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If U c C"isadomain, UNR" #0,f,¢g € 6(U),and f = gon UNR".
= f=g

Goes the other way too: If V C R”, f: V — R is real-analytic,

= 3JUcC"open VcUFeoOU),Fly=f.

Proof: Given real power series ), ¢,(x — p)", plug in complex
numbers: }, cq(z — p)".
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More SCVish complexification:

Suppose U € C" = R?" and f: U — C is real-analytic. Write (at 0 for
simplicity)

fle,y) = me(xw Zﬂ"(T’ 2_12)

So (at any point) f equals

Z Cap(z —a)*(z - ).

ap
So write f(z, Z).
Let U c C" x C" be a domain and f, g € ©(U) so that f = g on the
diagonal

UNnD=UN{(z,0)eC"xC": =z},

= f=g.
Also goes the other way, if f: V ¢ D — C is real-analytic, then f
extends to a neighborhood of V in C*".

We identify C" and D c C" x C" with (z) = (z, ).



Example: f(z,z) = =L

1+|Z| = 13 is real-analytic in C.
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Example: f(z,z) =

1+|z|

The extension f(z, () =

-1
= 13 is real-analytic in C.

o=t is holomorphic in C? \ {zC = -1}
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lel = 13 is real-analytic in C.

Example: f(z,z) =

The extension f(z, C) = g +zC is holomorphic in C2 \ {zC = —1}.

Example: If u(z, 2) is (pluri)harmonic, then u(z, z) = Ref(z).

How to find f?

f&) +fE)
2

u(z,z) = ,WLOGf(0)=0 = f(z)=2u(z,0).
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1+|Z| = 735 is real-analytic in C.

Example: f(z,z) =

The extension f(z, C) = g +zC is holomorphic in C2 \ {zC = —1}.

Example: If u(z, 2) is (pluri)harmonic, then u(z, z) = Ref(z).
How to find f?

+ =
9 = 1020
Remark: There is no good control of the neighborhood to which f
extends. Even in 1D: Given any interval (a, b) and any neighborhood

U of (a, b), there is an F € 6(U) that does not extend past any
boundary point of U. So f = F|(, ) also cannot extend further.

,WLOGf(0)=0 = f(z)=2u(z,0).
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Suppose M c C" is a hypersurface, then f: M — Cis a CR function if
X,f = 0forall X, € Ty"'M for all p € M.

If M cUcC"andF € 6(U), then F|y; is a CR function.

Question is the reverse. Not always true, if M is real-analytic, F|y is
real-analytic, so no smooth-only CR f on M is such a restriction.

Theorem (Severi): If M and f are real-analytic and f CR, then f
extends holomorphically to a neighborhood.

The proof feels like cheating so let’s do it. Suppose 0 € M and M is
real-analytic, then there is a holomorphic ®(z, {, w) in a nbhd of 0 in
C" 1 x C"™1 x C, such that M is

w=D(z,z,w),

D, gfk gg’ vanish at 0 and w = q)(C,z D(z, C,w)) A basis for TOVM:

d 9D 9 (_ Jd JD 8) k=1.. n-1.

oz FEmow \"om oG o)



So: Mis@=®(z,z,w), TOVMis given by aizk + 3—2%.
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So: Mis@ = ®(z,z,w), TOVM is given by 8% + 3—2%.

Define the complexification .l C C*' by w = ®(z, {, w)

Complexify f(z, w, z, @) to f(z, w, {, w). Now the trick: Define
F(z,w,0) =f(z,w, C, D(z, {, w)).

As f is a CR function, it is killed by 3% + 3—2 % on M. So
JF 0D JF  JF

LTy,
I I dw I

This is true everywhere by complexification.

So Fis a function of zand wonly = F is holomorphic in C". ]

Example: Consider M C C? given by Imw = |z|?, that is, %42 = zZ, or

in other words, J/( is given by w = —2izC + w, and the CR vector field
by £ —2izZ

Y 5 9%
If f(z,w,z, ) is a CR function, the holomorphic extension is
f(z,w,z,-2izZ + w), the Z will cancel.



What if f is only smooth?
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What if f is only smooth?

Proposition: Suppose U C C" is open with smooth boundary and
f: U — Cis smooth, holomorphic on U. Then f| is a smooth CR function.

Proof: Each X, € T;O’l)(?u is a limit of TVC" vectors from inside. O

Proposition: Suppose U C C" is a domain with smooth boundary and

f: U — C is smooth, holomorphic on U and f| 5 is zero on a nonempty
open subset. Then f = 0.

Proof: Use Radé’s theorem to extend
as 0 outside (g in the picture),
then use identity. O

Theorem (Radé): If U ¢ C" is open and
g: U — C continuous and holomorphic on

U ={zeU:glz +0}.

Then g € 6(U).



But can we extend (to at least one side)?
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But can we extend (to at least one side)?
Example: Suppose M = R C C. Definef: M — C:

e ifx#£0,
f(x)_{o if x = 0.

Then f is CR (trivially), but is not a restriction nor boundary value
(from either side) of a holomorphic function continuous up to 0.
(Make it a several variable example by M = R x C.)

Example: Define the function f € B, — C by

e UNatl o 2,

0 if z; = -1.

f(Z1/ZZ) = {

Then f is smooth on B,, holomorphic on By, but near (-1,0) isnot a
restriction of a holomorphic function (only one sided extension).



A neat technique for extension is to approximate by polynomials.
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entire functions
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A neat technique for extension is to approximate by polynomials.
There is a lot more general version, but let’s just state the easy one.

Theorem (Baouendi-Tréves): Suppose M C C" is a smooth real
hypersurface, p € M. Then there exists a compact neighborhood K € M of p,
such that for every CR function f: M — C, there exists a sequence {p;} of
polynomials in z such that

pe(z) = f(z)  uniformly in K.

Example: The K depends only on M, but can’t always be all of M:
Eg,M=S'andf =2z

The proof is based on the standard proof of Weierstrass theorem:
If f: [0, 1] — R s continuous, then it is approximated on [0, 1] by the
entire functions

1
@) = [ e
0
for properly chosen c;. Then just take partial sums of the power series.

Baouendi-Treves uses the same idea on a totally real subset of M and
slightly modified version of the above.
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The following is called the Lewy extension theorem, but goes back to
Helmut Knesser in 1936.

Theorem (Lewy): Suppose M c C" is a smooth real hypersurface and

p € M. There exists a neighborhood U of p with the following property.
Suppose r: U — R is a smooth defining function for M N U, denote by
U_ C U the set where r is negative and U, C U the set where r is positive.
Let f: M — R be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f
extends to a holomorphic function on U_ continuous up to M

(ii) If the Levi form with respect to r has a negative eigenvalue at p, then f
extends to a holomorphic function on U, continuous up to M

(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then
f extends to a function holomorphic on U.

Remark: So if the Levi-form has eigenvalues of both signs, then every
CR function is a restriction of a holomorphic function.
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“Proof of (i):” Write M as
n-1
Imw = |z1]* + Z exlze|? + E(z1,7, 21,2, Rew),
k=2
where z’ = (z2,...,2z4-1), €k = —1,0,1, and E is O(3). And apply
Bauoendi-Treéves to find a K.

Z1 |Zl|2 + E(le 0/ Z1/ 0/ O)

has a strict minimum at the origin, and so does

n
z1 - |z + Z exlze|? + E(z1,7,21,Z ,Rew) —Imw  for small 2/, w.
k=2

we find an analytic disc A
“attached” to K ¢ M
(i.e., dA C K).

One can fill a one-sided
neighborhood by such discs.
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Apply Baouendi-Treves to find p; that approximate f uniformly on K.

{p¢} is (uniformly) Cauchy on JA for each disc.

By maximum principle, {p,} is (uniformly) Cauchy on A.

= {p¢} is (uniformly) Cauchy on U_- U K

= {p¢} converges to a holomorphic function on U_ continuous up
to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to
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Apply Baouendi-Treves to find p; that approximate f uniformly on K.

{p¢} is (uniformly) Cauchy on JA for each disc.

By maximum principle, {p,} is (uniformly) Cauchy on A.

= {p¢} is (uniformly) Cauchy on U_- U K

= {p¢} converges to a holomorphic function on U_ continuous up
to the boundary.

To see (iii), extend to one side, then use the Tomato can principle to
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Example: Every CR function on Imw = |z1|? — |z2|? extends to an
entire holomorphic function on C?® and hence must be real-analytic.

Example: Every CR function on Imw = |z1|? + |z2|? extends to the set
Imw > |z1|? + |z2/?, but not necessarily below.

Example: There exist CR functions on Im w = 0 that extend to neither
side.

Remark: These ideas led Lewy to find the example of the unsolvable
PDE.
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Another application is a special case of the following theorem:

Theorem (Hartogs—Bochner): Suppose U ¢ C", n > 2, is bounded open
set with smooth boundary and f: dU — C is a CR function. Then there
exists a continuous F: U — C holomorphic in U such that F|yy = f.

The special case is if we have at least one positive Levi eigenvalue at
each point, and if we can extend through compacts (next lecture).

Remark: Neither Hartogs nor Bochner proved this, it was proved by
Martinelli.

Example: Every CR function on §21-1 = C", > 2, is the boundary
value of a continuous F: B, — C that is holomorphic in B,,.

Example: The function z on S! c C is not the boundary value of a
holomorphic function in the disc; it would have a pole.

Example: Similarly, not true in general if U is unbounded. If
U =D xC c C?, then z; is a CR function, but does not extend inside
for the same reason.



