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Question: Classify all rational proper maps f: B, — By

B, f(B)

\f/' B

_ @ _ (1)
fO=0G=""—

By ={ze€C":|z|]> = |z1]* + -+ + |za* < 1}.

, where p1,...,pn, g are polynomials.



Theorem (Fatou)
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Theorem (Alexander, Pinchuk circa '77 (complicated history. . .))

Iff: B, — B, (n > 2) is a proper holomorphic map, then f € Aut(B,,).

N <n = no proper maps at all. N>n = lots of proper maps.

Theorem (Forstneric¢ '89)

Suppose 2 < n < N. If a proper holomorphic f : B, — By extends smoothly up to
the boundary, then f is rational, and its degree is bounded in terms of n and N.

Remark: degf = deg g = max{degpi,...,degpn, g} (in lowest terms).

Theorem (Cima-Suffridge "90) J

Iff = g : B, — By is rational proper map written in lowest terms, then g # 0 on By,
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Suppose f: B, — By is a rational proper map of degree d. Then there exist numbers
0<o01<0p<-<0, < "%1, and automorphisms € Aut(B,) and t € Aut(By)
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d — 1, and the homogeneous expansion of G is

n

G(z) =1+ Ga(z) + G3(2) + - - - + Gy-1(2), where  Gy(z) = Z akzi.
k=1

That is, G has no linear terms, and the quadratic part is diagonalized. The o1, . .., 0y,

are spherical invariants and f is in normal form up to composition with unitary maps.
”

So if F and @ are spherically equivalent and in the form above, o1, ..., 0, are
the same and ® = U o F o V, where U and V are unitaries and G, o V = G».

If 0 < 01 < --- < 0y, then the only V that satisfty G, o V = G; are diagonal
matrices with +1 on the diagonal.
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f= g: B, — By is proper if f(S**~!) c $?N=1, or in other words, if

82)1* = lIp@)I> =0 whenever 1-|Jz[*=0

Lemma (L. "11)

Suppose £: B, — By and £ : B,, — By are proper rational maps written in lowest
ppose ¢ @ prop P

terms such that |g(0)]* — ||p(0)||> = 1 and |G(0)|> - ||P(0)||*> = 1. Then there exists a
T € Aut(By) such that

ol=Z Faudoyif P - p@IF = IGEF - IPE)IE

In other words, classification up to the target automorphism is classification

of 3(2)* - lIp2)II>.
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Define A: B, - R,

8@ - PG

A(z,Z) = Ar(z,2) =
! (1 - Iz1P)°

Theorem (L.)

Suppose f = g : B, — By is a rational proper map in lowest terms of degree d > 1.

Then
(i) For T € Aut(Byn), Ay = Avof.
(ii) If Y € Aut(By), then Af o = CAyoy for a constant C.

(iii) A is a strongly plurisubharmonic exhaustion function for B,: A is strongly
plurisubharmonic and A(z) goes to +oo as z — IB,. In fact, A is strongly
convex near dB,,.

(iv) A has a unique critical point (a minimum) in B,,.
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If compact, all groups can be conjugated to a subgroup of the unitary.
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(i) Dy is the subgroup of U(n) such that U € Dyif go U =g.
(ii) Xy is the subgroup of U(n) such that U € X if g» o U = g».
(iii) D}a’b) is the subgroup of U(n) such that the bidegree (1, b) part of
3(z)|? = ||p(z)||? is invariant under D}“'b). (Write « if taking all degrees).

Remark: rf = DJE*'*), Df = D}*’O), and Z‘f — D}2,O).
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(iii) Hf < U(N) and T < U(N) are closed subgroups.
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Theorem (L., Grundmeier)

Iy is a group that is given by a real invariant polynomial:
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Conversely, any group T given by a real invariant polynomial is Ty for some f, and
this map can be chosen to be polynomial.
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Theorem (L., Grundmeier)

Iy is a group that is given by a real invariant polynomial:

Iy ={U:p(Uz, Uz) = p(z,z) for all z}.

Conversely, any group T given by a real invariant polynomial is Ty for some f, and
this map can be chosen to be polynomial.

If we put constraints on the degree or target dimension, then I is not
arbitrary:

1) E.g., degree-2 map is equivalent to a monomial map, so I’y contains a torus.

2) E.g., B, — B3 maps are known and there are exactly 4 possibilities for I's.



