
Differential forms in �3

The classical theorems we learned this semester can be conveniently stated in
a way that gives a vast generalization in one simple statement, and also allows
one to more easily remember/derive the statements of the theorems, and simplify
computations. We will only scratch the surface here.
In 3 dimensions there are 4 different kinds of what are called differential forms.
There are 0-forms, 1-forms, 2-forms, 3-forms. You have seen 0-forms and 1-forms
without knowing about it. Differential forms are things that are “integrated” on the
geometric object of the corresponding dimension (point, path, surface, region).

0-forms

In this setup, functions are called 0-forms. 0-forms are “integrated” on points.
That is, they are evaluated at points. If P is point then let∫

P
f = f (P).

For example, if f (x, y, z) = x2 − 1 + z and P = (1, 2, 3), then∫
P

f = f (1, 2, 3) = 12 − 1 + 3 = 3.

Points can have orientation, that is positive or negative. Above we dealt with a
positively oriented P. If Q is negatively oriented, then∫

Q
f = − f (Q).

For example if Q = (2, 1, 0) is negatively oriented then∫
Q

f = − f (2, 1, 0) = −(22 − 1 + 0) = −3.

This may seem like we’re making up nonsense, but it will be useful for stating
the fundamental theorem of calculus as the same theorem as Green’s, Stokes’,
divergence, etc...

1-forms

One forms are expressions of the form

f (x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz.
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For example
x2y dx + 3xez dy + (z + y) dz.

One forms are things that are integrated on paths. If C is a path, then we write∫
C

x2y dx + 3xez dy + (z + y) dz.

And you have seen this expression before. That is∫
C

f (x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz

=

∫
C
〈 f (x, y, z), g(x, y, z), h(x, y, z)〉 · T̂ ds.

As you’ve seen in the class it is a lot of times convenient to use the following
formula for 1-forms. Suppose C is parametrized by t for a ≤ t ≤ b. That is, x, y, z
are functions of t. Then∫

C
f (x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz

=

∫ b

a

(
f
(
x, y, z

) dx
dt
+ g

(
x, y, z

) dy
dt
+ h

(
x, y, z

) dz
dt

)
dt. (1)

We often just give a name to the one-form, that we say ω = f (x, y, z) dx +
g(x, y, z) dy + h(x, y, z) dz. Then∫

C
ω =

∫
C

f (x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz

And as we’ve seen before, paths have orientation, so this looks similar like all the
notation for one-forms.
One way that one-forms arise is as derivatives of functions. For example, let f be
a function, then what you called total-derivative in Calc III, is really the d operator
on 0-forms giving 1-forms. That is

df =
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz.

For example if f (x, y, z) = x2eyz, then

df = 2xeyz dx + x2eyz dy + x2ey dz.
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Boundaries of paths and the fundamental theorem

If C is a path from point Q to point P, then we say that the boundary of C is P with
positive orientation and Q with negative orientation. Sometimes this is written as
P −Q, although you then have to be careful not to do arithmetic here despite what
it looks like. We call the boundary ∂C.
The advantage of all this is the easy statement of the fundamental theorem of
calculus that will look like all the other statements of the fundamental theorem.
We can simply write it as ∫

C
df =

∫
∂C

f

Let’s interpret this. The left hand side is∫
C

df =
∫

C

∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz.

While the right hand side, assuming C goes from Q to P is then∫
∂C

f = f (P) − f (Q).

For example, if f (x, y, z) = x2eyz as above, and C is the path parametrized by
γ(t) = 〈t, 3t, t + 1〉 for 0 ≤ t ≤ 1, so starting at (0, 0, 1) and ending at (1, 3, 2), then∫

C
df =

∫
∂C

f = f (1, 3, 2) − f (0, 0, 1) = 12e32 − 02e01 = 2e3.

2-forms
OK, so far we’ve only seemed to make up notation for things we already know.
For 2-forms we need to be even more careful with orientation and we need to keep
track of it on the form side of things. For this we introduce a new object, the
so-called wedge or wedge product. It is a way to put together forms. In particular,
we can write

dx ∧ dy, dy ∧ dz, dz ∧ dx.

Now we define that

dx ∧ dy = −dy ∧ dx, dy ∧ dz = −dz ∧ dy, dz ∧ dx = −dx ∧ dz.

Finally, a wedge of something with itself is just zero:

dx ∧ dx = 0, dy ∧ dy = 0, dz ∧ dx = 0.
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A 2-form is an expression of the form

ω = f dy ∧ dz + g dz ∧ dx + h dx ∧ dy.

If any other wedges appear we can use the above rules to convert it to this form.
For example

x2 dy ∧ dz + y dx ∧ dz + z2 dx ∧ dx = x2 dy ∧ dz − y dz ∧ dx.

We also impose some further algebra rules on this product. It is really what we
call bilinear. So if ω, η, and γ are one-forms, then

(ω + η) ∧ γ = ω ∧ γ + η ∧ γ,
and

ω ∧ (η + γ) = ω ∧ η + ω ∧ γ.
Similarly we can take out functions. If f is a function, because these behave like
numbers. That is

fω ∧ η = f (ω ∧ η) = ω ∧ ( f η).
Let’s see this on an example:
(x2y dx + z2 dz) ∧ (ez dy + 8 dz) = x2y dx ∧ (ez dy + 8 dz)+ z2 dz ∧ (ez dy + 8 dz)

= x2yez dx ∧ dy + 8x2y dx ∧ dz + z2ez dz ∧ dy + 8z2 dz ∧ dz

= −z2ez dy ∧ dz − 8x2y dz ∧ dx + x2yez dx ∧ dy.

In general,

( f dx+g dy+h dz)∧(a dx+b dy+c dz) = f a dx∧dx+ f b dx∧dy+ f c dx∧dz
+ ga dy ∧ dx + gb dy ∧ dy + gc dy ∧ dz
+ ha dz ∧ dx + hb dz ∧ dy + hc dz ∧ dz

= (gc − hb) dy ∧ dz + (ha − f c) dz ∧ dx + ( f b − ga) dx ∧ dy.

You should recognize the formula for the cross product. That is, the result is a two
form whose coefficients are 〈 f , g, h〉 × 〈a, b, c〉. The wedge product is always the
right product in the right context.
OK, now that we know what 2-forms are, what do we do with them. Well first,
let’s see how to differentiate 1-forms to get 2-forms, with the d operator. We want
the derivative to be linear so that in particular d(ω + η) = dω + dη. Then when
we have an expression such as f dx we define

d( f dx) = df ∧ dx.
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Similarly for dy and dz. So let’s compute the derivative of any 1-form:
d( f dx + g dy + h dz) = df ∧ dx + dg ∧ dy + dh ∧ dz

=
∂ f
∂x

dx ∧ dx +
∂ f
∂y

dy ∧ dx +
∂ f
∂z

dz ∧ dx

+
∂g

∂x
dx ∧ dy +

∂g

∂y
dy ∧ dy +

∂g

∂z
dz ∧ dy

+
∂h
∂x

dx ∧ dz +
∂h
∂y

dy ∧ dz +
∂h
∂z

dz ∧ dz

=

(
∂h
∂y
− ∂g
∂z

)
dy ∧ dz +

(
∂ f
∂z
− ∂h
∂x

)
dz ∧ dx +

(
∂g

∂x
− ∂ f
∂y

)
dy ∧ dx.

You should recognise the formula for the curl. That is, if the functions f , g, h are
coefficients of a vector field, then the coefficients of the derivative of the one form
are the coefficients of the curl of the vector field.
For example,

d(x dx + y2 dz) = 2y dy ∧ dz.

The formula ∇ × ∇ f = 0 shows itself in the fact that

d(df ) = 0.

This will in fact be a feature of the d operator and it is sometimes written as d2 = 0.
OK, now that we have the derivative, we also want to integrate 2-forms. 2-forms
are integrated over surfaces. So let S be an oriented surface where n̂ is the unit
normal that gives the orientation. We define∫

S
f dy ∧ dz + g dz ∧ dx + h dx ∧ dy =

∬
S
〈 f , g, h〉 · n̂ dS.

We use only one integral sign for integrals of forms by convention.
There is another way to see what this integral is using the change of variables
formula from Calculus III. Denote

∂(x, y)
∂(u, v) = det

( [ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

] )
=
∂x
∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
.

This expression is the determinant of the derivative from the change of variables
formula for 2 dimensional integrals from Calc III. Sometimes this formula is called
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the Jacobian determinant. Let S be parametrized by (u, v) ranging over a domain
D, where the ordering u and then v gives the orientation of S. Then∫

S
f dy∧dz+g dz∧dx+h dx∧dy =

∬
D

(
f
∂(y, z)
∂(u, v) + g

∂(z, x)
∂(u, v) + h

∂(x, y)
∂(u, v)

)
du dv.

Compare this to how we computed 1-form integrals above in equation (1), and it
will feel very familiar.

Stokes’ theorem

The classical Stokes’ theorem can now be stated. Let S be an oriented surface and
∂S be the boundary curve of S oriented according to the right hand rule as we have
for the classical Stokes theorem. Let ω be a 1-form. Then∫

S
dω =

∫
∂S
ω.

If ω = f dx + g dy + h dz, then dω as we saw above is really the 2-form whose
coefficients are the components of ∇ × 〈 f , g, h〉. So the left∫

S
dω =

∬
S
∇ × 〈 f , g, h〉 · n̂ dS.

The right hand side is simply the integral∫
∂S
ω =

∫
∂S
〈 f , g, h〉 · T̂ ds.

And we have the classical Stokes’. Notice how the expression∫
S

dω =
∫
∂S
ω

is now the same for both the Stokes’ theorem and the fundamental theorem of
calculus. All that changes is if S is a surface or a curve, and if ω is a 0-form
(function) or a 1-form.

3-forms

If we take one more wedge we find that the only forms that survive our rules,
namely that dx ∧ dx = dy ∧ dy = dz ∧ dz = 0, are the ones that look like

f dx ∧ dy ∧ dz.

Notice that

6



dx ∧ dy ∧ dz = dz ∧ dx ∧ dy = dy ∧ dz ∧ dx

= −dy ∧ dx ∧ dz = −dx ∧ dz ∧ dy = −dz ∧ dy ∧ dx.

Integrating 3-forms is easy. Write the 3-form as f dx ∧ dy ∧ dz and then, given a
region R in 3-space, we have∫

R
f dx ∧ dy ∧ dz =

∭
R

f dV,

where dV is the volumemeasure. We also put orientation on R, and the above is for
positive orientation. If orientation is not mentioned, we always mean the positive
orientation. We would get the negative of the integral for negative orientation. Let
us not worry about it, and just do positively oriented regions in 3 space.
Example: Let R be the region defined by−1 < x < 2, 2 < y < 3, 0 < z < 1. Then∫

R
x2yezdx ∧ dy ∧ dz =

∫ 2

−1

∫ 3

2

∫ y

0
x2yez dz dy dx =

∫ 2

−1

∫ 3

2
x2y(e − 1) dy dx

=

∫ 2

−1
x2

(
32

2
− 22

2

)
(e − 1) dx =

(
23

3
− (−1)3

3

) (
32

2
− 22

2

)
(e − 1).

Next, how do we differentiate 2-forms to get 3-forms? We apply essentially the
same formula as before:
d( f dy∧ dz+g dz∧ dx+ h dx∧ dy) = df ∧ dy∧ dz+ dg∧ dz∧ dx+ dh∧ dx∧ dy.

Let us carry this through. For example, let’s start with the first term:

df ∧ dy ∧ dz =
(
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz
)
∧ dy ∧ dz

=
∂ f
∂x

dx ∧ dy ∧ dz +
∂ f
∂y

dy ∧ dy ∧ dz +
∂ f
∂z

dz ∧ dy ∧ dz =
∂ f
∂x

dx ∧ dy ∧ dz.

In the second term, it is only the ∂g
∂y term to survive, and in the third term it is only

the ∂h
∂z term.

All in all we find that for ω = f dy ∧ dz + g dz ∧ dx + h dx ∧ dy, that

dω = d( f dy ∧ dz + g dz ∧ dx + h dx ∧ dy) =
(
∂ f
∂x
+
∂g

∂y
+
∂h
∂z

)
dx ∧ dy ∧ dz.

And again, notice the expression for the divergence pops up. We are then not
surprised that the Divergence theorem∭

R
∇ · 〈 f , g, h〉 dV =

∬
∂R
〈 f , g, h〉 · n̂ dS,
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where ∂R is the boundary of R oriented with the outward unit normal n̂, takes the
form ∫

R
dω =

∫
∂R
ω.

The formula ∫
Ω

dω =
∫
∂Ω
ω.

is called the generalized Stokes’ theorem. Here ω is a (k − 1)-form and Ω is a
k-dimensional geometric object over which to integrate. In 3-space this is either a
path (1-dimensional), a surface (2-dimensional), or a region (3-dimensional).

Applying in the plane

In the plane you can think of everything as if it were in three space but with no z
dependence, so no dz. So there are only 0-forms, 1-forms and 2-forms. And in
fact the only 2-form that appears is the dx ∧ dy since the other possiblity gets you
dy ∧ dx = −dx ∧ dy.

d( f dx + g dy) = df ∧ dx + dg ∧ dy

=

(
∂ f
∂x

dx +
∂ f
∂y

dy
)
∧ dx + +

(
∂g

∂x
dx +

∂g

∂y
dy

)
∧ dy

=
∂ f
∂y

dy ∧ dx + +
∂g

∂x
dx ∧ dy

=

(
∂g

∂x
− ∂ f
∂y

)
dx ∧ dy.

If R is a region in the plane and ∂R is its boundary, then Stokes’ theorem says:∫
∂R

f dx + g dy =
∫

R
d( f dx + g dy) =

∫
R

(
∂g

∂x
− ∂ f
∂y

)
dx ∧ dy.

And you will recognize Green’s theorem.
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