Tasty Bits of Several Complex Variables (3)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Complexification (traditional):
If $U \subset \mathbb{C}^{n}$ is a domain, $U \cap \mathbb{R}^{n} \neq \emptyset, f, g \in \mathcal{O}(U)$, and $f=g$ on $U \cap \mathbb{R}^{n}$.
$\Rightarrow f \equiv g$

Complexification (traditional):
If $U \subset \mathbb{C}^{n}$ is a domain, $U \cap \mathbb{R}^{n} \neq \emptyset, f, g \in \mathcal{O}(U)$, and $f=g$ on $U \cap \mathbb{R}^{n}$.
$\Rightarrow \quad f \equiv g$
Goes the other way too: If $V \subset \mathbb{R}^{n}, f: V \rightarrow \mathbb{R}$ is real-analytic, $\Rightarrow \quad \exists U \subset \mathbb{C}^{n}$ open, $V \subset U, F \in \mathcal{O}(U),\left.F\right|_{V}=f$.
Proof: Given real power series $\sum_{\alpha} c_{n}(x-p)^{n}$, plug in complex numbers: $\sum_{\alpha} c_{n}(z-p)^{n}$.

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic.

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

So (at any point) f equals

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}(z-a)^{\alpha}(\bar{z}-\bar{a})^{\beta} .
$$

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

So (at any point) f equals

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}(z-a)^{\alpha}(\bar{z}-\bar{a})^{\beta}
$$

So write $f(z, \bar{z})$.

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

So (at any point) f equals

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}(z-a)^{\alpha}(\bar{z}-\bar{a})^{\beta}
$$

So write $f(z, \bar{z})$.
Let $U \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f=g$ on the diagonal

$$
U \cap D=U \cap\left\{(z, \zeta) \in \mathbb{C}^{n} \times \mathbb{C}^{n}: \zeta=\bar{z}\right\}
$$

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

So (at any point) f equals

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}(z-a)^{\alpha}(\bar{z}-\bar{a})^{\beta}
$$

So write $f(z, \bar{z})$.
Let $U \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f=g$ on the diagonal

$$
U \cap D=U \cap\left\{(z, \zeta) \in \mathbb{C}^{n} \times \mathbb{C}^{n}: \zeta=\bar{z}\right\}
$$

$\Rightarrow \quad f \equiv g$.

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

So (at any point) f equals

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}(z-a)^{\alpha}(\bar{z}-\bar{a})^{\beta}
$$

So write $f(z, \bar{z})$.
Let $U \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f=g$ on the diagonal

$$
U \cap D=U \cap\left\{(z, \zeta) \in \mathbb{C}^{n} \times \mathbb{C}^{n}: \zeta=\bar{z}\right\}
$$

$\Rightarrow \quad f \equiv g$.
Also goes the other way, if $f: V \subset D \rightarrow \mathbb{C}$ is real-analytic, then f extends to a neighborhood of V in $\mathbb{C}^{2 n}$.

More SCVish complexification:
Suppose $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $f: U \rightarrow \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$
f(x, y)=\sum_{m=0}^{\infty} f_{m}(x, y)=\sum_{m=0}^{\infty} f_{m}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

So (at any point) f equals

$$
\sum_{\alpha, \beta} c_{\alpha, \beta}(z-a)^{\alpha}(\bar{z}-\bar{a})^{\beta}
$$

So write $f(z, \bar{z})$.
Let $U \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$ be a domain and $f, g \in \mathcal{O}(U)$ so that $f=g$ on the diagonal

$$
U \cap D=U \cap\left\{(z, \zeta) \in \mathbb{C}^{n} \times \mathbb{C}^{n}: \zeta=\bar{z}\right\}
$$

$\Rightarrow \quad f \equiv g$.
Also goes the other way, if $f: V \subset D \rightarrow \mathbb{C}$ is real-analytic, then f extends to a neighborhood of V in $\mathbb{C}^{2 n}$.
We identify \mathbb{C}^{n} and $D \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$ with $\iota(z)=(z, \bar{z})$.

Example: $f(z, \bar{z})=\frac{1}{1+|z|^{2}}=\frac{1}{1+z \bar{z}}$ is real-analytic in \mathbb{C}.

Example: $f(z, \bar{z})=\frac{1}{1+|z|^{2}}=\frac{1}{1+z \bar{z}}$ is real-analytic in \mathbb{C}.
The extension $f(z, \zeta)=\frac{1}{1+z \zeta}$ is holomorphic in $\mathbb{C}^{2} \backslash\{z \zeta=-1\}$.

Example: $f(z, \bar{z})=\frac{1}{1+|z|^{2}}=\frac{1}{1+z \bar{z}}$ is real-analytic in \mathbb{C}.
The extension $f(z, \zeta)=\frac{1}{1+z \zeta}$ is holomorphic in $\mathbb{C}^{2} \backslash\{z \zeta=-1\}$.
Example: If $u(z, \bar{z})$ is (pluri)harmonic, then $u(z, \bar{z})=\operatorname{Re} f(z)$.
How to find f ?

Example: $f(z, \bar{z})=\frac{1}{1+|z|^{2}}=\frac{1}{1+z \bar{z}}$ is real-analytic in \mathbb{C}.
The extension $f(z, \zeta)=\frac{1}{1+z \zeta}$ is holomorphic in $\mathbb{C}^{2} \backslash\{z \zeta=-1\}$.
Example: If $u(z, \bar{z})$ is (pluri)harmonic, then $u(z, \bar{z})=\operatorname{Re} f(z)$.
How to find f ?

$$
u(z, \bar{z})=\frac{f(z)+\bar{f}(\bar{z})}{2}, \text { WLOG } f(0)=0 \quad \Rightarrow \quad f(z)=2 u(z, 0)
$$

Example: $f(z, \bar{z})=\frac{1}{1+|z|^{2}}=\frac{1}{1+z \bar{z}}$ is real-analytic in \mathbb{C}.
The extension $f(z, \zeta)=\frac{1}{1+z \zeta}$ is holomorphic in $\mathbb{C}^{2} \backslash\{z \zeta=-1\}$.
Example: If $u(z, \bar{z})$ is (pluri)harmonic, then $u(z, \bar{z})=\operatorname{Re} f(z)$.
How to find f ?
$u(z, \bar{z})=\frac{f(z)+\bar{f}(\bar{z})}{2}$, WLOG $f(0)=0 \quad \Rightarrow \quad f(z)=2 u(z, 0)$.
Remark: There is no good control of the neighborhood to which f extends. Even in 1D: Given any interval (a, b) and any neighborhood U of (a, b), there is an $F \in \mathcal{O}(U)$ that does not extend past any boundary point of U. So $f=\left.F\right|_{(a, b)}$ also cannot extend further.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in \mathcal{O}(U)$, then $\left.F\right|_{M}$ is a CR function.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in \mathcal{O}(U)$, then $\left.F\right|_{M}$ is a $C R$ function.
Question is the reverse.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in O(U)$, then $\left.F\right|_{M}$ is a $C R$ function.
Question is the reverse. Not always true, if M is real-analytic, $\left.F\right|_{M}$ is real-analytic, so no smooth-only $\mathrm{CR} f$ on M is such a restriction.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in \mathcal{O}(U)$, then $\left.F\right|_{M}$ is a $C R$ function.
Question is the reverse. Not always true, if M is real-analytic, $\left.F\right|_{M}$ is real-analytic, so no smooth-only CR f on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and $f C R$, then f extends holomorphically to a neighborhood.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in \mathcal{O}(U)$, then $\left.F\right|_{M}$ is a CR function.
Question is the reverse. Not always true, if M is real-analytic, $\left.F\right|_{M}$ is real-analytic, so no smooth-only CR f on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and $f C R$, then f extends holomorphically to a neighborhood.
The proof feels like cheating so let's do it.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in \mathcal{O}(U)$, then $\left.F\right|_{M}$ is a $C R$ function.
Question is the reverse. Not always true, if M is real-analytic, $\left.F\right|_{M}$ is real-analytic, so no smooth-only $\mathrm{CR} f$ on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and $f \mathrm{CR}$, then f extends holomorphically to a neighborhood.

The proof feels like cheating so let's do it. Suppose $0 \in M$ and M is real-analytic, then there is a holomorphic $\Phi(z, \zeta, w)$ in a nbhd of 0 in $\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C}$, such that M is

$$
\bar{w}=\Phi(z, \bar{z}, w)
$$

$\Phi, \frac{\partial \Phi}{\partial z_{k}}, \frac{\partial \Phi}{\partial \zeta_{k}}$ vanish at 0 and $w=\bar{\Phi}(\zeta, z, \Phi(z, \zeta, w))$.

OK, but what about more complicated submanifolds than $\mathbb{R}^{n} \subset \mathbb{C}^{n}$?
Suppose $M \subset \mathbb{C}^{n}$ is a hypersurface, then $f: M \rightarrow \mathbb{C}$ is a $C R$ function if $X_{p} f=0$ for all $X_{p} \in T_{p}^{(0,1)} M$ for all $p \in M$.
If $M \subset U \subset \mathbb{C}^{n}$ and $F \in \mathcal{O}(U)$, then $\left.F\right|_{M}$ is a $C R$ function.
Question is the reverse. Not always true, if M is real-analytic, $\left.F\right|_{M}$ is real-analytic, so no smooth-only $\mathrm{CR} f$ on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and $f C R$, then f extends holomorphically to a neighborhood.
The proof feels like cheating so let's do it. Suppose $0 \in M$ and M is real-analytic, then there is a holomorphic $\Phi(z, \zeta, w)$ in a nbhd of 0 in $\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C}$, such that M is

$$
\bar{w}=\Phi(z, \bar{z}, w),
$$

$\Phi, \frac{\partial \Phi}{\partial z_{k}}, \frac{\partial \Phi}{\partial \zeta_{k}}$ vanish at 0 and $w=\bar{\Phi}(\zeta, z, \Phi(z, \zeta, w))$. A basis for $T^{(0,1)} M$:

$$
\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}} \quad\left(=\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \zeta_{k}} \frac{\partial}{\partial \bar{w}}\right), \quad k=1, \ldots, n-1 .
$$

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $\mu \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$.

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$
F(z, w, \zeta)=f(z, w, \zeta, \Phi(z, \zeta, w))
$$

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$
F(z, w, \zeta)=f(z, w, \zeta, \Phi(z, \zeta, w))
$$

As f is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$ on M. So

$$
\frac{\partial F}{\partial \zeta_{k}}+\frac{\partial \Phi}{\partial \zeta_{k}} \frac{\partial F}{\partial \omega}=\frac{\partial F}{\partial \zeta_{k}}=0
$$

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$
F(z, w, \zeta)=f(z, w, \zeta, \Phi(z, \zeta, w))
$$

As f is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$ on M. So

$$
\frac{\partial F}{\partial \zeta_{k}}+\frac{\partial \Phi}{\partial \zeta_{k}} \frac{\partial F}{\partial \omega}=\frac{\partial F}{\partial \zeta_{k}}=0
$$

This is true everywhere by complexification.

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$
F(z, w, \zeta)=f(z, w, \zeta, \Phi(z, \zeta, w))
$$

As f is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$ on M. So

$$
\frac{\partial F}{\partial \zeta_{k}}+\frac{\partial \Phi}{\partial \zeta_{k}} \frac{\partial F}{\partial \omega}=\frac{\partial F}{\partial \zeta_{k}}=0
$$

This is true everywhere by complexification.
So F is a function of z and w only $\Rightarrow F$ is holomorphic in \mathbb{C}^{n}.

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$
F(z, w, \zeta)=f(z, w, \zeta, \Phi(z, \zeta, w))
$$

As f is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$ on M. So

$$
\frac{\partial F}{\partial \zeta_{k}}+\frac{\partial \Phi}{\partial \zeta_{k}} \frac{\partial F}{\partial \omega}=\frac{\partial F}{\partial \zeta_{k}}=0
$$

This is true everywhere by complexification.
So F is a function of z and w only $\quad \Rightarrow F$ is holomorphic in \mathbb{C}^{n}.
Example: Consider $M \subset \mathbb{C}^{2}$ given by $\operatorname{Im} w=|z|^{2}$, that is, $\frac{w-\bar{w}}{2 i}=z \bar{z}$, or in other words, \mathcal{M} is given by $\omega=-2 i z \zeta+w$, and the CR vector field by $\frac{\partial}{\partial \bar{z}}-2 i z \frac{\partial}{\partial \bar{w}}$.

So: $\quad M$ is $\bar{w}=\Phi(z, \bar{z}, w), \quad T^{(0,1)} M$ is given by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$.
Define the complexification $M \subset \mathbb{C}^{2 n}$ by $\omega=\Phi(z, \zeta, w)$
Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$
F(z, w, \zeta)=f(z, w, \zeta, \Phi(z, \zeta, w))
$$

As f is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_{k}}+\frac{\partial \Phi}{\partial \bar{z}_{k}} \frac{\partial}{\partial \bar{w}}$ on M. So

$$
\frac{\partial F}{\partial \zeta_{k}}+\frac{\partial \Phi}{\partial \zeta_{k}} \frac{\partial F}{\partial \omega}=\frac{\partial F}{\partial \zeta_{k}}=0
$$

This is true everywhere by complexification.
So F is a function of z and w only $\quad \Rightarrow F$ is holomorphic in \mathbb{C}^{n}.
Example: Consider $M \subset \mathbb{C}^{2}$ given by $\operatorname{Im} w=|z|^{2}$, that is, $\frac{w-\bar{w}}{2 i}=z \bar{z}$, or in other words, \mathcal{M} is given by $\omega=-2 i z \zeta+w$, and the CR vector field by $\frac{\partial}{\partial \bar{z}}-2 i z \frac{\partial}{\partial \bar{w}}$.
If $f(z, w, \bar{z}, \bar{w})$ is a CR function, the holomorphic extension is $f(z, w, \bar{z},-2 i z \bar{z}+w)$, the \bar{z} will cancel.

What if f is only smooth?

What if f is only smooth?
Proposition: Suppose $U \subset \mathbb{C}^{n}$ is open with smooth boundary and
$f: \bar{U} \rightarrow \mathbb{C}$ is smooth, holomorphic on U. Then $\left.f\right|_{\partial U}$ is a smooth $C R$ function.

What if f is only smooth?
Proposition: Suppose $U \subset \mathbb{C}^{n}$ is open with smooth boundary and $f: \bar{U} \rightarrow \mathbb{C}$ is smooth, holomorphic on U. Then $\left.f\right|_{\partial u}$ is a smooth $C R$ function. Proof: Each $X_{p} \in T_{p}^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^{n}$ vectors from inside.

What if f is only smooth?
Proposition: Suppose $U \subset \mathbb{C}^{n}$ is open with smooth boundary and $f: \bar{U} \rightarrow \mathbb{C}$ is smooth, holomorphic on U. Then $\left.f\right|_{\partial u}$ is a smooth $C R$ function. Proof: Each $X_{p} \in T_{p}^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^{n}$ vectors from inside.

Proposition: Suppose $U \subset \mathbb{C}^{n}$ is a domain with smooth boundary and $f: \bar{U} \rightarrow \mathbb{C}$ is smooth, holomorphic on U and $\left.f\right|_{\partial u}$ is zero on a nonempty open subset. Then $f \equiv 0$.

What if f is only smooth?
Proposition: Suppose $U \subset \mathbb{C}^{n}$ is open with smooth boundary and $f: \bar{U} \rightarrow \mathbb{C}$ is smooth, holomorphic on U. Then $\left.f\right|_{\partial u}$ is a smooth $C R$ function. Proof: Each $X_{p} \in T_{p}^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^{n}$ vectors from inside.

Proposition: Suppose $U \subset \mathbb{C}^{n}$ is a domain with smooth boundary and $f: \bar{U} \rightarrow \mathbb{C}$ is smooth, holomorphic on U and $\left.f\right|_{\partial u}$ is zero on a nonempty open subset. Then $f \equiv 0$.

Proof: Use Rado's theorem to extend as 0 outside (g in the picture), then use identity. \square

Theorem (Radó): If $U \subset \mathbb{C}^{n}$ is open and $g: U \rightarrow \mathbb{C}$ continuous and holomorphic on

$$
U^{\prime}=\{z \in U: g(z) \neq 0\} .
$$

Then $g \in \mathcal{O}(U)$.

But can we extend (to at least one side)?

But can we extend (to at least one side)?
Example: Suppose $M=\mathbb{R} \subset \mathbb{C}$. Define $f: M \rightarrow \mathbb{C}$:

$$
f(x)= \begin{cases}e^{-x^{-2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0 .

But can we extend (to at least one side)?
Example: Suppose $M=\mathbb{R} \subset \mathbb{C}$. Define $f: M \rightarrow \mathbb{C}$:

$$
f(x)= \begin{cases}e^{-x^{-2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0 .
(Make it a several variable example by $M=\mathbb{R} \times \mathbb{C}$.)

But can we extend (to at least one side)?
Example: Suppose $M=\mathbb{R} \subset \mathbb{C}$. Define $f: M \rightarrow \mathbb{C}$:

$$
f(x)= \begin{cases}e^{-x^{-2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0 .
(Make it a several variable example by $M=\mathbb{R} \times \mathbb{C}$.)
Example: Define the function $f \in \overline{\mathbb{B}_{2}} \rightarrow \mathbb{C}$ by

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}e^{-1 / \sqrt{z_{1}+1}} & \text { if } z_{1} \neq-1 \\ 0 & \text { if } z_{1}=-1\end{cases}
$$

Then f is smooth on \mathbb{B}_{2}, holomorphic on \mathbb{B}_{2}, but near $(-1,0)$ is not a restriction of a holomorphic function (only one sided extension).

A neat technique for extension is to approximate by polynomials.

A neat technique for extension is to approximate by polynomials.
There is a lot more general version, but let's just state the easy one.
Theorem (Baouendi-Trèves): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every $C R$ function $f: M \rightarrow \mathbb{C}$, there exists a sequence $\left\{p_{\ell}\right\}$ of polynomials in z such that

$$
p_{\ell}(z) \rightarrow f(z) \quad \text { uniformly in } K .
$$

A neat technique for extension is to approximate by polynomials.
There is a lot more general version, but let's just state the easy one.
Theorem (Baouendi-Trèves): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every $C R$ function $f: M \rightarrow \mathbb{C}$, there exists a sequence $\left\{p_{\ell}\right\}$ of polynomials in z such that

$$
p_{\ell}(z) \rightarrow f(z) \quad \text { uniformly in } K .
$$

Example: The K depends only on M, but can't always be all of M : E.g., $M=S^{1}$ and $f=\bar{z}$.

A neat technique for extension is to approximate by polynomials.
There is a lot more general version, but let's just state the easy one.
Theorem (Baouendi-Trèves): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every $C R$ function $f: M \rightarrow \mathbb{C}$, there exists a sequence $\left\{p_{\ell}\right\}$ of polynomials in z such that

$$
p_{\ell}(z) \rightarrow f(z) \quad \text { uniformly in } K .
$$

Example: The K depends only on M, but can't always be all of M : E.g., $M=S^{1}$ and $f=\bar{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f:[0,1] \rightarrow \mathbb{R}$ is continuous, then it is approximated on $[0,1]$ by the entire functions

$$
f_{\ell}(z)=\int_{0}^{1} c_{\ell} e^{-\ell(z-t)^{2}} f(t) d t
$$

for properly chosen c_{ℓ}. Then just take partial sums of the power series.

A neat technique for extension is to approximate by polynomials.
There is a lot more general version, but let's just state the easy one.
Theorem (Baouendi-Trèves): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every $C R$ function $f: M \rightarrow \mathbb{C}$, there exists a sequence $\left\{p_{\ell}\right\}$ of polynomials in z such that

$$
p_{\ell}(z) \rightarrow f(z) \quad \text { uniformly in } K .
$$

Example: The K depends only on M, but can't always be all of M : E.g., $M=S^{1}$ and $f=\bar{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f:[0,1] \rightarrow \mathbb{R}$ is continuous, then it is approximated on $[0,1]$ by the entire functions

$$
f_{\ell}(z)=\int_{0}^{1} c_{\ell} e^{-\ell(z-t)^{2}} f(t) d t
$$

for properly chosen c_{ℓ}. Then just take partial sums of the power series.
Baouendi-Trèves uses the same idea on a totally real subset of M and slightly modified version of the above.

The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \rightarrow \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_{-} \subset U$ the set where r is negative and $U_{+} \subset U$ the set where r is positive. Let $f: M \rightarrow \mathbb{R}$ be a smooth $C R$ function. Then:

The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \rightarrow \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_{-} \subset U$ the set where r is negative and $U_{+} \subset U$ the set where r is positive. Let $f: M \rightarrow \mathbb{R}$ be a smooth $C R$ function. Then:
(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_{-}continuous up to M

The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \rightarrow \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_{-} \subset U$ the set where r is negative and $U_{+} \subset U$ the set where r is positive. Let $f: M \rightarrow \mathbb{R}$ be a smooth $C R$ function. Then:
(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_{-}continuous up to M
(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_{+}continuous up to M

The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \rightarrow \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_{-} \subset U$ the set where r is negative and $U_{+} \subset U$ the set where r is positive. Let $f: M \rightarrow \mathbb{R}$ be a smooth $C R$ function. Then:
(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_{-}continuous up to M
(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_{+}continuous up to M
(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then f extends to a function holomorphic on U.

The following is called the Lewy extension theorem, but goes back to Helmut Knesser in 1936.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^{n}$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \rightarrow \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_{-} \subset U$ the set where r is negative and $U_{+} \subset U$ the set where r is positive. Let $f: M \rightarrow \mathbb{R}$ be a smooth $C R$ function. Then:
(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_{-}continuous up to M
(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U_{+}continuous up to M
(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then f extends to a function holomorphic on U.

Remark: So if the Levi-form has eigenvalues of both signs, then every CR function is a restriction of a holomorphic function.
"Proof of (i):" Write M as

$$
\operatorname{Im} w=\left|z_{1}\right|^{2}+\sum_{k=2}^{n-1} \epsilon_{k}\left|z_{k}\right|^{2}+E\left(z_{1}, z^{\prime}, \bar{z}_{1}, \bar{z}^{\prime}, \operatorname{Re} w\right)
$$

where $z^{\prime}=\left(z_{2}, \ldots, z_{n-1}\right), \epsilon_{k}=-1,0,1$, and E is $O(3)$. And apply Bauoendi-Trèves to find a K.
"Proof of (i):" Write M as

$$
\operatorname{Im} w=\left|z_{1}\right|^{2}+\sum_{k=2}^{n-1} \epsilon_{k}\left|z_{k}\right|^{2}+E\left(z_{1}, z^{\prime}, \bar{z}_{1}, \bar{z}^{\prime}, \operatorname{Re} w\right)
$$

where $z^{\prime}=\left(z_{2}, \ldots, z_{n-1}\right), \epsilon_{k}=-1,0,1$, and E is $O(3)$. And apply Bauoendi-Trèves to find a K.

$$
z_{1} \mapsto\left|z_{1}\right|^{2}+E\left(z_{1}, 0, \bar{z}_{1}, 0,0\right)
$$

has a strict minimum at the origin, and so does
$z_{1} \mapsto\left|z_{1}\right|^{2}+\sum_{k=2}^{n} \epsilon_{k}\left|z_{k}\right|^{2}+E\left(z_{1}, z^{\prime}, \bar{z}_{1}, \bar{z}^{\prime}, \operatorname{Re} w\right)-\operatorname{Im} w \quad$ for small z^{\prime}, w.
"Proof of (i):" Write M as

$$
\operatorname{Im} w=\left|z_{1}\right|^{2}+\sum_{k=2}^{n-1} \epsilon_{k}\left|z_{k}\right|^{2}+E\left(z_{1}, z^{\prime}, \bar{z}_{1}, \bar{z}^{\prime}, \operatorname{Re} w\right)
$$

where $z^{\prime}=\left(z_{2}, \ldots, z_{n-1}\right), \epsilon_{k}=-1,0,1$, and E is $O(3)$. And apply Bauoendi-Trèves to find a K.

$$
z_{1} \mapsto\left|z_{1}\right|^{2}+E\left(z_{1}, 0, \bar{z}_{1}, 0,0\right)
$$

has a strict minimum at the origin, and so does
$z_{1} \mapsto\left|z_{1}\right|^{2}+\sum_{k=2}^{n} \epsilon_{k}\left|z_{k}\right|^{2}+E\left(z_{1}, z^{\prime}, \bar{z}_{1}, \bar{z}^{\prime}, \operatorname{Re} w\right)-\operatorname{Im} w \quad$ for small z^{\prime}, w.
we find an analytic disc Δ "attached" to $K \subset M$ (i.e., $\partial \Delta \subset K$).

One can fill a one-sided neighborhood by such discs.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K. $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K. $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K. $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ. $\Rightarrow \quad\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K. $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ. $\Rightarrow\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$
$\Rightarrow \quad\left\{p_{\ell}\right\}$ converges to a holomorphic function on U_{-}continuous up to the boundary.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K. $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ. $\Rightarrow\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$
$\Rightarrow \quad\left\{p_{\ell}\right\}$ converges to a holomorphic function on U_{-}continuous up to the boundary.
To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K.
$\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.
By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ.
$\Rightarrow\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$
$\Rightarrow \quad\left\{p_{\ell}\right\}$ converges to a holomorphic function on U_{-}continuous up to the boundary.
To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.
Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$ extends to an entire holomorphic function on \mathbb{C}^{3} and hence must be real-analytic.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K.
$\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.
By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ.
$\Rightarrow\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$
$\Rightarrow \quad\left\{p_{\ell}\right\}$ converges to a holomorphic function on U_{-}continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$ extends to an entire holomorphic function on \mathbb{C}^{3} and hence must be real-analytic.
Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ extends to the set $\operatorname{Im} w \geq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, but not necessarily below.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K.
$\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.
By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ.
$\Rightarrow\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$
$\Rightarrow \quad\left\{p_{\ell}\right\}$ converges to a holomorphic function on U_{-}continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.
Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$ extends to an entire holomorphic function on \mathbb{C}^{3} and hence must be real-analytic.
Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ extends to the set $\operatorname{Im} w \geq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, but not necessarily below.
Example: There exist CR functions on $\operatorname{Im} w=0$ that extend to neither side.

Apply Baouendi-Trèves to find p_{ℓ} that approximate f uniformly on K.
$\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc.
By maximum principle, $\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on Δ.
$\Rightarrow\left\{p_{\ell}\right\}$ is (uniformly) Cauchy on $U_{-} \cup K$
$\Rightarrow \quad\left\{p_{\ell}\right\}$ converges to a holomorphic function on U_{-}continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.
Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$ extends to an entire holomorphic function on \mathbb{C}^{3} and hence must be real-analytic.
Example: Every CR function on $\operatorname{Im} w=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ extends to the set $\operatorname{Im} w \geq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, but not necessarily below.
Example: There exist CR functions on $\operatorname{Im} w=0$ that extend to neither side.

Remark: These ideas led Lewy to find the example of the unsolvable PDE.

Another application is a special case of the following theorem:
Theorem (Hartogs-Bochner): Suppose $U \subset \mathbb{C}^{n}, n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a $C R$ function. Then there exists a continuous $F: \bar{U} \rightarrow \mathbb{C}$ holomorphic in U such that $\left.F\right|_{\partial U}=f$.

Another application is a special case of the following theorem:
Theorem (Hartogs-Bochner): Suppose $U \subset \mathbb{C}^{n}, n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a $C R$ function. Then there exists a continuous $F: \bar{U} \rightarrow \mathbb{C}$ holomorphic in U such that $\left.F\right|_{\partial U}=f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Another application is a special case of the following theorem:
Theorem (Hartogs-Bochner): Suppose $U \subset \mathbb{C}^{n}, n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a $C R$ function. Then there exists a continuous $F: \bar{U} \rightarrow \mathbb{C}$ holomorphic in U such that $\left.F\right|_{\partial U}=f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).
Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Another application is a special case of the following theorem:
Theorem (Hartogs-Bochner): Suppose $U \subset \mathbb{C}^{n}, n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a $C R$ function. Then there exists a continuous $F: \bar{U} \rightarrow \mathbb{C}$ holomorphic in U such that $\left.F\right|_{\partial U}=f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).
Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every $C R$ function on $S^{2 n-1} \subset \mathbb{C}^{n}, n \geq 2$, is the boundary value of a continuous $F: \overline{\mathbb{B}_{n}} \rightarrow \mathbb{C}$ that is holomorphic in \mathbb{B}_{n}.

Another application is a special case of the following theorem:
Theorem (Hartogs-Bochner): Suppose $U \subset \mathbb{C}^{n}, n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a $C R$ function. Then there exists a continuous $F: \bar{U} \rightarrow \mathbb{C}$ holomorphic in U such that $\left.F\right|_{\partial U}=f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).
Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every $C R$ function on $S^{2 n-1} \subset \mathbb{C}^{n}, n \geq 2$, is the boundary value of a continuous $F: \overline{\mathbb{B}_{n}} \rightarrow \mathbb{C}$ that is holomorphic in \mathbb{B}_{n}.

Example: The function \bar{z} on $S^{1} \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Another application is a special case of the following theorem:
Theorem (Hartogs-Bochner): Suppose $U \subset \mathbb{C}^{n}, n \geq 2$, is bounded open set with smooth boundary and $f: \partial U \rightarrow \mathbb{C}$ is a $C R$ function. Then there exists a continuous $F: \bar{U} \rightarrow \mathbb{C}$ holomorphic in U such that $\left.F\right|_{\partial U}=f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every $C R$ function on $S^{2 n-1} \subset \mathbb{C}^{n}, n \geq 2$, is the boundary value of a continuous $F: \overline{\mathbb{B}_{n}} \rightarrow \mathbb{C}$ that is holomorphic in \mathbb{B}_{n}.

Example: The function \bar{z} on $S^{1} \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Example: Similarly, not true in general if U is unbounded. If $U=\mathbb{D} \times \mathbb{C} \subset \mathbb{C}^{2}$, then \bar{z}_{1} is a \mathbb{C} function, but does not extend inside for the same reason.

