, f ∈ O(U), f . 0, and N = f−1(0).
Then there exists an open and dense Nreg ⊂ N such that at each p ∈ Nreg,
after possibly reordering variables, N can be locally written as

zn = g(z1 , . . . , zn−1)

for a holomorphic function g.

“Proof:” Consider all possible derivatives of f , one of them must be
nonzero somewhere on N (analyticity). Then apply implicit function
theorem.
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For holomorphic f : U ⊂ ℂn → ℂn, write the holomorphic Jacobian
Df =

[ 𝜕fk
𝜕zℓ

]
kℓ .

Remark: |det Df |2 = det Dℝf , where Dℝf is the real Jacobian matrix.

Theorem: Suppose U ⊂ ℂn is open and f : U → ℂn is holomorphic and
one-to-one. Then det Df is never zero on U.

Proof reduces to the 1D statement, but not trivially.

So if a holomorphic map f : U → V is bĳective for two open sets
U,V ⊂ ℂn, then f is biholomorphic.

Example: The theorem does not hold in different dimensions.
f : ℂ → ℂ2 given by z ↦→ (z2 , z3) is one-to-one and onto the cusp
(z3

1 − z2
2 = 0), but f ′(0) = 0.
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