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Let C" be the complex Euclidean space.
z=(z1,22,...,2,) € C"and C" = R" x R" = R?" via

z=x+1iy, zZ=x-1y, x,y € R, i=v-1.
Polydisc with polyradius p = (p1, p2, ..., pn) and centera € C"
Ap(a) def {z € C": |zx —ax| < pi fork = 1,2,...,n}.

(If p a number, we mean p; = p for all k.)

The unit polydisc is 2]
D"=DxDx---xD = A;(0) 2
Example of a Reinhardt domain. B,

(wy=z-w  |zll = v(z,2) B,
By(a) is the ball in metric |-||.
B,, = B1(0) (unit ball) |z1]
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variable separately, that is, if

z¢ = f(z1,...,2¢,...,24) is complex differentiable for every £
Write 6(U) for set of holomorphic functions on U.
Exterior derivative leads to 1-forms
dzy = dx; +idyy, dzy = dxy —idy,.

Define the Wirtinger operators

d defl({d .0 d dfl(d .4
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These are determined by being the dual bases of dz and dz

d\ _ & Jd\ _ (9 _ (9
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Alternatively, f is holomorphic if it satisfies

)
é =0 fort¢=1,2,...,n (the Cauchy—Riemann (CR) equations).
t
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If f is holomorphic, then
f

(Z)— 11 f(zll'-'/Zk+5/"'/zn)_f(z).
£eC—0 <
Write a smooth function f: U ¢ C" — C as f(z, 2).

43 .
Example: If f is a polynomial (in x and y), write x = 22—2, y= £z

and it really does become a polynomial in z and z. E.g.,
2x1 +2y1 +4y3 = (1= i)z1 + (1 + i)z — 23 + 2202 — Z3.

f is holomorphic if it does not depend on Z.

Chain rule: Supposef: UCcC" -V cC"and g: V- C
variables are z € C" and w € C™.

d [ dg I dg I
lsen =3 (2 s o)

8wk 82[/ awk 82[/
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If f is holomorphic, then
f

(Z)— 11 f(zll'-'/Zk+5/"'/zn)_f(z).
£eC—0 <
Write a smooth function f: U ¢ C" — C as f(z, 2).

43 .
Example: If f is a polynomial (in x and y), write x = 22—2, y= £z

and it really does become a polynomial in z and z. E.g.,
2x1 +2y1 +4y3 = (1= i)z1 + (1 + i)z — 23 + 2202 — Z3.

f is holomorphic if it does not depend on Z.

Chain rule: Supposef: UCcC" -V cC"and g: V- C
variables are z € C" and w € C™.

P dg Ik fi
5 l8of1= ;(&uk&zlz +ﬁ£§)

93 If __ 932k
Wi 0Zp  dWk 9Zy

0
A [gof]= k
If g and f are holomorphic.
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Theorem (Cauchy integral formula): Let A C C" be a polydisc.
Suppose f: A — C is a continuous function holomorphic in A.

I = JA; X - -+ X dA, oriented appropriately (each A oriented positively).
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Theorem (Cauchy integral formula): Let A C C" be a polydisc.
Suppose f: A — C is a continuous function holomorphic in A.

I = JA; X - -+ X dA, oriented appropriately (each A oriented positively).
Then forz € A

f(CLCZ/H-/Cn)

1
0= G G o 0 M A

We cheat and write _—T'=0DxdD

1 def 1 |22|‘
C-z  (G-z1)(Ca—22)(Cn—zn) oD?
and dC def dCi AdCy A--- ANdC, to get o
_ 1 f(0)
f@) = mi)* Jr C—z ac. |z

First big difference with 1D: T (a torus) is a small part of the
boundary. I is called the distinguished boundary.



For a € N, we cheat some more
8|a| d_Ef aal 8052 aan

o dEf a 1 az . DR
- 7
Jdz¢  Jzf' dzy7 oz

z 22122

Qp
e z,",

def def
al = alag! - ay!, a+l=(a1+1,a0+1,---a,+1).
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For a € N(’)’, we cheat some more

&l(xl d_ef &“1 &32 &(Xn
Soa T a1 yar oo
0z dz;' dz, dzy,

def
2% = 2"z

an

Qap
5 cezy",

def def
al = arlap!- - ay!, a+l=(a+1,ax+1,---a,+1).

Let A be a polydisc with distinguished boundary I', centered at a, of
polyradius p. Suppose f is continuous on A, holomorphic on A.

Differentiate under the integral = f is infinitely C-differentiable and

dlalf 1 alf(Q)
0z¢ @)= 2mni)" Jr (C - z)**! '

From this we get the Cauchy estimates:

w(a)‘ < @IAllr _ atsup.rf@
dz% p® pe

Corollary: The “correct” topology on 6(U) is uniform convergence on
compacts (normal convergence). If f, € O(U) and f, — f uniformly on

compacts, then f € O(U) and f,ﬁ” — O uniformly on compacts.
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Geometric series: For z € D"

1 1 © S w
T-z A-z)0-2) - (1-2y) _ (kZ:;zlk) (;sz)...(;znk)
— Z Z Z (Zlmz _.Zna,,) — Zza

a1=0 a=0 ay= a

Power series 3}, ca(z —a)* converges absolutely uniformly on compact
subsets of its domain of convergence (interior of the set where it
converges).

Example: Z 2125 convergeson {z € C?: |zp| < 1} U {z € C?: 7z = 0}.
k=0 22|

Not a polydisc. Neither open nor closed.
Domain of convergence is
{Z e C?: |Zz| < 1}.

Example

Z zlz2 converges on {z € C?: |z1z0| < 1}.

|z1]
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Let A = Ay(a) C C" be a polydisc and f is holomorphic in a
neighborhood of A, let T be the distinguished boundary of A. In

__t [fO
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expand the Cauchy kernel as (interpret properly)

1 1 1 1 z—a\”
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C—a

to get:
Theorem: Forz € A,

1 dlelf 1 f(0)

al oz T @riy o -y

f(z) = an(z —a)*, where c, =

a



Let A = Ay(a) C C" be a polydisc and f is holomorphic in a
neighborhood of A, let T be the distinguished boundary of A. In

__t [fO
fle)= (2711')’1/]pc—z’7lC

expand the Cauchy kernel as (interpret properly)

1 1 1 1 z—a\”
C—ZZC—LZ( —ﬂ)ZC—aZa:(C—a)

C—a

to get:

Theorem: Forz € A,

. Lokl 1 fO
f(z) = Za:ca(z—a) ,  where cy= 1 e @) = @) Jr (€ -y

Conversely, if f is defined by a power series, then it is holomorphic.
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Theorem (Identity): Let U c C" be a domain (connected open set) and let
f: U — C be holomorphic. If f|n = 0 for a nonempty open subset N C U,
then f = 0.

Difference from 1D: The zero set of a holomorphic function in 2 or
more variables is always large (always has limit points).

Theorem (Maximum principle): Let U C C" be a domain. Let
f: U — C be holomorphic and suppose |f(z)| attains a local maximum at
somea € U. Then f = f(a).

Here, even the argument goes back to 1D: just use the maximum
principle on every 1D subspace.
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Wessay f: U — V is a biholomorphism (and U and V are biholomorphic)
if f is bijective, holomorphic, and f~! is holomorphic.

No Riemann Mapping Theorem in several dimensions!

Theorem (Poincaré, 1907): B, and D? are not biholomorphic.
Nonconstant holomorphic ¢ : D — C" is called an analytic disc.
Proposition: The unit sphere S>"~1 = 9B, C C" contains no analytic discs.

Proof: Suppose g: D — S?*~! c C" is holomorphic:
812)17 + 1822 + -+ + Ign(2)]* = 1.

WLOG suppose g(0) = (1,0,--- ,0) = g attains a max at0
= gpisconstant = gis constant. O
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For contradiction suppose f: D? — B, is a biholomorphism.

Pick a disc for fixed z; = C and a sequence wy — e,
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= constant



“Proof” of Poincaré by (picture):

For contradiction suppose f: D? — B, is a biholomorphism.

Pick a disc for fixed z; = C and a sequence wy — etf.
|zo| 4 (C,e%)
$(C,wp)
! i0
(C,wn) ¢
(L, wn)
|z

C — f(C, wi) converges to a holomorphic map to the sphere
= constant

Derivative of C > f(C, w) goes to zero for every ¢! and every {wy}.

2 J
= 8_51 = 0 (and by symmetry a—i =0).



Where did Schwarz’s lemma go?
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Where did Schwarz’s lemma go?

Theorem (Cartan): Suppose U C C" is a bounded domain, a € U,
f: U — U is a holomorphic mapping, f(a) = a, and Df (a) is the identity.
Then f(z) =z forall z € U.

Argument is to use Cauchy estimates on the first nonzero nonlinear
term of the series of f{ =fofo---of.

Used to compute automorphism groups as in 1D.
Every automorphism of D" is of the form

ar—2z1 g, 42 — 22 i6, In — Zn

z > P e —, ey =
1-d1z1 1—dyzp 1-ad,z,

0 € R",a € D", P a permutation matrix.

Every automorphism of B, is of the form

a—Pyz—s,(I-P,)z
1-{z,a)

z— U

a € B,, U a unitary, s, = y/1 — ||a]|?> and P,z = %a.
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ge0(U), g#0,and N =g1(0). Iff € 6(U \ N) is locally bounded in U,
then there exists a unique F € O(U) such that Fy\n = f.
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“Proof:” Cut N “transversally” by complex lines, apply the 1D
Riemann mapping theorem, use Cauchy formula as glue.
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for a holomorphic function g.



Theorem (Riemann extension theorem): Let U C C" be a domain,
ge0(U), g#0,and N =g1(0). Iff € 6(U \ N) is locally bounded in U,
then there exists a unique F € O(U) such that Fy\n = f.

“Proof:” Cut N “transversally” by complex lines, apply the 1D
Riemann mapping theorem, use Cauchy formula as glue.

Theorem: Let U C C" be a domain, f € O(U),f £ 0,and N = f‘l(O).
Then there exists an open and dense Nye C N such that at each p € Ny,
after possibly reordering variables, N can be locally written as

zn =8(z1,...,2Zu-1)

for a holomorphic function g.

“Proof:” Consider all possible derivatives of f, one of them must be
nonzero somewhere on N (analyticity). Then apply implicit function
theorem.



For holomorphicf: U c C" — C", write the holomorphic Jacobian

Df = [g_z]kl"

14/14



For holomorphic f: U ¢ C" — C", write the holomorphic Jacobian
Df = [£]
dze 1kt*

Remark: |det Df|> = det Drf, where Dgf is the real Jacobian matrix.
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For holomorphicf: U c C" — C", write the holomorphic Jacobian
Df = [%]ke'

Remark: |det Df |> = det Dgf, where Dgf is the real Jacobian matrix.
Theorem: Suppose U C C" is open and f: U — C" is holomorphic and
one-to-one. Then det Df is never zero on .

Proof reduces to the 1D statement, but not trivially.

So if a holomorphic map f: U — V is bijective for two open sets
U,V c C", then f is biholomorphic.

Example: The theorem does not hold in different dimensions.
f: C - C? given by z - (22, 2) is one-to-one and onto the cusp
(z3 — 23 =0), but f/(0) = 0.



