Tasty Bits of Several Complex Variables (3)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Complexification (traditional):

If $U \subset \mathbb{C}^n$ is a domain, $U \cap \mathbb{R}^n \neq \emptyset$, $f, g \in \mathcal{O}(U)$, and f = g on $U \cap \mathbb{R}^n$. $\Rightarrow f \equiv g$ Complexification (traditional):

If $U \subset \mathbb{C}^n$ is a domain, $U \cap \mathbb{R}^n \neq \emptyset$, $f, g \in \mathcal{O}(U)$, and f = g on $U \cap \mathbb{R}^n$. $\Rightarrow f \equiv g$

Goes the other way too: If $V \subset \mathbb{R}^n$, $f: V \to \mathbb{R}$ is real-analytic, $\Rightarrow \exists U \subset \mathbb{C}^n$ open, $V \subset U$, $F \in \mathfrak{G}(U)$, $F|_V = f$.

Proof: Given real power series $\sum_{\alpha} c_n (x - p)^n$, plug in complex numbers: $\sum_{\alpha} c_n (z - p)^n$.

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic.

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

So (at any point) *f* equals

$$\sum_{\alpha,\beta} c_{\alpha,\beta} (z-a)^{\alpha} (\bar{z}-\bar{a})^{\beta}.$$

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

So (at any point) *f* equals

$$\sum_{\alpha,\beta} c_{\alpha,\beta} (z-a)^{\alpha} (\bar{z}-\bar{a})^{\beta}.$$

So write $f(z, \overline{z})$.

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

So (at any point) *f* equals

$$\sum_{\alpha,\beta} c_{\alpha,\beta} (z-a)^{\alpha} (\bar{z}-\bar{a})^{\beta}.$$

So write $f(z, \overline{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathfrak{O}(U)$ so that f = g on the *diagonal*

$$U \cap D = U \cap \{(z,\zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z}\},\$$

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

So (at any point) *f* equals

$$\sum_{\alpha,\beta} c_{\alpha,\beta} (z-a)^{\alpha} (\bar{z}-\bar{a})^{\beta}.$$

So write $f(z, \overline{z})$.

=

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathfrak{O}(U)$ so that f = g on the *diagonal*

$$U \cap D = U \cap \{(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z}\},$$

$$\Rightarrow f \equiv g.$$

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

So (at any point) *f* equals

$$\sum_{\alpha,\beta} c_{\alpha,\beta} (z-a)^{\alpha} (\bar{z}-\bar{a})^{\beta}.$$

So write $f(z, \overline{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathfrak{G}(U)$ so that f = g on the *diagonal*

$$U \cap D = U \cap \{(z,\zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z}\},\$$

 $\Rightarrow f \equiv g \, .$

Also goes the other way, if $f: V \subset D \rightarrow \mathbb{C}$ is real-analytic, then f extends to a neighborhood of V in \mathbb{C}^{2n} .

Suppose $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $f: U \to \mathbb{C}$ is real-analytic. Write (at 0 for simplicity)

$$f(x,y) = \sum_{m=0}^{\infty} f_m(x,y) = \sum_{m=0}^{\infty} f_m\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right)$$

So (at any point) *f* equals

$$\sum_{\alpha,\beta} c_{\alpha,\beta} (z-a)^{\alpha} (\bar{z}-\bar{a})^{\beta}.$$

So write $f(z, \overline{z})$.

Let $U \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain and $f, g \in \mathfrak{O}(U)$ so that f = g on the *diagonal*

$$U \cap D = U \cap \{(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z}\},\$$

 $\Rightarrow f \equiv g \, .$

Also goes the other way, if $f: V \subset D \rightarrow \mathbb{C}$ is real-analytic, then f extends to a neighborhood of V in \mathbb{C}^{2n} .

We identify \mathbb{C}^n and $D \subset \mathbb{C}^n \times \mathbb{C}^n$ with $\iota(z) = (z, \overline{z})$.

Example: $f(z, \overline{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\overline{z}}$ is real-analytic in \mathbb{C} .

Example: $f(z, \overline{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\overline{z}}$ is real-analytic in \mathbb{C} . The extension $f(z, \zeta) = \frac{1}{1+z\zeta}$ is holomorphic in $\mathbb{C}^2 \setminus \{z\zeta = -1\}$. **Example:** $f(z, \bar{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\bar{z}}$ is real-analytic in \mathbb{C} . The extension $f(z, \zeta) = \frac{1}{1+z\zeta}$ is holomorphic in $\mathbb{C}^2 \setminus \{z\zeta = -1\}$. **Example:** If $u(z, \bar{z})$ is (pluri)harmonic, then $u(z, \bar{z}) = \operatorname{Re} f(z)$. How to find f? **Example:** $f(z, \overline{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\overline{z}}$ is real-analytic in \mathbb{C} .

The extension $f(z, \zeta) = \frac{1}{1+z\zeta}$ is holomorphic in $\mathbb{C}^2 \setminus \{z\zeta = -1\}$. **Example:** If $u(z, \overline{z})$ is (pluri)harmonic, then $u(z, \overline{z}) = \operatorname{Re} f(z)$.

How to find *f*?

$$u(z,\overline{z}) = \frac{f(z) + \overline{f}(\overline{z})}{2}, \text{WLOG } f(0) = 0 \quad \Rightarrow \quad f(z) = 2u(z,0).$$

Example: $f(z, \overline{z}) = \frac{1}{1+|z|^2} = \frac{1}{1+z\overline{z}}$ is real-analytic in \mathbb{C} .

The extension $f(z, \zeta) = \frac{1}{1+z\zeta}$ is holomorphic in $\mathbb{C}^2 \setminus \{z\zeta = -1\}$.

Example: If $u(z, \overline{z})$ is (pluri)harmonic, then $u(z, \overline{z}) = \text{Re}f(z)$. How to find *f*?

$$u(z,\overline{z}) = \frac{f(z) + \overline{f}(\overline{z})}{2}, \text{WLOG } f(0) = 0 \quad \Rightarrow \quad f(z) = 2u(z,0).$$

Remark: There is no good control of the neighborhood to which *f* extends. Even in 1D: Given any interval (*a*, *b*) and any neighborhood *U* of (*a*, *b*), there is an $F \in O(U)$ that does not extend past any boundary point of *U*. So $f = F|_{(a,b)}$ also cannot extend further.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathfrak{O}(U)$, then $F|_M$ is a CR function.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathfrak{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if *M* is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR *f* on *M* is such a restriction.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathfrak{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if *M* is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR *f* on *M* is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f extends holomorphically to a neighborhood.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathcal{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if *M* is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR *f* on *M* is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f extends holomorphically to a neighborhood.

The proof feels like cheating so let's do it.

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathfrak{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if *M* is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR *f* on *M* is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f extends holomorphically to a neighborhood.

The proof feels like cheating so let's do it. Suppose $0 \in M$ and M is real-analytic, then there is a holomorphic $\Phi(z, \zeta, w)$ in a nbhd of 0 in $\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C}$, such that M is

$$\bar{w} = \Phi(z, \bar{z}, w),$$

 $\Phi, \frac{\partial \Phi}{\partial z_k}, \frac{\partial \Phi}{\partial \zeta_k} \text{ vanish at } 0 \text{ and } w = \bar{\Phi}(\zeta, z, \Phi(z, \zeta, w)).$

Suppose $M \subset \mathbb{C}^n$ is a hypersurface, then $f: M \to \mathbb{C}$ is a *CR function* if $X_p f = 0$ for all $X_p \in T_p^{(0,1)} M$ for all $p \in M$.

If $M \subset U \subset \mathbb{C}^n$ and $F \in \mathfrak{O}(U)$, then $F|_M$ is a CR function.

Question is the reverse. Not always true, if *M* is real-analytic, $F|_M$ is real-analytic, so no smooth-only CR *f* on *M* is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f extends holomorphically to a neighborhood.

The proof feels like cheating so let's do it. Suppose $0 \in M$ and M is real-analytic, then there is a holomorphic $\Phi(z, \zeta, w)$ in a nbhd of 0 in $\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C}$, such that M is

$$\bar{w} = \Phi(z, \bar{z}, w),$$

 Φ , $\frac{\partial \Phi}{\partial z_k}$, $\frac{\partial \Phi}{\partial \zeta_k}$ vanish at 0 and $w = \overline{\Phi}(\zeta, z, \Phi(z, \zeta, w))$. A basis for $T^{(0,1)}M$:

$$\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}} \quad \left(= \frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial}{\partial \bar{w}} \right), \qquad k = 1, \dots, n-1.$$

So: *M* is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$.

So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$. Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ So: $M ext{ is } \bar{w} = \Phi(z, \bar{z}, w), \quad T^{(0,1)}M ext{ is given by } \frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}.$ Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega).$ So: $M ext{ is } \bar{w} = \Phi(z, \bar{z}, w), \quad T^{(0,1)}M ext{ is given by } \frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}.$ Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

 $F(z,w,\zeta)=f\bigl(z,w,\zeta,\Phi(z,\zeta,w)\bigr).$

So: $M ext{ is } \bar{w} = \Phi(z, \bar{z}, w), \quad T^{(0,1)}M ext{ is given by } \frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}.$ Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).$$

As *f* is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$ on *M*. So

$$\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.$$

So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$. Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).$$

As *f* is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$ on *M*. So

$$\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.$$

This is true everywhere by complexification.

So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$. Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z,w,\zeta) = f(z,w,\zeta,\Phi(z,\zeta,w)).$$

As *f* is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$ on *M*. So

$$\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.$$

This is true everywhere by complexification.

So *F* is a function of *z* and *w* only \Rightarrow *F* is holomorphic in \mathbb{C}^n .

So: M is $\bar{w} = \Phi(z, \bar{z}, w)$, $T^{(0,1)}M$ is given by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$. Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z, w, \zeta) = f(z, w, \zeta, \Phi(z, \zeta, w)).$$

As *f* is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$ on *M*. So

$$\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.$$

This is true everywhere by complexification.

So *F* is a function of *z* and *w* only \Rightarrow *F* is holomorphic in \mathbb{C}^n . **Example:** Consider $M \subset \mathbb{C}^2$ given by Im $w = |z|^2$, that is, $\frac{w - \bar{w}}{2i} = z\bar{z}$, or in other words, \mathcal{M} is given by $\omega = -2iz\zeta + w$, and the CR vector field by $\frac{\partial}{\partial \bar{z}} - 2iz\frac{\partial}{\partial \bar{w}}$. So: $M ext{ is } \bar{w} = \Phi(z, \bar{z}, w), \quad T^{(0,1)}M ext{ is given by } \frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}.$ Define the complexification $\mathcal{M} \subset \mathbb{C}^{2n}$ by $\omega = \Phi(z, \zeta, w)$ Complexify $f(z, w, \bar{z}, \bar{w})$ to $f(z, w, \zeta, \omega)$. Now the trick: Define

$$F(z,w,\zeta)=f\bigl(z,w,\zeta,\Phi(z,\zeta,w)\bigr).$$

As *f* is a CR function, it is killed by $\frac{\partial}{\partial \bar{z}_k} + \frac{\partial \Phi}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{w}}$ on *M*. So

$$\frac{\partial F}{\partial \zeta_k} + \frac{\partial \Phi}{\partial \zeta_k} \frac{\partial F}{\partial \omega} = \frac{\partial F}{\partial \zeta_k} = 0.$$

This is true everywhere by complexification.

So *F* is a function of *z* and *w* only \Rightarrow *F* is holomorphic in \mathbb{C}^n .

Example: Consider $M \subset \mathbb{C}^2$ given by Im $w = |z|^2$, that is, $\frac{w - \bar{w}}{2i} = z\bar{z}$, or in other words, \mathcal{M} is given by $\omega = -2iz\zeta + w$, and the CR vector field by $\frac{\partial}{\partial \bar{z}} - 2iz\frac{\partial}{\partial \bar{w}}$.

If $f(z, w, \overline{z}, \overline{w})$ is a CR function, the holomorphic extension is $f(z, w, \overline{z}, -2iz\overline{z} + w)$, the \overline{z} will cancel.

What if *f* is only smooth?

What if *f* is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f: \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function.
What if *f* is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f: \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function. Proof: Each $X_p \in T_p^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^n$ vectors from inside.

What if *f* is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f: \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function. Proof: Each $X_p \in T_p^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^n$ vectors from inside. **Proposition:** Suppose $U \subset \mathbb{C}^n$ is a domain with smooth boundary and $f: \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U and $f|_{\partial U}$ is zero on a nonempty open subset. Then $f \equiv 0$.

What if *f* is only smooth?

Proposition: Suppose $U \subset \mathbb{C}^n$ is open with smooth boundary and $f: \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U. Then $f|_{\partial U}$ is a smooth CR function. Proof: Each $X_p \in T_p^{(0,1)} \partial U$ is a limit of $T^{(0,1)} \mathbb{C}^n$ vectors from inside. **Proposition:** Suppose $U \subset \mathbb{C}^n$ is a domain with smooth boundary and $f: \overline{U} \to \mathbb{C}$ is smooth, holomorphic on U and $f|_{\partial U}$ is zero on a nonempty

open subset. Then $f \equiv 0$.

Proof: Use Radó's theorem to extend as 0 outside (*g* in the picture), then use identity. \Box

Theorem (Radó): If $U \subset \mathbb{C}^n$ is open and $g: U \to \mathbb{C}$ continuous and holomorphic on

$$U' = \left\{ z \in U : g(z) \neq 0 \right\}.$$

Then $g \in \mathfrak{O}(U)$.

Example: Suppose $M = \mathbb{R} \subset \mathbb{C}$. Define $f: M \to \mathbb{C}$:

$$f(x) = \begin{cases} e^{-x^{-2}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0.

Example: Suppose $M = \mathbb{R} \subset \mathbb{C}$. Define $f: M \to \mathbb{C}$:

$$f(x) = \begin{cases} e^{-x^{-2}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0.

(Make it a several variable example by $M = \mathbb{R} \times \mathbb{C}$.)

Example: Suppose $M = \mathbb{R} \subset \mathbb{C}$. Define $f: M \to \mathbb{C}$:

$$f(x) = \begin{cases} e^{-x^{-2}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then f is CR (trivially), but is not a restriction nor boundary value (from either side) of a holomorphic function continuous up to 0.

(Make it a several variable example by $M = \mathbb{R} \times \mathbb{C}$.)

Example: Define the function $f \in \overline{\mathbb{B}_2} \to \mathbb{C}$ by

$$f(z_1, z_2) = \begin{cases} e^{-1/\sqrt{z_1+1}} & \text{if } z_1 \neq -1, \\ 0 & \text{if } z_1 = -1. \end{cases}$$

Then *f* is smooth on \mathbb{B}_2 , holomorphic on \mathbb{B}_2 , but near (-1, 0) is not a restriction of a holomorphic function (only one sided extension).

There is a lot more general version, but let's just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_\ell\}$ of polynomials in z such that

 $p_{\ell}(z) \rightarrow f(z)$ uniformly in K.

There is a lot more general version, but let's just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_t\}$ of polynomials in z such that

 $p_{\ell}(z) \rightarrow f(z)$ uniformly in K.

Example: The *K* depends only on *M*, but can't always be all of *M*: E.g., $M = S^1$ and $f = \overline{z}$.

There is a lot more general version, but let's just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_t\}$ of polynomials in z such that

 $p_{\ell}(z) \rightarrow f(z)$ uniformly in K.

Example: The *K* depends only on *M*, but can't always be all of *M*: E.g., $M = S^1$ and $f = \overline{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f: [0, 1] \rightarrow \mathbb{R}$ is continuous, then it is approximated on [0, 1] by the entire functions

$$f_{\ell}(z) = \int_0^1 c_{\ell} e^{-\ell(z-t)^2} f(t) \, dt$$

for properly chosen c_{ℓ} . Then just take partial sums of the power series.

There is a lot more general version, but let's just state the easy one.

Theorem (Baouendi–Trèves): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. Then there exists a compact neighborhood $K \subset M$ of p, such that for every CR function $f : M \to \mathbb{C}$, there exists a sequence $\{p_t\}$ of polynomials in z such that

 $p_{\ell}(z) \rightarrow f(z)$ uniformly in K.

Example: The *K* depends only on *M*, but can't always be all of *M*: E.g., $M = S^1$ and $f = \overline{z}$.

The proof is based on the standard proof of Weierstrass theorem: If $f: [0, 1] \rightarrow \mathbb{R}$ is continuous, then it is approximated on [0, 1] by the entire functions

$$f_{\ell}(z) = \int_0^1 c_{\ell} e^{-\ell(z-t)^2} f(t) \, dt$$

for properly chosen c_{ℓ} . Then just take partial sums of the power series. Baouendi–Trèves uses the same idea on a totally real subset of *M* and slightly modified version of the above.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f: M \to \mathbb{R}$ be a smooth CR function. Then:

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f: M \to \mathbb{R}$ be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U₋ continuous up to M

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f: M \to \mathbb{R}$ be a smooth CR function. Then:

- (i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_− continuous up to M
- (ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U₊ continuous up to M

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f: M \to \mathbb{R}$ be a smooth CR function. Then:

- (i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_− continuous up to M
- (ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U₊ continuous up to M
- (iii) If the Levi form with respect to r has eigenvalues of both signs at p, then *f* extends to a function holomorphic on U.

Theorem (Lewy): Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface and $p \in M$. There exists a neighborhood U of p with the following property. Suppose $r: U \to \mathbb{R}$ is a smooth defining function for $M \cap U$, denote by $U_- \subset U$ the set where r is negative and $U_+ \subset U$ the set where r is positive. Let $f: M \to \mathbb{R}$ be a smooth CR function. Then:

- (i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a holomorphic function on U_− continuous up to M
- (ii) If the Levi form with respect to r has a negative eigenvalue at p, then f extends to a holomorphic function on U₊ continuous up to M
- (iii) If the Levi form with respect to r has eigenvalues of both signs at p, then *f* extends to a function holomorphic on U.

Remark: So if the Levi-form has eigenvalues of both signs, then every CR function is a restriction of a holomorphic function.

"Proof of (i):" Write *M* as

Im
$$w = |z_1|^2 + \sum_{k=2}^{n-1} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \operatorname{Re} w),$$

where $z' = (z_2, ..., z_{n-1})$, $\epsilon_k = -1, 0, 1$, and *E* is *O*(3). And apply Bauoendi–Trèves to find a *K*.

"Proof of (i):" Write *M* as

Im
$$w = |z_1|^2 + \sum_{k=2}^{n-1} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \operatorname{Re} w),$$

where $z' = (z_2, ..., z_{n-1})$, $\epsilon_k = -1, 0, 1$, and *E* is *O*(3). And apply Bauoendi–Trèves to find a *K*.

$$z_1 \mapsto |z_1|^2 + E(z_1, 0, \bar{z}_1, 0, 0)$$

has a strict minimum at the origin, and so does

$$z_1 \mapsto |z_1|^2 + \sum_{k=2}^n \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \operatorname{Re} w) - \operatorname{Im} w \quad \text{for small } z', w.$$

"Proof of (i):" Write *M* as

Im
$$w = |z_1|^2 + \sum_{k=2}^{n-1} \epsilon_k |z_k|^2 + E(z_1, z', \bar{z}_1, \bar{z}', \operatorname{Re} w),$$

where $z' = (z_2, ..., z_{n-1})$, $\epsilon_k = -1, 0, 1$, and *E* is *O*(3). And apply Bauoendi–Trèves to find a *K*.

$$z_1 \mapsto |z_1|^2 + E(z_1, 0, \bar{z}_1, 0, 0)$$

has a strict minimum at the origin, and so does

$$z_1 \mapsto |z_1|^2 + \sum_{k=2}^n \epsilon_k |z_k|^2 + E(z_1, z', \overline{z}_1, \overline{z}', \operatorname{Re} w) - \operatorname{Im} w \quad \text{for small } z', w.$$

we find an analytic disc Δ "attached" to $K \subset M$ (i.e., $\partial \Delta \subset K$).

One can fill a one-sided neighborhood by such discs.

Apply Baouendi–Trèves to find p_{ℓ} that approximate f uniformly on K. { p_{ℓ} } is (uniformly) Cauchy on $\partial \Delta$ for each disc.

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ . $\Rightarrow \{p_{\ell}\}$ is (uniformly) Cauchy on $U_{-} \cup K$

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 \Rightarrow { p_{ℓ} } is (uniformly) Cauchy on $U_{-} \cup K$

 \Rightarrow { p_{ℓ} } converges to a holomorphic function on U_{-} continuous up to the boundary.

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 $\Rightarrow \{p_{\ell}\}$ is (uniformly) Cauchy on $U_{-} \cup K$

 \Rightarrow { p_{ℓ} } converges to a holomorphic function on U_{-} continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 $\Rightarrow \{p_{\ell}\}$ is (uniformly) Cauchy on $U_{-} \cup K$

 \Rightarrow { p_{ℓ} } converges to a holomorphic function on U_{-} continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Example: Every CR function on Im $w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 $\Rightarrow \{p_{\ell}\}$ is (uniformly) Cauchy on $U_{-} \cup K$

 \Rightarrow { p_{ℓ} } converges to a holomorphic function on U_{-} continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Example: Every CR function on Im $w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example: Every CR function on Im $w = |z_1|^2 + |z_2|^2$ extends to the set Im $w \ge |z_1|^2 + |z_2|^2$, but not necessarily below.

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 $\Rightarrow \{p_{\ell}\}$ is (uniformly) Cauchy on $U_{-} \cup K$

 \Rightarrow { p_{ℓ} } converges to a holomorphic function on U_{-} continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Example: Every CR function on Im $w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example: Every CR function on $\text{Im } w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im } w \ge |z_1|^2 + |z_2|^2$, but not necessarily below.

Example: There exist CR functions on Im w = 0 that extend to neither side.

 $\{p_{\ell}\}$ is (uniformly) Cauchy on $\partial \Delta$ for each disc. By maximum principle, $\{p_{\ell}\}$ is (uniformly) Cauchy on Δ .

 $\Rightarrow \{p_{\ell}\}$ is (uniformly) Cauchy on $U_{-} \cup K$

 \Rightarrow { p_{ℓ} } converges to a holomorphic function on U_{-} continuous up to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to extend to the other side.

Example: Every CR function on Im $w = |z_1|^2 - |z_2|^2$ extends to an entire holomorphic function on \mathbb{C}^3 and hence must be real-analytic.

Example: Every CR function on $\text{Im } w = |z_1|^2 + |z_2|^2$ extends to the set $\text{Im } w \ge |z_1|^2 + |z_2|^2$, but not necessarily below.

Example: There exist CR functions on Im w = 0 that extend to neither side.

Remark: These ideas led Lewy to find the example of the unsolvable PDE.

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \ge 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \ge 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \ge 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \ge 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S^{2n-1} \subset \mathbb{C}^n$, $n \ge 2$, is the boundary value of a continuous $F \colon \overline{\mathbb{B}_n} \to \mathbb{C}$ that is holomorphic in \mathbb{B}_n .

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \ge 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S^{2n-1} \subset \mathbb{C}^n$, $n \ge 2$, is the boundary value of a continuous $F \colon \overline{\mathbb{B}_n} \to \mathbb{C}$ that is holomorphic in \mathbb{B}_n .

Example: The function \overline{z} on $S^1 \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Theorem (Hartogs–Bochner): Suppose $U \subset \mathbb{C}^n$, $n \ge 2$, is bounded open set with smooth boundary and $f : \partial U \to \mathbb{C}$ is a CR function. Then there exists a continuous $F : \overline{U} \to \mathbb{C}$ holomorphic in U such that $F|_{\partial U} = f$.

The special case is if we have at least one positive Levi eigenvalue at each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by Martinelli.

Example: Every CR function on $S^{2n-1} \subset \mathbb{C}^n$, $n \ge 2$, is the boundary value of a continuous $F: \overline{\mathbb{B}_n} \to \mathbb{C}$ that is holomorphic in \mathbb{B}_n .

Example: The function \overline{z} on $S^1 \subset \mathbb{C}$ is not the boundary value of a holomorphic function in the disc; it would have a pole.

Example: Similarly, not true in general if *U* is unbounded. If $U = \mathbb{D} \times \mathbb{C} \subset \mathbb{C}^2$, then \overline{z}_1 is a CR function, but does not extend inside for the same reason.